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Chaos and exponentially localized eigenstates in smooth Hamiltonian systems

M. S. Santhanam,* V. B. Sheorey,* and A. Lakshminarayan*

Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India
~Received 28 March 1997!

We present numerical evidence to show that the wave functions of smooth classically chaotic Hamiltonian
systems scarred by certain simple periodic orbits are exponentially localized in the space of unperturbed basis
states. The degree of localization, as measured by the information entropy, is shown to be correlated with the
local phase-space structure around the scarring orbit. Sharp localization is observed when the orbit scarring the
wave function undergoes a pitchfork bifurcation and loses stability.@S1063-651X~98!00501-7#

PACS number~s!: 05.45.1b, 03.65.Sq
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It is now well known that classical periodic orbits have
enduring influence on the quantum mechanics and the s
classics of classically chaotic quantum systems. The kno
edge of all the isolated periodic orbits of such a system
lows us to estimate semiclassically the eigenvalues thro
the application of Gutzwiller’s trace formula@1#. Heller @2#
has given theoretical arguments to show that for the cla
cally chaotic quantum systems the eigenfunctions will sh
density enhancements, called scars, along the least uns
periodic orbits. Such localized probability density structu
of the wave functions and their correspondence to the un
lying periodic orbits are widely reported for many classica
chaotic quantum systems, such as the hydrogen atom
magnetic field@3#. The effect of localized states in a quantu
system with predominant classical chaos has been obse
experimentally using tunnel-current spectroscopy in se
conductor heterostructures@4#. The role played by the bifur-
cation properties of periodic orbits is also of considera
importance. The effect of orbit bifurcation is observed e
perimentally in the spectra of atoms in external fields@5,6#.

Numerical evidence for wave-function localization in sy
tems with classical chaos came from the studies of Bunim
ich billiards @2,7#. For the kicked rotor, Grempelet al. @8#
have shown that the localization in momentum space is
ponential, similar to Anderson localization in the case
charged-particle dynamics in a series of potential wells w
random depths. In smooth potentials such as coupled o
lators, adiabatic methods have been widely applied to pre
some eigenvalues, but the construction of adiabatic w
functions still remains an open problem. de Polaviejaet al.
@9# have used wave-packet propagation techniques to
struct wave functions highly localized on a given classi
periodic orbit. A qualitative study of the effect of pitchfor
bifurcation of simple orbits on the eigenfunctions has a
been reported@10#. In this paper we explore the connectio
between certain simple classical periodic orbits, their sta
ity, and the localization of the quantum wave functio
scarred by them, using coupled nonlinear oscillators. In s
systems, even in the regions of large-scale classical ch
certain simple periodic orbits with short-time periods a
high stability are known to scar an infinite series of WK
like states in the spectrum@11# and recently it has been ob
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served that these states affect the eigenvalue spacing d
butions @12#. In particular, our numerical evidence fo
smooth potentials indicates that such states, scarred
simple periodic orbits, are exponentially localized in t
space of unperturbed basis states. Thus, for such states
unperturbed Hamiltonian basis is the preferred one eve
the case of large coupling.

In the analysis of wave-function scarring@13# stability of
the periodic orbits is shown to affect the magnitude of sc
ring significantly. The analysis remains limited to averag
Wigner functions and is not valid at the points of bifurc
tions where Gutzwiller’s density of states formula brea
down, leading to predictions of either infinite scar weights
scar amplitudes. In this context we will show that gross m
sures of individual wave-function localization, such as e
tropy, are strongly correlated with the periodic orbit’s stab
ity oscillations ~with a parameter!. When the orbit loses
stability we will find that the entropy is also low, with th
point of bifurcation being approximately the point of a loc
minimum in the entropy~again as a function of a parameter!.
We will note that this does not always coincide with th
points at which the Berry formula@13# predicts an infinite
scar amplitude.

We study smooth Hamiltonian systems of the form

H~x,y,px ,py ;a!5
px

2

2m
1

py
2

2m
1V~x,y;a!, ~1!

whose classical dynamics can be regular or chaotic dep
ing on the value of the parametera. The coupled quartic
oscillator given by the homogeneous potentialV(x,y;a)
5x41y41ax2y2 is used below withm51/2. This system is
integrable fora50, 2, and 6 and exhibits increasing chaos
a is increased beyond 6. The presence of a ‘‘channel’’
this potential leads to trapping of the particle in a moti
along the channel periodic orbit (x,y50; px ,py50), which
has a short-time period and interesting stability propert
That these initial conditions determine a periodic orbit
evident, as the equations of motion imply that there is z
velocity and acceleration in they direction, thereby restrict-
ing the motion to thex direction alone. The stability of the
channel periodic orbit as measured by TrJ(a), whereJ(a)
is the monodromy matrix, displays bounded oscillations a
345 © 1998 The American Physical Society
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function ofa and for this simple periodic orbit of the Hami
tonian in Eq.~1! the analytical expression for TrJ(a), due
to Yoshida@14#, is given by

Tr J~a!52A2cosS p

4
A114a D . ~2!

The monodromy matrix refers to the ‘‘half Poinca´
map’’ @5#, which is the usual Poincare´ map without the re-
striction of positive momentum on the intersection. We n
that this is the appropriate monodromy matrix in the se
classical analysis as well due to the fact that we are rest
ing the quantum spectrum to theA1 irreducible representa
tion of theC4v point group that the Hamiltonian possess
The important inference from Eq.~2! is that this channe
orbit changes stability whena5n(n11), wheren is an in-
teger, through a pitchfork bifurcation. This follows becau
at these parameter valuesu Tr@J(a)#u52. Another interest-
ing property we have found recently is that the Poinc´
section around the channel periodic orbit locally scales w
respect to the parametera for all one-parameter homoge
neous two-dimensional Hamiltonian systems. The sca
exponents depend simply on the degree of homogeneit
the potential@15#. In this paper, we will focus our attentio
on this channel periodic orbit and its influence on the qu
tum wave functions.

The quantization of the Hamiltonian in Eq.~1! is by nu-
merically solving the Schro¨dinger equation in the basis of th
eigenfunctions of the corresponding unperturbed probl
namely, thea50 case in Hamiltonian~1!. The actual basis
statesc j (x,y) employed are the symmetrized linear com
nation of the wave functions for the unperturbed probl
@16#. The wave function for themth state is given by
Cm(x,y;a)5( i 51

N am, jc j (x,y), where j represents the pai
of even integers (n1 ,n2) corresponding to the quantum num
bers of two one-dimensional states that makes up the b
state andam, j are the expansion coefficients. The informati
entropy measure, for themth state with M components,
whereM is the dimension of the Hamiltonian matrix, define
as

Sm
a 52(

j 51

M

uam, j
a u2lnuam, j

a u2, ~3!

is applied to the wave-function spectrum and we have sho
that the localized states scarred by the channel periodic o
are identified by a pronounced dip in the information entro
curve and they were also visually identified@11#.

The Berry-Voros conjecture that the Wigner function o
typical eigenstate of a quantized chaotic system is a mi
canonical distribution on the energy shell is of course v
lated by many scarred states and especially by the cha
localized ones. The channel states are in fact so local
that, as we discuss below, they are in a sense even expo
tially localized.

In Fig. 1~a! we showam, j plotted as a function ofj for
one such highly excited state ata590.0. In Fig. 1~b! am, j
corresponding to a channel localized state at the same v
of a is plotted. We immediately recognize that for the cha
nel localized state very few basis states contribute to
building up of the wave function. The largest peak is ma
e
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of basis states whose quantum numbers are of the f
(N,0),(N,2),(N,4), . . . , indecreasing order of their contri
bution.N refers to the number of quanta of excitation for t
motion along the channel. We observed that the pattern
Fig. 1~b! is qualitatively generic for all the channel localize
states. For instance, in Fig. 2 we have the wave function
localized states for the parametersa588.0 and 96.0.

The discontinuous manner in which the peaks rise is
to the ordering of the pair of quantum numbers (n1 ,n2)
along the one-dimensional arrayj . For instance, the pair o
quantum numbers immediately preceding the largest pea
say, (N,0) would have large excitations inboth the x andy
directions and therefore have vanishing influence on
channel localized states. The exponential falloff is theref

FIG. 1. Significant expansion coefficients of two states from
same spectrum for the quartic oscillator:~a! a typical state, number
1971 from the ground state, and~b! a channel localized state, num
ber 1774.

FIG. 2. Significant expansion coefficients of two channel loc
ized states at different parameter values:~a! state number 1786 and
~b! state number 1740. The principal peakN5252 ~see the text! for
these states and those in Fig. 3.
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57 347CHAOS AND EXPONENTIALLY LOCALIZED . . .
one sided. The falloff within a peak could have alternati
signs, as indeed is the case for the strongly perturbed
monic oscillator presented below, in which case the modu
is taken before analysis. This is largely a matter of sign c
ventions adopted for the one-dimensional states forming
two-dimensional basis. Even the gross features of such s
are not yet quantitatively understood. As a subclass of w
functions of a chaotic system, however, they appear to be
most accessible.

Significantly, the quantaN also enters an adiabatic fo
mula, with constantsb0'b1/3 andb1,

EN~a!5b0AaS N1
1

2D 1/3

1b1S N1
1

2D 4/3

, ~4!

to estimate the eigenvaluesEN of the channel localized
states. The value ofb152.185 069 coincides with that ob
tained from the WKB approximation to the one-dimension
quartic oscillator. The existence of such a formula for a s
class of states in a chaotic spectrum is indicative of the s
cial nature of these states as no systematics has yet

FIG. 3. Logarithm of the expansion coefficients in the princip
peak of the states 1786, 1774, and 1740 ata588.0, 90.0, and 96.0
respectively. The values ofn2 have been shifted to the right by
and 4 for the states ata590 and 96, respectively, otherwise th
lines practically fall on top of each other.
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uncovered for scarring. Although this formula does not
clude the stability of the orbit as a parameter, we have fou
that this is most accurate when the orbit is about to lo
stability and the wave function is highly localized as not
below. We derived Eq.~4! as a consequence of adiabatici
as developed in@17#.

Our numerical results show that the channel localiz
states in the unperturbed basis are dominated by expo
tially falling peaks in the quantum number of the motio
perpendicular to the direction of the channel and further t
the degree of localization is related to the stability of t
channel periodic orbit. In Fig. 3 we plot ln(am,j(N,n2)) as a

function of n2 for the principal peaks corresponding to th
states shown in Figs. 1~b! and 2 and the fairly straight line
obtained show that the fall is indeed exponential. The n
dominant peak with contributions coming mainly fro
(N12,0),(N12,2),(N12,4), . . . basis states also provide
evidence~not shown here! of exponential localization. How-
ever, for the third peak, corresponding to (N14,0), the val-
ues ofam, j fall within our accuracy of our calculation an
hence, although unequivocal conclusions cannot be dra
we expect the fall to be exponential. A localizedA1 eigen-
function with a dominant peak from (N,0) may thus be ap-
proximated as

CN~ l ,n!5(
k

Akexp~2n/jk!dN1k,l , ~5!

where (l ,n) is a pair of even integers andk is an even integer
index.Ak are the amplitudes of the peaks and only very f
of them are appreciably different from zero. The localizati
lengthsjk are the inverses of the slopes of the straight lin
as in Fig. 3.

It has been established that the eigenstates of ti
dependent systems, such as the kicked rotor, are expo
tially localized, but the above result is an observation
exponential localization in smooth chaotic systems. Why
there no exponential localization for other scarred states?
believe that the answer lies in the fact that~a! the basis in
which there is exponential localization belongs to the Ham
tonian, namely, Eq.~1! with a50, for which the scarring
orbit is also a valid orbit and~b! the stability of such an orbit
is high and the channel orbit never becomes very unsta
however large the nonlinearity. For instance, the 4
straight-line periodic orbits could be exponentially localiz
in the 45° rotated unperturbed basis, but this orbit becom

l

FIG. 4. Configuration-space channel localized wave-function densities for states 1740 (a596.0, left! and 1774 (a590.0, right!.
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348 57M. S. SANTHANAM, V. B. SHEOREY, AND A. LAKSHMINARAYAN
extremely unstable, thereby creating complex states in wh
other orbits contribute to the scarred state.

The channel periodic orbit loses stability through a pitc
fork bifurcation @Tr J(a)522# at a590.0 while creating
two other stable orbits. We notice from Fig. 3 that we fi
the best exponential behavior ata590.0 and it progressively
becomes less exponential as we explore the paramete
gions in which the channel orbit also becomes progressiv
unstable. In Fig. 4 we have striking visual evidence for t
wave functions at two differenta values at which the chan
nel orbit is stable and unstable. The wave function
a590.0 is compact and has almost collapsed onto the p
odic orbit in comparison to the wave function ata596.0.

We calculated the average information entropy for a p
ticular a by taking the mean of information entropie
^Sa&5(sSs

a/k for a group ofk localized states represente
by s within some energy range. The plot of^Sa& in Fig. 5
shows that even this averaged measure reflects the tren
served in the stability oscillations of the channel orbit in t
vicinity of a590.0, though the exact minimum of the e
tropy seems to be slightly removed from this point of bifu
cation. A tentative explanation of this is provided in the o
servation that exactly at the point of bifurcation the regi
around the channel orbit is locally flat, while just after t
bifurcation, even though the channel orbit has lost stabi
and has become hyperbolic, there are two neighboring ne
created stable orbits that provide the region with enhan
overall stability. Thus an initial wave packet launched in t
channel would spread out more slowly immediately after
bifurcation, thereby enabling sharper localization. Movi
away from the point of bifurcation the stable orbits mo
away from the channel orbit and thus their stability is of
consequence and the wave functions relatively deloca
Further evidence of entropy oscillations is seen in the p
turbed oscillator system we present below.

In order to check the validity of our finding on other sim
lar systems, we studied the perturbed oscillator, given by
potential V(x,y)5x2/21y2/21bx2y2, where b is the pa-
rameter; we have takenm51 andb50.1 below. This is a

FIG. 5. Averaged information entropy plotted againsta for the
quartic oscillator.
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nonhomogeneous system and the scaled parameter ise5bE,
whereE is the energy of the system. The advantage of n
homogeneity in this system is that now the stability oscil
tions of the channel orbit are with respect toe and hence
with a fixed value ofb we can study how the wave-functio
localization is affected by these oscillations.

The results presented below pertain to the perturbed
cillator, unless otherwise specified. The structure of chan
localized wave functions in the unperturbed space has a
neric pattern similar to Fig. 1~b! for the case of the coupled
quartic oscillator. The approximate exponential falloff fro
the principal peak for three states, with different scaled

FIG. 6. Exponential localization for three channel localiz
states of the perturbed oscillator.u and s represent unstable an
stable channel orbits. Then1 for the three curves are not the sam

FIG. 7. Entropy of the first 2000 states of the perturbed osci
tor. The solid line connects the channel localized states only, w
the dashed line isuTr@J(e)#22u. See the text for details.~The scale
of the stability curve coincides with the entropy scale shown only
zero.!
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57 349CHAOS AND EXPONENTIALLY LOCALIZED . . .
rameterse58.03, 19.73, and 10.65 corresponding to sta
and unstable motion of the channel orbit, is shown in Fig
Shown is a plot of ln(uam,ju) againstj , illustrating that falloff
is more exponential when the orbit is stable. Since the sc
parametere is a function of the energyE, a global picture of
the stability of the channel orbit and its influence on t
degree of localization, as measured by the information
tropy, can be obtained in this system. In Fig. 7 the quan
u Tr@J(e)#22u, an indicator of the stability of the channe
orbit, and the information entropy for the first 2000 states
plotted againste ~here the monodromy matrix is for the fu
Poincare´ map!. The tiny dots represent the entropies of sta
that are not channel localized and they roughly follow ra
dom matrix theory predictions@11#. The entropy of channe
localized states, however, show remarkable oscillations
strongly correlate with the stability oscillations of the cha
nel orbit.

We note from Fig. 7 that the open circles correspond
to Tr@J(e)#52 are points of pitchfork bifurcation at whic
cs
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channel orbit loses stability, which correlate strongly w
the entropy minima of the channel states. We may note
when the orbit gains stability the entropy is not a minimu
although Gutzwiller’s trace formula breaks down here
well and Berry’s scarring amplitude formula@13# may di-
verge. Thus the entropy minima must also have to do w
the local structure around the periodic orbit and not dep
on only the stability matrix of the scarring orbit.

The study of the simplest scarred states, the channe
calized ones, have thus shown interesting exponential lo
ization properties as well as strong correlation of the deg
of localization with the local structure of the scarring orb
including its stability. Other states that share some of th
properties are being actively studied. The scarred state n
in the experiment in Ref.@4# also has been shown to obey a
underlying approximate WKB-like eigenvalue formula@4#
and it may be possible to experimentally observe some of
phenomena noted in this paper either by such experimen
possible microwave cavity experiments@18#.
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