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Chaos and exponentially localized eigenstates in smooth Hamiltonian systems
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We present numerical evidence to show that the wave functions of smooth classically chaotic Hamiltonian
systems scarred by certain simple periodic orbits are exponentially localized in the space of unperturbed basis
states. The degree of localization, as measured by the information entropy, is shown to be correlated with the
local phase-space structure around the scarring orbit. Sharp localization is observed when the orbit scarring the
wave function undergoes a pitchfork bifurcation and loses stabi#§063-651X98)00501-7

PACS numbes): 05.45+b, 03.65.Sq

It is now well known that classical periodic orbits have anserved that these states affect the eigenvalue spacing distri-
enduring influence on the quantum mechanics and the semiputions [12]. In particular, our numerical evidence for
classics of classically chaotic quantum systems. The knowlsmooth potentials indicates that such states, scarred by
edge of all the isolated periodic orbits of such a system alsimple periodic orbits, are exponentially localized in the
lows us to estimate semiclassically the eigenvalues througdpace of unperturbed basis states. Thus, for such states, the
the application of Gutzwiller's trace formufd]. Heller[2] ~ unperturbed Hamiltonian basis is the preferred one even in
has given theoretical arguments to show that for the classthe case of large coupling.
cally chaotic quantum systems the eigenfunctions will show In the analysis of wave-function scarrif3] stability of
density enhancements, called scars, along the least unstaff® periodic orbits is shown to affect the magnitude of scar-
periodic orbits. Such localized probability density structureding significantly. The analysis remains limited to averaged
of the wave functions and their correspondence to the undelVigner functions and is not valid at the points of bifurca-
lying periodic orbits are widely reported for many classically tions where Gutzwiller's density of states formula breaks
chaotic quantum systems, such as the hydrogen atom in dpwn, Ieading to predictions of either infinite scar WE‘ightS or
magnetic field 3]. The effect of localized states in a quantum scar amplitudes. In this context we will show that gross mea-
system with predominant classical chaos has been observédres of individual wave-function localization, such as en-
experimentally using tunnel-current spectroscopy in semitropy, are strongly correlated with the periodic orbit’s stabil-
conductor heterostructurg4]. The role played by the bifur- ity oscillations (with a parametgr When the orbit loses
cation properties of periodic orbits is also of considerablestability we will find that the entropy is also low, with the
importance. The effect of orbit bifurcation is observed ex-point of bifurcation being approximately the point of a local
perimentally in the spectra of atoms in external figli$]. ~ mMinimum in the entropyagain as a function of a parameter

Numerical evidence for wave-function localization in sys- We will note that this does not always coincide with the
tems with classical chaos came from the studies of Bunimovioints at which the Berry formulgl3] predicts an infinite
ich billiards [2,7]. For the kicked rotor, Grempedt al. [8] ~ scar amplitude.
have shown that the localization in momentum space is ex- We study smooth Hamiltonian systems of the form
ponential, similar to Anderson localization in the case of
cha(;ged-garti;]:le Iolynamicshin a se_riels of pr?tential wlellds withI 02 p2
random depths. In smooth potentials such as coupled oscil- oy By y i
lators, adiagatic methods haF\)/e been widely appliedpto predict HOGY PPy ;@)= 2m * 2m TVxy;a), @
some eigenvalues, but the construction of adiabatic wave
functions still remains an open problem. de Polaviejal.

[9] have used wave-packet propagation techniques to cofvhose classical dynamics can be regular or chaotic depend-
struct wave functions highly localized on a given classicaling on the value of the parameter. The coupled quartic
periodic orbit. A qualitative study of the effect of pitchfork oscillator given by the homogeneous potentifx,y;«)
bifurcation of simple orbits on the eigenfunctions has also=x*+y*+ ax?y? is used below wittm=1/2. This system is
been reported10]. In this paper we explore the connection integrable fora=0, 2, and 6 and exhibits increasing chaos as
between certain simple classical periodic orbits, their stabil« is increased beyond 6. The presence of a “channel” in
ity, and the localization of the quantum wave functionsthis potential leads to trapping of the particle in a motion
scarred by them, using coupled nonlinear oscillators. In suchlong the channel periodic orbix{y=0; p,,p,=0), which
systems, even in the regions of large-scale classical chaolsas a short-time period and interesting stability properties.
certain simple periodic orbits with short-time periods andThat these initial conditions determine a periodic orbit is
high stability are known to scar an infinite series of WKB- evident, as the equations of motion imply that there is zero
like states in the spectrufid1] and recently it has been ob- velocity and acceleration in the direction, thereby restrict-
ing the motion to thex direction alone. The stability of the
channel periodic orbit as measured by J(#), whereJ(«)
*Electronic address: vbsdst@prl.ernet.in is the monodromy matrix, displays bounded oscillations as a
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function of @ and for this simple periodic orbit of the Hamil-
tonian in Eq.(1) the analytical expression for T{«), due 0.05
to Yoshida[14], is given by

Tr J(a)=2\/§cos<%\/l+4a
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The monodromy matrix refers to the “half Poincare T
map” [5], which is the usual Poincam@ap without the re- £ N ' PN
g
o]

striction of positive momentum on the intersection. We note 0.4 1 (®) a=90.0
that this is the appropriate monodromy matrix in the semi- C

classical analysis as well due to the fact that we are restrict- 02 -

ing the quantum spectrum to th#g irreducible representa- -

tion of the C,, point group that the Hamiltonian possesses. ok ik 'V"\‘H“w‘“ L

The important inference from Ed2) is that this channel i r

orbit changes stability whea=n(n+1), wheren is an in- o2 L. L L ,
teger, through a pitchfork bifurcation. This follows because 4000 6000 8000 104
at these parameter valug3r J(a)]|=2. Another interest- i(n,ny)

ing property we have found recently is that the Poincare o . N

section around the channel periodic orbit locally scales with ~ FIG. 1. Significant expansion coefficients of two states from the
respect to the parameter for all one-parameter homoge- Sa8me spectrum for the quartic oscillatea a typical state, number
neous two-dimensional Hamiltonian systems. The scalingz71 from the ground state, afio) a channel localized state, num-
exponents depend simply on the degree of homogeneity ri774.

the potential15]. In this paper, we will focus our attention i
on this channel periodic orbit and its influence on the quan®f Dasis states whose quantum numbers are of the form
tum wave functions. (N,0),(N,2),(N,4), ..., indecreasing order of their contri-

The quantization of the Hamiltonian in EL) is by nu- bution.N refers to the number of quanta of excitation for the
merically solving the Schidinger equation in the basis of the Motion along the channel. We observed that the pattern in
eigenfunctions of the corresponding unperturbed problem',:'g- Ub) is quahtatlvel_y generic for all the channel Ioca_hzed
namely, thea=0 case in Hamiltoniaril). The actual basis states. For instance, in Fig. 2 we have the wave functions of
statesy;(x,y) employed are the symmetrized linear combi- localized states for the parameters-88.0 and 96.0.
nation of the wave functions for the unperturbed problem The discontinuous manner in which the peaks rise is due
[16]. The wave function for themth state is given by [© the ordering of the pair of quantum numbers, (1;)

W (x,y;a) =N an ;(x,y), where] represents the pair along the one-dimensional array For instance, the pair of

of even integersr(l,riz) corresponding to the quantum num- guantum numbers immediately pregedmg the largest peak at,
bers of two one-dimensional states that makes up the basi&y N.0) Wogld hhav? Iargr(]a excnanc.)nﬁl toth :{?ex andy .
state andi,,; are the expansion coefficients. The information@I'éctions and therefore have vanishing influence on the
entropy measure, for thenth state withM components, channel localized states. The exponential falloff is therefore

whereM is the dimension of the Hamiltonian matrix, defined

as o4l (@) a=88.0
M L
Sm= —J_Zl lam ;12Inlag, ;2. () 0.2 [ k

is applied to the wave-function spectrum and we have shown O | ¢
that the localized states scarred by the channel periodic orbit -
are identified by a pronounced dip in the information entropy ; T R
curve and they were also visually identifigt]. gE o4l a=96.0

The Berry-Voros conjecture that the Wigner function of a C
typical eigenstate of a quantized chaotic system is a micro- 0z L
canonical distribution on the energy shell is of course vio- S
lated by many scarred states and especially by the channel L k \
localized ones. The channel states are in fact so localized Ob *
that, as we discuss below, they are in a sense even exponen- r
tially localized. ottt o o o

7600 7800 8000 8200 8400

In Fig. 1(a) we showa,; plotted as a function of for i)
102

one such highly excited state at=90.0. In Fig. 1b) a,;
corresponding to a channel localized state at the same value FiG. 2. significant expansion coefficients of two channel local-
of a is plotted. We immediately recognize that for the chan-ized states at different parameter valug:state number 1786 and
nel localized state very few basis states contribute to theb) state number 1740. The principal pedk 252 (see the tejtfor
building up of the wave function. The largest peak is madeahese states and those in Fig. 3.
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. T T uncovered for scarring. Although this formula does not in-
— a=90.0 clude the stability of the orbit as a parameter, we have found
N T aToeo that this is most accurate when the orbit is about to lose
% ’ stability and the wave function is highly localized as noted
below. We derived Eq4) as a consequence of adiabaticity
as developed ifi17].

Our numerical results show that the channel localized
states in the unperturbed basis are dominated by exponen-
tially falling peaks in the quantum number of the motion
perpendicular to the direction of the channel and further that
the degree of localization is related to the stability of the
channel periodic orbit. In Fig. 3 we plot Ia%,j(N,nz)) as a

function of n, for the principal peaks corresponding to the
states shown in Figs.(l) and 2 and the fairly straight lines
obtained show that the fall is indeed exponential. The next
N R SR R dominant peak with contributions coming mainly from

10 20 30 40 (N+2,0),(N+2,2),(N+2,4), ... basis states also provides

Ng evidence(not shown hereof exponential localization. How-

ever, for the third peak, corresponding td+ 4,0), the val-
ues ofa,; fall within our accuracy of our calculation and
hence, although unequivocal conclusions cannot be drawn,
we expect the fall to be exponential. A localiz&d eigen-
function with a dominant peak fromN\,0) may thus be ap-
proximated as

one sided. The falloff within a peak could have alternating
signs, as indeed is the case for the strongly perturbed har- W (1,n)=2>, Aexp—n/&) ON+k I 6)
monic oscillator presented below, in which case the modulus K

is taken before analysis. This is largely a matter of sign CONy here (,n) is a pair of even integers afids an even integer

ventions adopted for the one-dimensional states forming th%dex A, are the amplitudes of the peaks and only very few
two-dimensional basis. Even the gross features of such StaGs them are appreciably different from zero. The localization

are not yet quant|ta_t|vely understood. As a subclass of W"’W‘aengthsgi< are the inverses of the slopes of the straight lines
functions of a chaotic system, however, they appear to be thg

. s in Fig. 3.
most accessible. 9

S . . It has been established that the eigenstates of time-
Significantly, the quantal also enters an adiabatic for- dependent systems, such as the kicked rotor, are exponen-
mula, with constant®y,~b;/3 andb;, ’ !

tially localized, but the above result is an observation of
exponential localization in smooth chaotic systems. Why is
, (4) there no exponential localization for other scarred states? We
believe that the answer lies in the fact ti{at the basis in
which there is exponential localization belongs to the Hamil-
to estimate the eigenvaludsy of the channel localized tonian, namely, Eq(1) with =0, for which the scarring
states. The value df;=2.185 069 coincides with that ob- orbit is also a valid orbit an¢b) the stability of such an orbit
tained from the WKB approximation to the one-dimensionalis high and the channel orbit never becomes very unstable,
guartic oscillator. The existence of such a formula for a subhowever large the nonlinearity. For instance, the 45°
class of states in a chaotic spectrum is indicative of the spestraight-line periodic orbits could be exponentially localized
cial nature of these states as no systematics has yet beenthe 45° rotated unperturbed basis, but this orbit becomes

o

-

FIG. 3. Logarithm of the expansion coefficients in the principal
peak of the states 1786, 1774, and 174@a88.0, 90.0, and 96.0,
respectively. The values af, have been shifted to the right by 2
and 4 for the states at=90 and 96, respectively, otherwise the
lines practically fall on top of each other.
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FIG. 4. Configuration-space channel localized wave-function densities for states 7850, lef) and 1774 ¢=90.0, righ}.
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FIG. 5. Averaged information entropy plotted againstor the FIG. 6. Exponential localization for three channel localized
quartic oscillator. states of the perturbed oscillatar.and s represent unstable and

stable channel orbits. The, for the three curves are not the same.

extremely unstable, thereby creating complex states in which
other orbits contribute to the scarred state. nonhomogeneous system and the scaled parameter &,

The channel periodic orbit loses stability through a pitch-whereE is the energy of the system. The advantage of non-
fork bifurcation[Tr J(a)=—2] at «=90.0 while creating homogeneity in this system is that now the stability oscilla-
two other stable orbits. We notice from Fig. 3 that we findtions of the channel orbit are with respect écand hence
the best exponential behaviorat90.0 and it progressively with a fixed value of8 we can study how the wave-function
becomes less exponential as we explore the parameter rcalization is affected by these oscillations.
gions in which the channel orbit also becomes progressively The results presented below pertain to the perturbed os-
unstable. In Fig. 4 we have striking visual evidence for twocillator, unless otherwise specified. The structure of channel
wave functions at two different values at which the chan- localized wave functions in the unperturbed space has a ge-
nel orbit is stable and unstable. The wave function ateric pattern similar to Fig.(b) for the case of the coupled
a=90.0 is compact and has almost collapsed onto the perfuartic oscillator. The approximate exponential falloff from
odic orbit in comparison to the wave function at=96.0. the principal peak for three states, with different scaled pa-

We calculated the average information entropy for a par-
ticular a by taking the mean of information entropies
(S,)=2,Salk for a group ofk localized states represented L
by o within some energy range. The plot ¢8,) in Fig. 5 N
shows that even this averaged measure reflects the trend ob- |
served in the stability oscillations of the channel orbitinthe g |-
vicinity of «=90.0, though the exact minimum of the en- L e
tropy seems to be slightly removed from this point of bifur- L e 1 4
cation. A tentative explanation of this is provided in the ob-
servation that exactly at the point of bifurcation the region 4 b A A
around the channel orbit is locally flat, while just after the 0 | '
bifurcation, even though the channel orbit has lost stability
and has become hyperbolic, there are two neighboring newly
created stable orbits that provide the region with enhanced
overall stability. Thus an initial wave packet launched in the
channel would spread out more slowly immediately after the
bifurcation, thereby enabling sharper localization. Moving :
away from the point of bifurcation the stable orbits move o L dal i Pl : v
away from the channel orbit and thus their stability is of no L v 0 s
consequence and the wave functions relatively delocalize. 0 10 20
Further evidence of entropy oscillations is seen in the per- €

turbed oscillator system we present below. FIG. 7. Entropy of the first 2000 states of the perturbed oscilla-

In order to check the validity of our finding on other simi- tor. The solid line connects the channel localized states only, while
lar systems, we studied the perturbed oscillator, given by thehe dashed line i§Tr[J(e)]—2|. See the text for detail§The scale
potential V(x,y) = x%/2+y?/2+ Bx?y?, where 8 is the pa-  of the stability curve coincides with the entropy scale shown only at
rameter; we have takem=1 and8=0.1 below. This is a zero)

[}
I
|
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rameterse=8.03, 19.73, and 10.65 corresponding to stablechannel orbit loses stability, which correlate strongly with
and unstable motion of the channel orbit, is shown in Fig. 6the entropy minima of the channel states. We may note that
Shown is a plot of Iriemj|) againstj, illustrating that falloff ~ when the orbit gains stability the entropy is not a minimum,
is more exponential when the orbit is stable. Since the scaledlthough Gutzwiller's trace formula breaks down here as
parametek is a function of the energk, a global picture of well and Berry's scarring amplitude formu(d.3] may di-
the stability of the channel orbit and its influence on theverge. Thus the entropy minima must also have to do with
degree of localization, as measured by the information enthe local structure around the periodic orbit and not depend
tropy, can be obtained in this system. In Fig. 7 the quantityon only the stability matrix of the scarring orbit.
| Tr[J(€)]—2|, an indicator of the stability of the channel = The study of the simplest scarred states, the channel lo-
orbit, and the information entropy for the first 2000 states arecalized ones, have thus shown interesting exponential local-
plotted against (here the monodromy matrix is for the full ization properties as well as strong correlation of the degree
Poincaremap. The tiny dots represent the entropies of statesof localization with the local structure of the scarring orbit
that are not channel localized and they roughly follow ran-including its stability. Other states that share some of these
dom matrix theory predictiongl1]. The entropy of channel properties are being actively studied. The scarred state noted
localized states, however, show remarkable oscillations thah the experiment in Ref4] also has been shown to obey an
strongly correlate with the stability oscillations of the chan-underlying approximate WKB-like eigenvalue formul4]
nel orbit. and it may be possible to experimentally observe some of the
We note from Fig. 7 that the open circles correspondingphenomena noted in this paper either by such experiments or
to T J(e)]=2 are points of pitchfork bifurcation at which possible microwave cavity experimentss].
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