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In hadron colliders, such as the Large Hadron Collidg4C) to be built at CERN, the long-term stability
of the single-particle motion is mostly determined by the field-shape quality of the superconducting magnets.
The mechanism of particle loss may be largely enhanced by modulation of betatron tunes, induced either by
synchrobetatron couplinfyia the residual uncorrected chromatigjtgr by unavoidable power supply ripple.
This harmful effect is first investigated in a simple dynamical system model, therHmap with modulated
linear frequencies. Then a realistic accelerator model describing the injection optics of the LHC lattice is
analyzed. Orbital data obtained with long-term tracking simulationS-10" turns are post-processed to
obtain the dynamic aperture. It turns out that the dynamic aperture can be interpolated using a simple empirical
formula, as it decays proportionally to a power of the inverse logarithm of the number of turns. Furthermore,
the extrapolation of tracking data at®1furns gives reliable estimates of the dynamic aperture fértifhs,
which represent the expected duration of the LHC injection plafez1063-651X%98)00602-3

PACS numbdss): 41.85—p, 29.27-a, 03.20+i

I. INTRODUCTION guencies are modulated. There exists a wide literature on this
subject: analytical and numerical studies have been carried
In large hadron accelerators, such as the Large Hadroout on both simplified and more realistic models of accelera-
Collider (LHC) [1], two counter-rotating beams perform up tors; numerous experiments have been performed on several
to 10 turns at the injection plateau, before energy rampingmachineg10-13.
During this time, the particle dynamics can be dominated by Mechanisms for modulational diffusion were analyzed in
the unavoidable field-shape imperfections of the superconRefs.[14,15; using perturbation theory one can work out
ducting magnets. The nonlinear fields endanger the beammnalytical estimates of the diffusion coefficients in the modu-
stability, since they introduce a tune dependence with amplilational layer created by resonance overlapping. These tools
tude and energy, and excite nonlinear resonafies]. The  have been used to analyze a simplified mogebdulated
resulting particle losses may also occur after many millionsFODO cell, i.e., a modulated en mappingto distinguish
of turns(see, for instance, Reff6—10]). between different regimes due to the modulational spectra
To optimize the accelerator performances and to fix arf16]. Rigorous estimates have also been obtained for the
upper bound to the unwanted multipolar errors, one has tghange in the adiabatic invariant when the phase space is
evaluate the border of the region around the reference orb#lowly swept by a resonangé7]. Using these results, esti-
that is stable for the required number of turns. Inside thismates of the diffusion coefficient in some phase space re-
domain, usually called the dynamic aperture, one can safelyions have been worked o[8,19.
operate with the beam. The evaluation of the dynamic aper- If the mechanism of stability loss can be described in
ture is in general based on symplectic integration of compliterms of a Fokker-Planck equation, the diffusion coefficient
cated equations of motion using tracking codes. Notwith-as to depend strongly on the adiabatic invariants, and on the
standing the powerful farms of modern computers, for aocal structure of the resonancésee, for instance, Ref.
realistic model of the LHC lattice one can hardly evaluate[15]). This leads to severe difficulties, since in order to treat
the beam stability for more than 4@urns. Moreover, one the complete problem one has to consider at least the under-
has to investigate a large set of initial conditions for eachlying network of resonances in the four-dimensioi4D)
machine configuration, and several configurations to optiphase space, while most of the references are restricted to the
mize the lattice performances. Therefore, to design the LHGnalysis of a 2D casglus modulation Approximations that
lattice for 10 turns, methods alternative to brute-force assume a smooth dependence of the diffusion coefficient on
element-by-element tracking should be worked out. the invariantd12] clearly neglect the presence of the well-
Long-term particle losses are drastically enhanced if th&known phenomena due to the local structure of resonances
betatron tune is modulated by some external causes, such [@9]; on the other hand, the relevance of these local phenom-
the power supply ripple, or by synchrobetatron coupling, viaena can be questionable. The possibility itself of describing
the residual uncompensated chromaticity. This effect can bthe dynamics in presence of tune modulation through a dif-
modelized by a set of nonlinear oscillators whose linear frefusive process, i.e., with a Fokker-Planck equation and an
action-dependent diffusion coefficient, has been considered
guestionable by some authdf0].
*Present address: PS Division, CERN, CH 1211 Geneva, Switzer- Other approaches to the analysis of long-term stability
land. have been proposed. The Lyapunov exporteriginally de-
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veloped and applied in celestial mechanjed—23) is an  instance, Ref[10]). The obtained dynamic apertube turns
indicator that can be extracted from tracking data: it shouldbut to be a smooth function of the number of tuMsand is
allow one to distinguish regular from chaotic motion using avery well interpolated by the three-parameter formula
limited number of turn$8,9]. Assuming that all chaotic par-
ticles will be lost, one obtains an estimate of the core of
stable particles. Unfortunately, this assumption leads to se-
vere underestimates in the case of tune modulation, where
particle losses can be extremely slow, and therefore chaotigo the 4D case the best fit af is around 1.5, that is, the
regions are stable for a sufficiently high number of turnsggme value that can be rigorously proved through careful
[10]. One can also try to define approximated global invari-gstimates of the remainder perturbative sef#d. The ex-

ants through numerical methods, and use the drift in th%gnent decreases when the amplitude of the tune modulation
space of these pseudoinvariants to give long-term boundsecomes larger:; this is natural, since larger modulational am-
[24,25. ) i . plitudes imply more relevant long-term phenomena.

_ A pragmatic approach is based on the analysis of the sur- The apove equation implies that the phase space is split
vival times provided by computer simulations, plotted versugntg two parts: an inner part stable for infinite times, and an
the initial amplitude(survival plots; see Ref$6,7,26). The  gyter part where the chaotic motion is dominant. In the inner
main drawback is that these plots are very irregular, anghart the instabilities due to Arnold diffusiofor thin layer
thergfore an extre}polatlon to larger times is very hard to bqjiffusion; see Ref[15]) are negligible, since they occupy an
obtained(see, for instance, Reff5,7,20,26). This is due to  jrrelevant fraction of the phase space and, moreover, are ex-
an insufficient analysis of the phase space, which is usuallyfemeqy slow[41]. Using the terminology of Ref/15], the
scanned along a ling=1, in the space of the linear invari- oyter part can be considered as a thick layer diffusion, where
ants (y,ly); in a previous paper we showed that, by per-resonance overlapping has wiped out most of the invariant
forming a scan of the phase space along several lipes syrfaces. It is not clear whether the decaying rate of the
=Itane, and taking an average over the angld27], the  dynamic aperture empirically worked out by tracking data
survival plots become much more regular. (2) fits with any diffusive process; the aim of this paper is to

For the purely 4D casd.e., no tune modulatiorthe dy-  present a phenomenological framework to interpret the re-
namic aperture turns out to approximately decay with thesyits of our numerical simulations, and to analyze the possi-
inverse of the logarithm of the number of turit§ bility of speeding up simulations for realistic models.

When the modulational amplitude reaches a certain limit,
the extrapolation at infinity becomes negative, and, therefore,
according to this scenario the entire phase space is unstable.
This is in agreement with experimerjts0,11] that for large
This result can be interpreted through a simple dynamicamodulations show that the beam has a finite lifetime. In these
model[28]: the phase space is divided into an inner regioncases the exponemt may become negative; a decaying of
stable for infinite times, and an outer wide chaotic bandthe dynamic aperture approximately proportional to the loga-
where the escape rate agrees qualitatively with the Nekhorgithm of the number of turngi.e., k=—1) was observed
shev estimatg29—31]. This approach turns out to be particu- several years ago in the superconducting supercoli88cC;
larly useful since it provides quantitative estimates for largesee Ref.[34]) simulations, even though it has never been
but finite number of turns. Some analyses of simplified 4Dpublished[35].
models[32,33 gave a first indication that the extrapolation — The three parameters of E@) can be evaluated using a
of the inverse logarithm formula for infinite number of turns, limited set of data, and then the formula can be extrapolated
i.e., the parameteA in Eq. (1), agrees rather well with the to obtain the dynamic aperture at larger times: for the modu-
prediction of the chaotic border obtained through thelated 4D H@on map we show that, using the data up t6 10
Lyapunov exponent. turns, the extrapolation to 1@urns agrees well with tracking

In this paper we analyze the dynamics in the presence dfvithin 5%). Theinterpolation involves a nonlinear fit with
tune modulation following a similar approach to the abovethree parameters, and some care is needed to determine the
cited 4D case. We make numerical simulations over botteonfidence level for the best fit and the error associated with
simplified lattices(the modulated 4D H®n map, also ana- extrapolations. For the LHC case, even though a direct com-
lyzed in Refs[16,10) and realistic models of the LHC. Our parison with 10 turns is not possible, we show that extrapo-
purpose is to find a framework to interpret tracking data andation from 1@ to 1¢f turns is in agreement with tracking,
to speed up, if possible, numerical simulations. Contrary t@nd the errors associated with the extrapolation of tracking
Ref. [16], we fix the spectrum of the modulational frequen- data from 18 to 10’ turns are of the order of 5-10 %.
cies to the measured values for the super-proton-synchrotron The plan of the paper is the following: as a first step, we
(SPS lattice [10]: we limit ourselves to finding the depen- introduce the models used for the numerical simulations,
dence of the dynamics on the amplitude of the modulationnamely, the modulated en map and the LHC lattice ver-
for a given frequency spectra. Since we do not assume sion 4.3 with tune modulation. Then we define the dynamic
diffusion process, we do not compute diffusion coefficients:aperture folN turns and the associated error due to the scan
the dynamical guantity that we evaluate is the dynamic apef the initial conditions. After that, we discuss our methods
erture as defined in Reff27]. The averaging procedure used to predict a dynamic aperture. Finally, we show our numeri-
in this definition fails, in general, to detect the fine and ir- cal results for the Heon map and the LHC, and we discuss
regular structure of resonance bands in phase sfsaes for  our conclusions.

D(N)=A+ 2

logioN -

D(N)=A+ (1)

log;o N°
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Il. MODELS TABLE |. Parameters of the modulated kten map.
The study of single-particle dynamics in the presence of | Q, 10%¢,
nonlinear forces requires an appropriate lattice model for
computer simulations. The model must be, at the same time, 1 27/868.12 1.000
simple for a fast computational response, and realistic 2 20, 0.218
enough to provide useful information. In our study we will 3 30, 0.708
use two models, with complementary characteristics. The 4D 4 6Q, 0.254
Henon map[5] contains most of the physical features of a 5 70,4 0.100
nonlinear lattice, in particular a 4D description of the motion 6 100, 0.078
with the possibility to include tune modulation. Its imple- 7 120, 0.218

mentation is straightforward, and provides a very fast com
puter tracking simulation, well suited to investigate long-
term dynamical behaviors in detail. On the other hand, thdrequency(,; and six harmonics with relative amplitudes
LHC lattice model allows one to investigate 6D symplecticranging from 0.7 to 0.07. These data correspond to the tune
motion, and provides quantitative information on the effectsmodulation due to the observed ripple in the quadrupoles of
of a realistic set of multipolar errors. the SPY10]. In our simulations we fix the linear frequencies
The tune ripple has a strong destabilizing effect on nonw,, and wyo to 0.168 and 0.201, i.e., rather close to reso-
linear motion. In order to investigate scaling laws, we de-nances of order 6 and 5, in order to have relevant long-term
cided, somewhat arbitrarily, to introduce in our simulations aphenomena. A H®n map without modulation with the
tune modulation similar to that observed in the CERN-SPSame linear frequencies was extensively analyzed in[BEf.
in various occasions. In the SPS, the instantaneous tunes c@ihe modulational frequencie€d, and the amplitude ratios,
be continuously measured with a Schottky noise detectoare fixed according to the values of Table I, and we analyze
[36] at constant energy, in steady-state conditions. Peak-tahe dependence of the dynamic aperture on the ampliéude
peak variations of the order of 2—3 in 1Dunits are usually  of the modulation, that has been varied between 1 and 64.
observed. The frequency spectrum is mostly made of seven
dominant peaks: the main one at 50 Hz and the others at the
higher harmonics of 50 Hz. . ) ) ) ,
In our computer simulations, the time variation of the tune _ The lattice of the LHC is described in R¢87]. Itis made
is represented by the sum of seven sine waves, with the sanfé 23 regular cells per arc, each containing six tightly packed
frequencies and amplitudes observed in the SPS spectrury-2-m-long dipoles. There are eight octant insertions, four
The modulation amplitude can be changed globally by £xperimental insertions, and four machine insertions. The ex-

multiplicative factor applied to each component. perimental insertions are tuned with injection optig8* (
=6 m). The horizontal and the vertical tunes are slightly

separatedQ,=63.28 andQ,=63.31. This choice results

) from the optimization of the LHC working point, as de-
The modulated 4D Heon map reads scribed in Ref[38]. The machine superperiodicity is 1.

The field-shape errors are described by thin-lens multi-

B. LHC with tune modulation

A. Modulated Hénon map

n+1 n
Xt X" poles up to order 11, located in the middle of each dipole and
p{n+ piV+[x(M]2—[y(M]? quadrupole. For every magnet, each multipolar component is
m+1) | =L n) ' 3 determined using a random number generator with Gaussian
y y distribution, truncated at three rms deviations. The mean
py py —2x(My™ value of the Gaussian distribution is specific of the machine

octant. This feature is typical of the LHC: the magnets are
where &,py,Y,py) are the phase space coordinates, and thgupposed to have systematic errors that vary from octant to
linear part of the maj. is the direct product of two two-  octant. The error values of the main dipoles and quadrupoles
dimensional rotation&, used in the simulation are given in R¢89]. The selected
) realization of the random imperfections used in Sec. V B has
_ R(wy™) 0 a dynamic aperture at ¥@urns close to the average value in
L= 0 R(wi,”)) ' 4 a set of 64 random realizations.
A set of multipolar elements is used to correct the nonlin-
Whose |inear frequenciasf(n) , wg/n) are Slow'y Varying W|th ear imperfections of the LHC |attice. At ea.Ch dlpOle end

the discrete timex according to there are sextupolar and decapolar correctors interconnected
in families. They are intended to compensate for the average
m value of the sextupolar and decapolar systematic errors of
wg(”)=wxo 1+ 62 ekcos{an)) , each octant. Two families of sextupoles, located close to the
k=1 focusing and defocusing quadrupoles, are used to correct the
m chromaticities. However, to partially take into account the
n_ operational difficulty of this correction in a real machine, we
w0y = wyo l+€k§=:1 ekCOS(an))- ®) decided, somewhat arbitrarily, to sét' =2. Since we are

interested in scaling laws for nonlinear phenomena, we de-
We considered the parameters given in Table |: one maigided to disregard linear imperfections that induce finite
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ar
a0

closed orbits or linear coupling. (Ar)2
The tune modulation is obtained by summing up seven AD= 7 <
sine waves with the same relative amplitudes and frequencies

as those used for the Hen map(see Table ). The global  5nq therefore it turns out that the steprimust be equal to

amplitude is varied by a multiplicative facterthat ranges ihe step in@ times (|dr/ad|) to optimize the integration
from 1 to 8. The horizontal and vertical tunes are affected b%teps.

a synchrotron modulation of the same order of magnitude as
the one induced by ripple. The numerical results quoted in
Sec. V B refer to particles tracked with an initial momentum

deviation of 5p/p=10"%, resulting in a tune oscillation of A. Dynamic aperture extrapolation
2x 10 * amplitude due to synchrotron coupling.

>2(A0)2

IV. DYNAMIC APERTURE PREDICTION

1. Interpolating law

IIl. DYNAMIC APERTURE EVALUATION In previous workq9,32], we showed that survival plots
_ o can be interpolated by a simple formula provided that the
A. Dynamic aperture definition definition of dynamic aperturé?) is used. In fact, the dy-

In a previous work[27], we proposed a definition of a namic aperture turns out to decay with the inverse of the
dynamic aperture as a function of the number of tivhas  logarithm of the number of turns, and to have a lisifor
the first amplitude where particle loss occurs befdreurns,  infinite number of turns that in general is positive,
averaged over the phase space. Patrticles are started along a 5
2D polar grid in the coordinate spacke,y): D(N)=A+ (11)

) l0g10(N)
X=r cosf, y=r siné, (6)

It has been pointed o(i28] that Eq.(11) can be justified in
and the initial momenta, p, are set to zero. Lat(4;N) be ~ terms of the Kolmogorov-Amold-Mose(KAM) of the
the last stable initial condition alongbefore the first loss at Nekhoroshev theorems, using a simple model of phase
a turn number lower thaN occurs. Then the dynamic aper- Space. One assumes that the phase space is divided into two

ture is defined as parts.
(i) An inner region where almost all the initial conditions
2 1/4 give rise to regular orbits, except a negligible fraction of
D= f [r(6;N)]*sin26 dg| . (7) initial conditions that falls on the resonance wie Arnold
0 web). According to the terminology of Refl5], we have

) . _only thin layer diffusion. We assume that this domain can be
With respect to the approach used in several long-term simu-gnsidered stable for infinite times.

lations (see, for instance, Ref$6,26,39), where a fixed (i) An outer region where almost all the initial conditions
value of¢ is considered in order to speed up simulations, thigjve rise to chaotic orbits, except a small fraction of regular
definition provides a smoother dependencéobn N, thus  orbits around stable islands, that can be neglected. According
allowing one to derive interpolating formulas and to extrapo-o the terminology of Ref.15] we have thick layer diffusion,

late them to predict long-term particle loss. i.e., most of the invariant surfaces have been wiped out. Par-
ticles escape from this region according to the Nekhoroshev
B. Error estimate exponential estimate, since they are close to the chain of the

last invariant tori that are on the border of the previous re-
ion.

Numerical simulations based on long-term tracking and

guency analysis have confirmed this scenario for 4D map-

pings [9]. Using these hypotheses, one can work out the

following formula:

One of the crucial issues in the definition of the dynamic
aperture is the determination of the associated error. Whe
definition (7) is implemented in a computer code, one has tofre
carry out two discretizations: one over the radial variable
and one over the angular variablé. Let Ar=(rax
—Imin/N; and A 6= m/(2N,) be the step sizes in and 4,
respectively. The total error can be obtained using a Gauss-
ian sum in quadrature D(N)=A+

D_\/ gD Ar\* (4D A6
“Niaorz) TGz i poneri
(d—1)/2, whered is the phase space dimensipt0]. For

An approximated formula for the error can be obtained b))ggtance, In th_et:hca?e of da Ifclyr-dlm?rr]l&ir:'a;l: nsych as trt1e
replacing the dynamic aperture definition with a simple av-"'c1on map without modulation or the on momentum,

erage oven, without modulation one hasd=4, and thereforex=1.5.
One can try to interpolate the long-term data usin®, and
> fmi2 x as free parameters, and fixihg, to one using the heuristic
D= _f r(6;N)do=(r(6;N)). (99  argumentD(1)~o. It turns out(see Ref[32]) that in sev-
mJo eral cases the fitted value of the exponent agrees with the
analytical estimate. In the case with tune modulation, one
Using this formula, the associated error reads can make the following observations.

— (12)
logio(N/No)

2

®  The optimal analytical estimate of the exponeris equal to
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(i) From a theoretical point of view, the Nekhoroshev X*(AB, k) = xmin=<Ax, (14
theorem holds for weak perturbations of an integrable
Hamiltonian that is given by a certain number of uncoupledwhere A y is related to the chosen confidence level on the
oscillators. Adding the modulation of the linear frequenciesparameters. We used y=2.7, that ensures a confidence
strongly modifies the structure of the Hamiltonian, and theretevel of 90% (see Ref[42] for more details Then, the pro-
fore Eq. (12 can no longer be justified in terms of the jection of the set that satisfies Ed4) on the axes\, B, and
Nekhoroshev theorem. k provides the confidence intervals for the best fit. In the

(it) From a phenomenological point of view, it is evident following we show that such intervals are rather asymmetric
that when the modulation is added the long-term phenomenground the best fit: this is due to the nonlinear character of
become more relevant. On the other hand, B@) means the fitting function.
that the lowerx is, the more relevant the long-term phenom-  The extrapolation of the formula to a higher number of
ena are. Therefore, if Eq12) is still valid with modulation,  turns is made by using the best parameters; in order to evalu-
the exponentk should decrease with the amplitude of the ate the error, we extrapolate using all the parameters inside
modulation. the deformed ellipsoid14), and we obtain maximum and

(iii) Finally, we point out that when the modulation be- minimum extrapolation values. Also in this case the interval

comes very relevant, both numerical simulations and reairound the best value can be rather asymmetric.
experiments show that all the phase space becomes unstable.

This behavior can be taken into account by Ep) if « is
negative, or ifx is positive butA is negative. ) ) ) o )
Summarizing, we point out that E4L2) is not theoreti- In this section we briefly recall the definition of the maxi-

cally justified to interpolate the data in the case of tuneMal Lyapunov exponeri,9,23,21,22and the method based
modulation. Nevertheless, if we consideras an additional ©N thresholds that was proposed in R@f; then we analyze
free parameter to fit the data, EG2) can model cases where the case with modulation. The maximal Lyapunov exponent
the long-term phenomena are very relevant, up to the exspecifies the ratio of divergence of two orbits whose initial
treme situation where the entire phase space is unstable. Fgpnditions are close in phase space. The estimate of the
this reason we also propose to use B@) to interpolate the Maximal Lyapunov exponent aftét turns is given by
long-term data in the case with modulation. We will show 1 A(N)|

that the numerical data are very well interpolated by Eq. AN =—Iogx X 5<1 15
(12); this implies that the model with an inner stable region (N) N 6 ’ ’ 19

and an outer chaotic region is still valid for the modulated )

case; the interpolation means that the effect of the modulawherex™ andx™) are the iterates of the initial conditions
tion is to shrink the stable core and to slow down the escapg(® andx(®, respectively,5=|x(?—x()| is the initial dis-

B. Lyapunov exponent

rate of the initial conditions in the outer region. tance, and log is the natural logarithm. The theory states that
if imy_.A(N)=0, the orbit is regular and therefore the par-
2. Errors of the fit and extrapolation ticle is stable; if the limit is positive, the trajectory is chaotic

The fitting procedure was carried out using the standardi-€-» there is exponential divergence of nearby trajectories,
approach based on least-squares minimization. Assumi d hence sensitivity to initial conditionsand therefore the

that the evaluation of the dynamic aperture is affected bypa'ticle can be lost sooner or later. The estimate of the
Gaussian-distributed errors, the function Lyapunov coefficient with Eq(15) allows one to determine

the border between chaotic and regular motion, and therefore
\ ) to predict the dynamic aperture for an infinite number of
) _ 1 yi—A—B/logio(X;) turns. However, it cannot provide quantitative information
X“(A.B,K)= N_3i21 o 13 on the stability of the motion for a finite number of turns.
' In Ref. [9] we proposed an automatic method to select
regular from chaotic orbits based on a threshold on the
follows ax? distribution, and the paramete#sB, andx that ~ Lyapunov exponent. For regular particles, the distance be-
minimize x? are the maximum likelihood estimators. In the tween neighbor orbits linearly increases with the discrete
previous formulay; is the dynamic aperture evaluatedxat time N: this is due to the dependence of the frequency on the
turns, ando; is the associated errgsee Sec. Il amplitude. Therefore it is natural to fix a threshold according
For our purposes, it is important to compute not only theto
best value of the parameters, but also to evaluate the associ-
ated errors. Since the fit is nonlinear #n no analytical for-
mula is available, either for the best parameters or for the
errors. A scan ovek is carried out: for each value &, the
optimal values ofA and B are worked out analytically. If N(N)>o,(N), then the particle is assumed to be chaotic,
Among this one-parameter family of fitting values, we while if N(N)< o, (N) the particle is regular. One can show
choose the ones that minimize thé [see Eq(13)]. A Xfmn (see Ref[9]) that the constam, is related to the maximum
of the order of 1 ensures that the data are well fitted by thef the derivative of the tune with respect to the amplitude
interpolating law. In order to work out the associated errorwhere the tune is well defined.
the standard technique consists in determining the set in the In Fig. 1 we show the distribution of the Lyapunov expo-
parameter space(B, ) that satisfy nents of the initial conditions started along g(® for the

1
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evaluated at four different numbers of turns for thénble map  evaluated at four different numbers of turns for the modulated
without modulation atw,e/27=0.168 andw,/27=0.201; par- Henon map withe=4 at w,o/27m=0.168 andwo/27=0.201; par-
ticles lost before 10turns are marked in black, and the dashed linesticles lost before 10turns are marked in black, and the dashed lines
show the thresholds according to Ed6). show the thresholds according to Ef6).

Henon map without modulation; four different numbers of method they are chaotic, and therefore they may be lost at a

turnsN=10%,10*,1%, and 16 have been used. The distribu- Nigher number of turns.

tion of the Lyapunov is compared to the results of long-term

tracking: particles stable for 1GQurns are marked in white, V. NUMERICAL RESULTS
while the unstable ones are marked in black. Using the
Lyapunov exponent, one can distinguish rather well which
particles are stable and which are not stable: the sharp fall of 1. Interpolation of tracking data
the rather narrow peak of Fig. 1, that contains most of the
stable particles, is the natural choice of the threslag|¢N)

for long-term predictions. The peak becomes narrower anif*€d to the values specified in Sec. |l A, and varied the

narrower when the number of turns is increased. It turns ol MPlitude of the modulatioa [see Eq(5)] from 1 to 64. We
that the thresholds fixed in this waie., through the com- also considered a case without modulation. Long-term track-

- ; ; ; ing has been carried out up to1irns, using a scan over 30
parison with trackingare very well interpolated by Eq16), . - g
with A, =0.5 (see Fig. 1, dotted lingsWe already pointed anglez gr;/d IlO(% rgldl?ll steps tothopgmlze _the errtor, Wh'gqh's
out in Ref.[9] that the value ofA, seems to depend very Z;(;lér(]:'atedo ér? c[sZeeE (V;%)S]J'Vgrs es tr):gimlrﬁggrecr)futrir?; for €
weakly on the model. ! 9 versu u u

The dynamic aperture prediction given by the Lyapunovdifferent values ofe. As expected, the modulation has no

exponent can be computed according to the same formuI%ff‘.aCt.OVer the short-.t<_arm dynam|p aperture 3.(]10rn§,
[see Eq(7)], where nowr (6;N) is the initial condition along while it leads to a stability loss that increases with the num-
¢ whose Lyapnov exponent s below he treshold, ThE® U7 316 Wil e amoltuce o e modueton,
error associated with the Lyapunov prediction can be evalu-]c turns according to Eq12). The value ofy2, and of the

ated using the same scheme provided for plain tracking data. ) . .
In the case of tune modulation, the results are rather inParameters, A, andB, with the error estimated with a con-

te,restlng. in F.Ig' 2 we show the same plot of Flg'. 1 fqr the TABLE II. Dynamic aperture(arbitrary unit$ vs number of
Henon map with a modulation amplitude=4. Also in this 5
tHrns for the modulated H®n map.

case, there is a peak of stable particles with a rather sharp fa

A. Hénon map

We considered a modulated kten map with parameters

on the right; the threshold is very well interpolated by Eq. 3 5 7

(16) with the same value of the constakt (see the dashed < 1oy bioy paoy

lines in Fig. 2. Moreover, in this case the peak of stable 0 0.57+0.01 0.48-0.01 0.470.01
particles also becomes narrower for a larger number of turns. 1 0.57-0.01 0.49-0.01 0.46-0.01
The only difference is that the fraction of initial conditions 4 0.57+0.01 0.49-0.01 0.44:0.01
whose Lyapunov exponent is above the threshold becomes 16 0.570.01 0.47-0.01 0.46:0.01
larger with respect to the previous case. Most of these par- g4 0.57-0.01 0.45-0.01 0.33-0.01

ticles are not lost before 10turns, but according to our
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TABLE llI. Fitting parameters of Eq(12) for the modulated - 107¢

Henon map.
€ X2 K A B 13
10°F
15 1.4°0% 0.43°002 0633
1 1.7 1.2°93 0.40°39¢ 0.6°92 [ :
2.3 0.6722 0.24' 013 0.6'9% 105 .
16 0.9 0.1 52 -15 2.3 3
64 37  -0504 1.0°29 -0.3'%3
104;

fidence level of 90%, are given in Table IlIl. The dynamic
aperture estimate through tracking with the associated error,
the best fit through Eq.12) (solid line), and the extrapola- 1035‘
tion to infinity (dotted ling are shown in Figs. 3—7. We also i
plotted the dynamic aperture estimate provided by the
Lyapunov exponen(starg. The main results of this analysis R BN TN BN S BN I
are the following. 0 0.1 0.2 03 04 05 06 07
(i) Goodness of the fitn all cases, the fit is extremely D (arb. units)
good (y? is of the order of 1 This is somewhat unexpected,
since we applied an interpolating law outside its expected FIG. 4. Dynamic apertur® vs number of turn&l for the modu-
validity limits. lated Hmon map (szl).‘Tr.acking dataerror par$ inFerpplation
(i) Parameter dependence an Both x andA decrease a}ccordlng to _Eq(12) (solid !ln_e) and extrapolation at infinityver-
as the modulational amplitudebecomes larger, as expected. tical dotted ling, and prediction through the Lyapunov exponent
For smalle, B seems to be independent of the amplitude. For(Starg'
e=16, A becomes negative and, therefore, according to the
extrapolation, all initial conditions will be lost sooner or denotes the extrapolation of the dynamic aperture for infinite
later. number of turns whemr is positive, is rather sharply defined
(ii ) Errors of the fit The errors associated with the fitting for e=0, but becomes rather loose whenis increased.
parameters are rather large. In particular, the exporest Whenk changes sign in the interval of 90% confidence level
determined within 0.5 for all the cases. The errorsfoand  (i.e., e=16), it becomes impossible to associate an errdr to
B become larger when the modulation is increagedvhich ~ andB, since our formula contains a singularity fer=0.

= 107k = 107k
106:_ 106:-
105'_ 105.—
1
104 104 .
10% 103
oo e by oy g by b e by s 1y TN PR  WRNRT ST SN AU ST [ SN S A [ SR WA S MU SR NS
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
D (arb. units) D (arb. units)
FIG. 3. Dynamic aperturd® vs number of turnsN for the FIG. 5. Dynamic apertur® vs number of turn& for the modu-
Henon map without modulatione=0). Tracking dataerror bars, lated Haon map €=4). Tracking dataerror bary, interpolation

interpolation according to Eq12) (solid line) and extrapolation at according to Eq(12) (solid line) and extrapolation at infinityver-
infinity (vertical dotted ling and prediction through the Lyapunov tical dotted ling, and prediction through the Lyapunov exponent
exponent(stars. (stars.



P R EI EE BRI R
0.1 0.2 0.3 0.4 0.5

D (arb. units)

Ll TN
0.6 0.7

FIG. 6. Dynamic apertur® vs number of turn& for the modu-
lated Hanon map €=16). Tracking datderror bar$, interpolation
according to Eq.(12) (solid line), and prediction through the
Lyapunov exponenfstars.

We also tried a weighted fit in order to improve the pre-
cision in the determination of the parametér8, andx; we
tried different weights, without finding any significant im-
provement.

2. Extrapolation

Formula(12) allows one to extrapolate the dynamic aper-

ture at a given number of turns using a limited set of long-

> 107;
1055—
105E
104§—

103

A R P RPN R
0.1 0.2 0.3 0.4

A PRI B v
0.5 0.6 0.7

D (arb. units)

FIG. 7. Dynamic apertur® vs number of turn& for the modu-
lated Hanon map €=64). Tracking datderror bar$, interpolation
according to Eq.(12) (solid line), and prediction through the
Lyapunov exponenfstars.
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TABLE IV. Comparison between extrapolation of dynamic ap-
erture at 10 and tracking for the modulated Hen map.

€ Extrapolation to 10 from Tracking
10* 10° 108 (at 10)
0 04237  04600; 04705 04700
1 04133  046705; 046755  0.46'00)
4 0409 04553 045705 044755
16 0.36'59  04179% 041558 04033
64 0337919 037705  0365% 03330

0.17 0.04 0.02 0.01

term data. The intrinsic limits of this method lie in the error
associated to the determination of the paramefeB, and

k. We use tracking data from 310up to N, with N
=10*1C°, and 16, to evaluate the three parameters of Eq.
(12), and then we extrapolate at 10Ne choose this set of
parameters to be consistent with the simulations in the LHC.
The resultgsee Table I are good: all the extrapolations are
in agreement with direct tracking, even though interpolation
from 10 to 10* provides a rather large error when extrapo-
lated at 10. Interpolation from 18 to 1P is rather precise
(within 5%); this already allows one to save a factor 100 in
simulations.

In comparison with the results of RdB], we note that a
larger number of turns is required to obtain a reliable opti-
mization. This is due to the fact that the effect of the modu-
lation on the beam stability requires a longer time to become
evident.

3. Comparison with the Lyapunov exponent

For the case without modulation the extrapolation of the
dynamic aperture at infinitA has a rather small error, and
can be compared to the prediction of the limit of regular
motion as given by the Lyapunov exponent. The agreement
is good (see Fig. 3 thus supporting previous results dis-
cussed in Ref[32]. When a small tune modulation is con-
sidered(see Figs. 4 and)5the Lyapunov prediction con-
verges to a rather well-defined limit that fits into the
confidence interval associated o Indeed, since the error
associated wittA is very large(see Table I}, the quantita-
tive agreement is rather loose. For large modulation ampli-
tudes €=16 and 64; see Figs. 6 and, Aaccording to the
extrapolation the entire phase space is unstable. On the other
hand, it is hard to say whether the Lyapunov exponent pre-
dicts a finite stability domain or not.

Summarizing, in the case without modulation the border
of the chaotic region evaluated through the Lyapunov expo-
nent is in agreement with the extrapolation of our fit to in-
finity. When the modulation is switched on, the agreement
between these two quantities becomes worse. Under these
conditions it is not clear whether the stability border pre-
dicted with the Lyapunov exponent tends to a well-defined
limit. Therefore, it seems very hard to extract quantitative
information on the long-term stability from the Lyapunov
exponent in the case with tune modulation.

B. LHC

The dynamic aperture is given in millimeters normalized
at Bma= 182 m. Very onerous simulations have been carried
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TABLE V. Dynamic aperturémm) vs number of turns for the - 108
LHC. ;

e Aplp D(10% D(10% D(10°%) D(10%)

0 0 13.x0.3 12.6:0.2 12.4-0.2 12.3:0.2 105
0 104 12.9+0.2 12.3-0.2 11.8-0.2 11.5:0.2 :
1 104  12.9+0.2 12.2-02 11.70.2 11.10.2
2 104  12.9+0.2 12202 11.5-0.2 10.70.2
4 104 12,802 11.9-0.2 11.1-0.2 10.4:0.2
8 104 13.0+0.2 11.8-0.2 10.8-0.2 10.10.2 1045‘

out up to 16 turns, with a scan over 17 angles and 100 radii.
The relative error in the dynamic aperture is of the order of 10%
2%. In Table V we give the dynamic aperture as a function i
of € andN. Also in this case, the effect of modulation at10
turns is very smallless than2%), while at 10 turns it

becomes relevartaround 20%). We have carried out simu- Y I I S TP T

lations for a beam on momentum and without modulation: 0 2 4 6 8 10

this is a purely 4D model. Then we considered a beam with D (mm)
some off-momentum (10%), and switched the modulation

from e=0 to e=8. FIG. 8. Dynamic apertur® vs number of turnd\ for the LHC

The interpolation(see Table VI and Figs. 8—18 very = on momentum, without modulatione&0). Tracking data(error
good. The best fit has)@ﬁnn that ranges from 0.4 to 2.0. The barg, interpolation according to Eq12) (solid line) and extrapo-
exponent decreases with the amplitude as in theodease, lation at infinity (vertical dotted ling and prediction through the
even though the error is larger. Lyapunov exponentstars.

The extrapolation has been carried out frorﬁ{{p“ and  the Lyapunov prediction with the extrapolation of our for-
10°-10 up to 10 turns. All the extrapolations are in agree- mula only in the case without modulation.
ment with tracking at 19turns, and the error for the extrapo-
lation of 1G—1C to 1P turns is less than 5%see Table VI. CONCLUSIONS

i ; 7
vin). We al_so tried an exirapolation to 10ums, even In this paper we proposed an empirical formula to inter-
though in this case we do not have tracking data to compargy|ate the dynamic aperture versus the number of tumns in
with (see Table VIIJ. All the estimates are compatible, and

using data up to Tturns the extrapolation up to f@urns = 'O
has an error of the order of 5-10 %. '
The comparison with the Lyapunov prediction is also
rather difficult in this casdsee Figs. 8—1)3 For the purely
4D case the Lyapunov seems to converge to the extrapolate 105k
value of the dynamic aperture. When the modulation is :
switched on, it is not evident if the Lyapunov prediction
converges as before; the last two ca@ee Figs. 12 and 13
clearly show that the Lyapunov exponent “feels” the insta-
bility due to the increased modulation, even though the quan- 10%
titative information does not seem to be significant. .
Summarizing, the LHC data show the same features of the
modulated Haon map: good interpolation, rather large er-
rors on the fitting parameters, rather precise extrapolation fol

: . 103}

one-two orders of magnitude, and quantitative agreement o :
TABLE VI. Fitting parameters of Eq(12) for the LHC.
€ Aplp x° K A B X, AU RN SRV S B
1.1 0+03 +9 0 2 4 6 8

0 0 0.4 191 12093 9*3
0 104 1.0 0.8°19 9.6 8 D (mm)
1 107 1.4 0-3f22§ 3.4 13 FIG. 9. Dynamic apertur® vs number of turnd\ for the LHC
2 107 20 -0l'gy; 42 —-26 off momentum @ p/p=10-*), without modulation ¢=0). Track-
4 104 1.0 —0.1f8;§ 47 -30 ing data(error bar, interpolation according to Eq12) (solid line)
8 10°* 1.3 -0.2"32 33 —-16 and extrapolation at infinitfvertical dotted ling, and prediction

through the Lyapunov expone(gtars.
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> 106E > 10"’E
103 10% ]

10°F 104
103k 103

1 | { { 1 1 | { {

0 2 4 6 8 10 0 2 4 6 8

D (mm) D (mm)
FIG. 10. Dynamic apertur® vs number of turn® for the LHC FIG. 12. Dynamic apertur® vs number of turnd for the LHC

off momentum A p/p=10"*), with modulation €=1). Tracking  off momentum A p/p=10~*), with modulation €=4). Tracking
data(error bars, interpolation according to Eq12) (solid line) and  data (error bar$, interpolation according to Eq12) (solid line),
extrapolation at infinity (vertical dotted ling and prediction and prediction through the Lyapunov exponéstars.

through the Lyapunov expone(tgtars.

presence of tune modulation. This formula provides a quan--rhIS implies that there is a finite radius inside which the

titative framework to analyze the long-term dynamic aper-?heea;nx hoar?eirt] tl)r(l,]lgl;[ﬁelg?;lrm;'\i\rﬁ?seg"n:krgsoﬁour:ai%?rf ?1%?1%?{1—
ture, which turns out to decay with a power of the inverse P ger. 9 P

logarithm of the number of turns. Without tune modulation €na more and more relevant. It turms out that there IS @ mono-
tonic dependence of the exponent on the modulational am-

the exponent of the logarithm is around 1.5 both for the LHCplitude ¢. When a certain amplitudeis reachedA becomes

model and the 4D Heon map, in agreement with the ana- negative, and therefore all the particles become unstable for
lytical estimates based on the Nekhoroshev theofé6. 9 ' P

p=d 106: p=d 106:
10% . 10% .

10% 10%
0% 0%

1 PR Y | | 1 | | |

0 2 4 6 8 0 2 4 6 8

D (mm) D (mm)
FIG. 11. Dynamic aperturB vs number of turn\ for the LHC FIG. 13. Dynamic aperturB vs number of turn& for the LHC

off momentum @p/p=10"%), with modulation €=2). Tracking  off momentum A p/p=10~%), with modulation €=8). Tracking
data (error bar$, interpolation according to Eq12) (solid line), data (error bar$, interpolation according to Eq12) (solid line),
and prediction through the Lyapunov exponéstars. and prediction through the Lyapunov exponéstars.
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TABLE VII. Comparison between extrapolation of dynamic ap-  TABLE VIII. Extrapolation of dynamic aperture at 1@or the

erture at 18 and tracking for the LHC. LHC.
€ Aplp Extrapolation to 16 from Tracking € Aplp Extrapolation to 10 from
10t 10° (at 10) 10t 10° 10°

0 0 12.2°93 12.3°9% 12.3'52 0 0 12.0°93 12.292 12.232
0 10 11.9'03 11.7°32 11592 0 1074 11894 1149 11393
1 10°* 1189 11.4°3% 11.1°33 1 10°* 11.7°9% 11.1°98 10.8°33
2 104 117794 11.1°92 10.7°53 2 104 115792 10.89% 10.3'3%
4 10°* 10.8"93 10.6"32 10.4°33 4 10°* 10.4°32 10.2°97 9.9°93
8 104 10.1° 33 10.0°3% 10.1°33 8 104 9.4 %8 9.29% 9.453

ing at 1@ turns, finding a good agreement. The scenario for

sufficiently large times: the beam has a finite lifetime. ThiSy,q | ¢ |attice agrees with the investigations carried out for
scenario agrees with the experiments that have been carriggy modulated 4D Meon map.

out on the effect on ripple on real machir/d9].
The interpolation procedure involves a three-parameter
nonlinear fit; we outlined the method, based on standard sta-
tistical tools, that allows one to determine the confidence We wish to thank Professor Turchetti for pointing out the
level of the fit and of the extrapolation. Even though the fitrelationship between the inverse logarithm formula and the
parameterdA, B, and « cannot be worked out with a high Nekhoroshev theorem, and for giving extremely useful indi-
precision, this approach provides quantitative tools to predictations about the dependence of the exponent on the model.
long-term stability. For a realistic LHC model, the extrapo- We also want to thank A. Chao, F. Schmidt, Y. Yan, and B.
lation of the dynamic aperture at 1@urns using tracking up Warnock for useful discussions. M. Be, H. Grote, C. Ise-
to 1® turns has a small errgaround 5-10 % We checked lin, and E. Macintosh provided us with help and useful sug-
the agreement of our extrapolation procedure against traclgestions for long-term computer tracking.
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