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Kinetic theory of photon acceleration: Time-dependent spectral evolution
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We investigate the evolution of the space- and time-dependent spectrum of an ultrashort laser pulse in the
presence of relativistic plasma waves. A kinetic description of the laser pulse is introduced, generalizing the
classical concept of the number of photons. The propagation equation for the generalized photon density is
derived. The spectral deformation induced by a relativistic plasma perturbation in the laser pulse is also
calculated. We also propose a new diagnostic technique for the electron density gradient, based on the analysis
of the induced chirp in ultrashort laser pulsE81063-651X%98)10403-§

PACS numbsdis): 52.35—g

[. INTRODUCTION can then be examined, and the chirp induced by the pertur-
bation can be determined. It is shown that the space—wave-
Advances in laser technology allow now for the genera-number energy density is considerably deformed, giving rise
tion of high intensity ultrashort laser pulsgs|. The propa- to pulses that are not transform limitedXAk>1). This
gation of such pulses in a plasma is a subject of considerablgduced chirp can give us information about the local plasma
importance due to the rich variety of nonlinear phenomendlensity along the pulse extent. The usual frequeigghift
and to the applications of some of the mechanisms to addownshify of photon acceleration is also observed, with the
vanced particle acceleratofg], the fast ignitor fusion con- corresponding spectral broadening and electromagnetic en-
cept[3], and new sources of tunable radiatieh5]. ergy increasédecrease ,
Among these mechanisms, photon acceleraf8], or This paper is organized as follows. In Sec. I, we derive

the frequency upshift of electromagnetic radiation by Iargethe space wave-number distribution for the photons, gener-

amplitude plasma waves, has received considerable intere%?zmg the usual procedure for the classical number of pho-

due to its potential use as a diagnostic tool for relativistictons of an electromagnetic plane wave. The main properties

coherent plasma perturbatiofiasma waves and ionization of the number of phqtons are al_so presenteq. The number qf
. I hotons representation of a chirped Gaussian laser pulse is

fronts), an.d as a possple source of tunable radiation an alculated, giving a clear picture of the most important fea-

supercontinuum generatigi—9]. _ tures of this formalism. Section Il includes the derivation of

The usual theoretical Qescr|pt|ons of photon accele.ratloqhe time evolution equation for the space wave-number en-
are based on two opposite approaches: the ray tracing, @igy density starting from the energy conservation principle
Hamiltonian, formulatiorj7], and the usual plane wave Fou- for the fields and the particles. The limit in which this equa-
rier expansion{8—10. The first formulation describes in a tjon is equivalent to a flux conservation equation for the
general fashion the space-time dynamics of a wave packeshase space density, or a Klimontovich equation for the pho-
the classical analog of the photon, but does not describe thens, is established. In Sec. 1V, this formalism is applied to
global spectrum and shape deformation of an electromaghe propagation of a weak ultrashort laser pulse in the pres-
netic pulse. The plane wave formulation allows for the deri-ence of a relativistic plasma wave. Analytic expressions for
vation of transmission and reflection coefficients but fails tothe frequency upshift and for the induced chirp of the laser
describe the localized nature of an ultrashort laser pulse ansulses are derived. It is shown that the induced chirp can be
its space-time dynamics. The two descriptions give compleeasily related to the electron density perturbation. A consid-
mentary, and yet incomplete, views of the same mechanisrarable deformation of the spectrum is observed; the chirp of
and fail to describe in a systematic way the full dynamics ofthe laser pulse can be gquite significant even for propagation
the ultrashort laser pulse in the presence of a coherent plasmiaitenuous plasmas. Finally, in Sec. V, we state the conclu-
perturbation moving with phase velocity close to the speedions.
of light c.

In this paper, we present a new kinetic description of
photon acceleration based on a Klimontovich kinetic equa-
tion for the photons. In this formalism the classical analog of The concept of the number of photons has been used in
the number of photons evolves in phase space according fdasma physics since the 196[K2,13. This definition is
the Hamilton equations of motion for the photons, derivedaccurate for plane waves but it is not valid for laser pulses.
from the ray tracing equations. The space—wave-vector ddPrevious attempts to generalize the number of photons to
main is fully described in a fashion similar to that currently more general electromagnetic fields have been concerned
employed in the characterization of ultrashort laser pulsesvith the mathematical formalism behind the derivatja#].

[11]. The laser pulse spectrum along the extent of the puls®ur approach here will be focused on the applicability and

IIl. NUMBER OF PHOTONS: PHASE-SPACE DEFINITION
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limits of validity of the number of photons to the description

: J € J dk Jwe(w,k)
of the time-dependent spectra of laser pulses. —f drgelectriczz —j dr 3| Flkrt),
We first generalize the concept of the number of photons at at (2m) dw wg
in order to describe the space- and time-dependent spectrum !

of an ultrashort laser pulse propagating in dielectric media.

The rate of change of the energy density of the electromag¥here7(k,r.t) obeys
netic field &g is given by
Fk,r,t =j dsE(r—s/2t)-E* (r+92t)expik-s), (8
%ﬁem_E D B (k,r,t) ( )-EX( )exp(ik-s), (8)

—+H. —. (1)
Jt Jt Jt which means that the electric component of the energy den-
. _ e . . sity verifies
With the electric fieldE and the magnetic fielth written in y

complex form, Eq(1) can be written as Eaennd 1) € dk  Jwe(w,k) krt). (9
(rt)=-=2 — FAkrt).
0y 1 JD* y JH* ) , electri 4) (2m)3 Jw wg
T___ . ot ~|—Iu,0 . at C.C|. ()

As for the magnetic component of the electromagnetic field

As usual[15] we neglect the rapidly varying termis.D, ~ €Nergy, a similar procedure can also be used. FroniZid
E*.D*, H.B, and H*-B*. Equation(2) is obtained by a is obvious that the density of magnetic energy is simply

= . o
cycle average of Eq1). We also considepr= uo. We now Emagnetic= tof4H - H™. Once again, if we express as
concentrate our efforts on the electric component of the field dk

energy. Following the procedure outlined by Landdb], H(r,t)=f doH(k,w)explik-r—iot) (10
we consider the constitutive relation D(w,k) (2m)®

= ¢p€e(w,k)E(w,K), wheree(w,k) is the relative permittivity

of the dielectric medium, and we assume that the spectr@ndH* as

content of the field is not very broad, i.Aw/wy<1, with

wo the central frequency of the laser pulse. Under these as- H (1 t):f dk’

do'H*(K',0")exp(ik' -r—iw't)

sumptions, the contribution of the electric field related terms 2m)3
to Eq. (2) can be written as (11)
IEelectiic €0 dk dk’ Jwe(w,k) and using Maxwell equationsV(x E= — ugdH/dt), we ob-
t 4 3 3 3 tain for the magnetic energy of the field
d (2m)?(2m)?®  do |,
2 k dk’
IE* (K,t) , _c EOJ d ,
XE(K',t)- ———exd —i(k—k')-T]+c.c. Emagneni= 7~ | (503 (gm0 @9

©) XkXE(k,w) k' XE*(Kk',w")

Integrating Eq.(3) in all space(in this paper, when no ex- @ o'

plicit indication is given, all integrals extend from« to <exli(k=k)-r—i(w—w)t 12
+), and then integrating ik’, we obtain Ml ¢ ) (0=t} (12
Assuming, as before, that the spectrum is centered areynd
and that the spectral content is not very broad, we can inte-

J € dk Jdwe(w,k)
EJ drgelectric:Zf —

(2m?3 o grate Eq(12) in the variables» andw’ and over all space to
0 obtain
JE* (k,t)

XE(kt) ——+cec 4 f dre _eof dk dk’ c?

ICmagnetic= 2 m w w—%

If the electric fieldE(k,t) is written as
X[kXE(k,t)]-[K'XE*(k',t)](2m)3
E(k,t):f dr’E(r',t)exp(—ik-r’) (5) X 6(k—K"). 13

) ) Integrating ovek’, and using Eqs(5) and(6), with the new
and the complex conjuga” (k,t) is expressed as variabless andr defined above, the expression for the mag-
netic component of the field energy reduces to

E*(k,t)=f dr’E* (r",t)exp(—ik-r") (6)

e dk o [—-Kc? (k-e)?
. ) . ) gmagnetic:Zf 3 0 +

then, in the new integration variables-r"—r’ andr=(r’ (2m)° o0\ @ w

+r1")/2, Eq.(4) reduces to (14

F(k7r1t)1
@q
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wheree-=E/|E|. It is now straightforward to define the en- 2
ergy density of the electromagnetic field as

e dk 4 K22
gfield(ryt)zzf we— ——

(2m)3 dw o 20
k-eg)?
+( ¢) ) F(k,r,t). (15 -1
"o 5 (@)
This expression must be compared with the energy density AL 05 O& 0.5 1
written as a function of the number of photai§k,r,t):
2
& f dk 2k w(k,r, ) N(k,r,t) (16
eld= w(k,r, L),
field (2’”_)3 1
Heref w is the energy of the individual photodk/(27)* is
the number of possible photon states with momenttkn
w(k,r,t) obeys the dispersion relation for the propagation -1
medium, and the coefficient 2 accounts for the two polariza- b
tions. Comparing the quantumlike expression of Etp) 2 ®)
with Eq. (15), the natural definition of\V(k,r,t) is 105 Og 0.5 1
€[ D FIG. 1. Number-of-photons distribution for a Gaussian laser

Nik,r,t)= 8%

(9_w) Fkr,0), 17) pulse propagating in vacuum in the phase spgeéx—cr)/(c7),
“o dk=(k—kg)c7: (a) Without chirp,b=0; (b) with linear chirpb=

) ) ) . ) ] —0.45/2 for the same amplitude contours.

whereD=0 is the dispersion relation for the dielectric me-

dium. For a homogeneous plasma, in the absence of an ex- €0 D
ternal magnetic fieldD = 1—c?k? w?— w3/ w?, with , the Notand K) = 8% 30
electron plasma frequency. The number of photons can be @

regarded as a distribution function of quasiparticles, the phogpich, is just the usual definition of the number of photons
tons, in phase space,f). The physical meaning of both 4,nq in the literaturg12,13. However, our more general

axes is clear: along theaxis , \'represents the evolution of 555r0ach allows for the definition of the number of photons
the field fast phase, or thespectrum(fast time scalk while eyen for short laser pulses. For a linearly chirped one-
along ther axis we have the _descrlptl_on of the slow ampli- dimensional1D) Gaussian laser pulse, propagating in a ho-
tude of the electromag_netlc fieldlow time scalg Further—_ mogeneous medium along theaxis with group velocity
more,k andr are now independent variables. The most im-5, phase velocity ,, durationr, described by the electric

portant novelty of this formulation is the unified view kf g E = ecEpexp(— (x— v t)2/(cr)2lexp —i[ wolt—X/v,)+ bt
and r space, which leads to a better understanding of the_x/%)z]} the number of %hotons verifies ¢

interplay between the spectral and spatial deformation of ul-

|Eol28(k—ko), (18

trashort laser pulses, and the connection between the two GOCT\/;| Eol2 9D (X—vt)?
time scales. The number of photons written in this way is Nggefk,X,t)= ————— — p{— —gl
formally equivalent to the spectrum of the autocorrelation 8V2h  dw (c7)?
function, in the wave-vector—space domain. This function (cr)2 2b/ x 2
often occurs associated with the experimental characteriza- xexp{ — (k—k0+ — ——t)] }
tion of ultrashort laser pulses with a time-dependent spec- 2 Up\Ug

trum[11]. Some additional points must be made concerning (19

the approximations involved in this derivatiofi) we have

neglected rapidly varying terms in the energy density definiin Fig. 1, we plot the number of photoé given by Eq.(19)

tion; (i) we have assumed that the spectrum of the electrofor a transform limited pulseb(=0) and for a chirped pulse

magnetic field is centered around a frequengy and the b+ 0. The intuitive picture provided by the number of pho-

spectrum widthAw is small compared with the frequency tons is clear: in linearly chirped pulses, the instantaneous

wq. For transform limited laser pulses, these approximationspectral distribution, or the corresponding wave-number dis-

are valid if A g/c7<<1, where\q is the central wavelength of tribution derived from the dispersion relati@=0 for the

the laser pulse anet the pulse duratiorffor A\g=1 um, 7  photons, has a linear dependence with the relative position

>1 fs). along the laser pulse extent, as shown by the spectral defor-
mation in Fig. 1b). The pulse width, spectral width, and

For a plane waveE=Eyexp(ky-r—iwgt), the number of chirp are calculated as the moments of the distribution func-

photons is simply tion AM(k,r,t). In particular, the wave-vector chirp, i.e., how
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the local wave number changes along the laser pulse, at a J= —eowﬁ(r,t)A(r,t), (25)

given timet, can be expressed as
with wp=\/nee2/.some the electron plasma frequency, and

(k) t:fdkk/\/(k,r,t) _ (20) ne(r,t) the electron density of the plasma. WritiAgn com-
"t ANk plex form, and neglecting rapidly varying terms, EG4)

- . . . . gow reduces to
The spatial intensity and the spectral intensity are obtaine

by calculating the following integrals: € ,
Wparticlesz_Zfdrwp(rat)A(rvt)'A*(r1t)- (26)

€p oD
f dkN(k,r,t)= ﬁ<_

al JECOR @)

We now assume thai(r,t) =Aq(r,t)exdiS(r,t)] such that

S(r,t) represents a fast phase aAg is a slowly varying

5 amplitude ofr andt. Furthermore, we define the instanta-
[E(kD)[% (22) neous frequencyw=—4gS/dt and the instantaneous wave

“o vector k=VS. Using these assumptions, in the Lorentz

The number of photond/ defined above provides a full de- gauge E=—dA/dt, Eq. (26) verifies
scription of an ultrashort laser pulse, giving a particular em-

Jw

€p 5D
f drj\f(k,r,t)=%(—

2
X . h . r,t)
phasis to the internal evolution of the instant spectral and W :_EJ dr wp(r, E(rt)-E*(r.t 2
spatial distribution of the electromagnetic field. particles™ 4 w?(K,r,t) (rh-E*(rY). (20
. FROM ENERGY CONSERVATION For short laser pulses, using Parseval theorem and (Bgs.
TO NUMBER-OE-PHOTONS CONSERVATION and (6), and following the procedure of Sec. Il, the total

) ) energy transferred to the particles of the medium is written as
In the previous section, the number of photokswas

generalized in order to describe electromagnetic pulses. It is dk 1
now important to describe how this distribution evolves in Wpamdes:—f dr —ﬁwﬁ(r,t)WJ\f(k,r,t),
time. The most direct method to evaluate the time evolution (2m) [otkr,O ] ik,

of the number of photons would be to solve Maxwell equa- (28)

tions for the ek_actrlc field and, for each_ tineto calculafce whererg is the central position of the laser pulse, and the
the corresponding number-of-photons distribution. In this pa- . . T

. . : number of photongV/is related with the electric field through
per, we will not follow this approach since, apart from the

new point of view, this would not add new insight to the Eq.(l?). The dispersion relation for photons in af unmagne-
: . tized plasma was also employed, so théD(dw)=2/w. It

problems of laser pulse propagation. Instead, starting from . A

electromagnetic energy conservation for the fietdl for the must be pointed out that we implicitly assumed that the den-

particles of the medium, we will derive an equation for theS'ty perturbation has a time scale and space scale such that

evolution of the number of photon§” in an unmagnetized Vrcr?gg)\cojg“r}?( ?oejznc;t 0;?;;hé-?<pi‘;?sagga;‘;g§wg_
plasma, which, for underdense plasmas, reduces to conserva- p= <M Bp\Tp= £ Wp yp P p

tion of the number of photons. This approach leads to a{al) scale of the perturbation. It must be stressed that the
generalization of the wave acltion conservation equaticmgenerahzatlon of this procedure in order to include wave-

. . . . wave interaction processes and, in particular, stimulated pro-
which allows for the inclusion of all the nonlinear wave- P P P

wave and wave-particle interaction mechanisms in a naturalc oo 1S stralghtf_orw_ard. In fact, Inserting the proper nonlin-
. : o ear current density in Eq(24) will introduce nonlinear
way, starting from first principles.

The total energy in the electromagnetic field can be writ-COUpIIng between different regions of the phase space.
ten as The total energy of the system obeys the equation

dk
Zhw(k,r,t)Mk,r,t), (23) Wtotalzj dr (277)32ﬁ(.0./\/‘(k,r,t) (29)

dk
)3

(27)

where the integration inis over all space. The energy trans- N the absence of sources and/or sinks, the total energy is

ferred to the particles in the medium, which is already in-conserved. Hence,
cluded in Eq.(23), is given by[16]

Wiiglg= J dr

d
J.A a[Zﬁw/\/'(k,r,t)]ZO, (30)

Wparticles: j dr o (24)
whered/dt is the convective derivative for the variables,
The critical point here is to determine the current dendity andt. From the linear dispersion relatidd=0 and the ray
due to the presence of the electromagnetic field, which is #acing equation fow (dw/dt=Jw/dt), the previous equa-
function of the properties of the medium. We shall concendion is expressed as
trate our efforts on an unmagnetized plasma. In this case, and
for field intensities such tha,=e|A|/m,c<1, the current dV_ Nde (31)

density is simply written as dt = o dt’
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For a stationary plasma, the right-hand sides) of Eq. (31) bation,v 4, is the group velocity of the stronger laser pulse,
vanishes, sincéw/dt=0, and the number of photon§'is ~ which creates the density perturbation, thuys~c. Using
conserved. In general, this will not occur, and the rhs conthis dispersion relation, and calculating the contribution of
tributes for the increas@ecreasgeof the number of photons the dispersion term in E¢33), we obtain the typical disper-

if the frequency decreaseslw/dt<0, (increasesdw/dt  sion time scale for propagation in a homogeneous plasma
>0). The rhs of Eq(31) represents the first correction to the tgq= CTkOw(Z)/(Akwgo), wherer is the pulse duration, with a
usual wave action conservation in inhomogeneous and noreentral frequencywave numberwg (Ko), and spectral width
stationary media. Previous derivations of the wave actiom,. We will follow the laser pulse for times much shorter
conservation equatiofi7] have failed to identify the contri-  thanty,, such that dispersion can be neglected. Moreover,
bution of this correction term; the dissipative properties ofwe will consider propagation in the underdense regime
the medium(ImD # 0) contribute to the rhs of E¢31) inthe  »,/w<1. With these assumptions, the dispersion relation
form of a dissipative term. In our discussion, we have alwaysan be linearized around the central wave numigerfor

considered Id=0. Ay /kg<<1) in order to obtain
For underdense plasmas, and assuming that)¢lks/dt
~1/T (T is the time scale of the frequency variatipthe 2 w2
number of photonsV is conserved in the time scatgys w(k,x,t)=koc+ =——+c(k—ko)| 1- ——1, (39
: 2koC 2k5c?
<T: 0
dV_ N dk N dr N where wj=wjoF[kpo(Xx—v4t)], and k,ko>0. The fre-

dt ot Tdi ek Tdt WEO(UT)' (32 quency w(k,x,t) plays the role of the Hamiltonian, which
generates the ray tracing equations for the canonical vari-
The photon dynamics is described by the ray tracing equaablesk and x [7]. Introducing the normalized coordinates
tions for k andr, which are derived from the Hamiltonian t_:wpotv X = KooX, K= k/Kqo, and performing the change of

w=w(k,r,t) [7], obtained by inverting the WKB dispersion variables 7= x — Byt and e =k/ko—2, where 8,=v,/c,

relationD(w,k,r,t)=0. Equation(32) can then be written as .o Hamiltonian for the new coordinates is

IN dow IN Jdow IN

o ok T ek o —eam=o. (33 Qe nt)=€e(1-B4—wp?), (35
Equation(33) expresses the number-of-photons conservawith wp2=F(77)/(2 k2), the new canonical momentura,

tion in the phase spacd,¢) and it is equivalent to a Klim- and the new canonical position The copropagatiofcoun-

ontovich kinetic equation for the distribution function terpropagationregime occurs foi3,>0 (<0). When de-

N(k,r,t) because this microscopic distribution function rep-fining the new positiory, we have assumed thaf,= const.

resents the density of particles evolving in a six-dimensionaln spite of the drastic approximations involved in deriving

space. EquatiofB83) describes the interplay betwekspace Egs.(34) and(35), the most important features are retained:

andr space through the time evolution ¢f. The second the possibility of photon acceleration and the dependence of

term on the left-hand side of E¢B3) describes group veloc- the group velocity on the local electron density. In the new

ity dispersion, and the third term is responsible for the wavevariables, Eq(33) is written as

number spreading and/or compression due to the density gra-

dient, which is also the contribution responsible for photon J — N _dw.2 N

acceleration. With this approach, the physical mechanisms _—+(1_ﬁ¢_a)p2)(9_+ e———=0, (36)

behind laser pulse propagation are clearly decoupled and the Jt K o€

usual methods for solving flux conservation type equations

can be used, while retaining the most important features ofhich can be integrated explicitly by the method of charac-
the propagation. teristics for several dependencieéén). The general solution

to Eqg. (36) can be written implicitly a$18]

an

IV. PHOTON ACCELERATION BY A LASER
WAKE FIELD N, n,t)=/\fi( ki=[€o(’e, 7, t)+2]ko,

Previous attempts to use the equation for the conservation
of the number of photons, or the wave kinetic equation, have o~ — C
been essentially concerned with stimulated scattering and X‘_%(E’”’t)w_F,O)’ (87
turbulent scattering of plane waves in a plasita,13. In

this section, we apply the formalism to the interaction of anwhere A;(k; ,x;) is the initial photon distribution function.
ultrashort laser pulse with a 1D relativistic wake field, Cre-The functions?o('é 7 t_) and 770(; 7 t_) are obtained by

a_lted by a much stronger laser pulse, moving w_nth_darec- .__inverting the solutions of the ray tracing equations, corre-
tion. The linear dispersion relation, the essential mgredlengponding to the Hamiltonian in E¢35):
of our discussion, igv=\k’c?+ w5oF[kpo(X—v 4)], with

k:kx, kp0=wp0/v¢2wpolc, and F[kpo(X_U¢t)] de- d ETo)

scribes the normalized electron density modulation associ- - _~:1_,3¢_5 2
ated with the wake field. The velocity of the plasma pertur- dt Jde P

(39
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—_— = — = € y
dt an an
dQ 90
—=—=0. (40)
dt Jt
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(38)—(39) can be fully integrated, so thapo("e',n,t_) and

€o(e,m, t) obey the equations

Since we are considering dispersionless propagation, the so-

lution of Eq. (38) does not depend oa, and sony(7, 1) is
also independent of. Assuming an initial distributionV;

symmetric in respect tk,, we can calculate the wave-
number chirp using Eq(20) and conservation of the new

HamiltonianQ (e, 7):

(k) T=ko[2= O (7, 1)], (4D
Where®(77,t_) obeys the equation
_ _= 2
0 ﬂ't_): 1’84’—(‘)"(”0) (42)

1-By—wpi(n)

Equation (41) can be expressed fore as (€),7

= —(n,t_). The analysis of Eq(41) shows that a pulse
injected in a region with constant electron density, such tha

sz(no)=ci=const for anyn, along the pulse, will be

70(€, 7, 1)=G"HG(n) ~ t +1g), (46)
- .
“ol & )= 50 700" @7
where the functiorG(») verifies
2 gcog n/2) + psin( n/2)
G(n)= arcta{ , (48
(N cog 7/2)\p*—q*

where p=1—8,4—1/(2k¢%) and q=—&/(2ko?). Inserting

g. (46) and Eq.(48) in Eqg. (36) we have the complete
volution of the number of photons in the presence of a laser
wake field. In Fig. 2, we plot the number of photons for

chirped only in the region of electron density gradient; whenggyerg] propagation times, in a copropagation configuration

it arrives at a new region Whenﬁpz( 7) = C;=const for the

k>0,8,>0, where it is possible to see the deformation of

entire laser pulse, no chirp will be observed. However, evenhe laser pulse spectrum while evolving in the wake field.
if chirp is not presentia transform limited pulse remains This deformation is compared with the chirp described by
transform limited after interaction with the density gradjent Eq. (41). As predicted, the chirp follows very closely the
the number-of-photons distribution will be distorted. In fact, electron density perturbation. This is evident from Etf).

the spectral width of the laser pulse verifies:

fdkdxI@M(K,x,t) _[fdkdxk/\/’(k,x,t)

JdkdxVk,x,t) | fdkdx\ik,x,t)
(43

2

AZ= (K%)= (k)=

It can be easily shown for transform limited Gaussian pulses
that, after the interaction with the electron density gradient,

the spectral width is
1-B8,—C; ) 2
1-8,—Cq

Furthermore, the central wave numié&) of the laser pulse
is shifted by a factor

A2=A§i®2<n,T)=Aﬁi( (44)

JdkdxkV(k,x,t)

K== ok
B 1-B4—C

For copropagation in a relativistic wake fielgl,~1. Fur-
thermore if (1~ B,4) w§/ <1, the chirp is given by

() _ 1+ 3sin(7o)
@p2(7) 1+ 6sin(7n)

(€),v= (49

This means that even for underdense plasmas, the chirp in-
duced by the wake field can be significant, and it is of the
order of the electron density modulatioh On the other
hand, for counterpropagatigs,,~ — 1, the chirp induced by
the wake field is of the ordera(,/wg)?.

Another important feature is the possibility of relating the
maximum chirp with the gradient of the electron density,
giving rise to another diagnostic method for this fundamental
parameter of laser plasma particle accelerators. Unlike pre-
vious technigues based on the photon acceleration concept
[19,2Q, this new diagnostic method does not rely on the
measurement of the phase-frequency shift induced by the

This corresponds to the usual maximum frequency shift anglasma wave on the pulse centroid; it is based on the chirp of
to pulse compression predicted for the interaction of a lasethe probe beam, i.e., the different phase-frequency shifts that
pulse and an electron beam in the underdense regime.  the pulse experiences along its extent. The maximum chirp

We now consider the simplest model for the electron deninduced by the laser wake field, i.e., the maximum of
sity perturbation describing a laser wake field(n)=1 d(k)/dn calculated in the centroid of the pulse, occurs for
+ 8sin(z), where § represents the amplitude of the electronthe maximum ofd®/d#, which is equivalent to the condi-
density oscillation. In this case, the ray tracing equationgion
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FIG. 2. Time evolution of the number-of-photons distribution for an initially transform limited Gaussian pulse in the phaseespiice (
(@ t=0, (b) t=250,(c) t=500,(d) t=750,(e) t=1000 with 7wp,=1, ky/k,=10, 6=0.25, andB,=0.99, for the same amplitude
contours. The chirp predicted by E@1) is also plotted(solid line).

de 02 dw,?(7)
ma><—) =ma. ~ d
dn e 1-B4— wp(no) n 7
dw,?(7)
~C — 7 1, 50
lma{ ( d7] " ( )

where only first order terms of have been retained<1,

parameter. The linear chirp for the wake field described by
F(7) is then related to the parametern Eq. (19) by b=

* Bywpowool2. For laser pulse durationsw,,~1, the pa-
rameterb can be easily measured by autocorrelation tech-
nigues, down to electron density modulations as lowsas
=0.01. Therefore, the determination of the maximum of the
chirp is sufficient to determine the electron density modula-
tion 8. Some indeterminacy associated with the velocity of
the wake fieldg, is still present. However, as suggested by
Dias et al. [20], a comparison between copropagation and

andC,=1—,— wg(no) = const is calculated for the pulse counterpropagation can circumvent this indeterminacy_ due to
central positionsy,. This means that by probing the laser the unknown interaction length of the probe pulse with the

wake field with weak ultrashort laser pulses, and analyzingnoving electron density perturbation.

the chirp of the probe pulses, it is possible to determine the The considerably large chirp induced by the wake field in

maximum electron density gradient of the electron plasmahe copropagation scheme will also give rise to a significant
wave. Other techniqud49] must rely on a continuous prob- spectral and spatial deformation. This can be observed in
ing of the wake field structure to derive this fundamentalFigs. 3 and 4. In these figures, we present the spatial inten-
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tion of » for the same conditions as in Fig. 2, calculated from Eq. o ) _ _ _
(21): t =0 (solid ling), t = 250 (long-dashed ling t = 1000(short- FIG. 4. Electric field spectral intensiija.u) as a fmctlon ofe
dashed ling given by Eq.(22) for the same conditions as in Fig. 2:=0 (solid

line), t =250 (long-dashed ling t= 1000 (short-dashed line

sity and the spectral intensity of the laser pulse for the same
conditions of Fig. 2. The spatial intensity and the spectral
intensity are calculated from th& distribution using Egs. V. CONCLUSIONS

(21) and (22). The evolution of the spatial intensity shows . .
the wake field regions where the laser pulse is “acceler- e have derived an expression for the number of pho-

Y . — tons, and its time evolution equation, starting from first prin-
ated,” VF(#)<0 [total pulse energy |n§reasewfie|d(t ciples, namely, the energy conservation for the system field
=1000)=1.14XWseig( t =0)], and theregions where the | pjasma electrons. Our generalization allows for the
laser pulse is “deceleratedVF(7)>0 [total energy de- extension of this concept to ultrashort laser pulses. The evo-
creasesWiigig( t =250)=0.765X Wyigig(t =0)]. lution equation can be reduced to a Klimontovich kinetic

The energy increaseecreasgof the laser pulse is ac- equation in phase space, in the underdense regiméay
companied by a wave number (gown) shift (Fig. 4) so that  <1). However, the full evolution equation contains a correc-
the number of photons remains conserved. This energy irtion term of the order of g,/ w)? reflecting the influence of
creaseg(decreaseis accompanied by a pulse spreadiogm-  the time-dependent plasma frequency, which, as far as we
pression in the regions of acceleratioileceleration while  know, was never identified before. This result indicates that
the maximum electric field remains more or less constantfurther exploration of the relation between energy conserva-
thus, increasingdecreasinpthe total field energy. This fea- tion and conservation of the number of photons is necessary
ture could not be predicted if the less realistic plane waven order to clarify the limits of validity of the photon conser-
number of photons distribution of E¢L8) was used: in this  vation equation.
case, number-of-photons conservation implies that a fre- Our new formalism was then applied to study a typical
quency increase necessarily leads to an amplitude increase @echanism where a time-dependent spectrum is observed:
the electric field, which is not the case for electromagnetiqphoton acceleration. We have calculated the chirp induced
pulses, as we have just mentioned. by a wake field in copropagation and counterpropagation. In

The spectral intensity also evolves in a very peculiar way copropagation the induced chirp can be significant, and de-
The central wave number decreasieereaseswhen the la-  pends essentially on the electron density modulation associ-
ser pulse is deceleratédccelerated A nonsymmetric wave ated with the wake field, while for counterpropagation the
number spreading is also observ&dy. 4): this is due to the  induced chirp is negligiblfO( w3/ »3)]. Based on the analy-
nonlinear chirp induced by the wake fie(Big. 2. sis of the induced chirp, a new diagnostic technique of the

The sourcesink) for the field energy is the energy stored electron density gradient was proposed. The evolution of the
by the plasma electrons. In our approach, the energy expatial intensity and the spectral intensity was also analyzed,
change between the electrons and the field does not affect thgnfirming the large induced chirp associated with the pho-
plasma oscillation. A self-consistent description of the wakegn acceleration effect. The total electromagnetic energy
field and the laser pulse dynamics would lead to a photoRariation associated with photon acceleration was also ana-
Landau damping scenarf@1], which is only relevant when |yzed. It was shown that this increagecreasgof the total
the ponderomotive force of the laser pulse in the plasmanergy leads to a pulse expansi@compression
cannot be neglecte@intense short laser pulses The results presented here can also be extended to the

Finally, it must be pointed out that the dynamics of theinteraction of short pulses with electron beams or ionization
laser pulse is recurrent; after a full libration in the wake field,fronts_ In the latter case, a genera"zation of Bﬂ_) is nec-
the laser pulse will recover its initial characteristics. This is 3essary since the current density is no longer given by Eq.
consequence of the time-independent nature of the Hamik2s). This will be the subject of a future publication.
tonianQ (e, n) [7]. The number-of-photons formalism introduced here puts a
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