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Long waves in a relativistic pair plasma in a strong magnetic field
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The properties of low-frequency waves in a one-dimensional, relativistic electron-positron plasma in a
strong external magnetic field typical of pulsar magnetospheres are discussed. Approximate dispersion rela-
tions are derived for a broad class of distribution functions that have an intrinsically relativistic spread in
energies. The effects of the non-neutrality, associated with rotation, and of the relative motion of the plasma
species are discussed briefly. In the plasma rest frame only three wave modes need be considered. The
magnetosonict)] mode becomes firehose unstable as the magnetic field weakens, and this occurs in the wind
zone of the pulsar. The Alfve(A) mode exists only below a maximum frequency, and is weakly damped only
for sufficiently strong magnetic fields. The Langmd@rmode is approximately longitudinal near its cutoff
frequency, and approximately transverse at high frequencies. We argue that the emission zone is Mthin
pulsar radii, and that only, A, and Langmuir waves may participate in the formation of the observed radio
spectrum|[S1063-651X98)07103-1

PACS numbds): 52.60:+h, 52.35--g, 97.60.Gb

[. INTRODUCTION this process is that suggested by one of 1tis9] and other
versions have been reviewed elsewhgt®|. Whatever the
Relativistic plasma plays an important role in a number ofdetails of the emission mechanism, the properties of the low-
astrophysical objects such as active galactic nuclei, blackequency waves in relativistic pair plasma in the pulsar
hole magnetospheres, the primordial Universe, relativistienagnetosphere are of central importance for understanding
jets, cosmic rays, and othef4]. In particular, relativistic the underlying processes in the formation of the radio spec-
pair (electron-positron plasma in a strong magnetic field trum.
plays a central role in the physics of pulsar magnetospheres \waves in pulsar plasmas have been studied extensively
and winds [2-4]. The observed radio emissionw( over the past two decades. Early studies mainly concentrated
~10°-10" s™") from pulsars, which are magnetized neu- on the relativistic plasma flow, assuming cold or only mildly
tron stars, is generated in a relativistic pair plasma and mustlativistic distribution of electrons and positrons in the
propagate through such plasma as it escépe8. The pair  plasma rest frame(see, e.g., Ref[10] and references
plasma is created in a two-stage process: primary particlegerein. Kinetic analysis of the highly relativistic plasma
are accelerated by an electric field parallel to the magnetigoncentrated mainly on longitudinal waves propagating
field near the polegwhere the typical magnetic field is along the magnetic fielésee, e.g.[11]). A general expres-
~10' G) up to extremely high energies, and these produce gjon for the dielectric tensor, except for the neglect of gyro-
secondary, denser pair plasma via an avalanche or cascaglgpic factors(see beloy, was derived by one of Ud.2] for
procesg5]. The number density\,,, of the secondary pair oblique low-frequency waves in a plasma which is one-
plasma exceeds the Goldreich-Julian denslty (which is  dimensional in the sense that the particles have motion only
required to maintain corotatigy the so-called multiplicity along the magnetic field lines. The dispersion relation for the
factorM =N, /Ngy~10°— 1 [2,4,5). The pair plasma is in- oblique electromagnetic waves was obtained and linear po-
trinsically highly relativistic, its flow Lorentz factoy, being  larization explained. Low-frequency waves were studied in
of the same order of magnitude as the typical spr@ad., detail by Arons and Barnard 3], where many of the results
root mean squajeLorentz factor (y), with y,~(y)~ of the previous studies were rederived and generalized. The
10-1C [4]. specific cases considered in detail [ib3] were the cold
The radio emission mechanism for pulsars is not adplasma and waterbag distributions. These distributions are
equately understodd,6]. A plausible scenario is the excita- not sufficiently general to include all the possibly important
tion of waves due to a resonant kinetic plasma instabilityeffects in the application to pulsar plasmas. More recently, a
followed by nonlinear interaction between the waves to pro+elativistic thermal distribution was discussed by Polyakov
duce the spectrum of the escaping radiation. One version ¢fL4], but this is also insufficiently general to contain all the
possibly important features. In all these cases, the plasma is
assumed to be one-dimensional, which is well justified for
*Present address: IGPP/UCLA, Los Angeles, CA 90095-1567. plasma in the superstrong pulsar magnetic fields. The astro-
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physical objective of such investigations is to understand theylinder R, =cP/27, beyond which corotation must break
radio emission mechanism for pulsars, but neither the emisdown. For a pulsar with the peridel=1 s, the light cylinder
sion mechanism nor even the location of the emission regiois at the radiusR, ~10'° cm~10°R,. The plasma density

has been clearly identifie@gee, e.g., Ref.15]). varies asNx R™2 (as the magnetic fie)din the region of
The objective of the present paper is to determine thénterest R<R|), wherey, and(y) are independent dr.
general propertiegdispersion relations and polarizatjoaf The frequencies of interest are those in the observed radio

the low-frequency waves in pulsar plasmas making only theange of 18-10's™%, which translates into o
most general assumptions on the form of the distribution~10°—10° s~ in the plasma rest frame foyp~103_ The
function. The plasma is assumed locally homogeneous, angyrofrequency()=eB/mc and the plasma frequency, de-
although we examine the effects of the nonzero charge anfhed here agup=(477Nre2/m)l/2 without any Lorentz fac-
current density on the wave properties, we argue that thegor, vary from Q~2x10 s and w,~2x 10" s™* near
can be ignored. The streaming motion of the plasma is rethe polar cap, tq)~2x 10" s* and wp~2x 10* s at the
moved by carrying out the analysis in the plasma rest framejight cylinder. If the emission zone is near 0.R1 [15], the
where the intrinsic spread in particle energies is assumegbrresponding frequencies are approximatel)~2
highly relativistic. Our aim is to derive compact expressionsx 103 s* and w,~2x10" s™%. For more rapidly rotating
for the dispersion relations for the low-frequency modespyisars these frequencies are higher.
which apply in the regions of the magnetosphere where the
observed radi(_n emissipn is plausibly generated. _ IIl. GENERAL FORMALISM

The paper is organized as follows. In Sec. Il we discuss
the plasma parameters used throughout the paper. In Sec. Il The approach to the analysis of low-frequency long waves
we present an efficient method for the treatment of linear antvas described in detail in Ref16]. Here we briefly outline
nonlinear low-frequency waves, based on the direct exparits modification for the case of relativistic plasma.
sion of the Vlasov equation in an inverse gyrofrequency The ultrarelativistic pair plasma, typical for pulsar mag-
power series, and use it in Sec. IV to derive the dielectrionetospheres, should be described by the relativistic Vlasov
tensor for an arbitrary one-dimensional distribution function.equation
In Sec. V we analyze the dispersion relation for different
modes and establish the relation between the location of the i ftv
region where the waves are considefeshission regionand at 3
mode features. In Sec. VI we summarize the results and dis-

cuss qualitative implications for the interpretation of pulsarfor €ach species (electrons and positrons in our caseith
radio emission. u=p/m, v=u/y, y*=1+u? and where we use units with

c=1. The magnetic fielB includes the constant external
magnetic field chosen so th&,=(0,0B,). Equation(1)
Il. PLASMA PARAMETERS applies in an arbitrary inertial frame, and we use it in the

The pulsar plasma parameters in the source region ar%lasma _rest_frame. . _ .
In cylindrical coordinates withu=(u, cose,u, sing,u,),

model dependent. There are different models for the gener@d—1 distribution functi b d Fouri
tion of the secondary pairs, for the location of the radio emis-. e. IStnibution Tunction may be expressed as a Fourier se-

sion region, and there are intrinsic variations from one pulsapes'
to another, all of which introduce uncertainties into the esti-

af+qSE+><B&f—0 1
ESE( \ )Es_v ()

n=o
mates. We choose what we cons_ider to be the most plausi_ble fo= fon(U, ,U)eXp —ing). 2)
parameters, but note that there is necessarily an uncertainty n=—o

of several orders of magnitude in some estimates, most no- )
tably of the plasma density. Only the componentss, and fs,, o=*1 appear in the

A standard model of the polar cap pair cascade implied0!loWing expression for the current density:
that the pulsar rest frame density of the pair plasmaljs
~MNg; where Ng~By/Pec is the Goldreich-Julian den- = qSJ v fsou du, du,, 3
sity, andM is the multiplicity factor. For a pulsar with the s
polar magngiilc fieIgIBO~1olzG and periodP=1s, one
finds Ngy=10" cm™>. The multiplicity factor is uncertain, i = 1 f
with es(tsiinates in the range 301¢°. We adoptM = 10° for b Es 22 Gs | vafsotidudls, .
numerical estimates. The resulting plasma densityNjs
~10* cm™3. This plasma is highly relativistic, flowing with
a mean Lorentz factor of aboyt,~ 10° and having a spread
in Lorentz factors of abouty)~10? (for the actual defini-
tion of this parameter see belpwThus, the plasma rest and whereX denotes summation over species. The depen-
frame density near the pulsar surface M=N,/y, dence ors is omitted, but remains implicit, in the following
~10" em3. equations.

The dipole magnetic field varies in the magnetosphere as Equation(1) is equivalent to the following infinite chain:
B=B,(Ry/R) 3, where Ry~10° cm is the radius of the
neutron star. In most models of the pulsar radio emission (L,+inQ)f+ > G “f,_,=0, (6)
[15] the emission zone is believed to be well inside the light o=*1

=3 43 00, it udud, @
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where the operatoris, andG! are defined by Of course, the inverse operatbgl should be properly de-
fined to solve Eqs(14)—(16).
d d J . _ The expansion procedure simplifies in the weak turbu-
= J— _ 1
L”_&t M az+aEZ au, Inay 7B, ™ lence limit in which one can expand in a further small pa-
rameterp~E/By<<1. As we are concerned with the linear
n UL @ . response of the plasma we need retain only the zeroth and
Co=% Vot 2 (Egdonti0Bol o), (® linear terms in this expansion. This leads to the expansion
2
J on _ ng(n)
dgnzm— o Ngn=0,d5n—v, 9, 9 fo=Folu.,uz) + 77;::0 o 9

wherea=qg/m, Q=qBy/m, Q=Q/y, E,=E,+ioE,, B, 2
=B,+ioB,, and o==1, and with V,=a/dx+i ool 3y, fo= 772«1 ety (18)
andd=(d/du,).

In the general case, the infinite chd®) is no simpler to |t is convenient to switch to Fourier space, assuming that all
solve than the original Vlasov equati¢h). However, in the  perturbationsxexdi(k-r — wt)], with k=(k,,0k,). Omit-
low-frequency, long-wavelength regime, there is a small pating the lengthy algebra we find
rameter é~wy/Q~ky/QQ<1 in which one may expand.

This expansion is described in detail in REE6]. It is done ak v, iak v,
by simple substitutio)—Q/& (where nowé is used as a fo=Fo(uL ,Up) = —=— EyuoFo+ —=,— ExtoFo
formal smallness parameter, which is set equal to unity in the 24 20%

end, so that Eq(6) for [n|=1 may be written k20, v,a ik v, o
¢ oo MoF B+ o7 moFoEx, (19
fo=——= _Lnfn_E Gr(];afnf(r . (10
inQ o C o122
_ a iakiv?]
Since t_he equilibrium distribution is gyrot_rop_’((fn—>0 f(_)r fo=- 2isQ) [Eot+Eaokiv,/)]poFot 4io(~12§ EyroFo
[n|=1, if E~0, B—0, andV—0), the distribution function
can be represented as a following power series: ial
. too? [Est+Ex(Kivz/{)]poFo, (20)

fo= 2 £y, (1D _ _
m=n| where we use the relatioB=kxXE/w and the notatiory

o _ . =w—kup,andue=[Z(d/du,)+kup, (d/du,)]/w. In the fi-

where the lower summation limit is determined by taking g expressiong&l9) and(20) the formal smallness parameter

into account Eq(10). For our present purposes it is sufficient £is not necessary already and it is set to unity.

to restrict ourselves to the currents of order not higher than

£. Sincef,~0(&"y, the chain(6) can be reduced to the

. . IV. GENERAL DIELECTRIC TENSOR
following equations forfy andf,, o= *1:

AND DISPERSION EQUATION

B & 5 2 1 The distribution function$, andf, found from Eqs(19)
fo=— Q) Gofot Q) Lo Q) Gofo, (12 and (20) are used in Eq93)—(5) to determine the conduc-
tivity tensor by writingj;=K;;E; . The dielectric tensor then
¢ £l follows from
Lofo= 2>, G‘IUT (1—_ 6 G%f,. (13) i
o 1o 1o m
eij=5ij+TKij' (21)
These equations form a closed set for plasma in a strong
external magnetic field. A perturbative solution gives We obtain
Lofi¥=0, (14) o2
€,,=1+ >, ?psfvzuLg‘lanyodulduz
S
1
(1) — o 0£(0)
Los —EJ: Gwiaﬁ Gofo 19 wpsk 2,2 ~1,-1
—ZS 2002 | WY { moFsedu, dug,
LfP=3 67, - o (22
o ioQ) )
- wpsK, 2 -1
=—€,=I — | uyu Fsodu, du,,
S er, =L, =GP, (8 G 12 g0, | WML HoFsddudu,
o icQ) icQ) (23
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w kL
= €x= 2 ZwQS UZUJZ_IU“OFS,OduJ-dUZ’ (24)
2
. pr
fylezs mjufﬂo':,odlhduz' (25
2
®
exx=1—§ Zwﬁp(; f §7UiMoFs,odULdUZ1 (26)
S

22
ps™L

4wQ§

f Uj 7_1§_1M0Fs,0d uiduz )
27

€Eyy= Exxt Zs

where we restore subscript =1 denoting summation over

species(s=1 for positrons and=—1 for electrons Here

w,233247re2NrS/m andQ .=seB,/m, where we take into ac-
countqg, =—q_=e, m;=m_=m. We now incorporate the
plasma rest frame number density; in the plasma fre-

quencyw,s and normalize the distribution function as fol-

lows:
f Fsou,du, du,=1 (29
The dispersion equation for the waves is
defin®s;; —nin;— ¢;[=0, (29)
where n=|n|, with n=k/w the refractive index, »>

p
=4mq?N, /m.

In Egs. (22)—(27) the distribution functiond=¢o(u, ,u,)

are arbitrary. The above expressions can be partially inte-

grated to give

2 2
_1+2 <Uz 715 lﬁ)s"'; gz)é 71)3
2 2
SN _
_z pZQZ ui‘y 3>S
w3 kik,
_z 292 (uy uL772§71a>S' (30

0)2 kJ_
Eyzziz ﬁ;ﬁ[_2w<uz>s+kz<uzu12_'Y_lg_lf?>s]a
s
(3D
L _
pZSQZ[ 2w<uz>s+kz< 2U _UL)V l>s]
(32

€xz— — 2
s

Exy=i2 (33

2—;;)5 [-20+ kz<uz’yil>s]a

eu=1-3

+4wk,(U)s— k?((ZUZ— UJ_) ')’_1>s]1

292[ 2w2<7>s_w2<ui7 Ys

(39
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“’sskf 2 -1 4_-3
eyy:Exx'l'zS MZ[_LKUJ_'Y >S+<UJ_'V >s
S
+k(uty 2], (35)
where
(o= [ wduducF, @

In Egs.(30)—(35), F¢o(u, ,u,) remain arbitrary, and the de-
rived general dielectric tensor describes the linear response
of both anisotropic and isotropic plasmas. The distribution
function of the electron-positron plasma in the pulsar mag-
netosphere is assumed one-dimensidnab 5(u, )/u, , due

to the perpendicular energy of relativistic electrons and pos-

itrons  being radiated away. We assume-gq
—Fso(uz)é(ul)/uL with normallzatlonfFSoduZ 1. For
this one-dimensional d|str|but|on one has
2 2
ni —
ezz=en=1—25 pst(nn +§ ps (UZy s,
(37)
——IP— Z>S! (39
L
Q ES ps (<uz>s nll<u27 >s) (39)
w2
— — i _ -1
Exy 19 |§ wQS(l nll<uz'y )s) (40)
wie
Exx=— 6yy:EL:]—"_z F((Y)s_zn\Kuz)s
S s
+niuZy ), (41)
where we introduce n, =k, /o=nsinf, n=Kk, /o

=n cosé. The dispersion functionsVy(n,) are defined by

(for positive w)
1 foo 1 dFso
nH — 1 n”l) + | T d UZ

whereir (7— +0) defines the contour of integration. The
functionsWg(n,) are defined so that in the cold plasivg
=1. Alternative forms are

W(ny)= °d u,, (42

Wi wa 1 dESVOd
s(ny)= n | F) . 1o du, 94
. 2 9Fs 43
[yl dUz‘uZ:u ’
Wy L Pfl 1 dES'Od
()= n_H 1 1-np, du, Uz
1 dFs,
T m v, . , (44)

with v, =1/, y,=(1-v?) 2 u,=
the principal value integral.

v,v,, and P denotes
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The averaging procedu86) becomes glect the gyrotropic terms. However, the gyrotropic terms
must become important for sufficiently low-frequency

() f (---)E du.. (45 ~ Wwaves, specifically for waves for which the ratio of the rota-

S 07tz tion frequency of the star to the wave frequency is not neg-

The plasma rest frame is defined such that the net flow speeltlc‘clllble'
is zero. In the following we argue that the relative flow be-
tween the electrons and positrons is unimportant in determin-

ing the wave properties, and hence we effectively assume The neglect of the gyrotropic terms impli€&s=g=0 in
{(u,)_=(u,), =0 in the rest frame, where the subscripts de-Egs.(38) and(40), and for the same reason the terms involv-
note electrons and positrons. Howeveéun,)=0 does not ing (v,)s in EQ. (39) are neglected. We may also omit sub-
guarantee thatu,y 1) vanishes, except where the distribu- Script s, using notationw,, =w,_=w,, Q,=-Q_=Q,

tion function possesses a specific symmetry property. It i@gnd W, (n)=W_(n;)=W(n). The dispersion equation
likely that the pulsar plasma distribution is noticeably asym-then factorizes into two independent dispersion relations for
metric with respect to the outward and inward directions linearly polarized waves:

because of the way it is generated in a pair cascade.

B. The dispersion equation

n*=e , E,#0, (47)
V. WAVE PROPERTIES

2 2 2
ny— nT—e¢)=(n,n+ , Ey=0, 48
In this section we derive the properties of the waves for (nj—e)(n—e)=(nn+Q) y 48

specific distribution functions, using these to infer approxi-
mate dispersion relations for a wider class of distributions. Where
) ng
A. Neglect of the gyrotropic terms €=1—— W(n)+ an)\, (49
w
We start by arguing that the gyrotropic terms ande,,
may be neglected in the wave analysis. These terms are non-

zero due to nonzero charge density eNg; and a parallel e, =1+A((y)+niN), (50)
current densityd~eNg; associated with the rotation of the

magnetosphergl3], and each is smaller by a factefN_ Q=—An,np\, (51)
—N,|/N~Ngs/N~10 3<1 than the nongyrotropic terms.

Only the square of the gyrotropic terms enter the dispersion )

relation (29) for oblique propagation, and their effect would A= 2wy )\:<u2 ) (52)

be significant, compared with the other terms in the disper- 0% 2V

sion relation, foro=< w,(Ng,/N)/{y)*% Near the polar cap

this inequality givesw=<1(P s™*. The plasma density de-  Equation(47) corresponds to a strictly transverse wave

creases<R ™3 with increasing radiu®, so that the frequen- mode, usually called the magnetosoni (mode, which
cies where the gyrotropic terms are significant decrease witiame is used here. This mode was calledXthaode in[13].

R. Assuming the source region to beRit 10R, implies that ~ Equation (48) corresponds to waves which are neither
the gyrotropic terms would be significant only ab strictly longitudinal nor strictly transverse in general, and it
<10° s7!, corresponding to an observational frequencyincludes both the Langmuir and Alfaemodes as limiting
~10%y,/2m~0.2 MHz, which is well below the radio fre- Ccases. We discuss the waves described by @dsand(48)
quency range of interest. It follows that the gyrotropic termsseparately.

are negligible in the dispersion relations. The gyrotropic

terms imply an ellipticity of the polarization Ng;/N, which C. Magnetosonic(t) waves

is also negligible except in the limiting case of parallel o dispersion relatiof47) for t waves may be written in

propagation. _ ) ,gwe form(cf. [9,13])
The case of parallel propagation requires separate consid-
eration. The dispersion relation in the appropriate approxi- 2 122 2
mation becomegretaining only the largest teom w;=kvia(1—-AN cos’ ), (53)
, ©2 [N_—N,| wherev o= 1/(1+ A( y))Y2is the relativistic Alfvan speed as
n<= 1iw— N (46) defined by[17].

Thet mode is subluminous«{<k), and this is a neces-
sary condition for a resonariCherenkoy interaction with
with [N_ =N, |~Ng;. The right-hand side of Eq46) is  particles to be possible. Nevertheless, no resonant interaction
insensitive toR so it suffices to estimate it near the pulsaris possible because the waves hdue=0, and the current
surface. With the parameters of Sec. Il one finds that theissociated with a particle is strictly along theaxis in the
largest correction to the refractive index in the radio range isne-dimensional case. A resonant interaction becomes pos-
<108, This correction is not significant here. sible in principle when either the gyrotropic terms are in-
In the following we neglect effects related to the nonzerocluded, as these lead to a nonzero longitudinal component of
charge and current densities, $et ;=F_ o, and hence ne- the polarization, or when the particles are not confined to
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FIG. 1. The waterbag, hard bell, and soft bell distributions with  F|G. 2. Superluminous Langmu® mode for the three distri-

¥m= 100. butions. For givem,, the frequency is the lowest for the waterbag
distribution and highest for the soft bell.
their lowest Landau orbital. In the first case the absorption
;:]oefﬂu_ent should li(e $Loport|onz?jl E)Z/EYOCANGJ”\:E’ tatr;]d onstant, and the critical magnetic field B.=4.4
Sgg]ze rlr?e\éﬁgln'\griat(.) o g'tseefr?; ;gi?e;egu'tri? th:'r Ioergs 10'® G. Near the pulsar surface this correction~40’
Landau orbitalI and thexolnl effee:tivle mecrl:anism isl; a rvt\also-gnd drops to~10"* at R=10R,, being proportional to
' y ~6. On the other hand, the plasma induced correction is

nant gyromagnetic interaction, which requires waves ofy (7)~10"1 near the pulsar surface, and increasesRas

much higher frequency than are of interest here. Such excj- . . : a8 =
tation through the anomalous Doppler resonance was dis\,'y'th the distance, reaching(y)~10 ° atR=10'R,. These

cussed in18]. Provided our assumption that the plasma isngmbers ShO.W .th_at vacuum polarization.effe_cts are.negli-
one dimensional remains valid, absorptigositive or nega- gible and the infinite magnetic field approximatioh£ 0) is

tive) due to gyromagnetic interactions is not possible. appropriate forR=10°R,. This conclusion also applies to

Equation(53) shows that the plasma becomes intrinsicallythe mixed(Alfven-Langmuiy mode. Nevertheless, for com-
(aperiodically unstable whem\A>1. This is a special case pleteness, we retaia #0.
of the firehose instability, which may occur in a hot aniso-
tropic plasmd17]. Well within the light cylinder in a pulsar D. Alfvén-Langmuir mode
magnetosphere one has<R3, and then the firehose insta-

bility develops for The second dispersion relati¢#8) is more complicated.

The identification of the modes is made by considering the
case of parallel propagation. For =0, Eq. (48) factorizes
2 \13 into the dispersion relation®=¢, for the parallel Alfven
R2R0< 25 ) , (54) mode (which is degenerate with the parallelwave and
wzpo(y) €,=0 for the parallel Langmuir wavg9,11]. On including a
small obliquity, the relevant solutions of EGL8) are found
to map continuously onto these parallel modes as the oblig-
where the subscript 0O refers to the values near the pulsafity reduces to zer@n the Iong-yvavelength limik— 0), and
surface. It is usually assumed that once the firehose instabibence the classification into Alfmeand Langmuir waves re-
ity develops, the distribution function isotropizes due to quaimains well defined. However, the “Langmuir” mode does
silinear interactions with the unstable waves. In principle, thenot necessarily remain even approximately longitudinal
effects of the quantization of the Landau levels needs to baway from parallel propagation. The Langmuir mode
taken into account here, because the conventional treatme@volves into a transverse electromagnetic mode, identified as
in terms of a diffusion in pitch angle applies only in the the O mode by[13]. We also note that because all solutions
nonquantum limit. However, for typical plasma parametersof Eq. (48) have E,#0, the Cherenkov resonancey
the firehose instability develops well beyond the light cylin- =k,v,, allows Landau dampingor growth for sublumi-
der, in the wind zone, wherA=R™ 2, Hence, it is not di- nous waves, where “subluminous” meang=k,/w>1.
rectly relevant to the present discussion. The existing nomenclature for these modes can be confus-
The correction to the refractive indéand phase velocily ing. Our nomenclature is to refer to the mode which is de-
«A(y) is small for parameters of relevance here. The corgenerate with the mode for parallel propagation as the
rection is only relevant if it is larger than other corrections,Alfvén (A) mode. TheA mode has a parallel phase veloc-
in particular, that due to vacuum polarizatide.g., Ref. ity (=1/n;) that is subluminousr(;>1). The mode with a
[13]). The vacuum polarization gives a correction cutoff frequency has a parallel phase velocity that is super-
x (a/45m) (B/B.)?, where ay=1/137 is the fine structure luminous, and is called the Langmu@-(L-O) mode. The
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L-O mode is referred to as the Langmuir mode only in the
regime where the waves are approximately longitudinal.
We write Eq.(48) in the form

wZ

—=
20}

nZ—(1+ &y)

nZ—(1+ 8,)cod 6§ W(n)cos 6,

(59

where we retain first order terms Anin the small corrections
51=A(y)+\) and 8,=A({y)cog6+\). The form (55)
contains the paralléh mode as a limiting case in which both
the numerator and denominator vanish. To understand th
behavior of theA andL-O modes in the general case, one
needs to consider the signs of the factofs- (1+ 6,), n?
—(1+ 8,)cogh, and W(n,). The plasma is transparent to
one of these modes when[n?—(1+&)][n?—(1

+ 8,)co€dW(n)>0. SinceW(n,<1)>0, the nondamping
L-O mode always exists for9 nf< (1+ 8,)cos e (provided
sirf@>6,). The Langmuir end of this mode starts at cutoff
n,=0, w=wp\/2<y*3>. The O-mode end is nondispersive
with the dispersion relatiom =k+/1+ &5.
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The A-mode features depend on the details of the behav-

ior of W(n,). To investigate this mode we first consider sev-
eral specific distributions for whicW/(n;) can be found ana-

lytically.

E. Specific distribution functions

FIG. 3. Same as Fig. 2 but fes and a function ok. The mode
starts as the longitudinal Langmuir modekat 0 and becomes the
transvers€d mode asw approaches.

a. Case 1.(1+ 8,)co<1+6,<1l?. The L-O mode
requires O<nf<(1+ 5,)co6. The cutoff frequency isw

We consider several simple choices of distributions. For_,wp‘/j/vm and the mode is purely longitudinédlangmuir

simplicity, only symmetric distribution$-o(—u,)=Fq(u,)
are investigated, antlith one exceptionthe distributions
are assumed to have a high energy cutoftiat uy,, with
Fo(u,>u,)=0. The distributions discussed in detail are the
waterbag, hard bell, and soft bell distributions illustrated in
Fig. 1. The different shapes of the distribution functions, for
given u,,, result in significantly different wave properties.

These properties are illustrated in Figs. 2—5, which are dis- | cage 2(1+ 8,)co2O<1h2<1+5;.

mode when n;—0. For w— the L-O mode becomes
transverse(O mode when nf—>(1+ 5,)cog6<1. The A
mode has parallel refractive index in the range froﬁiFl

+ 8, (Wherew—0) to nf— 1/v? (wherew— ). This mode

is transverse in the whole frequency range. Singel 1 this

is the only possible case in the infinite magnetic field limit,
where §,=6,=0.

The only differ-

cussed in detail below. Throughout this section we use th%nce from case 1 is that the refractive index for ghenode

notationy,= 1+ um2 y Un=Um/ V-

1. “Waterbag” distribution

First, consider the waterbag distributigaf. Ref. [13]),
which we take in the fornF,=(1/2u,,)H(uZ—u2), where
H(x) is the Heavyside functionH(x)=1 for x>0, and
H(x)=0 otherwise. The dispersion functigd4) becomes

1
W(n)=————>>, (56)
(ny) (-T2
and Eq.(55) becomes
w?  cof 0 n2—(1+ 6y
2w} Ymbin [Nf—(1+8,)c08 O](nf—1hvg)
(57

The A mode depends on the valuesrqu corresponding to
the zerogatn?=1+ &,) and polegatn?=(1+ 8,)cog6 and

n?=12] of the right-hand side of Eq57) [note that (1
+ 8,)cos6<1+6,].

decreases now from (1.8;)? to 1k, with increasing fre-
guency.

c. Case 31 ﬁq<(1+ 8,)cog6<1+ &;. This order is pos-
sible only for (1+ 8,)co€6>1, that is, in the quasiparallel
regime. TheL-O mode becomes electromagnetiz mode
with n,— 1/, for @—. The A mode has (% &,)cos
<ME<1+4;.

2. “Hard bell” distribution

The waterbag distribution hadFy/du,=0 everywhere
except at the end points, where it is infinite. This precludes
damping due to the Cherenkov resonance. In order to study
damping it is necessary to consider a distribution with

dFy/du,#0. Here we consider the hard bell distribution

2 2
m_ Uz
4ud 1-v2

m

_ Syﬁ] v
0:

H(vh—v2)

3
= —5 (U3 —uZ)H(uz—ul).

4uy, (58)
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FIG. 4. Frequencysolid line) and damping ratédash-dotted linefor the subluminousA mode in the range,>1. For given Xn,
<1l the frequency is highest for the waterbag and lowest for the soft bell. There is a singularity) for the waterbag and the hard
bell cases an,=1/v,,. In the soft bell case there is no such singularity. In both hard bell and soft bell cases the wave damps for
>1p,.

The dispersion functio44) becomes and tends to low frequenciess(~0) at both ends of the
‘ range. It is strongly damped everywhere, and hence is of
Nomt1 little practical interest.
W(ny)= n, In m—l —UpYm(nZ—1) P
Nwm—1|

2ug(nf-1)?
3. “Soft bell” distribution

The waterbag distribution is discontinuous w=v,,

and while the hard bell distribution is continuous @t

_nf+l |ltoy
2

1-vpy

AT 1 59
I2u§1(nf—1)2 (Noym—1). (59

0.03 T T T T T T T

This function has a logarithmic singularitfy—o at n
=1/,,, but does not change sign there, in contrast with the o025
waterbag case. The sign change occurs at sojrelfv«

>1/v, (the exact value of which is of no importance here oozk
so that the plasma is nontransparent for waves with
>1/v . The imaginary part ofV(n;) is nonzero for alln, lz

>1/v,,. The mode behavior again depends on the relative 3~ **°f

positions of the zeros and the singularities, with (1 3
+ 8,)co$0<1+ 4, 1/v2m< 1/ui. We consider two cases. 001

a. Case 1.(1+ 8,)cog6<1+8,<12<1?2. The most
important new feature is the appearance of a new mode oo0s|-
whose parallel refractive index is in the range J£n;
<1, with nj— 1, for o—o andn—1f, for 0—0.

We refer to this as the submode. The damping rate for this A
mode is ke/w,v/2
F Im W 37TnH . . . . .
(60) FIG. 5. Dispersion relation for sublumino#smode in the non-

 2ReW  4ug(nf-1)> ReW’ damping range £n,<1/v,. The existence of a maximum fre-

L quency for the soft bell cad@eavy ling is apparent. The thin line

which is large. extending beyond the soft bell cutoff corresponds to the waterbag
b. Case 2.(1+8,)co$9<1bj<1+8,<1h5. In this  and hard bell cases, which are nondistinguishable in the low-

case the additional submode exists for ¥ §;< nf< 1/vi, frequency range and do not have an upper frequency limit.
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=vp, it has a discontinuous derivative there. The new lsub-magnetic and transvers& (k) already atw~2wy.

mode that we identify for a hard bell distribution exists only  Figure 4 shows the frequency-refractive indésolid
nearn,=1l,, and may well be associated with the discon-lines) and damping rate—refractive indéstash-dotted lings
tinuous derivative there. To explore this point, we consider gelations for the subluminous mode in the range,>1 for

soft bell distribution, which is continuous with a continuous the same parameters as above. In the case of waterbag dis-

derivative atv,=v,: tribution the plasma is not transparent for this moderfpr
4 2 212 >1/vp,. In the hard bell and soft bell cases the wave propa-
=~ 15y vm—us 2_ 2 ates, but the damping rate becomes comparable to or even
=— 2| —F| Hw3-v?) gates, ping p
0 1&15m 1-v; m vz larger than the wave frequency. Thus no weakly danfed

wave exists fon>1/v,, in any of the three cases. The wave

_ 15 (U2 —U2)2H (U2 — u2) (61) frequencies are not limited from above for the waterbag and
160y, - ™ 7 moen the hard bell distributiongalthough in the latter case the
) ) o logarithmic singularity does not allow us to show this in the
The dispersion function is figure). The dispersion relatiom(k) for this mode in the
2 transparency range <In;<1llv, and the upper frequency
W(n,)= 15¥m (; | ‘1+Um [(3+02)(3n2+1) limit for the soft bell distributionheavy ling are seen in Fig.
V4w (n2-1)% [ ® T 1-vy mA 5. The thin line corresponds to the two other cases, which are
2m 2 2 not distinguishable from the soft bell case in this low-
—niBuypt1)(nf+3)] frequency limit, but extend ta— o,
1 2 2.2, 2 2 To summarize, thé& mode exists only in the very narrow
T 2 Umym(Nj = 1) @Bopni+op=ni=3) range of refractive indicesn(—1)=<10~4, within which it
- Noum+1 is well approximated by the dispersion relatior- k cosf. It
+ny(Njvp—1in no—1 is a low-frequency wave and ceases to exist when its fre-
Imm quency becomes of the order of the Langmuir wave cutoff
15my2An(nZv3—1) frequencyw, {1y~ 3).

H(nov,—1). 62
5. Relativistic thermal distribution

The main difference from the hard bell case is that now there  a the above distributions have a high energy cutoff and
is no singularity atn=1/vy,. The sign change oW(n;)  have discontinuous first or higher derivatives. An example of

occurs at some, = 1/v, and the explicit value of , is of N0 a distribution which extends to arbitrarily high particle ener-
particular significance here. For ¢15,)coS0<1+&<1b  gies and has all its derivatives continuous is the one-

the subt mode has ¥ §;<n?<1/?, as for the “hardbell”  dimensional relativistic thermalittner-Synge distribution
case, but now withw— 0 at both ends of the range. There is
substantial damping fan,>1/v,,, and the damping rate in- Eoer_py 63)

creases rapidly with increasing,. We conclude that the
sub4 mode is only of possible interest fof<1/v,. ) . . )

The frequency of thé mode is now limited from above, wherep=m/T is the inverse of the temperature in units of
through the existence of a maximum frequency. The modd€ rest mass, and where the normalization consiaist of
ceases to exist fon> w ., With ., determined by the 1O partlcular interest. If one interprets the exponen'uall func-
behavior of the dispersion function, IMplying— o, for tlon in EQ. (63)' as a smoothed form of cutoff. of'the' dIStI’!-
ny=1/vp. bution, then ghls is analogous to a soft bell dlstrlputlon with

p=1ly, orvi=1—1/p. The mean valueé--), defined by
4. lllustrations Eq. (45, may be evaluated in terms of known functions for
. ) _the distribution(63), and compared with the results for other

To make the above analysis more comprehensible we ilzy,hices of distribution function. In the ultrarelativistic limit,
lustrate the mode features for these three distributiongg|aions between these averages are insensitive to the form
graphically in Figs. 1-5. For this purpose we EQOW of the cutoff of the distribution. One specific approximate
=100 and§=80°. Since the parametefy) and(y ") en-  rejation required below i€y %)~ ()%, which applies to
ter the dispersion relations, it is of interest to compare them;isnin 4 factor of order unity. The exact value of this factor
for_ghese three cases. Numerically we f|(1¢)W=50_§nd depends on the details of the distribution.

(v *)w=0.1 for the waterbag,y),=37.5 gnd (v “)n The dispersion functiori44) for the distribution(63) is
=0.16 for the hard bell, anly)s=31.2 andy"*)s=0.2 for  -anscendental, and may be written in terms of various rela-

the s_oft _beII_ distributions. .As could be _expecFedLghe softekjyistic plasma dispersion functions. For example, it may be
the distribution, the lower i$y) and the higher igy™>). In  \\ritten

the three casesy 3)(y)~0.5-0.6.

The frequency-refractive index relation for the superlumi- J
nousL-O mo'de'(q)/wpx/i as a function of,) for all three W(1/z)=AZ — T(z,p), (64)
cases in the infinite magnetic field limit is shown in Fig. 2. 9z
This mode exists for € n;<cosd. The cutoff frequencywg
=wp\/<'y_3> is nearly the same for all three distributions. with z=1/n;, where the relativistic plasma dispersion func-
Figure 3 shows that the-O wave becomes almost electro- tion is that introduced and discussed [1]
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e’y the maximum frequencyw mac-w, /()2 and by the onset

1
T(z,p)= fﬁldv v—2" (65 of strong damping, with weakly damped waves confined to
the rangeA=<1/y)3. With the parameters used here, the
[A result analogous to Eq64) was derived by14] in terms ~ Maximum frequency foA waves is~10° s™* near the pul-

of different functions] In the ultrarelativistic limitp<1, one ~ sar surface, decreasing t910° s™* aboveR~10°R,. The
has strong damping implies tha® waves cannot exist aR

=10°R,, whereA=1/y)3. Presence of an exponential tail
aT(z,p) ) . for y—oo, as in the distributior{63), does not change these
9z ~2(z-1) (66) semiquantitative conclusions.

For theL-O mode one has<1. For an ultrarelativistic
for 1—-z>p2 An expansion given by[19] implies plasma the dispersion function may be approximated by
dT(z,p)l9z~4p~2 for |1—z|<p?. The damping rate is de- -
termined by ImT(zp)=nH(1—2e ", with v,=1/(1 W(n,) = f“’ Fodu,

—72%)Y2=n,/(nf—1)Y2 This implies strong damping for V) e Y (1—-np,)?

n?=1—-p?, analogous tm?= 1/v3 for the hard bell and soft

bell distributions. ~(y73)

Comparison with the results for the other three distribu-

tions considered above, withi~1/y,,<1, suggests that the ] o
dispersive function is not particularly sensitive to the choiceVherea is the measure of the distribution asymmetry. In the
of distribution function forn,<1(z>1). For n;>1, the high phase velocity limin <1 theL-O mode describes ob-
function dT(z,p)/Jz has a zero at @z—1<1, analogous to lique Langmuir waves with approximate dispersion relation
the zero ofW(n;) at nj=1/v, for the other distributions.
However, unlike the other three cases, the functéd) has
no unusual properties corresponding g~ 1/vm(nf— 1
~ p?), suggesting that the properties of the new $ubede

1+a l1—a
21-ny "2+ ©7

of =23y 3 +k% (68)

As noted above, one h&y3)~(y) "1 in an ultrarelativistic
X . ) S lasma. With the parameters used here the cutoff frequency
may be an artifact of the discontinuous derivatives of th

: . —3\1/2__ -1
hard bell and soft bell distributions. The strong damping for " Ped BY Ed.(68) is wp(y ™) 16° 7%, near the pulsar

5 5 > A surface, and~10° s' at R~ 10PR,.
ny=1+p“ is analogous to that fax;= 1/vy, for the hard bell In the high-frequency limitn—1. Eq. (67) in Ed. (5
and soft bell distributions. '9 quency limitn—1, Eq. (67) in Eq. (59

describe€0-mode waves with dispersion relation

, 205y%

F. Wave properties for more general distributions )
wd=k>+ —7 g (1+2acos 6+cog 6), (69

With the foregoing examples as guides, we now draw
some general conclusions concerning the properties of the
wave modes for a wider class of distributions of highly rela-Where the conditiork=w(y~*)*%sin 6 is assumed to be
tivistic particles. We consider distributions that are nonzercsatisfied.
in a range—up_ <u,<up, , whereuy,. are large and posi-

tive, with u,,_#u,. in general. We also assume tha G. Parallel propagation
are no beams. when 6> (A(y))*2, 1Kv). In the opposite limit the waves

For theA mode to exist and be of interest, one requiresshould be considered as effectively parallel. For complete-
that the frequency be below the maximum allowed fre-ness we summarize the properties of the waves propagating
quency, and that the damping be weak. In the ultrarelatlwsn(bara”d to the external magnetic field.
case, F, is approximately constant below a_cutoff at Thet andA waves become circularly polarized and have
=¥m, and then normalization to unity implieSy,~ 1/y,. the same dispersion relatim?zkzv,";(l—Ax). The disper-
Continuity ofdFy/du, at u,=u,, results in the existence of sion relation for the Langmuir wave in the lint<w, be-

a maximumA wave frequency that can be estimated by setcomes

ting n?=12 =1+ 1/y2. Using Eq.(44) to estimatew(n,) ) i 20 2 s
at this value, one findg/(n,) ~ £(y), with ¢ a coefficient of 02— w2t 4opk{uzy™") 4 Bwpk™(uzy )
order unity that depends on the details of the distribution 0 Wy o ’
function. It follows that the maximum allowed frequency for o _ _
A Waves iSwma wp(2/( y))¥2. Damping results from con- The most significant change from the oblique case is that the
tinuity of F, at u,=u,, and the damping is strong for 1 Parallel Langmuir mode crosses the line=1 and becomes

H 2 2
+&,>1+1/u?. To within a factor of order unity, this con- SUPIUMINOUS ato*~4w(7).
dition implies that the damping is strong far= 1/ y)3. It

(70

follows thatA waves exist in one-dimensional plasmas only VI. DISCUSSION AND CONCLUSIONS
when the magnetic field is sufficiently strong that this con-
dition is satisfied. Our study of the low-frequency waves in a one-

We conclude that thé& mode exists and has dispersion dimensional, relativistic pair plasma is motivated by their
relation approximated by ,=k cos@ within limits set by  possible application to pulsar radio emission. We describe
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TABLE I. Plasma parameters for different locations in a pulsar magnetosphere. The choice of parameters is discussed in Sec. Il.

Distance R, wp (s Qs wp((MY2 (s wp /(Y2 (s Q(y) (s wi(y)Q?
1 2x10'° 2x10%° 2x10% 2x10° 2x10Y 10716
10 6x10° 2x10' 6x10° 6x10 2x10% 10713
107 2x10 2x1013 2x10° 2x10f 2x 101 10710
10° 6x10° 2x 1010 6x10° 6x10* 2x10P 1077
10 2x10* 2x10° 2x10° 2x10° 2x1CP 104

these waves in the plasma rest frame. Observed frequencipsisar, and its size is-R,. In this case the only waves
are higher than those in the plasma rest frame by a factowhich may participate in the local spectrum formatidar
~¥p, due to the Lorentz transformation, Witﬂ)=10°’ as- example, due to nonlinear procegsaget andA waves, for
sumed here. The basic parameters characterizing the lowvhich the approximate dispersion relatioms=k and wa
frequency waves in the pulsar plasma for different conditions=k cosé are appropriate. The Langmu-mode has a dis-
are given in Table I. Depending on the location in the pulsapersion relation approximated roughly bty|2=cuf,< y~3)
magnetosphere, slightly different sets of obliquely propagat-+ k2,
ing modes exist. To summarize, we propose a method for studying waves
It can be seen from the table that abdRes 10°R, the  with frequencies much lower than the relativistic gyrofre-
radio range waves are no longer nonresonant, siace quency in relativistic pair plasmas. We derive the concise
~Q/(y). On the other hand, the finite magnetic field correc-general dispersion relations for these low-frequency waves
tions are negligible up tR~10°R,, and the infinite mag- without making any additional simplifying assumptions. We
netic field approximation must be applied. The maximém analyze the effects of gyrotropic terms on the waves in the
wave frequency and minimum Langmuir wave frequency radio frequency range and find them negligible except for the
which are of the same order; wp/((y>)1’2, are above the polarization in the parallel propagation case. Working in the
radio range near the pulsar surface, but below itRat plasma rest frame we derive the dispersion relations in vari-
=10°R,. The subluminou# wave and superluminols-O  ous limits. Our representation differs from that of Rgif3]
wave apparently complement each other to ensure the nunmn that that our choice of the plasma rest frame avoids having
ber of allowed oblique modes at any given frequency equal¢he dispersion relations depend on Doppler shift effects. This
two. In the parallel propagation case there are always twehoice of frame allows us to concentrate on the effects re-
complementary subluminous transverse wavyesand A  lated to the intrinsically relativistic distribution of electrons
waves degenergtewhile the parallel Langmuir wave gradu- and positrons. Finally, using the pulsar plasma parameters
ally enters the radio range with increasing distance.RAt typical for the polar cap cascade models, we perform mode-
~10°R, the whole undamped part of the Langmuir wave islocation mapping and establish which modes can participate
in the radio range. in the processes of the formation of the radio emission spec-
There is observational evidence in favor of the location oftrum for a typical pulsar.
the emission zone well inside the magnetosphereRat
~10 2R, , which corresponds to B)<R=<10’R,. Taking
into account that this zone is only a small part of the mag-
netosphere, one finds that the emission zone should be lo- We thank Lewis Ball for helpful comments on the manu-
cated somewhere betweenRi0and 18R, for a typical 1 s  script.
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