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Thomson scattering from ion acoustic waves in laser plasmas
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This work is concerned with the description of ion acoustic fluctuations in electron-ion plasmas relevant to
laser-plasma interaction experiments. A nonlocal closure to the linearized moment equations for the fluctuating
hydrodynamic quantities is introduced. These equations are used to construct practical expressions for the
dynamical form factor and Thomson scattering cross section, which are valid in the entire region of particle
collisionality in plasmas with higlz and largeZT./T; . [S1063-651X98)05403-§

PACS numbgs): 52.25.Gj, 52.25.Fi, 52.35.Dm

[. INTRODUCTION ing to the equations of linearized hydrodynamics. Indeed it
can be shown that this kinetic description reduces to Onsag-
The creation of hot dense plasmas with lasers is an essear's prescription in the hydrodynamic regimd (L

tial feature of x-ray lasing schemes as well as inertial fusion<1, v,7y>1) by a modification of the Chapman-Enskog
experiments. In such plasmas Thomson scattering is usefaiethod (see, e.g.[9]). Herel, and v, are the collisional
for both characterizations, which is necessary in order tanean free path and collision frequency of speciesespec-
calibrate and verify computer simulations and also in thetively, and L, ,7y are the length and times scales for the
investigation of basic plasma physics. It has recently becomevolution of the fluctuating hydrodynamic variables. The
possible for Thomson scattering to measure ion acoustigerivation of Onsager’'s method from kinetic theory can be
wave features such as damping and phase velocity in lasésed to justify the validity of the method not only for ther-
plasmas, which allows ionization and temperature to be tim&hodynamic equilibrium, but also for fluctuations about some
resolved[1,2]. Advances in the understanding of scatteringnonequilibrium background state that may, for example, sup-
instabilities have been made possible by Thomson scatterir@Prt @ heat flux. We will further extend the method's validity
from enhanced levels of plasma fluctuatidsse, e.g[3,4]).  outside the usual hydrodynamic regime by making use of
Furthermore, Thomson scattering has been used as a tool fgydrodynamlcllke_models that capture kmenc_effe_cts.
understanding basic plasma physics close to thermodynamhc Hydrodynamiclike theories that model kinetic effects

o . . have generated much interest recently. This is due to the
equilibrium. For example, both branches of the ion acoustic ; : . )
heed to describe plasmas with strong gradients that violate

dfﬁetrsm_n relatlo_n h5ave k()jetin <_j|rec'ily observed (';.‘ a plz_ismﬁ;]e usual ordering necessary for the applicability of classical
with two ion specie$5] and the ion plasma wave dispersion transport theory10]. These nonlocal models incorporate fre-

relation ?ashpie?] verg|e[:6]. The ut|I|ty| of Thorrl;sofn Sﬁat' quency and wave-vector-dependent transport coefficients re-
tering, of which the above are examples, can be further eng,jjing in the response of the “fluxes” to the thermodynamic

hanced when used in conjunction with better theoretica ‘forces” becoming delocalized in both space and time. By-

models. . : . chenkovetal. [11,12 have developed nonlocal hydrody-
The cross section for t.he Thomson scattermg.of laser ighf,a mic models that are relevant for plasmas characterized by
from plasmas is determined By(k,«), the Fourier rans- 3000 7 7T /T, and slow processes that evolve on the ion
form of the electron density autqcorrelauon fur)ct'l(from acoustic time scale. In this paper these hydrodynamic models
here on referred to as the dynamic form fa"ﬁ.'h's iswell  5re used to construct useful expressions for the dynamic
known in both the strongly collisional and collsionless limits, form factorS(k, ) that are valid outside the usual domain of

yvhile the wide intermediatéweakly collisiona) region of validity for classical transport theory. In particular, they are
importance to laser plasmas has not yet been addressed. Tgl

. i : h 1o th Ccurate in the weakly collisional region that is of impor-
paper sets QUI to give a se -con3|sten_t approac to the pro?énce to laser plasmas. In the strongly collisional limit our
lem. We will evaluate electron density-density correlation

f . by following the th £l ; d i dexpressions agree with the usual two-fluid results of Bragin-
unctions by following the theory of fluctuations as describedgyii 110], while in the collisionless limit we connect with the

by Oberman and Williams and. the resullts contained ther.e"?esults derived from the Vlasov equatiwmithin the approxi-
[7]. One of the key results of this theory is the demonstration, ~vions relevant to each case

that the two—poigt»correlatiﬁonafunction of the phase-space /o il analyze in detail two cases of our general expres-
fluctuation (5f*(x,v,t) 6F#(x,v0,te)) Obeys a linearized sjon for the dynamic form factoB(k,w): the ion weakly
version of the kinetic equation for the one-particle distribu-collisional case where ion viscositynodified by finite fre-
tion function f*(x,v,t) in the x,v,t variables. This is a ki- quency is important together with collisionless electron
netic version of Onsager's “regression of fluctuationss] Landau damping and the weakly collisional electron case in
whereby fluctuations evolve from their initial values accord-which the ions are collisional and the electron transport is
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nonlocal. In the ion weakly collisional case we present ourn all the following we will assume the species lakelto
analytical expression foB(k,) which describes the effect mean both electrons and ionss=e,i. Starting from the two-

of ion-ion collisions on the position and width of the ion time Liouville equation(as originally done by Rostokgt4])
acoustic peaks in the scattered spectrum and we relate this &amd arriving at a linearized form of the Bogoliubov-Born-
some experiments reported in the literat{ite?]. We will Green-Kirkwood-Yvon hierarchy, they derived a key result.
also outline the range of parameters in which ion collisionalNamely, for stable plasmas the phase-space fluctuation obeys
effects are important and the usual collisionless theory o# kinetic equation that is the linearization of the usual equa-
S(k,w) is inadequatg13]. Our theory ofS(k,w) also pre- tion for the single-particle distribution function. For ex-
dicts the correct line shape for plasmas with weakly colli-ample, in the collisionless limi#f “ obeys the linearized Vla-
sional electrons that are commonly encountered in lasersov equation

plasma interaction experiments. The height of the ion
acoustic peaks are determined by the damping of ion acous-
tic waves. Since this damping depends on plasma transport
properties, in particular electron thermal conductivity, we
propose that the nonlocality of heat transport may be inferred B2

from th ttered tra. W t that these descripti <ot = argg 2D

rom the scattered spectra. We assert that these descriptions Sh(X,0,t)= >, eg| dx'do L ) (4)

are correct not only for hydrodynamic fluctuations, but also B [x—x']

for fluctuations whose ratio of wavelength to mean free path

is arbitrary. A comparison of our results with the standardThis can be solved by a Fourier space and Laplace time
collisionless cases will also be used in order to justify ourtransform with the initial conditionsf*(k,v,t=0). Correla-

(9+ J of*—
gt Vo

el 7 50, @
moz &U X d)

method. tions are then obtained by multiplying the solution
Our paper is organized in the following way. Section I 5fa(|2,,j,w) by 5fﬁ*(|2,,j ’t=0) and ensemble averaging
discusses the general theory of fluctuations. Section lll order to obtain CTB(E’J v ' )= <5fa(l2’l;,

outlines how the general closure problem can be addressed Bk , o .
Sec. Il B gives the explicit form of the closure, Sec. Il C ¢ ) of (k v',0) in terms of the initial correlations.

gives the closed set of equations satisfied by the fluctuatin§.s(K.v,v ', ®) is the Laplace transform of the correlation
hydrodynamic quantities, and Sec. Il D uses these in ordefunction Caﬂ(IZ,J,J 1) =(5f“(l2,5,t) SFA* (K,v ",0)),

to calculate the dynamic form fact@(k,w). Implications

for previous experiments and proposals for the observation
of nonlocal transport are discussed in Secs. IV A and IV B.

Finally, Sec. V is a summary.

Clako,v ”"’):fo dtexp(i wt)C,p(k,0,0 ',1). (5)

The initial conditions for a weakly coupled equilibrium

Il. THEORY OF FLUCTUATIONS IN PLASMAS plasma are given by
The dynamic form factoiS(k,w) determines the cross (5f*(x,v,0)8tA(x ',v ',0))
section for the Thomson scattering of laser light from the
plasma, wherk=k,—k’ and w=w— o' are the momen- = 8500 —v ") S(X—Xx N (v)in,, (6)

tum and energy transfer, i.e., the difference in the wave vec-
tor and frequency between the probe (wo) and scattered Wherefy(v) is a Maxwellian distribution function,

(k" ') electromagnetic wavefl3]. For stable plasmas,

S(k,w) is well known in two opposite limits. These are the
collisionless limit, given byl >1, o>v,, and the hydro- - ) )
dynamic limit in which the opposite is truel,<1, o andvTazATa/ma is the thermal velocity of particles of spe-
<v, cies a. Due to the time-reversal symmetry of

Hlstorlcally there have been many differing approachesc,4(k,v,v ',t) and the fact it is a reaI quantity, its Fourier
taken in order to CalCUlatS(k (1)) The formalism of fluc- transform can be written in terms a,B accord|ng to
tuations described by Oberman and Williaf7g is particu-
larly suited to our needs. They have derived kinetic equa- °° . RN
tions for the hierarchy of phase-space quctuauonsCaB(k v, w):fo dtexpli t)C,p(k,v,v ',t)

fi(v)=ng/(A2moy )%exp—v?2v} ) @

(8F%(X,0,t) 8F%(X0,00,t0) ), (8F%(X,0,t) 6FA(X " v
t')6f%(X9,v0.to) ), etc., wherest¥(x,v,t) is the difference n fo dtexp(iwt)C, 4K, ' 1)
between the Klimontovich microdensity —o apimTm

N R o) [CRid )]
FR0,0=D, 86— ()E=%(1) (1) iy L)+ (Caglliv.w o)l
=t =2 ReClykv,v ' ). (®)

and its statistical average Cop(k,v,v ',w) [EQ. (8)] may be used in order to obtain
R . R spectral functions of macroscopic quantities. Of particular
Ste(x,v,t)=f(x,v,t) = {(f*(X,v,1)). (2)  importance is the dynamical form fact8(k, ),
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The choice of fluxesheat fluxsq,, , stresssa,,, friction SR,
and heat generatiofiQ) and the corresponding forcé&m-
. g perature gradient-VéT,, rate of strainéW, and relative
Re<5ne(k"")5”e(k'o)>. (9  Velocity su) are those of Braginskii. For a discussion of
Ne different choices of hydrodynamic closure relations see also
Balescu[15].
The fact that fluctuations on a hydrodynamic scale in ther-
mal equilibrium relax according to the equations of linear-
. (10 ized hydrodynamics has been known for a long t[b&,17;
|5(k,w)|2 however, the derivation from kinetic theory rather than from
thermodynamics shows the much wider validity of the
wheree=1+2,x,, X, iS the collisonless form for the par- method. The linear hydrodynamic fluctuations may be linear-
tial susceptibility of speciesr, and F ,(w/k) are the one- ized about a nonequilibrium flow, for example, a state with
dimensional distribution functions evaluated at the phase veheat flux. In summary, the correctness of the reduced hydro-
locity and normalized to unity. Due to its simplicity, this dynamic description rests on the validity conditions for the
form of S(k,w) is the most often used in applicatiofeven  closure which in this case is the Chapman-Enskog procedure.
when its validity is questionable On taking particle dis- This requireskl <1, v,/w<1. If these conditions are not
cretenessgcollisions into account Eq(3) is modified by the  met, and often they are not, then some alternative closure to
addition of a collision term on the right-hand side, the fluid moments must be sought or the linearized BGL
equation(1l) solved by some other means.

_ 1 N Lo
S(k,w>:n—J do dv 'Ced K00 ' 0)
e

=2

Following Egs.(3)—(9), one finds

Sk, o) = ZTW |1+ xil Fe(@/K) + Z| x| *Fi(w/K)

d . 0 e, HfY 9
E"‘U'_., Sfe— = —L.—5§
% Mo v 0X Ill. THEORY OF LOW-FREQUENCY FLUCTUATIONS
A. The cl bl
ZE C(8f (fPY)+C((f), 55). (12) e closure problem
B

The Chapman-Enskog method of closure to the hydrody-

. . . namic moment equations fails in the weakly collisional case;
This is found to be the linearized Balescu—Guernsey—Lenarﬂ d y

_ L . owever, we still wish to retain the fluidlike description. We
(BGL) collision term, which in turn can be approximated by a P

) T . re then presented with the problem of closure of the mo-
the Landau equation and further simplified by using the Lorent equation§12)—(14). This arises because each velocity
entz operator for electron-ion collisions. In the hydrody-

. ime thi " b ved b dificati moment of the kinetic equations introduces still higher-order
hamic regime this equation can be soved by a modilica Ior\'/elocity moments, for example, the heat flux and stress ten-
of the usual Chapman-Enskd@0] method, resulting in a > 4o hich b qi  th
system of linear fluid equations for the fluctuating hydrody-S°" 9« @nd o,, which must be expressed In terms of the

. . ~ . lower-order hydrodynamic moments. We will present two
namic ngnt|t|es{5na,5ua,5Ta}. :I'he.se may.be obtained methods of closure that together cover a wide range of con-
by linearizing the usual Braginskii fluid equations ditions encountered in laser plasmas

an Laser plasmas are quite often nonisothermal as a result of

—+ i(naﬁa)zo, (120  inverse bremsstrahlung heating that preferentially heats the
It ox electronsT =T, . The ionization can also be large especially
for heavy elements such as gos>1. Therefore, in many
ﬁﬂ] ~i>ﬁ _ J (n.T.)— 1 i_& experiments there exists a separation in scale between the
at T oax) “ MmNy gx = & % myn, gx © electron and ion collisionalities expressed by the relation
lei=(ZTo/T;); /A2, wherel,; and|; are the electron-ion
_ ii¢+ R (13) and ion-ion collisional mean free patlh§=vTe/vei and |,
M, gx mgn, ' =vqi/v;. Here we have adopted the usual definition of col-
lision frequencies
- 9 2T, ¢ . L .
pr +U,- P T,+ 3 a)z.ua ) :4A277394ne/\e ,,_:4A772234niAi 5
. “ 3Am. T3 ' 3AmT?
2 49 2 . du, 2

3N, 9x e 3na0“ Ix  3n, =%’ (149 where A , are the Coulomb logarithms. Considering an ion
acoustic fluctuation in the plasma with a wave vedtand

with n,—n,+ én, and so on. The linearization of equations the separatiot,;>1, we consider the possibilities

(12)—(14) together with the linearized closure relations that

relate the fluctuating fluxe@(ia 80, SR, 5Q} to the forces kl; ,klg;<1 strongly collisional case(Braginskii,
{—V&Ta,é‘\fv, 56} as a result of the Chapman-Enskog pro- (16)
cedure[10] and initial conditions[obtained by taking mo- o

ments of Eq(6)] will form a complete set of equations from kl;<1, klei~1 weakly collisional electrons, (17)

which one can calculate the thermal correlations of any of
the hydrodynamic variables, for examplédn,dny)/ne. kl;~1, klgi=>1 weakly collisional ions, (18
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Kl ,kle>1 collisionless case(Vlasoy). (190  order to cover both cas¢$7) and(18) of weakly collisional
plasmas that are often encountered experimental®,5,q.

In the first case(16), the linearized fluid equations of B. Nonlocal closure
Braginskii [10] correctly describe the evolution of the fluc- We start by writing the system of linearized moment

tuations and ion acoustic damping is determined in terms Of g ations for the fluctuating hydrodynamical quantities
the classical transport coefficients of thermal conduction andﬁn S0 ST obtained from the Kinetic equation for th
viscosity. In the last cas€l9), the collisionless, linearized a0l ¢, 00a; : Inetic equati rine

Vlasov descriptions of fluctuations is approprig® and Phase-space particle density fluctuatiéfif(x,v.t) (a=e,i)
damping is then due to wave-particle resonaficandau @S Prescribed by Eq¢12)—(14). Since ions are predomi-
damping, which depends on the form of the distribution Nantly responsible for momentum transport, we write the ion
function in velocity space at the phase velocity of the wave Momentum equation with the viscous term but neglect the
These two cases are well known, but as yet the two interméd©n thermal transport effect and the electron-ion energy ex-
diate cases are not and have no self-consistent descriptiof?angesQ—0 in Eq.(14) as these terms are small in com-
They are, however, very important because with typical Parison Atp momentum transport described by the viscosity
vectors and conditions in laser-plasma experiments one irtensorda’, particularly for plasmas witZT,/T;>1. While
variably finds oneself in either of the two intermediate casesit is the ions that carry the momentum, it is the electrons that
for example, the experiments of La Fontaigieal. [1,2]. are responsible for the heat transport. We also make approxi-
In order to describe the electron weakly collisonal regimemations pertinent to low-frequency fluctuations. We assume
klei~1 [Eq. (17)] we will make use of a nonlocal theory of the quasineutral limitSng~Zdn;, so that we restrict our-
electron transport that has been developed by Bychenkoselves to long-wavelength perturbatidis, <1, where\pe
et al. [12]. This theory is based upon the solution to theis the electron Debye length:
linearized electron Fokker-Planck equation by a Legendre

polynomial expansionsfé(k,v,w)==,5f,(v)P;(cosd). In s +n i. Su.=0 (20)
this work the authors have been able to express the first ot “ox ¢
Legendre coefficiendf, in terms of the hydrodynamic vari- ) )

* H H T 7] .
ablesE*, the»effectl\./e electrlp fl_eldjre, the el_et_:tron tem-  Jou Z—eiIZ5¢— L(éniTiﬂL 5Tini)+iiIZ- 50,
perature; and; , the ion velocity in a way reminicent of the ot m; m;n; m;n;
Chapman-Enskog development, but without the restrictions
of strong collisions. This has been achieved by the introduc- +L5Riev (21)
tion of a renormalized collision frequency that includes the m;n;
effects of all higher Legendre modes that are negligible in
the strongly collisional limit, but necessary in order to de- L;T‘+ ET iK.-50.=0 22)
scribe properly the collisionless limit. This solution féf; gt 3 iKeedi=n, (
is sufficient to achieve the necessary closuresagis re-
sponsible for transport. For exampléf,; can be substituted 6T 2 9 . 2_ 49 .
. . ~ . + o——=-80c+ 5 Te—=- 8U=0, (23
into the expressions for heat flgg and current. Since the ot 3Ne 9x 3 "ox

phase-space fluctuatioff“ [Eq. (2)] obeys the same equa-
tions as the perturbation of the distribution function in thewhere s0,= 50, — 5j/en,. The phase-space fluctuatidii®

work of Bychenkowet al.[12] we may here interpret th&f“ s solved for in terms of the hydrodynamic moments

to be the phase-space fluctuation. We emphasize that thig: T h ; . .
theory has a domain of validity beyond that of cIassicaIaSU' ,éne '_5 e andt © potentiabe as descr_|bed 12]. On
substituting the solution fof ,(k,v,w) that is dependent on

transport theory. .
In describing the ion weakly collisional cagd8) the  dUj,dNe,dTe, ¢ into the expressions for current, heat flux,

usual classical transport for ions is not sufficient. To addresg@nd friction, one finds the closure relations

this problem the analytic method of expansion of the ion

kinetic equation in tensor Hermite polynomials is used. The 8] =0 SE* + aik 8T+ Biensdu;, (24)
full set of moment equations can be thought of as a repre- R R . .
sentation of the kinetic equation with closure being achieved 00e=— aTeOE* — xik 6T~ ByncTedU;, (25)

by truncation of the hierarchy. A truncation at the 21 mo-

ment level (Grad 21!\_/) [15]_retaining explicitly the fre- SRie=— (1= B;)NESE* + ByNeik 5T o— By MeNeve;8U; ,
guency dependence in the ion tensor moment equation re- (26)
sults in an ion viscosity that is frequency dependent and R R R

hence nonlocal in time. This method has been showfllhy where SE* = —ikSp+ik/eny(on T+ n.8T,) is the effec-

to correctly describe ion acoustic wave properties in the limitive electric field usually introduced in classical transport
w>kv-|-i. The damping of ion waves is in agreement with theory [15]. These closure relations are written in Fourier
Braginskii in the collisional limitw< »; and also agrees with Space as the transport coefficients are&ahd dependent.
Fokker-Planck solutions in the intermediate regime of colli-In real space the closure relations will become convolution
sionality o= v; for largeZ T./T; [11]. We will use the above Operators. Since we are concerned with quasineutral fluctua-
closures together with the linearization of E¢s2)—(14) in  tions the relatiorﬁf=6 gives the expression for the heat flux
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00e=— kikoTe— fneTedl;, @7) CiwsT,+ gTiiIZ- Sti=5T,(0). 33
where k= x—a’T¢/o and B= B,—eap;/o. The transport _ _ _ _ o
coefficients in this theory arer, the thermocurrent coeffi- Hereédu is the hydrodynamic velocity perturbation which is
cient; y, the thermal conductivityr, the electrical conduc- the same for ions and electrons since we conside quasineutral
tivity; and the new transport coefficiengs,, 8, andg, that ~ perturbationssj =0. Equations(30)—(33) describe the evo-
are related to the ion flow. All the coefficients are dependentution of the fluctuating hydrodynamic variables from their
on the ionizationZ, k, andw. Rather than tabulate numeri- initial values at timet=0. This is sufficient for the calcula-
cal values for the coefficients, one of (&M, has made tion of the correlations of any of the hydrodynamic variables
available upon request a Fortran code that calculates all tHey following the prescription outlined in Sec. Il. For ex-
necessary transport coefficients. ample, (6T.6T¢(0)) may be formed by solving the set
In order to close the séR20)—(23) all that remains is the (30—(33) (with the appropriate closurdor the transformed
closure for the ion stress tensée; that is valid for the case T in terms of the initial fluctuations, multiplying by
(18). This has been previously derived by Bychenlaial. 5T (0), andthen ensemble averaging. The solution is then
[11] using the frequency-dependent Grad 21M closure. Thgiven in terms of the initial correlations that are kno(@).
Grad 21M closure for the longitudinal part of the viscosity The initial correlations are simplified as the different hydro-

tensor dynamic variables are independent of each other by virtue of
the initial condition(6). The Fourier transform of the corre-
k-doi-kK 4T~ L lation function (ST.8T%) is then related to the Laplace
50i:T:§ =, m(w)ik-du; (28)  transform by(5T.8T*)=2 Re (ST.6T%(0)), as explained
I

in Sec. Il, Eq.(8). We now specialize this to the calculation
of S(k,w)=(8nedn; )/n, because of its usefulness in deter-

results in a frequency-dependent ion viscosity that has both @lining the cross section for Thomson scattering

real and an imaginary part

. D. Calculation of the dynamic form factor
ivi(w+1.46v;))

(0+1.20v)(w+1.46 ;) +0.232

7= (29 In solving Egs.(30)—(33), we will ignore the time deriva-
tive in the electron heat equati@82) as it is consistent with
our desire to describe isothermal ion acoustic fluctuations

In previous work[11] that was concerned with ion acoustic (w~kcs andklg>cs/vt ), wherecs is the cold ion sound
€

damping it has been demonstratfed that. the real part of E%‘pee de,= AZT./m:. Also, in calculatingS(k, ») we can ne-
(29) produces the correct damping of ion acoustic waves L o .
; e e glect all initial conditions excep#ng(0), since all others are
with a smooth transition from the strongly collisional Bra- uncorrelated with the choice of initial conditioris). The
ginskii limit 'yi%0.64<zv%/vi to the saturated Rukhadze '

- dition of 6] =0 [Eq. (24)] gi -
limit [18], wherey;~0.8»;T;/ZT,. It also compares well to condition of z€ro current) [Eq. (24]] gives an expres

the Fokker-Planck simulations 19,20 in the intermediate sion for the fluctuating potential

region of collisionality. The imaginary part effects the tran- ) ik o« B R
sition from the adiabatic to the isothermal phase speed as iKSp=—(OngTe+ 6TeNe) +—ik ST+ —en.du.
exceeds the ion-ion collision frequeney. We now set out ene e e

our generalized version of Onsager’s “regression of fluctua-

tions” that was outlined in Sec. Il using the closur&s=0  This can be used to eliminate the potential term in the ion
[Egs. (24), (26), and (27)] to the linear hydrodynamic mo- momentum equatiof31) and also in the expression for the
ment equation$20)—(23). friction 6R;. [Eq. (26)],

(34)

2.2
C. Correlations of the fluctuating hydrodynamic variables SB.=n (,3+ e_a) iKsT (1-B)B Ng S
ie— lle e i/ Pj
In order to be able to calculate hydrodynamic correlations o ‘7
we take the Laplace transform in time of the §20)—(23) _ o
and the Fourier transform in space, BrMeNeve;ou. (39

With the closureg(27) for the electron heat flux, the electron

—lwdng+ngik- su=éng(0), (B0 temperature equatiof82) can be solved fopT,,
. Ze.. ik 1 . . 5T ——neTe(l— )ik-su (36)
—iwdu=——ikdp— ——(n;6T;+T;on;)+ —ik- S0, Kk P '
m, m; n; m;n;

1 . . On substituting Eqs(34)—(36) together with the expression
+ maRieJr éu(0), (3D (29 for the ion viscosity and ion temperature into the ion
i momentum equation(31) and after using the continuity
) ) equation(31) in order to express the velocity in terms of
. A St S T density, the density perturbation is expressed in terms of the
lwoTet 3ne|k 6qe+3Te|k u=5T40), (32 initial perturbation
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. 202, 2
n =———— wher =1l-—. '
e(ko)= ke Where o(0—A+2iyy) 015
@
. . . . . . 1
HereD is the dispersion equation for ion acoustic waves,  °%
0.05 2 3
2 2 2.2 2
necs(l_ﬁ) nee CS 2 CS 0.03
Ya= Bi+Bvei— t+vi (38 ’
2 20T, ™! 2
K o e 2UTe 0.02
0.015
is the damping rate with the ion viscous contribution, oo
2.2 0.0001 0.01 1 100. 10000.
2k vriR ~ o2 1i(1.49%2+0.8007) q
Yi=3 e n=KvT, ) i
TRy T T A 405202+ 2.33° *
(39 FIG. 1. Electron part of ion acoustic dampingkc, as a func-
tion of electron collisionalitykls;. The gray curve 1 shows the
and prediction of fluid theory with classical thermal conductivity. The
black lines show the damping from the analytic theon| 1] for
2 2 Z=8 (curve 2 andZ=64 (curve 3.
\ 2 kszi 4 kZUTiI _ (40) ( 3 ( 3
== + = mn
3 w 3 2,2
! neci (1-p8)% &B7 B KT,
Ya=5 +T + I +0.64——,
accounts for ion contribution to the acoustic wave dispersion L K ed  MNeUtlei Vi

due to ion viscosity and heating. Using E@7) we can (43
express( dngdng (0))/n, in terms of the initial correlations
as given by Eq(6), (dne(0)én; (0))/n.=1. From the rela-
tion S(k,w) =2 Rg dn.én; (0))/n, the dynamic form factor
is determined

and this compares well with the numerical solution to the
Fokker-Planck kinetic equatiof22] and the analytic theory
[21]. It has the proper hydrodynamic form in the long-
wavelength limitkl,;<1 and takes the form of collisionless
electron Landau damping in the short-wavelength region
4k*(c3+07) 7a klg;>1. Figure 1 shows the damping as a function of elec-

5(k,w)=( TR CRYPCvE (41)  tron collisonalitykly; as predicted by Eq43). It is interest-

@ vs) @ Ya ing to note that the deviation from classical Braginskii theory
occurs early, while the wavelength is still hundreds of times

where we have introduced the definitions larger than a mean free path. This will be reflecte&(k, w)
[Eq. (41)], whose form may be interpreted with the aid of
_Aﬁ _5 4o ~ Fig. 1.
vs=ACstH vy, Ti=3+3 ” Im 7 The other issue is concerned with transport. The param-

eters of many laser-plasma experiments fall in the regime of

9w*+29.7w2v?+ 11. 70} 42 nonlocal transport as is demonstrated in Fig. 2 for the case of
- 4 2.2 4 a highZ plasma. Since the line shape or height of the ion

3(0"+4.05%{+2.337) acoustic peaks described by E4l) is expressed in terms of
transport coefficients, Thomson scattering may be used as a
probe for this nonlocality. The probddvector in the plasma
is determined b= 2kysin(6/2), wherek, is the wave vec-
IV. APPLICATIONS tor of the incident probe beam arfdis the scattering angle
chosen by the experimentalist. We propose a comparison be-
tween the spectrum for twgor more different scattering
angles. In this way th& dependence of the transport coeffi-

There are two main issues that can be addressed concergients may be inferred. In choosing experimental parameters,
ing the application of our theory for the ion acoustic featureZ should be sizable for the validity of the nonlocal transport
in the Thomson scattered spectrum in this regit®. The theory[12]. In Fig. 2 there are three lines that identify
first is ion acoustic damping, which determines the height of=1/k\p. and the contours show electron-ion collisonality.
the ion acoustic peaks. In the intermediate regime of colfigures 3 and 4 show a comparison between the spectrum
lisonality klgj~1 the electron contribution to ion acoustic predicted by Eq(41) and collisionless theor§10) for differ-
damping has been investigated both theoreticgly] and  ent scattering angles. In particular Fig. 4 shows how the ef-
numerically[22], as it is important for stimulated scattering fect of collisions alters th& dependence of the peak height
processes. The damping may be calculated from the theofyom that expected from collisonless theory where fluctua-
comprising Egs.(20)—(22) and (24)—(27) for the wave- tions are only Landau damped. These parameters have been
lengthsklei>cs/vr,, KIi<1, chosen to be close to those encountered experimentally, for

for the ion acoustic group velocity and ion specific heat ratio

A. Application of the nonlocal theory in the limit
of collisional electrons
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E kl.=(1,0.12) 20
’ )
500 1 2 3 4 5 6
Wavelength shift (A)
kI =(0.1,0.012)
FIG. 4. Dynamic factow S(k,w) normalized by the ion acous-
or tic frequencyw, for a gold plasman,=0.5x10%* cm™3, T,=1

keV, T,=0.5 keV, andZ=55 for a 0.35um probe. This figure

illustrates the difference between the Vlasov the@yrve 1) and

the nonlocal theorycurve 2 for the scattering angles of 10° and
FIG. 2. Parameter regime for gold plasma. The contour plotl80°. Gray is collisionless theory, black is nonlocal theory.

shows electron-ion collisionalitkle; for scattering angles of 90°

and 10°. The first number in the parentheses corresponds to 90° afi® in this regime could be used to test models of nonlocal

the second to 10° for a 0.35m probe beam. Also shown is  thermal conductivity.

=1/k\pe again for 90° and 10° scattering. The box shows the

21 21 21 21 21
1x10 2x10 3x10 4x10 5x10
. -3
Electron density (cm’)

plasma parameters of Figs. 3 and 4. B. Application of the theory in the limit
of collisonless electrons
. .y 1 . . . .
example, a gold plasma with the conditiong=0.5x 107 In this regime of collsionless electrofi$,;>1 and semi-

cm 3, Te=1 keV, T;=500 eV, andZ=50 and a 0.3%:M  cjiisional ionskl,~1 the dampingy, [Eq. (38)] takes the
probe. Figure 5 shows a more collisional regime due to they,m

use of a longer-wavelength probe, which is compared to Bra-

ginskii theory. In this case the effect of changing the angle P 2 kzv% _
from 10° to 180° changes the collisionality of the probed ion YVa= g—skvs+§ ‘Re 7, (44)
acoustic fluctuation fronkls~0.01 (where classical trans- Ut vi

port just starts to break dowrno kl,;~0.1 (classical trans-

port inadequate This is an interesting regime as the main S(k,m) (1 095)
contribution in Eq.(41) to the scattering then comes fram

the electron thermal conductivity. Investigation of the spec—soo £

S(kw) (10°s) N

2.5

o

| ALk A

0.5 70 900 -0.6 -0.4 -0.2 0.2 0.4 0.6
0 - Wavelength shift (A)
Wavelength shift (,&) FIG. 5. Dynamic form factoS(k,») for a more collisonal gold

plasma,n,=2x 107 cm™3, T,=1 keV, T;=0.5 keV, andZ=55
FIG. 3. Dynamic form factoiS(k,w) for a weakly collisional  for a 10.6um probe. The figure showS(k,w) at angles of 10°
gold plasman,=0.5x10?* cm~3, T,=1 keV, T;=0.5 keV, and  (left) and 180°(right) and demonstrates the departure from classical
Z=55 for a 0.35um probe and different scattering angles. Gray is hydrodynamics. Gray is Braginskii fluid equations with classical
collisionless theory, black is nonlocal theory. heat conductivity, black is nonlocal theory.
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-12
Vi, S(k,w) (10 s)
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FIG. 6. Dependence of/i/vai, the normalized ion part of ion

acoustic damping, on ion collisionali§f; . This damping includes
an ion Landau damping contribution in addition to collisions. There
are six curveg1—6) plotted for the temperature rati@, /T, of 4, Frequency (Hz)
8, 16, 48, 64, and 80, respectively. The dashed curve shows the

electron Landau damping contribution for the cd3& /T;=16 and
shows how the importance of the ions depends strongly on the io
collisionality.

12 12 12 12 12 12
7.5x10 -5x10 -2.5x10 2.5x10 5x10 7.5x10

FIG. 7. lon acoustic peaks as predicted from E4fl) (black
Hnes) and from collisionless theorygray lines for a carbon
plasma,zZT,/T;=12.

which will be appropriate for discussing the experimentsthe collisionl'ess spectra appears i.n Figs. 7 and 8. The auf[hors
correctly point out that ion collisions can broaden the ion

[1,2]. The fluctuation spectrur@#1) does not account for the : " X o .
entropy mode since we have neglected the ion thermal corficoUstic peaks. In addition, however, ion collisions modify
the specific-heat ratio and alter the phase speed of the ion

ductivity (o>kvt). To assess this formulgdl) we will _ kil it
: acoustic mode. The phase speae-cA1+3T,/ZT, in the

;:om?are the predlct:t|ons. tql th?S?hOf theft;?hsmnle;s thtegr%ollisionless limit, where the coefficient 3 corresponds to the
or plasma parameters simriar 1o those otthe expenment dui ,ip o ) specific-heat ratio for ions. The effect of colli-

toLa Fonta;neethal.h[Z]. we delfl!ng the range.of plasma} sions is to reduce this coefficient towards $23]. This ef-
paramqte_rs or WhICh 10n-10n collisions can be |mportant_|nfect is not largga few percent but it adds more error to the
determining the fluctuation spectra. Figure 6 shows the ion o rred electron temperaturésf. Fig. 8
damping of ion acoustic waves as a function of ion-ion col- ' o

lisionality from Ref.[11]. Note that the effect of ion Landau

damping, which is missing in Eq$39) and (44), has been V. SUMMARY

added phenomenologically in Fig. 6 according[1d]. For . L

plasmas withZT,/T;>40 we have the situation where al-  1h€ importance and range of applicability of Thomson

though the ion damping differs from the collisionless limit, Scattering as a plasma diagnostic technique depends on the
the ion contribution is much less than that due to the elec@ccuracy of the theoretical model of fluctuations and scatter-

trons (electron Landau dampingWe therefore identify the

interesting range of parameters to be given by, /T; S(k,0) (10-12s)
=<40. As an example, foZ T,/T;=16 the ion damping is a ’
few times smaller than the electron contribution in the colli- 2r
sionless limit, but with the addition of ion-ion collisions it
becomedfor kl;~0.2) a few times larger than the electron 0
(Landau damping contribution; see Fig. 6. lon acoustic
waves will be more strongly damped in this regime than the 8t
collisionless theory would predict. This range of parameters
has relevance to several recent experiméhia,23,4. 6F

In the experiments of La Fontaired al.[1,2], a difficulty
is expressed in fitting the width of the observed spectra to the ar
collisionless theory10) (see alsg24]). They note that this is
possibly due to the effects of ion-ion collisions and point out /
the need for further investigation. We address this situation
for the plasma conditions of their experiment. Two cases—=symmm—m7]
considered are for carbon plasmas, in the #&/T; is ~12 3.8x10" s2x10" 4ax10™’ alexa0’t

and in the latter~8.6. The authors obtaif; from the width

of the peaks, as in the collisionless limit this is due to ion
Landau damping. However, in this experiment the ions are F|G. 8. Closeup of the ion acoustic peaks for the parameters of
not collisionlesklj~ 1 and our ion acoustic peaks are twice Fig. 7. The gray line corresponds to the prediction of collisionless
as broad for the samg,. A comparison of our spectra and theory and the black line to E¢41).

Frequency (Hz)
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ing cross section. We have described a theory for the dy- Starting from our general theory of the dynamic form fac-
namical form factoiS(k, w), which is valid for arbitrary par- tor, we have analyzed in detail two different regimes of ion
ticle collisionality in plasmas with larg& andZT./T;. Our  acoustic fluctuations with weakly collisional electrons and
theory properly describes the ion acoustic resonance in theold ionskl;<1, klg;~1 and with weakly collisional ions
entire region of parameters between collision dominated hyand collisionless electronkl;~1, kl.;>1. Equation(41)
drodynamics and the collisionless formulation based on th@rovides an expression for the dynamical form factor in the
Vlasov description. This has been achieved using generafirst limit of weakly collisional electrons. Th&-dependent
ized nonlocal hydrodynamiddl1,12,2] for the fluctuating transport coefficients are calculated by a Fortran code that is
variables. available from us. The ion acoustic resonance line shape cal-
The starting point has been an exact result of fluctuatiortulated from Eq(41) has been used to demonstrate the effect
theory [7] that demonstrates that the two-point correlationof nonlocal inhibited electron thermal transport. The possi-
function of the phase-space fluctuation satisfies the usual lirbility of directly inferring electron thermal transport proper-
earized kinetic equation with the Landau collision operatorties from Thomson scattering measurements is proposed for
We have solved this equation and reduced the problem afkalistic experimental parameters. Equatigd$) and (44)
finding fluctuations of the phase-space densities to the solgive an expression fo8(k,w) in the regime of weak ion
tion of the linear generalized hydrodynamical equations forcollisionality and for collisionless electrons. This is the re-
the fluctuating hydrodynamical variables. The closure leadgime of parameters often encountered in x-ray lasers plasmas
ing to the hydrodynamical model has been achieved with th¢l,2], where our theory predicts variations of the Thomson
help of frequency-dependent ion transport coefficigdty  scattering cross section that are consistent with experimental
and the full set of nonlocal electron transport coefficientsobservations.
[12]. This derivation involves the frequency-dependent Grad
21-moment approximation for the ion fluctuations and a gen-
eralized Laguerre expansion of the electron fluctuation den-
sity. Calculations of the dynamical form fact&k,w) are We appreciate useful discussions with Hector Baldis and
completed assuming an equilibrium electron density correlaPeter Young. This work was partly supported by the Natural
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