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Reduction of increment of Rayleigh-Taylor instability in specially designed
multilayer inertial-confinement-fusion targets

N. A. Inogam0\7
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(Received 30 December 1996

The problem of hydrodynamic stability and mixing is very important for inertial-confinement-faif
systems based upon high compression of fuel before ignition. The ablative drive of foils and compression of
shells are unstable. The fundamental isobfrienode is the most destructive one. It conserves pressures in the
Lagrangian particles. A way to remove this dangerous mode is presented, based on special distributions of
mass among subshells in the multishell target. The obtained solution follows from a consideration of new,
inverse-density polytropes that havegativevalues of the polytropic indeX, p(r)o(r —ry)N, wherer, is the
radius of an inner, low-pressure cavity filled with a fuel. Polytropes describe inhomogeneous incompressible
and compressible cases. Density of matesialoes not vanish in these distributions, as in the case of usual
polytropes withN>0 considered previously in geophysics and astrophysics. Convessges when we
approach the boundary with vacuum. This property allows us to simulate multilayer distributiprthatfare
typical for ICF targets. In these targets the high-density subshells surround the low pressure or vacuum cavity,
while the outer subshells are made from low-density materials such as plastics, foams, and/or from composite
materials. The proposed distributions are self-similar. Therefore their linear dynamics is scale invariant. New
acousticfundamental mode$s are found and an interesting correspondence between acoustic and gravity
modes is presented(The f* or fg fundamental modes are the well-known gravity mopes.
[S1063-651X97)06810-4

PACS numbeps): 52.35—¢g

INTRODUCTION These targets are thin and thick at the same time, since, from
the one side, a thickness of the external ahaind the target
The program of laser inertial-confinement fusion has beems whole are large and, from the other side, high-density
developed over more than 20 yedfis-4]. Powerful laser internal subshells are very thin. This means that an effective
systems changed significantly during this time. The technolaspect ratilRq/ARy is intermediate between large 100
ogy of target fabrication has also improved. To achieve higand small~1 values.
compression, the driving laser impul&turation, shapeand The isobaric Rayleigh-TayldiRT) mode plays an impor-
the target structure must be mutually adjusted. Modern mett@nt role in the theory of the instability. This mode satisfies
ods of fabrication[5—8] allow the preparation of smooth the incompressibility condition div=0. Therefore pressures
high quality targets with theoretically any desirable density" L@grangian particles are conserved during motion. The
profile p(r). (Targets with several layers were widely used mode sat|sf|e§ the isobaric boundary cond|t_|on, which means
[5—8]. Technologically there is not a large difference be-that pressure 1S cqnstant at a contcigrangian surf_ace. It
tween a deposition of one layer on another and a depositionas the maximum increment= gk among all possible un-

‘s : T : table modes. The mode is invariant to profiles of stratifica-
of many layers. This is done by coating with films of a wide s . : .
variety of different materials and adjusting the thicknesses Oyor(]j.?fnd to eltquatlons of sta(EQS), Wh'9h| may b.e different d
these films. We propose the use of this technology to fabriln ifterent layers or Lag_ranglan particles. It is connecte
o il ith . £ th closely with isobaric gravity and trochoidal wavgkl] and
pate O_Pt'm'ze_d profilep(r) with reduced increment ol the  cannot not be eliminated by changes to the profile.
instability. It is well known[3,4,9,1Q that the Rayleigh-
Taylor or interchange instability is the main obstacle to P
achieving the ignition threshold.
The optimal target is a set of subshells with densigies
and thicknessesl;, 1<i<I| (see Fig. 1L Here densityp
decreases and thicknesses increase in some definite way with
radiusr. The numberl is large (>1); therefore relative
jumps of density are small |2i.1—pil/(pi+1+pi)<<1.
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then the maximum value of the local increment is
FIG. 2. The inefficiency of the usual profiling and smoothing in ogv=VIN/e, e/d=u™™, whered is the thickness of the
the important case of the ablating front when the density stronglysmoothed layer. In the case pf=1 the maximal increment
decreases. Thg axis is directed opposite the acceleration of grav- gy IS \/m times smaller.
ity. The situation for very smalk is interesting for fusion
applications, since the boundary condition at the ablating
An interesting proposal of profiling in the case of an in- front in the case of dangerous long-wavelength perturbations
compressible fluid12] was to smooth out the step, as illus- k=k,<a?g/4b%vi=(a?/4b?)M,%/h, h=c?/g may be ap-
trated in Figs. £2) and 2b). In the case of the step an incre- proximated by the isobaric boundary condition; hejeis a
ment o=yJAgk A=(1-w)/(1+wx), p=pp/py, velocity of the ablating front in a cold plasma, aads the
po=p(—=), pu=p(*) is unbounded. This means that at velocity of sound in this plasma. This means that the incre-
short wavelengths the instability is very fastr{> as ment of these perturbations is approximately the same as the
k—). In the smoothed case this unbounded increment iglassical one. The estimate &f, follows from the well-
“cut” or limited at large k by the Brunt-Vasda increment  known [14] Takabe formula oa=aygk—bkv,, with
ogy=Vgd Inpy/dy. Here 0 indicates an equilibrium distribu- a~0.9b~3; Mach numbeM ,=v ,/c of the front is small:
tion. We have put the maximum value of the derivative asM ,<1. A similar estimate also follows from an expression

d Inpy/dy. In the compressible case we have for oA given in Ref.[15].
It should also be mentioned that the dynamics of an inter-
, g[—dlInsg g dlnpg nal region remote from the ablating front is important inde-
Usv:; dy )Zg c_g dy pendently of the situation at the front. For example, such

remote instabilities have been studied recently in experi-
=—gBIVT—(VT)ol, ments[16]. | .

It seems necessary to expand Cowling classification used
in astrophysic$17,18. These ar@, g=, andf modes. There

:_<‘9|ﬂ) , (VT)AD:_@! are pressure or sonic wavep (modes, stable gravity
JIT |p Cp (g%, »%>>0), and unstableq,»*<0) modes, and one fun-
damentalf mode. A naturally expanded classification in-
Cp Ngt+2 v cludes
Y= oy ne me—m,

p, 9, g, f, f~

wheres is a distribution of entropyy is an adiabatic expo- modes[Below in Sec. VI it will be shown that, in addition to
nent,Cp and Cy are heat CapaCitieS at constant pressure anﬁhefi gra\/ity modes, acoustic modes that are invar(am-
volume, respectivelyng is the number of degrees of free- gamental means invarianto a stratified profile exist.The
dom of a moleculeg is the coefficient of heat expansion, modef is now anf* mode. Isobaric properties of this clas-
and (VT)ap is the adiabatic gradient. For an ideal gassjcal mode are well knowrisee works by Gerstner and
p=pT/mwe haveg= 1/T, wherem is the molecular weight. Rankin cited in Ref[11]). The isobaric RT mode will be
In astrophysical applications the frequengy- UZBV is usu-  called the fundamentdl~ mode.
ally denoted by the symb®. Local values of functionsg,, We do not propose to eliminate tifé mode from the
or wgy are used in well-known WKB asymptotics. spectrum by the profile shown in Fig. 1. This is impossible.
This “cutting” of an increment ak—o° by the smooth- Instead, we intend to remove it far from the important inter-
ing of the step leads to a delayl/og, in a turbulent mixing  nal region at the expense of the large thicknesses of the outer
of the smoothed profile in comparison with mixing of the subshells. There are low-density subshells. Therefore the
step. This has been clearly demonstrated recently by numemgradient| Vp| is small in this outer region and the ablative
cal simulation[13]. For large scale¥, Y(p0)§/p0>l, and pressurep, effectively accelerates the dense internal sub-
late timesT, Tog,>1, the smoothing and this delay are shells.
unessential. But at early and intermediate times they may be The important region is the region near the internal
very valuable. boundaryry, or yy,=0. The large-density subshells are here.
It is important that the density at the lower limit is not They are most important for the compression process. The
very smallp(—«)#0. The smoothing is inefficient for the reason for the space separation of theandg™ modes is as
case shown in Fig.(®). In this case the boundary condition follows. In the proposed optimal profiles the gradi¢¥ip|
at point A becomes isobaric and the isobaric RT mode aprises when we approach thg boundary. Theg™ modes are
pears in the spectrum. We hawgy,— at u—0 for this  in the region of maximum gradients. They are in the layer
particular case. If the distributign(y) near the lower bound- with thickness~1/k near ther,, boundary, as shown in Fig.
ary with the homogeneous region may be fitted by the poweB. Thef ~ mode decays exponentially at the lengtk ity the
law (index PD function direction away from the ablating front. The decay of the
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FIG. 4. The comparison of the inver¢a and usual astrogeo-
FIG. 3. The separation of the unstable region connected with thghysical (b) polytropes. Both have a boundary with vacuum
f~ mode and the appearance of two unstable regions and two mixs(0)=0. The distributions of pressume(y) are shown by dot-
ing zones connected with tHe andg™ modes, respectively, inthe dashed curves. The acceleration of gravity is in the direction oppo-
case of the proposed multilayer target. site to they axis in both cases.

andf™ modes is shown in Fig.(d). Therefore, two different
separated regions of instability and mixing appear near the
boundarieg, andr, (or yy,=0 andy,); see Fig. 3. In Fig.
3(b) isodensity contours are shown.

The instability caused by the” mode cannot be changed. : . .
The increment of this mode is fixed and we cannot reduce i\_/vhere s(p.p) IS an arb'ltrary' EOS and 'f ezntropy. The
The increment in the case of tlig mode depends on the energy equatlonzls rewritten in the formp—_c [.)tp’ vyhere_
stratification of the profile, and may be reduced. %Zﬂﬁ(lvz/), Coc iﬁfﬁ’fﬁzs- thrr]]e iyséfmt'?i Imearillzisr? Irrrll

The optimal profiles are self-similar polytropes describe € usua ay,de /d’ _ei e ny :S atic etqu thut
by power-law functions. For example, the density profile is.Po(Y): €o(¥). dpo(y)/dy=—gpo(y)]. An equation tha
px(—y)N, with N the polytropic index. The self-similarity links Lagrang|an k) and Eulerian pE). perturbaﬂqns of
condition means that dimensional parameters are absent €SSUre 1S added to the system. The final system is
Therefore the spectral theory is scale invariant. The expres-

pit+div(pp)=0, pv+(vV)v+Vp—pg=0,

st (vV)s=0, s=s(p,p),

’ ’
sion for the increment is,= V= gk, whereZ ., are dimen- p+ Keov _PL poU _ Pe . Kpe+9p
sionless functions, and the indaxdenotes the denumerable o cg " ik =0’ —opg '

set{m} of discrete eigenvalues. In the qualitative sense the
expression foro is the same as in the simple case of the _ _ ; /
jump in an incompressible fluid. In the unstable case the Pe pL:g_U, izm_
mode with the largest increment is interesting. Usually it Po g PoC% o
corresponds to the “ground” state witin=0.

We also mention that the dependenc&gf(S,=03/gk)  Here the prime means differentiation ap=Kky.
on the variable paramet& may be used for the optimiza-  Perturbations op andu are included algebraically, and
tion. The increase oN improves the one-dimensional per- perturbations op_ andpg are equivalent. After an algebraic
formance of targets. It decreases the value of energy necelimination of unknown functiong, u, andpg, we obtain a
sary for the ignition. But, on the other hand, this leads to arsystem of two equations fgy_andv. It is equivalent to the
intensification of instability. Therefore, some intermediatefull linear system. This system is
value must exist that corresponds to a reduced threshold of
the ignition. This may be valuable when this threshold is not , v o\ k
achieved. It also seems attractive because only improve- v, T ;Z— 1+ K2c2 — P,
ments in target design are used instead of an expensive am- ¢
plification of laser energetics.

!

The polytropes studied here have negative indéx h+ _ L
Thereforep— o~ asy—0. In the usual polytropes studied in 32 v= ap
connection with geophysical and astrophysical applications
[19-23, we haveN>0 andp—0 asy—0. The comparison \yheres 2= »2/gk. We will omit the index 0 for unperturbed
of these cases is shown in Fig. 4. In both cases there is a lofctionsc and p, since the perturbations of these functions
pressure region a>0. The acceleration of gravity is di- i not be used. If we exclude from the system of equa-
rected down in Figs. @ and 4b). tions (1.1), then we obtain the equation

, 9
(pL),+ k_Csz , (1.1

I. MAIN EQUATIONS L (P ) P , 1]9
_ _ _ (PL) 7y~ (P |1- S T 2= —5|P.=0

A system of equations following from mass, impulse, and p 3p 34/ ke

energy conservation laws is 1.2
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A similar equation usually written for an unknown function zu,,+(—N-—2z)u,—au=0 [23], and the changp, =

x=divv is well known[19,20. If we excludep, , then we
obtain an equation fow. It is

o2 ()] | gk (c?),
- v —|1- -+
A o2 n 22 A 2

P
where A= — o?—k?c?. Equations(1.2) and (1.3 are valid
for an arbitrary equation of state.

'
" p77

777/

1.3

In the incompressible case the velocity of sound is large,

and Egs(1.1) are

’ 1% ka Uy k(pL);y
vt —==—=—, — —— :
Po

n 22 a-po’ 22 v= o

(1.9

Equations(1.2) and(1.3) in this case are

L_p,=0, L.,v=0,

d? 1 dp(n) d
L+=—+ —_ 143
- dn? p(m) 2
(1.5

3355

7]N/2l//
n=2/(2a+N) transforms Eg.(2.2) to the steady-state
Schralinger equationy,,— (—E+U) =0 for a particle in
the Coulomb potential with an orbital momentumN/2, an
energy E=—(2a+N) 2, and potential U=-—1/z
+1(1+1)/22.

We will consider the case when the upper and lower mix-
ing zones are separated in space; see Hig. Jhen, to
describe they™ perturbations located in the upper zone near
the surfacey, =0 the vanishing ag— — solution of Eq.
(2.2) will be necessary. It is expressed through the function
U defined in Ref[23]:

pL:enU(a:_N,_Zﬂ), (24)
M(a,b,z)= ZZ—JZ— aj=a(a+1)---(a+j—1),
a():l,
7 [ M@a~-N-29)
- silN#@|T(a+N+1)T'(—N)
M(a+N+1N+2,—2
— (g 2 (29

T(@T(N+2)

We now consider the condition at the upper boundary. If it is
the isobaric boundary, then its velocity and displacement are

The equationL ,v=0 is a classical Rayleigh equation. It not zero and the functiop, equals zero on the boundary.
describes the dynamics of perturbations in an inhomogeConsider the simpler case first. In this case, we neglect the

neous incompressible fluid.
If the determinant of the system of equatiofik.l),

pressure inside the internal cavity(y,)=0 andy,=0. The
index N must be boundN>—1, for the convergence of

det=3"%—1, does not equal zero, then the system may bénassfp dy as|y|—0. We eliminate the first term in expres-

resolved forv andv’. The equation, which defines, if
functionsp, () and (p,),, are known, is

L~ (P2 +pL
—

K
v=—(32-372)" (1.6)
g

The velocity of sound drops out of E(L.6); therefore, it is

the same in the compressible and incompressible cases.

II. THE WAY TO REDUCE THE INSTABILITY

Consider the polytropic distribution

o [va(=y\
pr(=y)N,  px(=y)N*t c= N+1) :
sx(—y)? 6=1—N(y—1). (2.

The hydrostatic function€.1) are substituted into Eq1.2).
After that we obtain

(P, ~N(p) )~ (7—2a—N)p =0, (2.2
1(N N+122+ 0 ) 23
a=—5| N——— — . :
2 04 y3?

The substitutionp, =e”u, n=—2/2 transforms Eq.(2.2)

sion (2.5) for U to satisfy the conditiop, (0)=0. It is nec-
essary to hit into one of the poleg=—m, m=0,1,2 ... of

the functionI’(z) which is a part of the denominator of the
first fraction. Therefore, we hawe,+ N+ 1=—m. It is easy

to obtain the dispersion relation from this condition and the
definition ofa in Eq. (2.3). We omit branches corresponding
to p andf™ modes. Thegg* modes are absent. The fastest of
the g~ modes has m=0. Its increment s
32= g%+ 6I(N+1)— B, B=y(N+2)[2(N+1).

In the incompressible case, as—o, this expression is
simpler. The increment isS(é)rigid= —N/(N+2). The com-
pressibility increases the incrementA(N,y)=E§
—(23)1igie>0. The functionA(N,y) increases monotoni-
cally if we fix the indexN and decreasg. The decrease of
means an increase in the compressibility. The maximum
valueA(N,1) is achieved aty=1. The relative significance
of the compressibility depends ¢t When the indexXN de-
creases, then the gap

A(N,1)= (Eg)soft_ (Eg)rigid

~ N+2
“2(N+1)

N+1 | M2

+4—
(N+2)?

LN
N+2

(2.6

between soft ¥=1) and rigid (y=) cases decreases. At

into an equation for the confluent hypergeometric functionN=—1 the gap equals zero. The incrementdecreases
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< Velocity v remains finite at the vacuum boundary-0. The per-
_i N 0 0 turbations are localized near the boundary.

FIG. 5. The stabilizing influence of the polytropic profiling function. It is necessary to emphasize the boundary behavior
means that the increments are reduced by theRf(ifthereR isthe  of the g~ modes. They decay & Klyl as|y|—o. Itis also

reduction in comparison with the case of the puie mode. The  jnteresting that the maxima of the perturbations are at some
increments are confined inside the dashed strip depth in spite of the fact that the maximum of the gradient
Vp is at the boundary.

The Taylor series for the maximum of velocity- (772
near the end poinl=—1 is

whenN rises at any fixed value of. It has a maximum at
N=—1. The maximal increment equal&k, as in the case
of the f~ mode.

This is shown in Fig. 5. The expansionf)f) in the maxi-

mum is  omax 1 B ) 3
oy =3 +(L2=1y)(6N)+ (6N)“/y+O[(EN)>].

2_
26=1—26N+(2+4/y)(5N)*+O[(6N)°], In the incompressible case we have ™) =1+N/2. Con-
sider the positions of the maxima of perturbations of La-

, ) grangian pressure{7py) and velocity  »(®). It can be
dependent ofy. Therefore the expressio(N,1) begins g0 that there is a separation valggp such that, for

with the (SN)* term. The regioN<0, 2>0 is the square 1 _\—p the maximum in velocity is beneath the
bounded by limits at the upper and left sides. The upper limit .~ i?]EEressuréthat is, at a larger distance from the
is the incrementr?= \/gk of the f~ mode. The left limit is boundary, and vice versa foNggs<N<O (the pressure
the conditionN>—1. The reduced increments are inside the,4vimum is at a larger distance

gapA(N,1) defined by Eq(2.6). The gap is dashed in Fig.  consider the behavior of the eigenfunctions near the point
5. The curves ands that bound the gap correspond to the y — o it may be shown thati) p,—0 asy—0, (ii) velocity
rigid and soft cases, respectively. The polytropic increment% is finite at the boundary(jii) the ratiov/ce1\/—y for

are reduced in comparison with the increment of fhe ly|<1, and (iv) a perturbation of Eulerian pressure
mode. The reduction is denoted by symbBvin Fig. 5. The pe= p|:+(g/iw)pov—>°° asy—0. The last circumstance is

stabilizing action of the profiling produces this reduction. specific for the inverse density polytropes considered here. It
differs from the astrogeophysical polytropes, for which den-
ll. SHAPE OF EIGENFUNCTIONS sity pp—0 asy—0 (see Fig. 4, and therefore we have
HEHO asy—0.

The measure of the nonlinearity of the perturbation is the
function a(7)=p_/po-. It defines the relative amplitude of
the perturbations. The amplitudes of the veloai0) and
the relative pressura(0) are proportionalg=a, |y|<1). If
this ratio is small p, <pg), the perturbations are linear. We
have p, /pg=e” for m=0. The maximum of the function
a(#) lies at the vacuum boundagy=0. It is important that
this function remains bounded in the pojnt 0. From this it

1+N ~0 follows that, if a(0)<1, the perturbations are linear every-
3,%-1 where.
(3.1 This means that the singularities of the functioris, and
pe at the vacuum boundary are fictitious. Their presence
The position of the maximum of the functianis given in  does not mean that the perturbation of an arbitrary small
Eqg. (3.1). It appears to be located inside the polytrope. Theamplitude at a large distance from the boundary will transfer
proof of this is omitted because it is long. into the nonlinear regime, and that shocks will appear near

The plots of the functionp, andv are shown in Fig. 6. the vacuum boundary. Their appearance is due to a 8hift
The maxima are asymmetric because the decay of the funia the perturbed boundary. In consequence of this the physi-
tions when we go away from the boundary is slower thancal boundary is not at the poigt=0. It is moved by the
their rise. If N— —1, then the pressurp, is a monotonic  perturbation to the poing=0+ 7.

where SN=N+1. We see that the linear term &N is in-

Consider the eigenfields of the problem. From expressio
(2.4) and the dispersion relaticay,= —N— 1, the pressure in
the case of they, mode isp =(—7)'"Ne?, n=Kky. The
maximum of the functiorp (7) is at »p2*=—1—N. The
vertical velocityv is found from thep, and Eq.(1.6). It
equals

v=(1-b lpe”, —x¥=1-b, b=
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o) - p.(#7) and substitute it into this boundary condition. We then
‘ obtain the general relation

| _ _
. 3 . (st)NHF( N) B I'(N+2) M(a,—N,2ke)
Z I'(a) TI'(a+N+1) M(a+N+1N+2,2ke)
=0. 4.1
0 T \ As £ —0 the first term in relatiori4.1) is eliminated, since
0 K Keg 00 N>—1 and the functiond tend to 1. In this case, studied
FIG. 7. The “cutting” or limiting of the spectrum in the case of in Sec. I, it is necessary to have the argument of fhe

the “cut” or limited power-law distribution. function at the polea+N+1=-m, a=ay,, m=0,1,....
Consider what will change at#0. If ke<1, then the cor-
rection is small and we are near the pole. The asymptote
I'(z2)~[(—=1)"'m!]/(z+m), m=0,1, ... isvalid in this vi-

In particular, in spite of the fact that formally the Mach ~ \< . 4 . ;
numbero/c, is large near the boundary, this means that th&inity. From this we obtain the required expression for the
i correction:

thin boundary layer is shifted as a whole. In this layer the
local velocity of sound:, is smaller tharv (0). Butaccumu-
lation of this velocity is a slow adiabatic process. It takes a
long time in comparison with the time necessary for sound to
pass this layer. This means that the acceleration due to the (—1)m T'(—N)
perturbation is small(57){;|<g. Therefore the gradients of Aay,= (2ke
pressure and the pressures themselves are smadp,. m F(=m=N-1)I'(N+2)
From this it follows that the perturbation is linear.

a,=—m—N-1+Aa,,

)N+l

4.2

It is interesting to note that the functiap,(k) is the same
for the sonic p) and gravity ) modes. From this it fol-
lows that their eigenfunctiong, coincide at any value of.
IV. CASE OF NONZERO PRESSURE This is so because EqR.4) includes the functiona, which
IN INTERNAL CAVITY are the same, and does not include the frequencies, which of

The answer will change if we consider the internal pres—Course differ. All other functionsu, p, and so ohof the p

sure. Let the pressure distribution pgx(—y)N* L. The un- and g= modes differ because their definitions include fre-

. : . guencies.
!Ose(rjt:fri?]ig E;utzzapr)}r/elzsitr;hfnTﬁgﬁzgj/gty (Si'p-[,r(]&\f)i)luee We next analyze the obtained expressions. The function

I th ‘ th law distributi bs ded by th I'(x) at the real values at<<1 alternates unit positive and
n the case of the power-law distrioution bounded by enegative intervals. From this it follows that at any value of
pressurep,. , the problem loses its self-similarity. Its spec-

: g ; N>—1 the correctiond\a,,, Eq. (4.2, are negative. If we
trum is presented in Fig. 7. Here, line 1 corresponds to th ! m: Q. (4.2 gatv W

o Substitute Eq(4.2) into relation(2.3), which linksa and o,
self-5|m|Iz_;1r (power-law SpeCtrum‘TOZEO(N'?’) Jg—k The we obtain the biquadratic equation for The negative root
asymptotic curve 2 corresponds to the Brunisda incre-

- S for this equation gives frequencies{= — »?) of the sonic
ment ogy = \g|So,|/ ¥So, Which is evaluated at the edge of yayves. The positive root gives increments of the gravity
the profile at the poiny= —&. It limits the growth ofs. The  modes. It follows from consideration of these roots that, due
square of the dimensionless ratidi§, = (6/y)/ke, whered o the counterpressure, , the p modes become harder and
has been defined in E(.1). The resulting dispersion curve stable and the unstable modes become softer. Therefore,
is curve 3. It tends to the limiting curves 1 and Zkas0 and  curve 3 in Fig. 7 bends down from line 1 &sncreases.

k— oo respectively. The crossover region between these two
asymptotes ik~k,=1/e.

At this stage of the acceleration of the shell the pressure
in the cavity is smallp,<<p,. Therefore, the shift is also
small in comparison with the total thickness of the multilayer We analyze another interesting modification by consider-
shell. In this case it is necessary to calculate the correction timg the change in the upper boundary condition. Consider the
the self-similar increment due to this counterpressure. Thisondition that is inverse to the free boundary condition. Let
means that the parametks is small,ke<<1. We find the there be a rigid wall at the point=—e¢.
first-order correction in the parametes to the unperturbed The solutionp, (7) of Eqg. (2.1 that satisfies the lower
incrementa,=23.,\/gk (the index 0 means that the branch boundary condition is given by E¢2.4). To find the spec-
m=0 is considered trum it is necessary to satisfy the condition at the wall,

The general dispersion curve, which is valid at the arbi-v(—ke)=0. This condition, together with Eq1.6), gives
trary value of the parametdse, follows from the condition the dispersion relatiof(p,) ;722— PL]|(~key=0. Here substi-
pL(—ke)=0. We use expressiori2.4) for the solution tute Eqs.(2.4) and(2.5 and differentiate. We obtain

V. CASE OF RIGID BOUNDARY
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1-372M(a+N+1N+2,2ke) a M(a+1,—N+1,2ke)

1-372  M(a,—N,2ke)
2

N+1 _ —
FasNTDI(—N) T (2ke) 2 T(al(N+2) N T(arNF D (=N) (NFTD
(M(a+N+1N+22ke) i@t N+1 M(a+N+2N+3,2ke)
X (2ke) —(2ke)N* = (5.2
T(a)[(N+2) N+2 T(a)[(N+2)
|
Consider long wavelengthss <1 first. If N>0, then to 7
zero order inke the answer is the same as obtained above. (PL)1= 1—2N)e".
The spectrum is given by relatioa,,+N+1=—-m. The
first-order correction irke is 2
_ _ n
vi=(—n) N (& 2_1)<1_2N +5/€"
A (D™ 1-3.% N+14m)
am= i 2 TN These expressions follow from Eq&.4) and(2.5), a;=—1,
and Eqg.(1.6). The function ¢,),(%) has one zero in the
(N+DT(=N) (2ke)N region n<<0 and it is finite at the rigid boundary. The func-
F(=N-1-mI'(N+2) ' tion v4(7) does not have zeroes inside the regipra0. For
the factor ) ~N, N<0 goes to zero at the boundayy: 0.
We see that the degree of the paraméterhas changed, ~ Above we have discussed the asymptokes<1. At the
compared with Eq(4.2). intermediate scalels~ 1/s the incremeni (k) transfers to

If —1<N<0, then the answer changes at the zeroth ordethe Brunt-Vasda asymptote. Therefore the small-scale as-
in comparison with the case of the isobaric boundary deymptotes(curve 2 in Fig. 7 for the incrementsg(k) and
scribed in Sec. I1. In this case, it is necessary to eliminate th&r(k) are the same.
large fourth term in Eq(5.1). To eliminate the term it is
necessary to be at the pole of another gamma funéti@j. VI. INVARIANT POINT AT ACOUSTIC BRANCH
From this we obtaira,,= —m, m=0,1,.... TodefineX we

. . - - - - 2_
have to substitute formulé2.3) for a in this equation. The Consider the limit dispersion relatiom®= =gk and the

: : 52 _ f* modes invariant to the structure of the profile. The spec-
=—B+F%+ +1), - . ; . . .
solution of the equation isxy==f+ B~ 0/(N+1) tral problem with the perturbations in an incompressible fluid

whereB=(y/2)(2m—N)/(N+1). It is necessary to find the ) ;
largest increments. Therefore we have to consider first th(ra1615 the property of hidden symmetry. It is known to have

values of the indexn. isospectral deformation,_;o(y)—>|{po(y)}=}30(y), which
At m=0 the expression under the root is the exact squard€eps the spectrum of eigenvalues unchanged. In contrast to
From this it follows that the answer in the case rofis  the eigenvalues, the same deformation transforms the eigen-

32=1 at any values of the indicds$ (—1<N<0) and . functions in.a nontrivigl manner. Itis intere_sting to apply the
This is the indication to consider the caxé=1 more care- transformatior to the invariant = modes since they are not
fully. It follows from the fact that in this case the system connected, as all other modes, with any definite profile. It is
(1.1) degenerates and E¢L.6) becomes indeterminate be- found that the transformation of th&™ modes generates
cause it includes the ratio 0/0. This consideration is interest"0des of the new type. They are also invariant to the strati-
ing and results in some significant general conclusions thd{ed profile. The solution witm=0, which has been ob-

will be better described in Sec. VI. Here we note that thefdined in Sec. V, belongs to this type. In addition, the new
dispersion relationr2=gk (the zero means than=0) co- fundamental modes are acoustic modes, whereas the isobaric

incides with the relation for the isobaric. mode. At the modes are gravity modes. Therefore, below we use the nota-

same time the corresponding distributiop, ], is noniso- tion fglfor the isobaric modes anig; for the new invariant
baric. In addition, if thef~ mode is a gravity mode then the &coustic modes.
mode discussed here is an acoustic one.

It follows from this study that the case=0 must be A. Isospectral inversion of density
omitted because of the violation of the boundary conditions  The jnversion of density
imposed above. Therefore, for the rigid wall we have to con-
sider the next value ah, which ism=1. The corresponding - 1
function  33(N,y)=—p+BZ+0/(N+1),  where pim=p(n)= "5 (6.3)
B=(y/2)(2—N)/(N+1) is significantly smaller than 1 and
smaller than the functio® 2(N, ) for the case of the iso- does not change the eigenvalues. This transformation is non-
baric boundary and the index=0. (The functionX¢ has trivial. It qualitatively changes the profile given by one func-
been shown in Figs. 5 and 7; here we use the indR@sid  tion p(#7) to another. Existence of this interesting property
F for the separation of the rigid and soft cas@his must be  has been proven firstly for the particular case of three arbi-
so since the rigid boundary stabilizes the motion. trary sublayers between two homogeneous half-spgkds

As y—o we have Br)n,=(—N)/(2m—N)>0, N<0. It has been proven rigorously for the case of an arbitrary
The wave functions of the state=1 are number of sublayers in Ref24], and for an arbitrary profile
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in Ref. [25]. Here we present a very short proof. Its advan-second of equations of systeih.1) for p,(%)=0. They are

tage is that it gives the relationship of the duality betweerv==e*7. Substituting them into the transformation rule

conjugate physical functions of Lagrangian presqyreand  (6.6b), we find that

vertical velocityv. This allows us to apply the inversion to . _ 5

the isobaric modes{fg}. (P~ (m)=e""7, o °==xgk (6.7)
Inversion(6.1) is isospectral in incompressible fluid. We .

can extend the results cponcerning the fEndamentaI modes {-(Sere and below the upper and_ Iower_ signs cprrequn_d to fche

the compressible case, since these modes are invariant to tHRPer and lower signs in the dispersion relation as it is writ-

equations of state. To prove isospectrality, we write the®€n in EQ.(6.7). Solutions(6.7) correspond to thé, modes.
equation forp, [Eq. (1.5)] The same solutions may be found from Eg.2) if we sub-

stitute in it the relationso®= +gk. From this substitution it

d2 1 d d 1 d is easy to see that the functions that define the profile drop
— M ——1-0"?%?—— M p.(7)=0, out. It appears from this that the distributiops, Eq. (6.7),
dp? p(y) dn dzy p(m) dy are invariant to the profile structure.

(6.2

and add the boundary conditions at infinfiy( = %)=0. B. Behavior of velocity and boundary conditions

We write the equation fop [Eq. (1.5] in the case of the We define thev*(#) functions of thef, modes. We
transformed profile cannot find them from rulé6.6), so we must return to the
system(1.1). At w?= + gk, substituting the distributions, ,

2 1 dp(y) d L, 1 dp(n)|~ Eqg. (6.7, into Eq.(1.1), we obtain
_2+"'_ d d__ - ~ d 0(77)
dn® p(p) 97 047 p(n) 97 g \e*7
:O, (63) (U )77+U (1+k02) P . (68)
and add to it the same boundary conditions. The functionsy (7) are found from these equations.
We then calculate the raty; (7)/ p(7) according to rule The general solution of Eq6.8) depends on two con-
(6.1, and obtain stantsCp and Cg. The first is connected with the function
- p. since (. )" =Cpe™". The second is connected with the
p(m) 1 dp(—7n) first order differential equatiof6.8). The general solution of
2(7) p(—7n) d(—7n) 6.4 the homogeneous part of Ed6.8), (ui);,:vizo, is
Cge™”. This means that the general solution of E}8) is a
Substituting Eq(6.4) into Eq. (6.3), we obtain mixture of thefs andfg modes, which are taken with the
weightsCp andCg, respectively.
d? 1 dp(—» d Above we presented the general description of tBe

1 modes. It is interesting to check whether they are compatible

with the physical boundary conditions. The isobaric condi-
_ tions must be omitted since the functiops =e*” do not
v(n7)=0. (6.58 have zeros. Therefore, consider the layer bounded by two
rigid walls and find the solutions of Eq$6.8) with two
zeros.

Consider the case when the right sRef Eq. (6.8) does
42 1 dp(¢) d (&) not change sign. In this case the equation with the lower sign
-+ p P v(—¢=0. ischosen.Incompressible fluid corresponds to the same case.
de2 p(§) d(§) d(§) p(&) d(é) It can be shown that the solutions are then monotonic func-
(6.5p  tions, and cannot have more than one zero. Therefore, we

) consider the case of the upper sign. We return to the variable
We now compare Eq96.2) and (6.5b. Let the functions y, with p=ky, and substitute

pL(n) and f(&)=0v(—&) be solutions of Eqs(6.2) and

d—n2 pl—m d—n) d—7n)

1 dp(=7n)

_ -2
0= A=

Defining »=— £ in Eq. (6.53, we obtain

-
o

(6.5b with boundary conditions imposed above at the same v (y)=eYw(y).
eigenvalues. We see that the inversion transforms the eigen- _
function in the following way: After that we obtain
-~ —2ky
—-n)= : 6.6 , g \e
o(—m)=pu(n) (6.69 Wy=k<1_@ kR 69
pL(—n)=v(7). (6.6b

We define an arbitrary monotonically increasing or de-
We see that there are exchanges of ¢hand p_ functions  creasing functiort(y) on the intervayp<y<y, whereyp
and changes in the sign of the argument. and y, are the lower and upper rigid boundaries, respec-
In the case of thég modes the pressure perturbations aretively. It is necessary to consider valueslokuch that the
absentp, (7)=0. Velocities may be found from the first or zero of the functiorR(y), Eq. (6.9), is inside the interval.
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directions respectively. There are modes
(0,1),(1,0),(1,1), ... The pairs (my,m,) with numbers
my,=1,2, ... correspond to the modgx), p;, ..., and all

pairs with the numbem,=0 correspond to th& mode.

In the homogeneous layer @0, the velocityy of theL
mode isv(y)=0. In the inhomogeneous case, the function
v(y) is defined by the inhomogeneity. It does not have zeros
inside the profile in the case of the monotonic profile and it
has one or more zeros in the case of nonmonotonic profiles.
The L mode is eliminated if one or two boundaries are iso-
baric; see, e.g., Fig.(B). It is important that at the fixed
boundary conditions the qualitative structure of the acoustic
L andp,, modes is conserved gt#0.

At g#0 the gravity modesg,, appear. Heren=0,1, . . .

FIG. 8. The spectral sets for tieeand g denumerable families gives the number of zeros of the functiofy). In the limit
of modes.(a) Two rigid boundaries. The poirit belongs to the of shallow waterk—0 or the long-wavelength limit their
invariant(fundamentgl f 5 mode.(b) Two isobaric boundaries. The frequencies are

pressure at the upper boundarypig=0.
wm=En(d Ins/dy)dck= a&q(d Ins/dy)d\ghk,
Let R(y,) =0 and assume, for definiteness, that the function

c(y) decreases witly. Then aty<y, we haveR(y)>0.  whereh=c?/g, d=y,—Yp, the numbers,,,« depend on

Integrate Eq(6.9) from the pointy=yp and letw(yp)=0.  the profile structure, ang,—0 asm— o.

Then, for velocity we have(yp)=0. The solutionw(y) of The pointl from the invariant modé;, is the intersection

Eq. (6.9 rises within the intervayp<y<ly,. It achieves the  point of the dispersion curve of the mode and the curve

maximum at the poiny =y, and after that begins to decrease ,,— /[gk. Its coordinates arkp and wp (see Sec. VI B

asy Increases. L y The full spectrum of the polytrope bounded by the two
The variations ok lead to variations in the positions of jsoparic boundaries studied here is presented in Fi).f8r

the pointy,. If we decrease, the pointy, moves to the comparison. There amg,,, f&, g, andfg modes. Indexn

lower boundaryy, . If the pointy, is sufficiently close to the gives the number of zeros of functign (y). The modes &

lower boundaryyp, the functionw(y) f”“f‘ef. the maximum 5 g g, are connected with the upper boundaxy and the
decreases and reaches zero at the pgijihside the interval -
modef 5 with the lower boundary, .

Y, <Y,<VYy. Itis clear that if we now increade the point . ; .
: : Lo As stated above, the different eigenfunctions correspond
will move in the upper direction to the upper boundar + + ' ) X
Yzz PP PP Yo thef; andfs modes. The first have the exponential pres-

. Therefore there is a valug such that the coincidence ) .
Yu e suresp, and the second have exponential velocitesNe

Yzz=Yy takes place. There is a frequenay,=ygkp that see that the acoustic and gravity families are symmetric now,

corresponds to this value &f At these values df andw the with both having their own invarianundamental modes
function v(y) satisfies both boundary conditions and is 9
that separate them.

therefore the eigenmode of the problem. The point
(kp,wp) at thek,w plane corresponds to this mode.

() Lioo -oo 8) +00

VIl. THERMODYNAMICS OF SUBSHELLS

C. Inversion transformation between acoustic

and gravity branches The work is dedicated to the study of the spectral proper-

ties of the inverse density polytropes. The results are used for
The gas layer bounded by two walls was considered irthe simulation of the linear stage of the development of the
Sec. VI B. The corresponding spectrum is presented in FigRT instability in the multilayer targets. Is this approach ad-
8(a). There argp andg modes. The indem of the acoustic equate to the real situation? The targets consist of a large
modesp,,, m=0,1, ... shows the number of zeros of the number of subshells made from different materials. Is it pos-
function v(y) inside the layer. A&k—0 their frequencies sible to describe the process of the development by one poly-
become constants:c/d, whered=y,—yp is the distance trope when@) the EOS of the materials are nonideal, &b
between the boundaries amdis some average velocity of these EOS are different in the different subshells?
sound. Ask— their frequencies approach the asymptote We now answer these questions. The targets with the

w=ck. power-law distribution of density are fabricated by select-
There is one more acoustic mode in addition to modesng the chain of substances of increasing densities
Pm, M=0,1,.... It hasanother asymptote ads—0. It is  p;<p;—1<---<p; and adjusting the thicknesses of the sub-

marked by labeL in Fig. 8@a), and is called the Lamb mode. shells. It is assumed that the multilayer target is in the effec-
It is easy to understand its appearance if we consider théve gravity field. This is the standard approximation used by
limit g—0. In this case it is obvious that in the gas layermany authors. Then the hydrostatic equation is valid:
there is a mode that propagates strictly horizontal. Consider p;= —gp. It appears from this that, if we neglect the pres-
rectangular box with rigid walls. The acoustic modes aresurepy, in the cavity, then the pressure profile will be the
classified by a pair of numbersn(,,m,), wherem, andm,  power-law profile. The difference between the power-law in-
represent the half wavelengths in the box in theand x  dices for the pressure and density distributions equals 1.
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Therefore, the rati@/p is the linear function of the coordi- 1-— N
nate.

The model is based on the dynamic equaiibr2), which is
valid at arbitrary EOS. The inertial and thermodynamic con-
ditions must be fulfilled to go from Ed1.2) to the solutions
presented in Secs. Il and Ill. The inertial conditiotibe
power-law profile ofp, the linear dependence q@fp) are

fulfilled. We now consider the thermodynamic condition. It —_—\—“
is the condition for the linear dependence of the functién
on the coordinate.

Consider this condition. Write the thermodynamic relation 0-— ,
between the functions® andp/p. From the definitions of? 0 1 o
and yg, we have K1l

~
»

lo

ag
=

FIG. 9. The smooth transformation of the increment in the two-

5 layer case.

d dln
c _YRE, C2=<—p> , yR=(—p) . (7.1
p ap) g dinp ¢ N ” i
means that the inertial conditions are more significant for the
. i ) . _dynamics of the instability than the thermodynamic one.

In the case of nonideal EOS, the indgx in the adiabatic We use a two-layer example to show this. Let the index
processes is the function of one thermodynamic variableyg y=7y atys<y<0 andy=yp aty<ys. In this case the
e.g., densityyg= yr(p). In different subshells this function jncremento is defined by the indey,, at large wave num-
will be different yi(p), where the index enumerates the persk|yd>1 and by the indexyp at small wave numbers
subshells. Here we consider the hydrostatic or steady-stajgy |<1. The monotonic transformation of the increment
distributions. In the steady state the densities of the subshellgkes place in the crossover regklys|~1 as shown in Fig.
are fixed asp;. Therefore, the thermodynamic indices de-9_This is because the small-scale perturbations are located in
pend on the index of the subshell ony(p) = vk(p;)=7k-  the upper sublayer and, on the other hand, this sublayer is
The ratiop/p in Eq. (7.1) is linear. For applicability of our unessential for the large-scale perturbations.
approach, the indicegl; must therefore be the same in dif- It appears from this that the increment remains inside the
ferent subshells. dashed strip in Fig. 5 for all wavelengths in the problem with

From numerous studies of EOS it is known that the indi-variable indexyg. Therefore, the increment also remains
ces yg differ moderately for different substances. The influ- reduced in this problem.
ence of these variations on our results is not significant. The
main result is the partial stabilization of the RT instability as
shown in Fig. 5. This is the reduction of the incrememdue
to the shiftR. The conclusion about the reduction remain  The work was sponsored by the Russian Basic Research
true if the indicesyg are different in different subshells. This Foundation(RBRF under Grant No. 95-02-06381-a.
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