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Phase transitions in optimal unsupervised learning

Arnaud Buhot and Mirta B. Gordon*
Département de Recherche Fondamentale sur la Matie`re Condense´e, CEA/Grenoble, 17 rue des Martyrs,

38054 Grenoble Cedex 9, France
~Received 25 September 1997; revised manuscript received 12 November 1997!

We determine the optimal performance of learning the orientation of the symmetry axis of a set ofP
5aN points that are uniformly distributed in all the directions but one on theN-dimensional space. The
components along the symmetry breaking direction, of unitary vectorB, are sampled from a mixture of two
Gaussians of variable separation and width. The typical optimal performance is measured through the overlap
Ropt5B•J* , whereJ* is the optimal guess of the symmetry breaking direction. Within this general scenario,
the learning curvesRopt(a) may present first order transitions if the clusters are narrow enough. Close to these
transitions, high performance states can be obtained through the minimization of the corresponding optimal
potential, although these solutions are metastable, and therefore not learnable, within the usual Bayesian
scenario.@S1063-651X~98!07303-6#

PACS number~s!: 87.10.1e, 02.50.2r, 05.20.2y
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I. INTRODUCTION

In this paper we address a very general problem in
statistical analysis of large amounts of data points, a
called examples, patterns, or training set, namely the prob-
lem of discovering the structure underlying the data s
Whether this determination is possible or not depends on
assumptions one is willing to accept@1#. Several algorithms
allowing to detect structure in a set of points exist. Amo
them, principal component analysis finds the directions
higher variance, projection pursuit methods@2# seek direc-
tions in input space onto which the projections of the d
maximize some measure of departure from normal
whereas self-organizing clustering procedures@3# allow to
determine prototype vectors representative of clouds of d
The parametric approach assumes that the structure o
probability density function from which the patterns ha
been sampled is known. Only its parameters have to be
termined given the examples. A frequent guess is that
probability density is either Gaussian or a mixture of Ga
sians. The process of determining the corresponding par
eters is calledunsupervised learning, because we are no
given any additional information about the data, in contr
with supervised learning, in which each training example i
labeled.

It has recently been shown that finding the principal co
ponent of a set of examples, clustering data with a mixture
Gaussians, and learning pattern classification from exam
with neural networks may be cast as particular cases of
supervised learning@4#. In all these problems, the example
are drawn from a probability density function~PDF! with
axial symmetry, and the symmetry-breaking direction has
be determined given the training set. As this direction m
be found through the minimization of a cost function, t
properties of unsupervised learning may be analyzed w
statistical mechanics. This approach allows to establish
properties of the typical solution, determined in the therm
dynamic limit, i.e., the space dimensionN→1`, the num-
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ber of examplesP→1`, with the fraction of examplesa
5P/N constant.

Besides these general results, the statistical mecha
framework allows to deduce the expression of anoptimal
cost function@5–7#, whose minimum is the best solution th
may be expected to be learned given the data. The opt
cost function depends on the functional structure of the P
from which the examples are sampled, and on the fractioa
of available examples. Its main interest is that it allows
deduce the upper bound for the typical performance that m
be expected from any learning algorithm. On the other ha
Bayes’ formula of statistical inference allows to determi
the probability of the symmetry-breaking direction given t
training set. Sampling the direction with Bayes probability
called Gibbs learning@8#. The average of the solutions ob
tained through Gibbs learning, weighted with the cor
sponding probability, is called theBayesiansolution. It is
widely believed that the Bayesian solution is optimal. Mor
over, this has been so in all the scenarios considered so

In the present paper, we consider a very general tw
cluster scenario, which contains results already reported
particular cases. In fact, two different situations, in which t
pattern distribution is a Gaussian of zero mean and unit v
ance in all the directions but one, have been considered
far: a Gaussian scenario@9# and a two-cluster scenari
@10,11,8#. In the former, the components of the examp
parallel to the symmetry-breaking direction are samp
from a single Gaussian. In the latter these components
drawn from a mixture of two Gaussians, each one hav
unit variance. The learning process has to detect differen
between the PDF along the symmetry-breaking direction
the distributions in the orthogonal directions. Severalad hoc
cost functions allowing to determine the symmetry-break
direction have been analyzed for both scenarios. Typically
the PDF has a nonzero mean value in the symmetry-brea
direction, learning is ‘‘easy’’: the quality of the solution in
creases monotonically with the fractiona of examples, start-
ing at a50. In contrast, if the PDF has zero mean, the d
viations of the PDF along the symmetry-breaking directi
from the PDF in the orthogonal directions depend on
3326 © 1998 The American Physical Society
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57 3327PHASE TRANSITIONS IN OPTIMAL UNSUPERVISED . . .
second and higher moments. In this case, a phenome
calledretarded learning@8# appears: learning the symmetr
breaking direction becomes impossible when the fraction
examples falls below a critical valueac .

Since we have considered the case of clusters of vari
width, we could determine the entire phase diagram of
two-cluster scenario. Several new learning phases app
depending on the mean and the variance of the cluster
particular, if the second moment of the individual clusters
smaller than the second moment of the PDF in the ortho
nal directions, first order transitions from low to high perfo
mance learning may occur as a function ofa. Close to these
high performance metastable states exist above the s
states of Gibbs learning, in the thermodynamic limit. One
the most striking results of this paper is that these high p
formance metastable states can indeed be learned throug
minimization of an optimala-dependent potential, althoug
they cannot be obtained through Bayesian learning.

Our results have been obtained within the replica
proach with the replica-symmetry hypothesis. We show
low that this assumption is equivalent to the more intuit
requirement that the optimal learning curvesRopt(a) are in-
creasing functions of the fraction of examplesa. To our
knowledge, this fact has not been noticed before.

The paper is organized as follows. A short presentation
the problem and the replica calculation are given in Sec
In Sec. III we deduce the optimal cost functions within t
replica-symmetry hypothesis, as well as the condition
replica-symmetry stability. In Sec. IV we deduce and disc
the optimal learning curves for the general two-cluster s
nario. The typical properties of the optimal cost functions
the complete range ofa, presented in Sec. V, show tha
Bayesian learning may not be optimal. Finally, the compl
phase diagram is described in Sec. VI, as a function of
two clusters’ parameters.

II. GENERAL FRAMEWORK AND REPLICA
CALCULATION

We consider the general case ofN-dimensional vectorsj,
the patterns or examples of the training set, drawn from
axially symmetric probability densityP* (j uB) of the form

P* ~j uB![
1

~2p!N/2
expH 2

j•j

2
2V* ~l!J , ~1!

whereB is a unitary vector in the symmetry-breaking dire
tion, i.e., B•B51 ~notice that this isnot the usual conven-
tion!, and l[j•B5( ij iBi . According to Eq. ~1!, the
patterns have normal distributions, i.e., P(x)
5exp(2x2/2)/A2p onto theN21 directions orthogonal to
B. The distribution~1! in the symmetry-breaking direction i

P* ~l!5
1

A2p
expH 2

l2

2
2V* ~l!J . ~2!

Thus, V* (l) introduces a modulation parallel toB; if V*
50 the patterns’ distribution is normal in all the direction
Normalization ofP* requires
on
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E
2`

1`

Dl exp@2V* ~l!#51, ~3!

where Dl5exp(2l2/2)dl/A2p. The different moments
^ln& of ~2! are

^ln&[E ~j•B!nP* ~j uB!dj5E
2`

1`

lnP* ~l! dl. ~4!

Several examples of functionsV* have been treated in th
literature so far@4,7–11#. In the particular case of supervise
learning of a linearly separable classification task by a sin
unit neural network, the symmetry-breaking directionB is
the teacher’svector, orthogonal to the hyperplane separat
the classes. The class of patternj is t[sgn(B•j). The cor-
responding PDF isP* (tl)52 Q(tl)exp(2l2/2)/A2p,
i.e., V* (l)52 ln2 for tl.0 and1` for tl,0.

In the following, we concentrate on the problem of uns
pervised learning. We are given atraining set La
5$jm%m51, . . . ,P of P5aN vectors sampled independent
with probability densityP* (j uB). We have tolearn the
unknown symmetry-breaking directionB from the examples
knowing the functional dependence ofP* on B. Using
Bayes’ rule of inference, the probability of a directionJ
~with J•J51) given the data is

P~JuLa!5
1

Z )
m

exp$2jm
•jm/22V* ~jm

•J!%P0~J!,

~5!

where P0(J)5d(J•J21) is the assumed prior probabilit
and Z5*dJ)mexp$2jm

•jm/22V* (jm
•J)%P0(J) is the

probability of the training set. By analogy with supervise
learning, sampling the direction with probability~5! is called
Gibbs learning@8#.

We consider learning procedures where the directionJ is
found through the minimization of a cost function or ener
E(J;La). As the patterns are independently drawn, this
ergy is an additive function of the examples. The contrib
tion of each patternjm to E is given by apotential V that
depends on the directionJ and onjm through the projection
~called local field! gm5J•jm:

E~J;La!5 (
m51

P

V~gm!. ~6!

As the training set only carries partial information on t
symmetry-breaking directionB, the directionJ determined
by the minimization of Eq.~6! will generally differ fromB.
The quality of a solutionJ may be characterized by the ove
lap R5B•J. If R50, J does not give any information abou
the symmetry-breaking direction. Conversely, ifR51 the
symmetry-breaking direction is perfectly determined.

The statistical mechanics approach allows to calculate
expected overlapR(a) for any general distributionV* and
any general potentialV, in the thermodynamic limitN,P→
1` with a[P/N finite. In this limit, we expect that the
energy is self-averaging: its distribution is ad peak centered
at its expectation value independently of the particular re
ization of the training patterns. Given the modulationV* ,
different values ofR may be reached, depending on the p
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3328 57ARNAUD BUHOT AND MIRTA B. GORDON
tential used for learning. In the following, we sketch t
main lines that allow to derive the typical value ofR corre-
sponding to a general potentialV.

The free energyF corresponding to the energy~6! with a
given potentialV(g) is

F~b,N,La!52
1

b
lnZ~b,N,La!, ~7!

whereb is the inverse temperature andZ the partition func-
tion:

Z~b,N,La!5E dJ exp$2bE~J;La!%d~J221!. ~8!

As mentioned before, in the thermodynamic limit the fr
energy is self-averaging, i.e.,

lim
N→1`

1

N
F~b,N,La!5 lim

N→1`

1

N
F~b,N,La!, ~9!

where~•••!̄ stands for the average over all the possible tra
ing sets. The average in the right-hand side of Eq.~9! is
calculated using the replica method:

lnZ5 lim
n→0

1

n
lnZn, ~10!

which reduces the problem of averaging lnZ to the one of
averaging the partition function ofn replicasof the original
system, and taking the limitn→0. The properties of the
minimum of the cost function are those of the zero tempe
ture limit (b→1`) of the free energy. In the case of diffe
entiable potentialsV, the integrals are dominated by th
saddle point, and the zero temperature free energy read@4#

f ~R,c!5 lim
b→1`

lim
N→1`

1

N
F~b,N,La!

52
1

2cH12R222a E Dt W~ t;c!

3E Dz exp@2V* ~l!#J , ~11!

where

l[zA12R21Rt. ~12!

In Eq. ~11!, R is the overlap between the symmetry-breaki
direction B and a minimumJ of the cost function~6!; c
5 limb→1`b(12q), whereq is the overlap between minim
of the cost function~6! for two different replicas, and

W~ t;c!5min g@cV~g!1~g2t !2/2#, ~13!

is the saddle point equation. The extremum conditions of
free energy~11! with respect toR and c, ] f /]R5] f /]c
50, give the following equations forR andc:
-

-

e

12R 25aE
2`

1`

Dt @g~ t;c!2t#2E
2`

1`

Dz exp@2V* ~l!#,

~14a!

R A12R 25aE
2`

1`

Dt @g~ t;c!2t#

3E
2`

1`

Dz z exp@2V* ~l!#, ~14b!

wherel is defined in Eq.~12! andg(t;c) is the solution that
minimizes Eq.~13!. Introduction of Eq.~14! into Eq. ~11!
gives the free energy at zero temperature:

f ~R,c!5a E Dt V„g~ t;c!…E Dz exp@2V* ~l!#.

~15!

If the potentialV(g) is not convex, Eq.~14! may have more
than one solution. In that case, the one minimizing Eq.~15!
with respect toR should be kept.

These results were obtained under the assumption of
lica symmetry. A necessary condition for the replic
symmetry hypothesis to be satisfied is

aE
2`

1`

Dt @g8~ t;c!21#2E
2`

1`

Dz exp@2V* ~l!#,1,

~16!

with g8(t;c)[]g/]t.

III. OPTIMAL POTENTIAL
AND REPLICA-SYMMETRY STABILITY CONDITION

Given any modulationV* , the typical overlapR obtained
through the minimization of a differentiable potentialV may
be determined as a function ofa by solving Eqs.~14!. The
result is consistent if condition~16! is verified. In this sec-
tion, we are interested in thebestperformances that may b
expected. Recently, a general expression for the optimal
tential allowing to find the solution with maximum overla
Ropt has been deduced@4#. This optimal potential Vopt de-
pends implicitly ona throughRopt(a), and on the probabil-
ity distribution P* through the modulationV* . It was ob-
tained under the assumption of replica symmetry, which
been shown to be correct for the particular cases investig
so far. In fact, the stability condition of replica symmetry f
optimal learning is verified whenever the slope of the lea
ing curves is positive, as will be shown below. For the sa
of completeness, we first describe an alternative derivatio
the optimal potential. Following the same lines we used
supervised learning@6#, Vopt is determined through a func
tional maximization ofR, given by Eq.~14!, with respect to
V at constanta. As discussed in@6#, the parameterc sets the
energy units and may be arbitrarily chosen. We usedc51
throughout, without any lack of generality. After a straigh
forward calculation we obtain that the optimal overlapRopt is
given by the inversion of
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a~Ropt!5Ropt
2 H E

2`

1`

Dt
F E Dz z exp„2V* ~l!…G2

E Dz exp„2V* ~l!…
J 21

,

~17!

where l, given by Eq.~12!, readsl[zA12Ropt
2 1Ropt t.

Notice that Eq.~17! may be not invertible, i.e.,Ropt(a) may
be multivalued. In this case, the correct solution has to
selected.

Vopt is determined through the integration of

Vopt8 „gopt~ t !…5
12Ropt

2

Ropt
2

d

dtF lnE
2`

1`

Dz exp„2V* ~l!…G ,
~18!

where the argument ofVopt8 is given by the saddle-poin
equation~13! with c51, i.e.,

gopt~ t !5t2Vopt8 „gopt~ t !…. ~19!

SinceR is parametrized bya, the cost function leading to
optimal performance is different for different training s
sizes.

Equations~17! and ~18! were previously derived by Van
den Broeck and Reiman@7#, who showed that the typica
overlapRb of Bayesian learning satisfies the same equa
~17! as Ropt. However, this only guarantees that Bayes
learning is optimal if Eq.~17! is invertible. In that case its
unique solution isRb5Ropt. Otherwise, as is discussed in th
example of Sec. IV, solutions withRopt.Rb may exist.

The results derived so far are valid under the repli
symmetry hypothesis, and must thus satisfy Eq.~16!. Taking
Eqs.~17! and ~19! into account, a cumbersome but straigh
forward calculation gives

12aE
2`

1`

Dt @g8~ t;c!21#2E
2`

1`

Dz exp@2V* ~l!#

5
Ropt

2 ~12Ropt
2 !

a

da~Ropt!

dRopt
2

. ~20!

Therefore, in the case of optimal learning, the necessary
dition of replica-symmetry stability~16! is equivalentto the
natural requirement that the learning curveRopt(a) is an in-
creasing function of the fraction of examplesa for Ropt
Þ0,1. This relation, which does not seem to have been
ticed before, is independent of the distribution~1! from
which the data set is sampled.

In the cases where the analytic functiona (Ropt) given by
Eq. ~17! is not invertible, only the branches with positiv
slope have to be considered, as they trivially satisfy
replica-symmetry condition. Examples of such a behav
are shown in the next section.

Hence, given any modulating functionV* sufficiently de-
rivable, as far asRoptÞ0,1 there exists an optimal potenti
Vopt(g), consistent with the assumptions of the replica c
culation, which depends implicitly ona through Ropt(a),
e

n

-

-

n-

o-

e
r

l-

and onV* . The minimumJ* of the corresponding energ
~6! maximizes the overlapR betweenJ* and the symmetry-
breaking directionB.

The development ofa (Ropt) for small Ropt shows that
Ropt.0 for all a.0 if and only if ^l&Þ0. In that case, for
a!1, Ropt'^l&Aa, as with Hebb’s learning rule@4#. If
^l&50, two different behaviors may arise: either a contin
ous transition fromRopt50 to Ropt;Aa2ac occurs atac
[(12^l2&)22, or the overlap jumps fromRopt50 to Ropt
.0 through a first order transition ata1<ac . In particular,
if ^l2&51, only a discontinuous transition may occur sin
ac51`. Discontinuities between two finite values ofRopt
also may arise fora.ac . All these phase transitions appe
in the two-cluster scenario that we analyze in the next s
tion.

IV. A CASE STUDY: TWO-CLUSTER DISTRIBUTIONS

Consider the general two-Gaussian-clusters scenario
which the modulation along the symmetry-breaking direct
~2! is

P* ~l;r,s!5
1

2sA2p
(

e561
expF2

~l1er!2

2s2 G . ~21!

This distribution is a generalization of the one studied
Watkin and Nadal@8#, who considered optimal learning fo
clusters withs51. If r50, Eq. ~21! corresponds to the
single Gaussian scenario studied by Reimannet al. @4#. In
this paper we investigate the complete phase diagram in
planer,s.

The first two moments of Eq.~21! are

^l&5 0, ~22!

^l2&5 r21s2. ~23!

Thus, if s51 only distributions with^l2&.1 are consid-
ered. The optimal solution in that case is close to the o
obtained with a quadratic potential@8#. Quadratic potentials
detect the direction extremizing the variance of the train
set, which we callvariance learning. We show below that
the optimal overlap may be much larger than the one
tained through variance learning if the clusters haves,1.

Introducing the expression ofV* obtained from Eqs.~21!
and ~2! into Eq. ~17! givesa as a function ofRopt. It turns
out that, for some values ofa, this function has three differ-
ent roots forRopt(a), as is apparent in Figs. 1 and 2. The o
lying on the branch with negative slope violates the assum
tion of replica symmetry. The two others correspond to mi
mas of the corresponding free energies. Figures 1, 2, an
show the optimal learning curves for several values ofr and
s in the range not investigated before. The two branc
Ropt(a) with positive slope that satisfy condition~16!, and
the dotted line of negative slope~inconsistent with the as
sumption of replica symmetry!, are presented for illustration
The value ofa at which the jump from one branch to th
other occurs is discussed in the next section. The per
mance obtained through learning with simple quadratic
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FIG. 1. Learning curves for the two-cluster scenario, for clus
parameters corresponding to the lowest small square of Fig. 6.
line, optimal learning; dash-dotted lines, lower branch of metasta
solutions to optimal learning. Also shown is the replica-symme
unstable curve~dotted line!. The lowest dashed line corresponds
learning with a quadratic potential~variance learning!. Here, a1

53.79,Ropt(a1)50.84; the Bayesian first order transition occurs
aG54.07, Ropt(aG)50.9; the criticala for variance learning is
ac54.73.

FIG. 2. Learning curves for the two-cluster scenario, for clus
parameters corresponding to the central small square of Fig. 6.
line, optimal learning; dash-dotted lines, lower branch of metasta
solutions to optimal learning. Also shown is the replica-symme
unstable curve~dotted line!. The lowest dashed line corresponds
learning with a quadratic potential~variance learning!. Here, a1

52.49,Ropt(a1)50.76; the Bayesian first order transition occurs
aG52.52, Ropt(aG)50.81; the criticala for variance learning is
ac52.10.
tentials is also presented, to show the dramatic improvem
of optimal learning with respect to variance learning f
double clusters withs,1.

V. BAYESIAN VERSUS OPTIMAL SOLUTIONS

As pointed out in Sec. III, Eq.~17! may be deduced in
two different ways: through the determination of the Bay
sian learning performance, or through functional optimiz
tion. This procedure yields of a cost function for each tra
ing set sizea whose minimum gives the solution wit
maximal overlap.

The Bayesian solution to the learning problem is given
the average of solutions sampled with Gibbs’ probability.
simple argument@8# shows that the typical Bayesian perfo
mance satisfiesRb5ARG, whereRG is the typical overlap
between a solution drawn with probability~5! and the
symmetry-breaking directionB. RG minimizes the free en-
ergy with potentialV(g)5V* (g) at inverse temperature
b51 @8,7#.

As Eq.~17! is satisfied both byRb andRopt, it is tempting
to conclude that Bayesian learning is optimal. If Eq.~17! has
a unique solution, this is obviously the case. However,
~17! may not be invertible. This arises in the two-clust
scenario presented in the preceding section, where
branches of solutions consistent with the assumption of r
lica symmetry exist for some values ofa. In the case of
Bayesian learning, these branches result from the fact
Gibbs’ free energy has two local minima as a function ofR.
RG, the thermodynamically stable state, corresponds to
absolute minimum. Whena changes,RG jumps from one
branch to the other through a first order phase transition
a5aG, where both minima have the same free energy@12#.
Therefore the Bayesian solution, which is the average of
solutions sampled with Gibbs’ probability, presents a jump
the same valueaG as Gibbs’ performance. Thus, the met

r
ull
le
y

t

r
ull
le
y

t

FIG. 3. Optimal learning curves~full line! for the two-cluster
scenario, for cluster parameters corresponding to the upper s
square of Fig. 6. The lowest dashed line corresponds to lear
with a quadratic potential~variance learning!. Here,ac50.68.
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57 3331PHASE TRANSITIONS IN OPTIMAL UNSUPERVISED . . .
stable states of higher performance thanRb , which exist for
a,aG, cannot be obtained through Bayesian learning.

On the other hand, in Sec. III we determined optimal p
tentials whose minimization allows to obtain performan
Ropt. These potentials exist for all the pairs„a,Ropt(a)… ly-
ing on the monotonically increasing branches ofRopt(a),
which satisfy the hypothesis of replica symmetry. Potent
allowing to reach the performances of the upper~Gibbs-
metastable! branch thus exist. It should be noticed that w
cannot determine the position of the jump ofRopt through the
comparison of the free energies corresponding to solut
on different branches at the samea, as was done to deter
mine aG, because adifferentpotential has to be minimized
for each pair„a,Ropt(a)… and, as discussed in Sec. III, the
potentials are measured in the arbitrary units determined
our choicec51.

In order to clarify this problem, we studied the perfo
mance of the minima of the optimal potentials. In fact, t
properties of each of the potentialsVopt(l) may be deter-
mined for any value ofa ~besides the value for which it ha
been optimized! in the same way as those of otherad hoc
potentials, by solving numerically Eq.~14!. Figures 4 and 5
present several learning curvesR(a) obtained with poten-
tials Vopt optimized for overlaps lying on the upper met
stable branch of Gibbs’ learning. They correspond to
same clusters’ parameters as Figs. 1 and 2. Each lear
curve is tangent to the optimal learning curve at the po
„a(Ropt),Ropt… at which the potential was determined. Th
result holds in particular for all the points lying on the hig
performance metastable branch of Bayesian learning, i.e.
a1,a,aG. It is important to point out that the free energ
~11! presents aunique replica-symmetric minimum as
function of R for all these potentials. Thus, these resu
show that the corresponding optimal potentialsVopt allow to
select, among the metastable states of Gibbs learning
one of largest overlap. In particular, the Gibbs’ metasta
states in the upper branch fora,aG are learnable through
the minimization of the corresponding optimal potenti

FIG. 4. Learning curves forr51.1, s50.5 obtained with the
optimal potentials corresponding toRopt50.84, Ropt50.87, and
Ropt50.90 ~full lines!. Only the solutions consistent with th
replica-symmetry hypothesis are shown. Dotted lines: optimal s
tion.
-

ls

s

y

e
ing
t

or

he
e

.

Thus, in the rangea1,a,aG, Bayesian learning is no
optimal. This surprising behavior may arise whenever
curve RG(a) of Gibbs learning presents first order pha
transitions.

It is worth noting that, besides the solutions that verify t
replica-symmetric condition~16!, solutions unstable unde
replica-symmetry breaking with smallerR and slightly
higher free energy also exist. The nature of these state
very different from that of the metastable states of Gib
learning. Whether the typical performance in the case of
double cluster distributions is the one described by
replica-symmetric solution or not remains an open proble

VI. THE PHASE DIAGRAM

In this section we describe, on ther-s plane, all the pos-
sible learning phases that may arise in unsupervised lear
within the two-Gaussian-cluster scenario. As shown in F
6, depending on the values ofr ands, qualitatively different
behaviors of the learning curvesRopt(a) may appear. They
are correlated with the form of the corresponding optim
potentials.

The regions marked with an ‘‘S’’ are regions of variance-
type learning: the optimal potential is a single well wi
Vopt→1` for l→6` if s2,1, and Vopt→2` for l→
6` if s2.1. In these regions, the learning curves increa
monotonically witha, starting atac5u^l2&21u22, as for
quadratic potentials@4#.

For parameter values outside the ‘‘S’’ regions, Vopt→
1` for l→6`, even in the large variance region^l2&
.1 where naively one would expect the potential to have
same asymptotic behavior as fors2.1. Depending on the
value of Ropt, the optimal potential may be a double-we
function of the local fieldg. In the latter case, the optima
learning strategy looks for structure in the data distribut
rather than for directions extremizing the variance. This
more striking on the linêl2&51 corresponding to distribu

-

FIG. 5. Learning curves forr51.2, s50.5 obtained with the
optimal potentials corresponding toRopt50.76, Ropt50.79 and
Ropt50.81 ~full lines!. Only the solutions consistent with th
replica- symmetry hypothesis are shown. Dotted lines: optimal
lution.
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tions with the same second moment in all the directions.
this line, variance learning is impossible andac5`. How-
ever, in the entire light-gray region including this line, pe
formant learning is achieved if the adequate potentia
minimized. The optimal overlap presents jumps fromRopt
50 to finiteR at a fraction of examplesa,ac . In the high-
performance branch, the optimal potential is double-w
with the two minima close to6r, as shown in Fig. 7. Thus
the potential is sensitive to the two-cluster structure, and
minimization results in high performance learning. Forr and
s in the dark-gray regions, a first order transition to largeR
also takes place, but fora.ac . Below the transition, opti-
mal learning is mainly controlled by the variance of t
training set.

In the white regions on both sides of the dark-gray on
no first order phase transitions to high performance learn
occur as a function ofa. In the white region just below the
dark-gray one, the potential changes smoothly from a sin
to a double well with increasingRopt. The two minimas
appear atg50, and move away with increasingRopt, as
shown in Fig. 8. However, as far as these minimas are
sufficiently apart,Ropt remains close to the values obtain
with simple quadratic potentials. Conversely, in the up
white region, which corresponds to^l2&@1, the minima of
the optimal potential are far apart, in a region of large lo
fields, where the patterns’ distribution is vanishingly sma
Thus, in the range of pertinent values ofg the potential is
concave (Vopt9 ,0), and here also, as in the lower white r
gion, the values ofRopt are close to those obtained wit
quadratic potentials@4#.

FIG. 6. Phase diagram of the two-cluster scenario. The th
small squares correspond to the learning curves of Figs. 1, 2, a
n

s

l,

ts

s,
g

le

ot

r

l
.

VII. CONCLUSION

Learning the symmetry-breaking direction of a distrib
tion of patterns with axial symmetry in high dimensions is
difficult problem. In this paper we determined the optim
performances that may be reached if the patterns distribu
has a double-cluster structure in the symmetry-breaking
rection. Depending on the clusters’ size and separation,
learning curves may present several phases with increa
a, including novel first order transitions from low
performance variance learning to high-performance struc

e
3.

FIG. 7. Potentials for optimal learning in the grey regions of t
phase diagram, showing the evolution of the separation betw
minima with a.

FIG. 8. Potentials for optimal learning in the white regions
the phase diagram, showing the appearance of the two minima
get farther apart with increasinga.
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detection. We showed that when the optimal learning cur
present such discontinuities, Bayesian learning may be
optimal. These results rely on the assumption that the s
tion with replica symmetry is the absolute minimum of t
free energies studied. Although we showed that our soluti
satisfy the replica symmetry stability condition, we canno
e

v

s
ot
u-

s

rule out the existence of states of lower energy, but hav
broken replica symmetry.
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