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We determine the optimal performance of learning the orientation of the symmetry axis of a Bet of
=aN points that are uniformly distributed in all the directions but one onNhdimensional space. The
components along the symmetry breaking direction, of unitary vegt@re sampled from a mixture of two
Gaussians of variable separation and width. The typical optimal performance is measured through the overlap
Ropt=B-J*, whereJ* is the optimal guess of the symmetry breaking direction. Within this general scenario,
the learning curveR,,( @) may present first order transitions if the clusters are narrow enough. Close to these
transitions, high performance states can be obtained through the minimization of the corresponding optimal
potential, although these solutions are metastable, and therefore not learnable, within the usual Bayesian
scenario[S1063-651X98)07303-9

PACS numbegps): 87.10+¢, 02.50-r, 05.20-y

I. INTRODUCTION ber of exampleP— + 0, with the fraction of examples
=P/N constant.

In this paper we address a very general problem in the , - .
statistical analysis of large amounts of data points, also Besides these general results, the statistical mechanics

called examplespatterns or training set namely the prob- framework allows to deduce the expression of gptimal
lem of discovering the structure underlying the data setcost functior{5-7], whose minimum is the best solution that
Whether this determination is possible or not depends on th&ay be expected to be learned given the data. The optimal
assumptions one is willing to accefdf]. Several algorithms  cost function depends on the functional structure of the PDF
allowing to detect structure in a set of points exist. Amongfrom which the examples are sampled, and on the fraction
them, principal component analysis finds the directions obf available examples. Its main interest is that it allows to
higher variance, projection pursuit methdd seek direc- deduce the upper bound for the typical performance that may
tions in input space onto which the projections of the datébe expected from any learning algorithm. On the other hand,
maximize some measure of departure from normalityBayes’ formula of statistical inference allows to determine
whereas self-organizing clustering proceduf8k allow to  the probability of the symmetry-breaking direction given the
determine prototype vectors representative of clouds of datdraining set. Sampling the direction with Bayes probability is
The parametric approach assumes that the structure of tloalled Gibbs learning8]. The average of the solutions ob-
probability density function from which the patterns havetained through Gibbs learning, weighted with the corre-
been sampled is known. Only its parameters have to be deponding probability, is called thBayesiansolution. It is
termined given the examples. A frequent guess is that theidely believed that the Bayesian solution is optimal. More-
probability density is either Gaussian or a mixture of Gaus-over, this has been so in all the scenarios considered so far.
sians. The process of determining the corresponding param- In the present paper, we consider a very general two-
eters is calledunsupervised learningbecause we are not cluster scenario, which contains results already reported as
given any additional information about the data, in contrasparticular cases. In fact, two different situations, in which the
with supervised learningin which each training example is pattern distribution is a Gaussian of zero mean and unit vari-
labeled. ance in all the directions but one, have been considered so
It has recently been shown that finding the principal comfar: a Gaussian scenarif®] and a two-cluster scenario
ponent of a set of examples, clustering data with a mixture 0f10,11,8. In the former, the components of the examples
Gaussians, and learning pattern classification from examplgzarallel to the symmetry-breaking direction are sampled
with neural networks may be cast as particular cases of urfrom a single Gaussian. In the latter these components are
supervised learninfg]. In all these problems, the examples drawn from a mixture of two Gaussians, each one having
are drawn from a probability density functidPDPF with unit variance. The learning process has to detect differences
axial symmetry, and the symmetry-breaking direction has tdetween the PDF along the symmetry-breaking direction and
be determined given the training set. As this direction maythe distributions in the orthogonal directions. Seveihoc
be found through the minimization of a cost function, thecost functions allowing to determine the symmetry-breaking
properties of unsupervised learning may be analyzed witldirection have been analyzed for both scenarios. Typically, if
statistical mechanics. This approach allows to establish ththe PDF has a nonzero mean value in the symmetry-breaking
properties of the typical solution, determined in the thermo-direction, learning is “easy”: the quality of the solution in-
dynamic limit, i.e., the space dimensidh— + o0, the num-  creases monotonically with the fractianof examples, start-
ing at@=0. In contrast, if the PDF has zero mean, the de-
viations of the PDF along the symmetry-breaking direction
*Also at Centre National de la Recherche Scientifique. from the PDF in the orthogonal directions depend on the
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second and higher moments. In this case, a phenomenon +oo

calledretarded learning 8] appears: learning the symmetry- J' DA exd —V*(M)]=1, €)

breaking direction becomes impossible when the fraction of -

examples falls below a critical value, . _where DA=exp(—\%2)d\/\27. The different moments
Since we have considered the case of clusters of vanabl@\n> of (2) are

width, we could determine the entire phase diagram of the

two-cluster scenario. Several new learning phases appear, +oo

depending on the mean and the variance of the clusters. In (An}EJ (§:B)"P*(§ |B)d§=f A"P*(N) d\. (4)

particular, if the second moment of the individual clusters is o

smaller than the second moment of the PDF in the orthogo- geyeral examples of function&® have been treated in the
nal directions, first order transitions from low to high perfor- jiterature so faf4,7-11. In the particular case of supervised
mance learning may occur as a functionaofClose to these, |earning of a linearly separable classification task by a single
high performance metastable states exist above the stablgit neural network, the symmetry-breaking directiBnis
states of Gibbs learning, in the thermodynamic limit. One ofihe teacher’svector, orthogonal to the hyperplane separating

the most striking results of this paper is that these high pere classes. The class of pattefis 7=sgn@- £). The cor-
formance metastable states can indeed be learned through %ponding PDF isP*(m\)=2 @(r)\)exp(—AZ/Z)/\/ﬁ

minimization of an optimak-dependent potential, although i.e., V*(\)=—In2 for 7A>0 and+ for 7\ <O0.
they cannot be obtained through Bayesian learning. In the following, we concentrate on the problem of unsu-

Our results have been obtained within the replica @Ppervised learning. We are given #&aining set £
proach with the replica-symmetry hypothesis. We show be— &, .
low that this assumption is equivalent to the more intuitive =l
requirement that the optimal learning curiRg,(«) are in-
creasing functions of the fraction of examples To our
knowledge, this fact has not been noticed before.

The paper is organized as follows. A short presentation o
the problem and the replica calculation are given in Sec. Il
In Sec. Il we deduce the optimal cost functions within the 1
replica-symmetry hypothesis, as well as the condition of P(J|£a)=§H exp{— &+ §12—=V* (&*-3)}Po(J),
replica-symmetry stability. In Sec. IV we deduce and discuss ” )
the optimal learning curves for the general two-cluster sce-
nario. The typical properties of the optimal cost functions inwhere Py(J)= 6(J-J—1) is the assumed prior probability
the complete range of, presented in Sec. V, show that gnd Z=[dJII ,exp{— & £12—V* (£ J)}Po(J) is the
Bayesian learning may not be optimal. Finally, the completeprobability of the training set. By analogy with supervised
phase diagram is described in Sec. VI, as a function of théearning, sampling the direction with probability) is called

p of P=aN vectors sampled independently
with probability densityP* (£ |B). We have tolearn the
unknown symmetry-breaking directidd from the examples
knowing the functional dependence &* on B. Using
ayes’ rule of inference, the probability of a directidn
with J-J=1) given the data is

two clusters’ parameters. Gibbs learning[8].
We consider learning procedures where the direclia
Il. GENERAL FRAMEWORK AND REPLICA found through the minimization of a cost function or energy
CALCULATION E(J;L,). As the patterns are independently drawn, this en-

. _ _ ergy is an additive function of the examples. The contribu-
We consider the general caseMfdimensional vector§,  tion of each patter* to E is given by apotential V that

the patterns or examples of the training set, drawn from agepends on the directiahand on&* through the projection
axially symmetric probability densit* (£ |B) of the form  (calledlocal field) yh=J. &

T

P*(§|B)E(;exp{—%§—v*()\)], (1) B(JLa)= 2 VYY), (6)

277)N/2 M

As the training set only carries partial information on the
whereB is a unitary vector in the symmetry-breaking direc- symmetry-breaking directioB, the directionJ determined
tion, i.e,,B-B=1 (notice that this isnot the usual conven- by the minimization of Eq(6) will generally differ fromB.
tion), and A=¢-B=3%;¢;B;. According to Eq. (1), the The quality of a solutiod may be characterized by the over-
patterns  have  normal  distributions, i.e.,P(x) lapR=B-J.If R=0, J does not give any information about
=exp(—x?/2)/\/27 onto theN—1 directions orthogonal to the symmetry-breaking direction. Conversely,Ri=1 the
B. The distribution(1) in the symmetry-breaking direction is symmetry-breaking direction is perfectly determined.

The statistical mechanics approach allows to calculate the

1 A expected overlaR(«) for any general distributioV* and
—exp — ——V*()\)]. (2)  any general potentid@l, in the thermodynamic limiN,P—
V2w 2 +oo with a=P/N finite. In this limit, we expect that the
energy is self-averaging: its distribution isSepeak centered
Thus, V*(\) introduces a modulation parallel ®; if V* at its expectation value independently of the particular real-
=0 the patterns’ distribution is normal in all the directions. ization of the training patterns. Given the modulatigii,
Normalization ofP* requires different values oR may be reached, depending on the po-

2
P*(\)=
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main lines that allow to derive the typical value Rfcorre-
sponding to a general potentidl

The free energy corresponding to the enerd§) with a
given potentiaM(y) is

tential used for learning. In the following, we sketch the +oo oo
1—R2=aJ Dt [y(t;c)—t]zj Dz exd —V*(\)],

- (149

— oo

+ o0
1 R\/l—R2:af Dt [y(t;c)—t]
F(BN.L)=~ZINZ(BN.Ly), (7) -
+ oo
XJ Dz zexd —V*(\)], (14b
whereg is the inverse temperature addthe partition func- —
tion:
where\ is defined in Eq(12) and y(t;c) is the solution that

_ _ ) 2 minimizes Eq.(13). Introduction of Eq.(14) into Eq. (11
Z(B.N.La) fd‘] X~ BRI L)} D). (®) gives the free energy at zero temperature:

As mentioned before, in the thermodynamic limit the free

energy is self-averaging, i.e., f(Ro)=a f Dt V(y(t;c))f Dz exd —V*(\)].
1 1 (15
lim = F(B,N,L,)= lim = F(B,N,L,), 9
N~>+ocN N4>+00N

If the potentialV(y) is not convex, Eq(14) may have more
than one solution. In that case, the one minimizing @&)
where(- - -) stands for the average over all the possible trainwith respect taR should be kept.

ing sets. The average in the right-hand side of Bj.is These results were obtained under the assumption of rep-
calculated using the replica method: lica symmetry. A necessary condition for the replica-
symmetry hypothesis to be satisfied is
_ 1 —
InZ= IimﬁInZ”, (10 o o
n—0 af Dt [y’(t;c)—l]zf Dz exd —V*(\)]<1,
which reduces the problem of averagin@Ito the one of (16)

averaging the partition function aof replicasof the original

system, and taking the limih—0. The properties of the ith 4/ (t;c)=ay/dt.

minimum of the cost function are those of the zero tempera-

ture limit (8— + =) of the free energy. In the case of differ-

entiable potentialsVv, the integrals are dominated by the 1. OPTIMAL POTENTIAL

saddle point, and the zero temperature free energy fddds AND REPLICA-SYMMETRY STABILITY CONDITION

Given any modulatiotv*, the typical overlagR obtained

f(R,c)= lim lim i F(B,N,L,) through thg minimization (_)f a differentigble potentidimay
foto N boo N be determined as a function ef by solving Egs.(14). The
result is consistent if conditiofl6) is verified. In this sec-
1 2 ) tion, we are interested in tHeestperformances that may be
=——1-R°—2a | Dt W(t;c) . :
2c expected. Recently, a general expression for the optimal po-

tential allowing to find the solution with maximum overlap
Xf Dz eXF[—V*()\)]], (11) Ropt ha_s bge_n deduce@]. This optimal potential de-_

pends implicitly ona throughR,( ), and on the probabil-

ity distribution P* through the modulatiotv*. It was ob-

where tained under the assumption of replica symmetry, which has
been shown to be correct for the particular cases investigated
A=zJ1-R?*+Rt (12 so far. In fact, the stability condition of replica symmetry for

optimal learning is verified whenever the slope of the learn-
In Eqg.(11), R is the overlap between the symmetry-breakinging curves is positive, as will be shown below. For the sake
direction B and a minimumJ of the cost function(6); ¢ of completeness, we first describe an alternative derivation of
=limg_ ,..8(1—q), whereq is the overlap between minima the optimal potential. Following the same lines we used for

of the cost function(6) for two different replicas, and supervised learning6], V, is determined through a func-
tional maximization ofR, given by Eq.(14), with respect to
W(t;c)=min [cV(y)+( y—1)212], (13  V at constantr. As discussed ih6], the parameter sets the

energy units and may be arbitrarily chosen. We usedl
is the saddle point equation. The extremum conditions of théhroughout, without any lack of generality. After a straight-
free energy(11) with respect toR and ¢, df/dR=4f/dc  forward calculation we obtain that the optimal overRg, is
=0, give the following equations fdR andc: given by the inversion of
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2y -1

. and onV*. The minimumJ* of the corresponding energy
) +o0 J Dz zexp(—V*(M)) (6) maximizes the overlaR betweenJ* and the symmetry-
a(Rop) = Ropt fﬁw Dt : breaking directiorB.
J Dz exp(—V*(N\)) The development ot (R,,) for small R,y shows that

170 Rop=0 for all >0 if and only if (\)#0. In that case, for
a<1, Roy=(\)\a, as with Hebb's learning rulg4]. If
where \, given by Eq.(12) reads)\Ez\/ﬁrt + Ry t (N\)=0, two different behaviors may arise: either a continu-
’ o) op opt - . - [
Notice that Eq(17) may be not invertible, i.eRop( @) may ~ ©US transition fromR,,=0 10 Ry~ Va—ac oceurs ata

— _ 2\\ -2 H _
be multivalued. In this case, the correct solution has to b& (1 —(A)) ™%, or the overlap jumps fronRo,=0 to Ropy
selected. >0 through a first order transition at;<a.. In particular,

Vopt is determined through the integration of if (\3)=1, pnly a di_sc_:ontinuous transiti_or_1 may occur since
a.= +. Discontinuities between two finite values Bf;
. also may arise foee> . All these phase transitions appear
|nJ Dz exp(—V*(\))|, E[n the two-cluster scenario that we analyze in the next sec-
—w ion.

, 1-R;
Vopt( Yopt(t)): R? at

(18)
IV. A CASE STUDY: TWO-CLUSTER DISTRIBUTIONS

!

where the argument of/, is given by the saddle-point _ _ o
equation(13) with c=1, i.e., Consider the general two-Gaussian-clusters scenario, in

which the modulation along the symmetry-breaking direction
')’opt(t):t_vc,)pt('yopt(t))- (19 @ is

SinceR is parametrized byr, the cost function leading to P* (\:p,0) = 1 S exd - (A +ep)? 21)
optimal performance is different for different training set is 20\2me=21 202 |

(o
sizes.
Equations(17) and (18) were previously derived by Van s gistribution is a generalization of the one studied by

den Broeck and Reimafi7], who showed that the typical \yatkin and Nada[8], who considered optimal learning for
overlapR, of Bayesian learning satisfies the same equation sters witho=1. If p=0, Eq. (21) corresponds to the
(17) as Rqpi. However, this only guarantees that Bayesiangingle Gaussian scenario studied by Reimabal. [4]. In

learning is optimal if Eq(17) is invertible. In that case itS his' paper we investigate the complete phase diagram in the
unique solution iR,= R,,,;. Otherwise, as is discussed in the planep, a.

example of Sec. IV, solutions witR,,>R;, may exist. The first two moments of E¢21) are
The results derived so far are valid under the replica-
symmetry hypothesis, and must thus satisfy @6). Taking =0 22)

Egs.(17) and(19) into account, a cumbersome but straight-
forward calculation gives

(A% = p?+ a2 (23
+ oo + oo

1—af Dt [7'(t;C)—1]2J' Dz exd —V*(\)] Thus, if =1 only distributions with(A\?)>1 are consid-
o o ered. The optimal solution in that case is close to the one

R2 (1-R2) da(R obtained with a quadratic potentig]. Quadratic potentials

. opt( opt) a( opt) . . .. . L
= R (20)  detect the direction extremizing the variance of the training

@ ARy set, which we callvariance learning We show below that

the optimal overlap may be much larger than the one ob-

Therefore, in the case of optimal learning, the necessary corained through variance learning if the clusters havel.
dition of replica-symmetry stability16) is equivalento the Introducing the expression &* obtained from Eqs(21)
natural requirement that the learning cuRg,(«) is an in-  and(2) into Eq. (17) givesa as a function oR. It turns
creasing function of the fraction of examples for R,  out that, for some values ef, this function has three differ-
#0,1. This relation, which does not seem to have been noent roots forlR,,( ), as is apparent in Figs. 1 and 2. The one
ticed before, is independent of the distributioh) from  Ilying on the branch with negative slope violates the assump-
which the data set is sampled. tion of replica symmetry. The two others correspond to mini-

In the cases where the analytic functien(R,,) given by ~ mas of the corresponding free energies. Figures 1, 2, and 3
Eq. (17) is not invertible, only the branches with positive show the optimal learning curves for several valuep aihd
slope have to be considered, as they trivially satisfy ther in the range not investigated before. The two branches
replica-symmetry condition. Examples of such a behavioR,,(«) with positive slope that satisfy conditiof16), and
are shown in the next section. the dotted line of negative slop@nconsistent with the as-

Hence, given any modulating functiaft sufficiently de-  sumption of replica symmetyyare presented for illustration.
rivable, as far aRR,,# 0,1 there exists an optimal potential The value ofa at which the jump from one branch to the
Vol 7), consistent with the assumptions of the replica cal-other occurs is discussed in the next section. The perfor-
culation, which depends implicitly o through R,p{ ), mance obtained through learning with simple quadratic po-
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FIG. 1. Learning curves for the two-cluster scenario, for cluster FIG. 3. Optimal learning curveéull line) for the two-cluster
parameters corresponding to the lowest small square of Fig. 6. Fujcenario, for cluster parameters corresponding to the upper small
line, optimal learning; dash-dotted lines, lower branch of metastablgquare of Fig. 6. The lowest dashed line corresponds to learning
solutions to optimal learning. Also shown is the replica-symmetrywith a quadratic potentigivariance learning Here, a.=0.68.
unstable curvédotted ling. The lowest dashed line corresponds to
learning with a quadratic potentigvariance learning Here, @y tentials is also presented, to show the dramatic improvement

=3.79,Rqp( a1) =0.84; the Bayesian first order transition occurs atof optimal learning with respect to variance learning for
ac=4.07, Ryp{ag) =0.9; the critical @ for variance learning is  gguble clusters withr< 1.

a.=4.73.
V. BAYESIAN VERSUS OPTIMAL SOLUTIONS

As pointed out in Sec. Ill, Eq(17) may be deduced in
1.0 y T T T y T y two different ways: through the determination of the Baye-
R | sian learning performance, or through functional optimiza-
//"‘" tion. This procedure yields of a cost function for each train-
0.8 ing set sizea whose minimum gives the solution with
maximal overlap.
- k unstable The Bayesian solution to the learning problem is given by
_— Ropt / the average of solutions sampled with Gibbs’ probability. A
06 R rastabl T simple argumenf8] shows that the typical Bayesian perfor-
I ,,:/ metastable ] mance satisfieR,= \Rg, whereRg is the typical overlap
/ - between a solution drawn with probabilitts) and the
T4 symmetry-breaking directioB. Rg minimizes the free en-
ergy with potentialV(y)=V*(vy) at inverse temperature
1 B=1[8,7].
As Eq.(17) is satisfied both byr, andRy, it is tempting
to conclude that Bayesian learning is optimal. If ELi?) has
1 a unique solution, this is obviously the case. However, Eq.
(17) may not be invertible. This arises in the two-cluster
scenario presented in the preceding section, where two
branches of solutions consistent with the assumption of rep-
o lica symmetry exist for some values of. In the case of
. . Bayesian learning, these branches result from the fact that
FIG. 2. Learning curves for the two-cluster scenario, for cluster _. ; - -
ﬁ;lbbs free energy has two local minima as a functiorRof

parameters corresponding to the central small square of Fig. 6. Fu he th d icall bl d h
line, optimal learning; dash-dotted lines, lower branch of metastablgaG’ the thermodynamically stable state, corresponds to the

solutions to optimal learning. Also shown is the replica-symmetry@0Solute minimum. Wher changesRg jumps from one
unstable curvédotted ling. The lowest dashed line corresponds to Pranch to the other through a first order phase transition at
learning with a quadratic potentiglariance learning Here, a; a=ag, where both minima hgve the_ same free end ).
=2.49,R,,( a;) =0.76; the Bayesian first order transition occurs at Therefore the Bayesian solution, which is the average of the
ag=2.52, Ryp( @) =0.81; the criticaler for variance learning is solutions sampled with Gibbs’ probability, presents a jump at
a,=2.10. the same valuexg as Gibbs’ performance. Thus, the meta-

3.00
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FIG. 4. Learning curves fop=1.1, 0=0.5 obtained with the
optimal potentials corresponding t#,,=0.84, R,,=0.87, and
Rop=0.90 (full lines). Only the solutions consistent with the
replica-symmetry hypothesis are shown. Dotted lines: optimal solu
tion.

FIG. 5. Learning curves fop=1.2, c=0.5 obtained with the
optimal potentials corresponding tB,=0.76, R,,=0.79 and
Rop=0.81 (full lines). Only the solutions consistent with the
replica- symmetry hypothesis are shown. Dotted lines: optimal so-
lution.

stable states of higher performance thy) which exist for ) ) o
a<ag, cannot be obtained through Bayesian learning. ~ ThUs, in the ranger;<a<ag, Bayesian learning is not

On the other hand, in Sec. Ill we determined optimal po_optlmal. This surprising behawor may arise whenever the
tentials whose minimization allows to obtain performanceCurve Rg(a) of Gibbs learning presents first order phase
Ropt- These potentials exist for all the paifs,Ryp(@)) ly-  transitions. _ _ _ _
ing on the monotonically increasing branches Ry, ), It. is worth noting that,. t_)eS|des the splunons that verify the
which satisfy the hypothesis of replica symmetry. Potentiald€Plica-symmetric conditior{16), solutions unstable under
allowing to reach the performances of the upg&ibbs- replica-symmetry breaking with smalleR and slightly
metastablg branch thus exist. It should be noticed that wehigher free energy also exist. The nature of these states is
cannot determine the position of the jumpRyf,; through the very .dlfferent from that qf the metastable_ states of Gibbs
comparison of the free energies corresponding to solution§arning. Whether the typical performance in the case of the
on different branches at the same as was done to deter- dou_ble cluster 'dlstrlbu.tlons is the one described by the
mine ag, because differentpotential has to be minimized replica-symmetric solution or not remains an open problem.
for each pair(a,Ry{@)) and, as discussed in Sec. lll, these
potentlals are measured in the arbitrary units determined by VI. THE PHASE DIAGRAM
our choicec=1.

In order to clarify this problem, we studied the perfor- In this section we describe, on theos plane, all the pos-
mance of the minima of the optimal potentials. In fact, thesible learning phases that may arise in unsupervised learning
properties of each of the potentialg,,(\) may be deter- within the two-Gaussian-cluster scenario. As shown in Fig.
mined for any value ofr (besides the value for which it has 6, depending on the values pfando, qualitatively different
been optimizefin the same way as those of othed hoc  behaviors of the learning curvég,(«) may appear. They
potentials, by solving numerically E@14). Figures 4 and 5 are correlated with the form of the corresponding optimal
present several learning curv&®§a) obtained with poten- potentials.
tials V,,; optimized for overlaps lying on the upper meta-  The regions marked with anS” are regions of variance-
stable branch of Gibbs’ learning. They correspond to thdype learning: the optimal potential is a single well with
same clusters’ parameters as Figs. 1 and 2. Each learning,p— + for A — = if o<1, andVop— — for A—
curve is tangent to the optimal learning curve at the pointt> if 0>>1. In these regions, the learning curves increase
((Ropd,Ropy) at which the potential was determined. This monotonically with«, starting ata,=[(\?)—1|72, as for
result holds in particular for all the points lying on the high- quadratic potentialf4].
performance metastable branch of Bayesian learning, i.e., for For parameter values outside the&s™ regions, Vqu—
a;<a<ag. Itis important to point out that the free energy +% for A— =, even in the large variance regign?)

(11) presents aunique replica-symmetric minimum as a >1 where naively one would expect the potential to have the
function of R for all these potentials. Thus, these resultssame asymptotic behavior as fof>1. Depending on the
show that the corresponding optimal potentidls; allow to  value of Ry, the optimal potential may be a double-well
select, among the metastable states of Gibbs learning, tHanction of the local fieldy. In the latter case, the optimal
one of largest overlap. In particular, the Gibbs’ metastabldearning strategy looks for structure in the data distribution
states in the upper branch far<ag are learnable through rather than for directions extremizing the variance. This is
the minimization of the corresponding optimal potential. more striking on the liné\?)=1 corresponding to distribu-
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Learning the symmetry-breaking direction of a distribu-

FIG. 6. Phase diagram of the two-cluster scenario. The threéipn_ of patterns with ax_ial symmetry in high_ dimensions_ is a
small squares correspond to the learning curves of Figs. 1, 2, and Sifficult problem. In this paper we determined the optimal
performances that may be reached if the patterns distribution

tions with the same second moment in all the directions. Of1as @ double-cluster structure in the symmetry-breaking di-
this line, variance learning is impossible ang=cc. How- rection. Depending on the clusters’ size and separation, the
ever, in the entire light-gray region including this line, per- /€aming curves may present several phases with increasing
formant learning is achieved if the adequate potential is¥» including novel first order transitions from low-
minimized. The optimal overlap presents jumps frég, performance variance learning to high-performance structure
=0 to finite R at a fraction of examplea<«.. In the high-
performance branch, the optimal potential is double-well, N1 T 1 7
with the two minima close to- p, as shown in Fig. 7. Thus, ~ V__(7) i i
the potential is sensitive to the two-cluster structure, and its P | |
minimization results in high performance learning. lpand 1 i
o in the dark-gray regions, a first order transition to laRye 0.05 I \ |
also takes place, but far>a.. Below the transition, opti- : i i '

\ ]

i H

1 i

|} !

\ !

——=T
[l T

mal learning is mainly controlled by the variance of the |
training set. ' i
In the white regions on both sides of the dark-gray ones, 0.00 K \ i ;o
no first order phase transitions to high performance learning ' s W
occur as a function of. In the white region just below the AN s S .
dark-gray one, the potential changes smoothly from a single [
to a double well with increasin@R,,;. The two minimas
appear aty=0, and move away with increasirg,y, as -0.05 | ’ 1
shown in Fig. 8. However, as far as these minimas are not o= 14.9
sufficiently apartR,, remains close to the values obtained L - o=18.3 p=065
with simple quadratic potentials. Conversely, in the upper
white region, which corresponds {a?)>1, the minima of ool
the optimal potential are far apart, in a region of large local -15 1.0 -05 0.0 0.5 1.0 1.5
fields, where the patterns’ distribution is vanishingly small.
Thus, in the range of pertinent values ofthe potential is v
concave Yq,<<0), and here also, as in the lower white re-  FIG. 8. Potentials for optimal learning in the white regions of

gion, the values ofR,, are close to those obtained with the phase diagram, showing the appearance of the two minima that
quadratic potentialf4]. get farther apart with increasing.
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detection. We showed that when the optimal learning curvesule out the existence of states of lower energy, but having
present such discontinuities, Bayesian learning may be ndaroken replica symmetry.

optimal. These results rely on the assumption that the solu-

tion with replica symmetry is the absolute minimum of the ACKNOWLEDGMENTS
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