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Coherence resonance in a Hodgkin-Huxley neuron
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We study the nonlinear response of the Hodgkin-Huxley model without external periodic signal to the noisy
synaptic current near the saddle-node bifurcation of limit cycles. The coherence of the system, estimated from
the interspike interval histogram and from the power spectra of membrane potentials and spike trains, is
maximal at a certain noise intensity, so that the coherence resonance occurs. The mechanism of this phenom-
enon is found to be different from previously studied models of coherence resonance and explained in terms of
rigid excitations of periodic oscillations, and the combined effect of amplitude and phase fluctuations.
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One of the major motivations of stochastic resonan
~SR! studies@1–3# is its application in biology, and in par
ticular in excitable neuronal systems. It has been shown b
experimentally@4# and theoretically@5# that the ability of
sensory neurons to process weak input signals can be
hanced by adding noise to the system. Moreover, as it
been shown recently, nonlinear systems with noise can
play SR-like behavior even without external signal@6–9#.
This phenomenon has been calledautonomous SR@6# or co-
herence resonance~CR! @7#. Originally CR has been found
in a simple dynamical system in the vicinity of a saddle-no
bifurcation @6#. Due to nonuniformity of the noise-induce
limit cycle @10#, the signal-to-noise ratio, defined as the pro
uct of the height of the noise-induced peak in the pow
spectrum and the quality factor of this peak, displays a b
shaped maximum as a function of the noise level. In@9# a
general mechanism of CR has been proposed for nonli
dynamical systems at the onset of saddle-node bifurcati
The CR also has been studied in excitable systems@7,8#. In
@7#, CR is studied for the Fitz Hugh–Nagumo model ne
supercritical Hopf bifurcation, using the correlation time a
statistics of the activation and the excursion times as m
sures of coherence. The CR in bursting neuron models w
subthreshold oscillations~Plant and Hindmarsh-Rose mod
els! has also been studied, using interspike interval his
grams and spike train power spectra@8#.

In this paper we study CR in a Hodgkin-Huxley neur
model, which serves as a paradigm for modeling of spik
neurons@11#. We will show that the mechanism of CR in th
system is different from that in the Fitz Hugh–Nagum
model since the Hodgkin-Huxley model is associated wit
saddle-node bifurcation oflimit cycles. In our case, the exci
tation is rigid, that is, there is a strong tendency that no
single oscillation but a train of several periodic oscillatio
are induced by noise. This is due to the tangential natur
the saddle-node bifurcation, where the subthreshold dyn
ics tend to spend more time in the laminar stretch near
‘‘ghost’’ limit cycle with noise providing a mechanism fo
slow escape and reinjection. Another distinct feature of
Hodgkin-Huxley model with additive forcing is that, for
weak noise trains of several periodic oscillations appear
571063-651X/98/57~3!/3292~6!/$15.00
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termittently, which produces phase fluctuation; for a stro
noise large fluctuations in both the amplitude and the ph
of the periodic motion are found. The CR phenomenon fo
Hodgkin-Huxley neuron under synaptic noisy current is stu
ied by analyzing both the time series of the membrane
tential and the classical measures of neuroscience, that is
spike train and the interspike interval histogram~ISIH!. Our
study should help to obtain a more comprehensive und
standing of CR in excitable systems together with the stud
of CR in systems with a Hopf bifurcation@7# and a saddle-
node bifurcation on a circle@6#.

The Hodgkin-Huxley model describes the spiking beha
ior and refractory properties of real neurons and serves
paradigm for spiking neurons based on nonlinear cond
tance of ion channels@11#. The model is given by four non
linear coupled equations, one for the membrane potentiaV,
and three for gating variables,m, n, andh:

dV

dt
5I ion1I ext1I syn,

dm

dt
5

m`~V!2m

tm~V!
,

~1!

dh

dt
5

h`~V!2h

th~V!
,

dn

dt
5

n`~V!2n

tn~V!
,

where

I ion52gNam
3h~V2VNa!2gKn4~V2VK!2gl~V2Vl !.

~2!

Dynamics of the membrane potential is driven by three ty
of currents: ionic currentI ion , external stimulus currentI ext,
and synaptic currentI syn. The ionic currentI ion is related to
the gating variables ofm, n, h and describes the ionic trans
port through the membrane. The constantsgNa , gK , andgl
are the maximal conductances for ion and leakage chann
3292 © 1998 The American Physical Society
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57 3293COHERENCE RESONANCE IN A HODGKIN-HUXLEY NEURON
and VNa , VK , Vl are the corresponding reversal potentia
m` , h` , n` andtm , th , tn represent the saturation value
and the relaxation times of the gating variables. Detai
values of parameters can be found in@11–13#. In this study
we take the external stimulus to be time independent dc
rent I ext(t)5I dc which serves as a bifurcation parameter
the system.

The synaptic current represents the sum of the cur
inputs from all synapses connected to the other neurons.
synaptic current is found to be noisy@14#, which we model
as an additive noise from an Ornstein-Uhlenbeck proces

td

dIsyn

dt
52I syn1A2Dj~ t !, ~3!

FIG. 1. Bifurcation diagram of a Hodgkin-Huxley neuron und
dc current. HereI dc is the bifurcation parameter andV is the mem-
brane potential of the limit states. A solid line represents the st
fixed point, filled and unfilled circles represent membrane poten
of stable and unstable limit cycles, respectively. Inset: The
quencyf of the stable limit cycle for the Hodgkin-Huxley neuron a
a function ofI dc. The dotted line is for increasingI dc and the solid
line for decreasingI dc.
;
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wherej(t) is Gaussian white noise, andD and td are the
intensity and the correlation time of the synaptic noise,
spectively. In numerical simulations we taketd52 msec.
Numerical integration of Eq.~1! has been done using th
fourth order Runge-Kutta method and the exponentially c
related synaptic noise in Eq.~3! using the method of Fox
et al. @15# with the integration time stepDt50.02 msec.

Let us consider first the bifurcations in the system~1! in
the absence of noise (D50). The bifurcation diagram for the
membrane potentialV as a function ofI dc is shown in Fig. 1
@16–19#. The birth of limit cycles occurs atI dc5I c
'6.2 mA/cm2 due to the saddle-node bifurcation of pe
odic orbits. The unstable part of the periodic orbits dies
I dc5I h'9.8 mA/cm2 through the inverse Hopf bifurcation
Thus in the parameter regionI dc,I c the fixed point is the
global attractor of the system, while forI c,I dc,I h the sys-
tem possesses two coexisting stable attractors, the fixed p
and the limit cycle. The dependence of the firing rate a
function of I dc is shown in the inset of Fig. 1.

The focus of interest is the parameter region near the
set of the saddle-node bifurcation of periodic orbits. In o
numerical experiments, we use three subthreshold value
dc currents ofI dc55.0, 5.5, and 6.0mA/cm2. With noise
taken into account, the system either fluctuates around
fixed point or makes an excursion into the region of the lim
cycle, inducing the trains of periodic oscillations of th
membrane potentials. The time series of the membrane
tential V for four different values of noise intensity forI dc
56.0 mA/cm2 are shown in Fig. 2. For small noise inten
sity @Fig. 2~a!# the system spends most of its time fluctuati
around the rest potentialVrest5265 mV, and displays trains
of a few short periodic oscillations, characteristic of the s
called ‘‘rigid excitation.’’ This rigid excitation appears whe
the system in the subthreshold regime spends more tim
the narrow corridorlike neighborhood of the remnants of
limit cycles due to the tangential nature of the saddle-no
bifurcation of limit cycles@20#. The noise-controlled time
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-
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FIG. 2. Time series of the membrane potent
V for I dc56 mA/cm2 for various noise intensity:
~a! D51, ~b! D55, ~c! D510, and~d! D520.
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scale of the system is the mean time to drive the system
the limit cycle region, or activation timeTa . For a weak
noise this time scale is closely akin to the Kramers time
bistable systems and therefore depends onD according to the
exponential Arrhenius law@21# as Ta}exp(const/D). An-
other time scale is the period of oscillations of the lim
cycle, T0. This time scale has mainly a deterministic orig
from the bifurcation structure and depends on noise o
slightly ~see the inset of Fig. 1!. For a weak noise,Ta@T0,
so that in the time series of the membrane potential the
branches, the fluctuations around the fixed point and
periodic oscillation trains, are well separated from ea
other. The system has a pure stochastic nature in this c
With the increase of noise intensity the activation time d
creases rapidly and the mean length of periodic trains
creases. Thus the motion of the system becomes more co
ent @see, e.g., Fig. 2~b!#.

With further increase of noise, activation time becom
very short,Ta,T0, so that the two regimes of the syste
cannot be separated well@Figs. 2~c!, 2~d!#. In this case peri-
odic oscillations become affected by noise itself. Thus
noise affects the dynamics of the system in two ways.
one hand, with the increase of noise the system spends m
time in the oscillating regime which makes the membra
potential more coherent. However, on the other hand, n
also affects the periodic oscillations, leading to the we
known effect of amplitude and phase fluctuations. This t
dency indeed leads to stochastization of the membrane
tential. The competition of these two tendencies should re
to an optimal noise level at which the coherence of the m
tion of the system is maximal, i.e., manifestation of the c
herence resonance.

First, we characterize the effect quantitatively through
power spectraP( f ) from the membrane potential. The pow
spectraP( f ) computed from 200 averages of the pow
spectra for the time series of the membrane potential w
length 131 072 using a fast Fourier transform are shown
Fig. 3 for various values of noise intensity. For a weak no
(D51 in Fig. 3! the height of the noise-induced peak in t
power spectrum is very small. With the increase of no
(D55) the height increases and the peak becomes very

FIG. 3. Power spectra of the membrane potentials in Fig. 2D
51, 5, 10, and 20 from the bottom curve to the top, respectiv
The coherent SNR is calculated from the peak of each power s
tra.
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pronounced. However, with further increase of noiseD
510,20) the height of the peak starts to saturate and
width of the peak increases faster than its height, so that
peak becomes difficult to resolve from the noise backgrou
again. Note that the position of the peak shifts to the right
the noise intensity increases. This is due to the increas
firing rate of the Hodgkin-Huxley neuron asI dc increases
~see the inset of Fig. 1!. To characterize the behavior of th
peak quantitatively, we compute a measure of coherencebs ,
defined in Ref.@6# as the product of the height of the peakH
to its quality factorQs as

bs5HQs , Qs5
vp

Dv
, ~4!

wherevp is the frequency at which the peak occurs andDv
is the width of the peak at the half maximum height. T
peak is fitted using splines and the width of the fitted curve
computed to estimateDv. This quantitybs can be associated
with the signal-to-noise ratio and its dependence on the n
intensity is shown in Fig. 4~a!. The well-expressed maximum
of the curvebs(D) indicates that CR occurs at an optim
noise intensity, for example,D.3 whenI dc56.0 mA/cm2.
Note that asI dc increases the system moves closer to
bifurcation point, leading to a reduction in the size of t
optimal noise intensity.

The occurrence of CR can be more clearly understo
from the analysis of the functional dependence ofH andDv
on the noise. The curves ofH andDv as a function of noise
intensity are fitted to beH;aexp(2b/D) and Dv;c1dD
with appropriate constantsa, b, c, andd @Fig. 4~b!#. The
exponential dependence ofH on D describes the mean es
cape rate from the rest state without action potentials to
oscillatory state with periodic action potentials@Fig. 2~a!#.
The linear dependence ofDv on D is due to the fluctuation
of frequencies of noise-induced oscillations. For a we
noise, coherent signal-to-noise ratio~SNR! increases due to
the sharp increase inH because in this caseDv;c and H
;aexp(2b /D). But for a large noise, coherent SNR d
creases due to the increase inDv becauseDv;dD andH
;a in this regime. The CR in the Hodgkin-Huxley neuro
model is a consequence of these combinations of asymp
behaviors.

The mechanism, described above, differs from CR in
Fitz Hugh–Nagumo model where the Hopf bifurcation tak
place@7#. In the Hodgkin-Huxley system noise induces tra
sitions from the fixed point to a train of several period
oscillations, or rigid excitation, while in the case of the Ho
bifurcation noise kicks the system out of the fixed point lea
ing to a single isolated oscillation only. This difference lea
to different behaviors in statistical measures of the syste
bs . For comparison, we computed a measure of coherenc
the Fitz Hugh–Nagumo model with the same parameter
in @7#. The width Dv ~or Q) of the noise-induced pea
shows a minimum~or maximum! near the optimal noise in
tensity with maximal CR@22# but in the Hodgkin-Huxley
model, the widthDv does not show a minimum as seen
Fig. 4~b!. The main difference between the functional shap
for weak noise is due to the rigid excitations in the Hodgk
Huxley neuron model and isolated oscillations in the F
Hugh–Nagumo model for weak noise. The periodicity

.
c-
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57 3295COHERENCE RESONANCE IN A HODGKIN-HUXLEY NEURON
FIG. 4. ~a! The measure of coherence,bs ,
computed from the power spectrum, versus no
intensityD and~b! the dependence ofH andDv
on D. Rectangles are forI dc56.0 mA/cm2,
circles I dc55.5 mA/cm2, and triangles I dc

55.0 mA/cm2. The solid line is for a fitting
curve H with aexp(2b/D) and the dashed lines
for Dv with c1dD, with constantsa, b, c, and
d.
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oscillations in the case of rigid excitations is quite unifor
so thatDv defined from the power spectrum remains sm
for weak noise. But in the Fitz Hugh–Nagumo model t
intervals between isolated oscillations show strong fluct
tions for weak noise to yield a large value ofDv.

The spike train provides an efficient way to code a
quence of action potentials with nearly the same shape s
the most important information in neuronal systems
widely believed to be coded in the time sequence of ac
potential generations@23#. The spike train is a binary time
series with a value 1 at the time of action potential gene
tions and 0 at other times. We analyzed coherent SNR
spike trains by representing the time series of the memb
potential with length 131 072 as a sum ofd functions:

V~ t !5(
i 51

N

d~ t2t i !, ~5!

wheret i are the time at which thei th spike occurs andN is
the number of spikes in the time series. The power spec
analysis of the coherent SNR of spike trains by fast Fou
transform is shown in Fig. 5, which exhibits CR at nearly t
same value of noise intensity as one from the membr
potential in Fig. 4~a!. This is because the time interval b
tween any two subsequent spikes is quite uniform due to
rigidity of periodic action potential generations, which e
hances the peak structure in the power spectrum and co
ll
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ent SNR. It is quite interesting to find that CR is also w
coded in spike trains in the case of the Hodgkin-Huxley n
rons.

The results of calculation of the ISIH forI dc
56.0 mA/cm2 are shown for various noise intensities in Fi
6. A typical ISIH possesses a maximum close to the m
period of oscillations~reciprocal of the mean firing rate!. For
a weak noise the activation time is very large and the c
tribution of periodic motion to the whole spike train is sma
As a result the distribution of activation times possesse
long tail and a small maximum around the mean period

FIG. 5. Coherent SNR,bs , versus noise intensity,D, from
spike trains forI dc55.0, 5.5, and 6.0mA/cm2.
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oscillations. With the increase of noise the height of the p
increases. This is indeed the result of the decrease of
activation time and the enhancement of the oscillation tra
of the membrane potential. For large enough noise
growth of the height saturates and the width of the pe
increases, as noise leads to an increase in fluctuations ar
the mean firing rate. The crucial point here is that the hei
and the width of the peak depend on noise intensity diff
ently @9#. A measure of coherence for the ISIH can be co
structed in analogy with that for the power spectrum of
membrane potential time series in Eq.~4!,

b i5HQi , Qi5
Tp

DT
, ~6!

whereH is the height of the peak in the ISIH plot,Tp is the
interspike interval of the peak, andDT is the width of the
peak at the half height. The coherence measureb i is shown
in Fig. 7, which displays a well-pronounced maximum. It
found that this coherence resonance occurs at about the
value ofD as one for the coherence measure computed f
the power spectrum in Fig. 4.

Beyond the bifurcation pointI c,I dc,I h the system ex-
hibits a kind of stochastic bistability between two metasta
states, the fixed point and the stable limit cycle separated
an unstable limit cycle. In this case CR can be observed
with the mechanism very similar to the previous case. Fo
weak noise the system spends a long time in the basi
attraction of the fixed point and rarely makes a transition

FIG. 6. Interspike interval histograms atI dc56.0 mA/cm2 for
various values of noise intensity,D51, 5, 10, and 20.
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the limit cycle. For an optimal noise intensity, when the a
tivation time is small and is of order of the period of osc
lations, the dynamics of the system is most coherent. H
ever, larger noise influences dramatically the perio
oscillations leading to the amplitude and phase fluctuat
and therefore destroys the coherence.

In conclusion, we have studied the coherence resona
in the Hodgkin-Huxley neuron model. This model, which
a paradigm for studies of spiking neurons, possesse
saddle-node bifurcation of limit cycles which makes it d
ferent from other models whose CR has been already s
ied. The synaptic noise current affects the dynamic of
system in two ways.

~i! The increase of noise intensity decreases the activa
time so that the contribution of the periodic motion i
creases. This tendency enhances the coherence of the m
brane potential.

~ii ! Noise also results in the amplitude and phase fluct
tions of the periodic motion destroying periodicity in th
system. The competition of these two mechanisms gives
coherence resonance: the coherence of the system~quantified
both from the power spectra of membrane potentials
spike trains and from the interspike interval histogram! is
maximal for an optimal noise level.

The work was supported in part by the Ministry of Ed
cation ~Grant No. BSRI-96-2438!. We would like to thank
H. Kook and S. K. Han for helpful discussions.

FIG. 7. The coherence measure,b i , computed from the inter-
spike interval histogram, versusD for I dc55.0, 5.5, and
6.0 mA/cm2.
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