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Coherence resonance in a Hodgkin-Huxley neuron
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We study the nonlinear response of the Hodgkin-Huxley model without external periodic signal to the noisy
synaptic current near the saddle-node bifurcation of limit cycles. The coherence of the system, estimated from
the interspike interval histogram and from the power spectra of membrane potentials and spike trains, is
maximal at a certain noise intensity, so that the coherence resonance occurs. The mechanism of this phenom-
enon is found to be different from previously studied models of coherence resonance and explained in terms of
rigid excitations of periodic oscillations, and the combined effect of amplitude and phase fluctuations.
[S1063-651%98)00903-9

PACS numbes): 87.22.Jb, 05.40:j

One of the major motivations of stochastic resonancdermittently, which produces phase fluctuation; for a strong
(SR studies[1-3] is its application in biology, and in par- noise large fluctuations in both the amplitude and the phase
ticular in excitable neuronal systems. It has been shown bothf the periodic motion are found. The CR phenomenon for a
experimentally[4] and theoretically{5] that the ability of Hodgkin-Huxley neuron under synaptic noisy current is stud-
sensory neurons to process weak input signals can be ei¢d by analyzing both the time series of the membrane po-
hanced by adding noise to the system. Moreover, as it hdgntial and the classical measures of neuroscience, that is, the
been shown recently, nonlinear systems with noise can digPike train and the interspike interval histograi@iH). Our
play SR-like behavior even without external sigrfié-9].  Study should help to obtain a more comprehensive under-
This phenomenon has been calgtonomous SR6] or co- standing of CR in excitable systems together with the studies
herence resonancéCR) [7]. Originally CR has been found ©f CR in systems with a Hopf bifurcatiofv] and a saddle-
in a simple dynamical system in the vicinity of a saddle-nodenode bifurcation on a circlgg].
bifurcation [6]. Due to nonuniformity of the noise-induced ~ The Hodgkin-Huxley model describes the spiking behav-
limit cycle [10], the signal-to-noise ratio, defined as the prod-ior and refractory properties of real neurons and serves as a
uct of the height of the noise-induced peak in the powemaradigm for spiking neurons based on nonlinear conduc-
spectrum and the quality factor of this peak, displays a bellfance of ion channelgl1]. The model is given by four non-
shaped maximum as a function of the noise level[9ha linear coupled equations, one for the membrane potéevtial
general mechanism of CR has been proposed for nonline@nd three for gating variables, n, andh:
dynamical systems at the onset of saddle-node bifurcations.

The CR also has been studied in excitable systeh@. In dV:|_ 1t
[7], CR is studied for the Fitz Hugh—Nagumo model near dt —on et ey
supercritical Hopf bifurcation, using the correlation time and
statistics of the activation and the excursion times as mea- dm m.(V)—-m
sures of coherence. The CR in bursting neuron models with dat (V)
subthreshold oscillationéPlant and Hindmarsh-Rose mod- @
els has also been studied, using interspike interval histo- dh h.(V)—h
grams and spike train power specf8. at (V)

In this paper we study CR in a Hodgkin-Huxley neuron
model, which serves as a paradigm for modeling of spiking dn n.(V)—n
neurong 11]. We will show that the mechanism of CR in this T TR

n

system is different from that in the Fitz Hugh—Nagumo
model since the Hodgkin-Huxley model is associated with ayvhere
saddle-node bifurcation dimit cycles In our case, the exci-

tgtion is rigid,_that is, ther_e is a strong ten_der_wcy thgt nota |;,.=—gyam3h(V—Vya)—gkn*(V—Vx)—g(V—V)).

single oscillation but a train of several periodic oscillations )

are induced by noise. This is due to the tangential nature of

the saddle-node bifurcation, where the subthreshold dynanynamics of the membrane potential is driven by three types
ics tend to spend more time in the laminar stretch near thef currents: ionic current,,, external stimulus current,;,
“ghost” limit cycle with noise providing a mechanism for and synaptic currert,,. The ionic current;y, is related to
slow escape and reinjection. Another distinct feature of théhe gating variables ah, n, h and describes the ionic trans-
Hodgkin-Huxley model with additive forcing is that, for a port through the membrane. The constagg, gk, andg,
weak noise trains of several periodic oscillations appear inare the maximal conductances for ion and leakage channels,
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where £(t) is Gaussian white noise, ardl and 74 are the
40+ J . . . . . .
7 vesesve s o e o s intensity and the correlation time of the synaptic noise, re-
ool o / % spectively. In numerical simulations we takg=2 msec.
|
!

. Numerical integration of Eq(1) has been done using the
30 N fourth order Runge-Kutta method and the exponentially cor-
related synaptic noise in E¢3) using the method of Fox
kY . et al. [15] with the integration time stept=0.02 msec.
% Let us consider first the bifurcations in the systéhpin
éo 1 the absence of nois®(=0). The bifurcation diagram for the
§

0} 20
(mV) 10

o

2 4 o k]
-20F Ve Ador?)

40k

— o8] membrane potentidl as a function of 4 is shown in Fig. 1
R [16-19. Th% birth of limit cycles occurs atlg=Ic
-8 . . . . ~6.2 wAlcm® due to the saddle-node bifurcation of peri-
0 2 4 6 8 10 odic orbits. The unstable part of the periodic orbits dies at

lac (navem?) l4c=11~9.8 uA/cm? through the inverse Hopf bifurcation.

) _ _ ) Thus in the parameter regidp.<lI. the fixed point is the
FIG. 1. Blfurcatl_on dlagram of a Hodgkln-HuxIey neuron under global attractor of the system, while for<I <!, the sys-
de current, Herd . Is th.e t.)'furcat'on parameter andis the mem- tem possesses two coexisting stable attractors, the fixed point
brane potential of the limit states. A solid line represents the Stabl%nd the limit cvcle. The debendence of the firing rate as a
fixed point, filled and unfilled circles represent membrane potential? fi l 24 h. . thp inset of Fig. 1 9
of stable and unstable limit cycles, respectively. Inset: The fre-unchlor} Ol gc I? .S own I.n he Inset of F1g. " h
quencyf of the stable limit cycle for the Hodgkin-Huxley neuron as tT fethocus ;dllnterZSt tl)s'ft e ?aramfeter 'reglon rg(?tar } e on-
a function ofl 4. The dotted line is for increasing. and the solid ~ S€t O (€ Saddle-noae bifurcation of periodic orbits. In our

line for decreasing .. numerical experiments, we use three subthreshold values of
dc currents ofl .=5.0, 5.5, and 6.0uA/cm?. With noise
andVya., Vi, V, are the corresponding reversal potentials;taken into account, the system either fluctuates around the
m.., h.., n, andr,, 7,, 7, represent the saturation values fixed point or makes an excursion into the region of the limit
and the relaxation times of the gating variables. Detailectycle, inducing the trains of periodic oscillations of the
values of parameters can be found#i—13. In this study membrane potentials. The time series of the membrane po-
we take the external stimulus to be time independent dc cuttential V for four different values of noise intensity fdg,
rent | o,(t)=14; Which serves as a bifurcation parameter of =6.0 wA/cm? are shown in Fig. 2. For small noise inten-
the system. sity [Fig. 2(@)] the system spends most of its time fluctuating
The synaptic current represents the sum of the currerdround the rest potenti®d.s= — 65 mV, and displays trains
inputs from all synapses connected to the other neurons. Thif a few short periodic oscillations, characteristic of the so-
synaptic current is found to be noi§g4], which we model called “rigid excitation.” This rigid excitation appears when
as an additive noise from an Ornstein-Uhlenbeck process: the system in the subthreshold regime spends more time in
the narrow corridorlike neighborhood of the remnants of the
d'syn_ gyt \/ﬁg(t), 3) limit cycles due to the tangential nature of the saddle-node
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TaTqr bifurcation of limit cycles[20]. The noise-controlled time
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(a) (b) FIG. 2. Time series of the membrane potential
40 40 V for 14c=6 wAlcm? for various noise intensity:
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80000 - - y - y - y y pronounced. However, with further increase of noig2 (
=10,20) the height of the peak starts to saturate and the
width of the peak increases faster than its height, so that the
peak becomes difficult to resolve from the noise background
again. Note that the position of the peak shifts to the right as
the noise intensity increases. This is due to the increase in
firing rate of the Hodgkin-Huxley neuron dg. increases
(see the inset of Fig.)1To characterize the behavior of the
peak quantitatively, we compute a measure of coherggce
defined in Ref[6] as the product of the height of the pddk

to its quality factorQg as
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FIG. 3. Power spectra of the membrane potentials in Fig 2: wherew, is the frequency at which the peak occurs ana
=1, 5, 10, and 20 from the bottom curve to the top, respectivelyis the width of the peak at the half maximum height. The
The coherent SNR is calculated from the peak of each power spegeak is fitted using splines and the width of the fitted curve is
tra. computed to estimaté w. This quantityBs can be associated

with the signal-to-noise ratio and its dependence on the noise

scale of the system is the mean time to drive the system ttitensity is shown in Fig. @). The well-expressed maximum
the limit cycle region, or activation tim&,. For a weak Of the curvefBy(D) indicates that CR occurs at an optimal
noise this time scale is closely akin to the Kramers time omoise intensity, for exampld)=3 whenl 4.=6.0 uA/cm?.
bistable systems and therefore depend®arccording to the Note that asl . increases the system moves closer to the
exponential Arrhenius law21] as T,xexp(constD). An-  bifurcation point, leading to a reduction in the size of the
other time scale is the period of oscillations of the limit optimal noise intensity.
cycle, To. This time scale has mainly a deterministic origin ~ The occurrence of CR can be more clearly understood
from the bifurcation structure and depends on noise onlyrom the analysis of the functional dependencéioéindA o
slightly (see the inset of Fig.)1For a weak noiseT ;> T,, on the noise. The curves &f andA w as a function of noise
so that in the time series of the membrane potential the twéntensity are fitted to béd ~aexp(—b/D) and Aw~c+dD
branches, the fluctuations around the fixed point and rarwith appropriate constants, b, c, andd [Fig. 4b)]. The
periodic oscillation trains, are well separated from eachexponential dependence bf on D describes the mean es-
other. The system has a pure stochastic nature in this casgape rate from the rest state without action potentials to the
With the increase of noise intensity the activation time de-oscillatory state with periodic action potentidlsig. 2(a)].
creases rapidly and the mean length of periodic trains inThe linear dependence dfw on D is due to the fluctuation
creases. Thus the motion of the system becomes more cohat frequencies of noise-induced oscillations. For a weak
ent[see, e.g., Fig. ®)]. noise, coherent signal-to-noise rat®NR) increases due to

With further increase of noise, activation time becomesthe sharp increase iH because in this castw~c andH
very short, T,<Tg, so that the two regimes of the system ~aexp(—b /D). But for a large noise, coherent SNR de-
cannot be separated wékigs. 4c), 2(d)]. In this case peri- creases due to the increaseAw becausel w~dD andH
odic oscillations become affected by noise itself. Thus the~a in this regime. The CR in the Hodgkin-Huxley neuron
noise affects the dynamics of the system in two ways. Ormmodel is a consequence of these combinations of asymptotic
one hand, with the increase of noise the system spends mobehaviors.
time in the oscillating regime which makes the membrane The mechanism, described above, differs from CR in the
potential more coherent. However, on the other hand, noisEitz Hugh—Nagumo model where the Hopf bifurcation takes
also affects the periodic oscillations, leading to the well-place[7]. In the Hodgkin-Huxley system noise induces tran-
known effect of amplitude and phase fluctuations. This tensitions from the fixed point to a train of several periodic
dency indeed leads to stochastization of the membrane pascillations, or rigid excitation, while in the case of the Hopf
tential. The competition of these two tendencies should resubifurcation noise kicks the system out of the fixed point lead-
to an optimal noise level at which the coherence of the moing to a single isolated oscillation only. This difference leads
tion of the system is maximal, i.e., manifestation of the co-to different behaviors in statistical measures of the systems,
herence resonance. Bs. For comparison, we computed a measure of coherence in

First, we characterize the effect quantitatively through thehe Fitz Hugh—Nagumo model with the same parameters as
power spectrd@(f) from the membrane potential. The power in [7]. The width Aw (or Q) of the noise-induced peak
spectraP(f) computed from 200 averages of the powershows a minimun{or maximum near the optimal noise in-
spectra for the time series of the membrane potential withensity with maximal CR[22] but in the Hodgkin-Huxley
length 131 072 using a fast Fourier transform are shown inmodel, the widthA @ does not show a minimum as seen in
Fig. 3 for various values of noise intensity. For a weak noise=ig. 4(b). The main difference between the functional shapes
(D=1 in Fig. 3 the height of the noise-induced peak in the for weak noise is due to the rigid excitations in the Hodgkin-
power spectrum is very small. With the increase of noiseHuxley neuron model and isolated oscillations in the Fitz
(D=5) the height increases and the peak becomes very weugh—Nagumo model for weak noise. The periodicity of
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oscillations in the case of rigid excitations is quite uniforment SNR. It is quite interesting to find that CR is also well
so thatA w defined from the power spectrum remains smallcoded in spike trains in the case of the Hodgkin-Huxley neu-
for weak noise. But in the Fitz Hugh—Nagumo model therons.
intervals between isolated oscillations show strong fluctua- The results of calculation of the ISIH forlg,
tions for weak noise to yield a large value dfo. =6.0 wAlcm? are shown for various noise intensities in Fig.
The spike train provides an efficient way to code a se6. A typical ISIH possesses a maximum close to the mean
quence of action potentials with nearly the same shape singseriod of oscillationgreciprocal of the mean firing rateFor
the most important information in neuronal systems isa weak noise the activation time is very large and the con-
widely believed to be coded in the time sequence of actionribution of periodic motion to the whole spike train is small.
potential generationg23]. The spike train is a binary time As a result the distribution of activation times possesses a
series with a value 1 at the time of action potential generatong tail and a small maximum around the mean period of
tions and O at other times. We analyzed coherent SNR for
spike trains by representing the time series of the membrane

potential with length 131 072 as a sum &functions: 180

160}
N 140}
V(=2 at-t), (5) 120
Bg 100} )
wheret; are the time at which th&h spike occurs andll is 80 E
the number of spikes in the time series. The power spectral o} 7
analysis of the coherent SNR of spike trains by fast Fourier Igc = gg b
transform is shown in Fig. 5, which exhibits CR at nearly the 40f .- |dz =50.
same value of noise intensity as one from the membrane 20 .
potential in Fig. 4a). This is because the time interval be- 1 p °

tween any two subsequent spikes is quite uniform due to the

rigidity of periodic action potential generations, which en-  FIG. 5. Coherent SNRS;, versus noise intensityD, from
hances the peak structure in the power spectrum and cohespike trains forl 4.=5.0, 5.5, and 6.0uA/cm?.
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FIG. 6. Interspike interval histograms hj,=6.0 wAlcm? for

various values of noise intensitp,=1, 5, 10, and 20. FIG. 7. The coherence measuy®, computed from the inter-

spike interval histogram, versu® for 14=5.0, 5.5, and
2
oscillations. With the increase of noise the height of the pealg'O pAlCTTE.

increases. This is indeed the result of the decrease of thge |imit cycle. For an optimal noise intensity, when the ac-
activation time and the enhancement of the oscillation traing ation time is small and is of order of the period of oscil-

of the membrane potential. For large enough noise tgyions the dynamics of the system is most coherent. How-
growth of the height saturates and the width of the peak, e |arger noise influences dramatically the periodic

increases, as noise leads to an increase in fluctuations arougdij|ations leading to the amplitude and phase fluctuation
the mean firing rate. The crucial point here is that the height 4 therefore destroys the coherence.

and the width of the peak depend on noise intensity differ- -, concjusion, we have studied the coherence resonance
ently [9]. A measure of coherence for the ISIH can be cony, e Hodgkin-Huxley neuron model. This model, which is
structed in analogy vvjth that_for .the power spectrum of they paradigm for studies of spiking neurons, possesses a
membrane potential time series in B4, saddle-node bifurcation of limit cycles which makes it dif-
T ferent from other models whose CR has been already stud-
Bi=HQ;, Qi=ﬁ, (6)  ied. The synaptic noise current affects the dynamic of the
system in two ways.
(i) The increase of noise intensity decreases the activation
time so that the contribution of the periodic motion in-
creases. This tendency enhances the coherence of the mem-

whereH is the height of the peak in the ISIH pldl,, is the
interspike interval of the peak, amiT is the width of the
peak at the half height. The coherence meagjris shown brane potential
In Fig. 7, Wh!Ch displays a well-pronounced maximum. It is (i) Noise also results in the amplitude and phase fluctua-
found that this coherence resonance occurs at about the same L . . L

tions of the periodic motion destroying periodicity in the

value ofD as one for the coherence measure computed from - : .
P system. The competition of these two mechanisms gives the
the power spectrum in Fig. 4.

. . : coherence resonance: the coherence of the syspeamtified

ibits 3 Kind of stochastic bitabity hetween twh metagiabi20i1 oM the power spectra of membrane-potentals and
i . y DEtw spike trains and from the interspike interval histogyam

states, the fixed point and the stable limit cycle separated b : : .

S . aximal for an optimal noise level.
an unstable limit cycle. In this case CR can be observed also
with the mechanism very similar to the previous case. For a The work was supported in part by the Ministry of Edu-
weak noise the system spends a long time in the basin afation (Grant No. BSRI-96-2438 We would like to thank

attraction of the fixed point and rarely makes a transition toH. Kook and S. K. Han for helpful discussions.
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