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Structure of eigenstates and local spectral density of states: A three-orbital schematic shell mod
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The average shape of the spectral local density of states~LDOS! and eigenfunctions~EFs! has been studied
numerically for a conservative dynamical model~three-orbital Lipkin-Meshkov-Glick model! that can exhibit
strong chaos in the classical limit. Attention is paid to the comparison of the shape of the LDOS with that
known for random matrix models, as well as to the shape of the EFs, for different values of the perturbation
strength. The classical counterparts of the LDOS has also been studied and found to be in remarkable agree-
ment with the quantum calculations. Finally, by making use of a generalization of Brillouin-Wigner perturba-
tion expansion, the form of the long tails of the LDOS and EFs is given analytically and confirmed numeri-
cally. @S1063-651X~97!13012-4#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Recently, growing attention has been paid to the struc
of the so-called local spectral density of states~LDOS! as
applied to both disordered and dynamical systems that
hibit strong chaotic properties~see, for example,@1–6#!. This
quantity, known in nuclear physics as the ‘‘strength fun
tion,’’ is of special interest since it gives information abo
the ‘‘decay’’ of a specific unperturbed state into other sta
due to interaction. In particular, the width of the streng
function defines the effective ‘‘lifetime’’ of the unperturbe
basis state.

Typically, the shape of the LDOS is assumed to be
Lorentzian form~i.e., the ‘‘Breit-Wigner shape’’!, as can be
analytically derived for sufficiently weak coupling. How
ever, in a direct computation of the Ce atom@1#, it was found
that at relatively large distances from its center the LD
has an abrupt decay that is extremely fast~even faster than
the exponential!. This fact, which is quite generic, is due t
the finite range of the interaction in the unperturbed ene
basis@7–9#. As a result, matrix elements of a Hamiltonia
describing a realistic physical system decay very fast aw
from the principal diagonal, thus leading to an effecti
bandlike structure.

Such a band structure of Hamiltonian conservative s
tems can be compared to one known for unitary evolut
operators describing one-dimensional dynamical systems
der periodic perturbations, such as the paradigmatic kic
rotator model~KRM! @10,11#. Another example is an en
semble of Hermitian band random matrices~BRMs!, which
is used to describe quasi-one-dimensional disordered mo
in solid-state physics~see, for example,@12,13# and refer-
ences therein!. The theory of such ‘‘standard’’ BRMs is now
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well developed~see the review@12#!; however, it cannot be
applied, verbatim, to conservative systems, such as isol
atoms, nuclei, atomic clusters, etc. The reason is that
Hamiltonians of these latter systems expressed in the bas
the reordered unperturbed states have an additional lea
diagonal corresponding to the energy density of the unp
turbed Hamiltonian. Band random matrices with such an
ditional leading diagonal are known as Wigner band rand
matrices~WBRMs! ~see @4,8,14–17#!. Unlike the standard
BRMs, the theory of WBRMs is not well developed. On th
other hand, these matrices are currently under close inv
gation, since they are believed to provide an adequate
scription for complex systems~atoms, nuclei, clusters, etc.!,
as well as for dynamical conservative systems with few
grees of freedom, which are chaotic in the classical limit

In this paper we consider a specific dynamical model
this type, namely, the so-called Lipkin-Meshkov-Glic
model @18#. In our study we follow the approach develope
in @4# where the structure of the LDOS and eigenfunctio
~EFs! has been numerically investigated in detail for t
WBRMs. The main result of@4#, which stems from a direc
comparison of the LDOS and EFs, is the discovery of
so-called ‘‘localization in the energy shell’’ for conservativ
systems with chaotic behavior. It is of great interest to ap
the approach suggested in@4# to dynamical systems of inter
acting particles.

In this connection it may be interesting to remark that it
possible to relate specific properties of chaotic eigenstate
such observables as the occupation numbers for sin
particle levels and transition amplitudes~see details in@19–
22#!. The above approach@19–22# has been developed fo
the model of two-body random interaction, by assumi
completely random two-body matrix elements. Thus, it
important to extend this approach to dynamical systems
interacting particles with a chaotic dynamics.

The paper has the following structure. In Sec. II we d
scribe the three-orbital Lipkin-Meshkov-Glick~LMG! model
and discuss its general properties. The classical limit is c

e
70,
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sidered in Sec. III, where the transition to chaos that depe
on the strength of the perturbation is studied. Section IV
devoted to the discussion of the general properties of eig
states and spectrum statistics for the quantum model. In
V we numerically investigate the structure of the LDOS a
eigenfunctions for different values of model parameters.
Sec. VI, we present some analytical and numerical results
the long tails of the LDOS and eigenfunctions. Concludi
remarks are given in Sec. VII.

II. THREE-ORBITAL LMG MODEL

The three-orbital Lipkin-Meshkov-Glick model@18#, or
for short, the LMG model, is known as some simplificati
of the shell-model of the nucleus. It was introduced also
check the validity of approximate many-body techniques,
cluding the random-phase approximation and the Barde
Cooper-Schrieffer~BCS! theory. The symmetric states of th
LMG model, which we will use in our calculations, corre
spond to collective motions that may mimic the collecti
motion of the nucleus.

The model hasV particles distributed among three singl
particle orbitals with the same parity and angular mom
tum. Each orbital isV-fold degenerate. The ground, first, an
second excited orbitals are labeled byr 50,1,2, and the de-
generate states within each orbital are labeled byg
51,2,3, . . . ,V. The energy of each orbital is denoted bye r .
In our calculations, for simplicity~without the loss of gener
ality!, we will set e050.

The Hamiltonian of the model is

H5H01lV, ~1!

where

H05e1F (
g51

V

a1g
† a1gG1e2F (

g51

V

a2g
† a2gG ,

V5m1F (
g51

V

(
g851

V

~a1g
† a0ga1g8

† a0g81a0g
† a1ga0g8

† a1g8!G
1m2F (

g51

V

(
g851

V

~a2g
† a0ga2g8

† a0g81a0g
† a2ga0g8

† a2g8!G
1m3F (

g51

V

(
g851

V

~a2g
† a1ga2g8

† a0g81a0g
† a2ga1g8

† a2g8!G
1m4F (

g51

V

(
g851

V

~a1g
† a2ga1g8

† a0g81a0g
† a1ga2g8

† a1g8!G ,

~2!

where arg
† and arg are fermionic creation and annihilatio

operators obeying the usual anti-commutation relations,
the parametersl,m1 ,m2 ,m3 ,m4 describe the strength of th
perturbation.

The Hamiltonian~2! can be expressed in a much simp
form. To this end we introduce the two-fermion operators
ds
s
n-
c.

n
or

o
-
n-

-

d

Krs5 (
g51

V

arg
† asg , r ,s50,1,2. ~3!

The operatorsK00, K11, andK22 are number operators of th
orbitals 0, 1, and 2; andKrs for rÞs are particle raising and
lowering operators, respectively. The commutation relatio
for Krs are

@Krs ,Kr 8s8#5Krs8d r 8s2Kr 8sd rs8. ~4!

As a result, the Hamiltonian can be written as a function
Krs ,

H5H01lV, H05e1K111e2K22, V5(
t51

4

m tV
~ t !,

~5!

where

V~1!5K10K101K01K01, V~2!5K20K201K02K02,

V~3!5K21K201K02K12, V~4!5K12K101K01K21.

~6!

The nine operatorsKrs have a very important property
namely, they are invariant under the interchange of
single-particle-state labelsg. Thus, the Hamiltonian also is
invariant under the interchange ofg and conserves the per
mutation symmetry of the labelsg. This makes it possible to
divide the Hilbert space into subspaces according to per
tation symmetry. In our quantum calculations, we use a s
space composed of the so-called symmetric states. A co
nient basisumn& for such a subspace can be obtained
operating the symmetric raising operatorsK10 andK20 on the
state with all theV particles in the ground orbital, labeled b
u00&,

umn&5C~m,n!K10
mK20

n u00&, ~7!

where C(m,n) is the normalizing coefficient. These stat
umn& are eigenstates of the number operatorsK11 and K22
with m being the number of particles in the orbital 1 andn
the number of particles in the orbital 2. By conservation
particles number,V5K001K111K22, the population of the
ground orbital isV2m2n. The dimension of the symmetri
subspace isN5(V11)(V12)/2. Notice thatu00&5a0V

†
••

•a02
† a01

† u00•••0&, and therefore,umn& are antisymmetric un-
der interchange of labelg.

From Eq.~4! it is seen that the particle raising operato
K10 and K20 commute ~as a consequence of their two
fermionic feature!, and therefore, the stateumn& in ~7! is
symmetric under the interchange of the order of raising p
ticles. In this sense, raising fermions from the ground orb
to the two excited orbitals is similar to creation of boson
Indeed, resorting to the generator coordinate method
proach to the dynamic group representation, a boson re
sentation has been found for the symmetric states@23,24#.
The above basis states in the boson representation are
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umn&5
~b1

†!m~b2
†!n

A~m11!! ~n11!!
u00& ~8!

wherebr
† are creation operators of bosons. The relations

tween the operatorsKrs and the creation and annihilatio
operators of bosonsbr

† andbr are
e
b

ts
e-

Krs5br
†bs

Kr05K0r
† 5br

†AV2b1
†b12b2

†b2

@br ,bs
†#5d rs , @br ,bs#5@br

† ,bs
†#50 ~9!

for r ,s51,2. Making use of these relations it is easy now
obtain the expressions for the matrix elements ofV(t)
^m8n8uK10K10umn&5A~V2m2n!~V2m2n21!~m11!~m12!dm8,m12dn8,n ,

^m8n8uK20K20umn&5A~V2m2n!~V2m2n21!~n11!~n12!dm8,mdn8,n12 ,

^m8n8uK21K20umn&5Am~V2m2n!~n11!~n12!dm8,m21dn8,n12 ,

^m8n8uK12K10umn&5An~V2m2n!~m11!~m12!dm8,m12dn8,n21 . ~10!
ly.
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which can also be found from the commutation relations~4!;
see@25#.

The statesumn& are eigenstates ofH0 with eigenenergies

Emn
0 5me11ne2 . ~11!

It is convenient to rearrange the eigenstates ofH0 in order of
increasing energy, and we will label them byuf i&,

H0uf i&5Ei
0uf i&, Ei 11

0 >Ei
0 . ~12!

Correspondingly, the eigenstates of the total HamiltonianH,
also reordered in energy, will be labeled byuca&

Huca&5Eauca&. ~13!

In our numerical computations of the LMG model, w
takeV540; therefore, the dimension of the symmetric su
space isN5861. As to the choice ofe1 ande2, we assume,
without loss of generality,e151.1 ande251.61.

The expressions forV(t) in Eqs. ~6! and ~10! show that
eachV(t) couples the basis stateuf i& with only two other

FIG. 1. Global structure of the Hamiltonian matrix. The poin
represent the nonzero off-diagonal elements^f j uVuf i& of the
HamiltonianH.
-

statesuf j& with the same energy differenced(t)5uEi
02Ej

0u,
where d(1)52e1 , d(2)52e2 , d(3)52e22e1, and d(4)

52e12e2. The average coupling strengthv25^Vi j
2 & can be

found by averaging over the nonzero matrix elements on
Similarly, for eachV(t) one can introduce (v (t))25^(Vjk

(t))2&,
with the average taken over only the nonzero matrix e
ments of V(t), respectively. Therefore,r (t)[v (t)/d(t) is a
natural measure of the strength ofV(t) with respect to the
energy distance between the basis states coupled byV(t). The
parametersm t in Eq. ~5! are determined by the condition tha
r (t)51 for t51,2,3,4, so that, on average, the relati
strengths ofV(t) are the same. Under this condition, we ha
m1'0.0116, m2'0.0169, m3'0.0158, andm4'0.00439,
and the estimate of the average coupling strength isv
'2.24.

The global structure of the Hamiltonian matrix is pr
sented in Fig. 1, where points represent nonzero off-diago
elementŝ f i uVuf j& of the HamiltonianH. As one can see
the matrix is sparse and bandlike. More precisely, the n
zero elements of the perturbation form only eight curv
since a basis stateuf i& is coupled byV to at most eight other
basis states. The two inner curves result from the contri
tion of V(4), while the two outer curves come fromV(2).
Since d(1)52.2'd(3)52.12, the curves corresponding
V(1) andV(3) are very close to each other and are not se
rated in the figure. The half-band widthb depends onEi

0 and
can be analytically estimated to beb'3Ei

0/e2 for Ei
0,E8,

and b'2V26(Ei
02E8)/e2 for Ei

0.E8, where E8
'2Ve2/3. In particular, the maximum width~in the center
of the band! is bmax'2V.

The unperturbed density of statesr(E0) of H0 is shown
in Fig. 2~a!, and turns out to be in agreement with the es
mater(E0)'b/d(2). The perturbed density of statesr(E) is
shown in Fig. 2~b! for l52.0. For a better comparison o
r(E) with r(E0), it is convenient to rescale to the same to
energy interval, namely,r(E)→rn(E)5nr(En), wheren is

n5
~E8612E1!

~E861
0 2E1

0!
. ~14!
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Here,E861 andE861
0 are the highest eigenenergies ofH and

H0, respectively. The ground-state energy of the pertur
Hamiltonian has also been shifted to coincide with the
perturbed one. From the result of such rescaling, show
Fig. 2~c!, one can conclude that the rescaled perturbed d
sity of states is similar to the unperturbed one. For wea
perturbations,l<1, the correspondence is much bett
From Fig. 2~c! one can also see that the peak ofr(E) is
shifted a little towards the center of the spectrum. Moreov
for even stronger perturbations, the peak has been foun
be at the center of the spectrum. These properties of
global structure of the Hamiltonian and of the density
states will be used below when we discuss other propertie
the model.

III. THE CLASSICAL LIMIT

The classical limit of the symmetric subspace of the LM
model can be obtained by two methods. One method

FIG. 2. ~a! Unperturbed density of statesr(E0) of H0. ~b! Den-
sity of statesr(E) of the systemH for l52. ~c! The rescaled
density of statesrn(E) for l52 ~solid histogram! compared with
the unperturbed density of statesr(E0) ~dashed histogram!.
d
-
in
n-
r

.

r,
to

he
f
of

as

used in@25# and consists in the direct study of the motion
coherent states in the limitV→`. The other method, which
will be used here, is based on the boson representation; h
ever, since the boson representation of the symmetric st
is obtained via the coherent-state representation, the
methods are basically equivalent.

In order to obtain the classical limit, we introduce th
transformation,

br
†5AV

2
~qr2 ipr !, br5AV

2
~qr1 ipr !, ~15!

for r 51,2. According to Eqs.~9! and ~15!, qr and ps obey
the following commutation rules:

@qr ,ps#5
i

V
d rs . ~16!

Therefore, the factor 1/V plays the role of Planck constan
Letting the particles numberV→`, while keeping constan
the following parameters

e185e1V, e285e2V, m t85m tV
2, t51,2,3,4,

~17!

one obtains the classical counterpart of the HamiltonianH,

Hcl5Hcl
0 1lVcl, ~18!

where

Hcl
0 5

e18

2
~p1

21q1
2!1

e28

2
~p2

21q2
2!,

Vcl5(
t51

4

m t8Vcl
~ t !

5m18~q1
22p1

2!~12G/2!1m28~q2
22p2

2!~12G/2!

1
m38

A2
@~q2

22p2
2!q112q2p1p2#A12G/2

1
m48

A2
@~q1

22p1
2!q212q1p1p2#A12G/2, ~19!

with G5q1
21p1

21q2
21p2

252(b1
†b11b2

†b2)/V<2. Notice
that the perturbationVcl depends also on momentum var
ables.

In order to understand the qualitative properties of
classical model, we have plotted the Poincare´ surfaces of
section at different energies. As in@23,25#, it was found that
regular regions of phase space are gradually destroyed w
l increases. However, due to the specific form of the cla
cal HamiltonianHcl in Eq. ~19!, it has been found that the
motion on low- and high-energy surfaces can exhibit m
chaotic features than on the medium-energy surfaces. T
typical examples forl50.9 are shown in Fig. 3. The firs
figure, Fig. 3~a!, shows the surface of section at energyE
510. It can be seen that trajectories on this energy surf
are chaotic, except in a small region. The next, Fig. 3~b!,
corresponds to the energyE539, in the middle of the energy
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FIG. 3. Poincare´ surfaces of section on the (q2 ,p2) plane withq150 for l50.9 and~a! E510, ~b! E539, and~c! E557.
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region. Here one can distinguish three regular islands.
nally, Fig. 3~c! corresponds to the energyE557 in the high-
energy region. Here most trajectories are seen to be cha
with some remaining regular islands. Note that the cen
region in Fig. 3~c! is energetically inaccessible. Whenl in-
creases to 2.0, it has been found that almost all regula
lands disappear and the system is nearly totally chaotic~Fig.
4!.

The above peculiar behavior is due to the particular str
ture of the perturbationVcl . Indeed, at energyE539, the
value ofG can be closer to 2 than for the case withE510.
Therefore, due to the terms containing (12G/2) in Eq.~19!,
the perturbation at the energyE510 is stronger than atE
539. For high energies, instead, sinceG is quite close to 2,
the derivatives]Vcl /]pi and]Vcl /]qi can be large and, as
consequence, the motion at high energies (E557) is more
irregular than that at the middle ones.

IV. GENERAL PROPERTIES OF EIGENSTATES
AND SPECTRUM STATISTICS

In the preceding section, we have discussed the clas
counterpart of the LMG model. In particular, we showed th
for not very large perturbations, the classical motion on lo
and high-energy surfaces is more irregular than on
middle ones. In this section, we study some general pro
ties of the quantum model, which are related to the ab
classical features.

In Figs. 5 and 6 we show four typical eigenstatesuca& of
the total HamiltonianH for l50.9 anda550–53 and 430–
433, respectively, in the basis statesuf i& ~many-particle
states of the unperturbed HamiltonianH0). For low levels
a550–53, the statesuca& mainly occupy the region
i-

tic
al

s-

-

al
t
-
e
r-
e

i 50 –200 of the basis statesuf i&, and the expansion coeffi
cients look random in the region. For the levels in the mid
of the energy spectrum,a5430–433, the components of th
eigenstatesuca& are mainly distributed in the region
i 5200–700, but the expansion coefficients do not appea
completely random. For example, the coefficients^f i uca&
for a 5433 seem to be random, without any structure;
stead, fora 5431, they look sparse and some structure
seen. These figures suggest that eigenstates with low e
gies are more chaotic in the regioni P@1,200# than those
with middle energies in the regioni P@200,700#. This is also
confirmed by nearest-level-spacing distributions. In Fig
we plot the nearest-level-spacing distributionsP(s) for eight
different regions in the energy spectrum ofH for l50.9. In
order to achieve better statistics we have diagonalized
Hamiltonian with five different values ofl close tol50.9
and put together the unfolded sequencesDEa . As expected,
the histograms ofP(s) for the lowest- and highest-energ
regions are closer to the Wigner-Dyson distribution~dashed
lines! than to the Poisson distribution~dashed-dotted lines!,
while for a in the interval@440,550#, P(s) is closer to the
Poisson distribution. On the other hand, whenl increases to
2, the level spectrum distributionP(s) becomes very close to
the Wigner-Dyson distribution, even in the middle ener
region.

The above numerical results are related to properties
the perturbationV, which are determined by the four oper
torsK10K10, K20K20, K21K20, andK12K10. So, one needs to
study only nonzero matrix elements of these four operat
For example, according to Eq.~10!, for a fixed basis state
uf i&, there is only one basis stateuf j& for which the matrix
element^f j uK10K10uf i& is nonzero. Therefore, the nonze
FIG. 4. Same as in Fig. 3 forl52 and~a! E54, ~b! E543, and~c! E562.
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matrix elements ofK10K10 can be regarded as a function ofi
only. The same is true for the other three operators.
dependence of nonzero matrix elements of the above
operators oni is presented in Fig. 8. Several features can
seen from this figure. First, on average, the nonzero ma
elements ofm1K10K10 are relatively large in the low-energ
region. Second, apart from the two edges, the average va
of the nonzero matrix elements ofm2K20K20 are similar in
different energy regions. However, in the middle of the e
ergy region, the operatorm2K20K20 has many very smal
nonzero matrix elements. Third, the matrix elements
m3K21K20 are relatively large, on average, in the high-ene
region. Finally, the variation of the matrix elements
m4K12K10 in different energy regions is not so large as co
pared to the other three operators. As a result, the pertu
tion is stronger in the low- and high-energy regions than
the middle-energy region.

FIG. 5. Four typical eigenstatesuca& of the HamiltonianH for
l50.9 in the basisuf i&; ~a! a550, ~b! a551, ~c! a552, ~d! a
553.
e
ur
e
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-
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-
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n

V. STRUCTURE OF LDOS AND EIGENFUNCTIONS

In this section we discuss the shape of the LDOS and
eigenfunctions for the LMG model, we study the classic
counterpart of the LDOS, and finally we discuss to wh
extent the LMG model can be associated with a band rand
matrix model.

A. Structure of the LDOS and eigenfunctions

The so-called local spectral density of states~LDOS! for
an unperturbed stateuf j& is defined as

wj~E!5(
a

uCa j u2d~E2Ea!, ~20!

whereEa is the eigenenergy of the perturbed eigenstateuca&
and Ca j5^f j uca&. The functionwj (E), also known as the
‘‘strength function’’ or ‘‘Green spectra,’’ is quite importan

FIG. 6. Same as in Fig. 5 for~a! a5430, ~b! a5431, ~c! a
5432, ~d! a5433.
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FIG. 7. Histograms of the nearest-level-spacing distributionsP(s) for eight energy regions of the HamiltonianH with l50.9. ~1! 1
,a,110, ~2! 110,a,220, ~3! 220,a,330, ~4! 330,a,440, ~5! 440,a,550, ~6! 550,a,660, ~7! 660,a,770, ~8! 770,a
,861. The dashed and dashed-dotted curves represent the Wigner-Dyson and Poisson distributions, respectively. Each hist
obtained by diagonalizing five different Hamiltonians with values ofl close to 0.9.
tu
e

an

as
for the understanding of generic properties of the quan
model. In particular, the LDOS shows how the unperturb
stateuf j& is coupled to the exact statesuca& with the specific
energyEa . The width of this function~‘‘spreading width’’!
m
d
defines the energy range associated with the ‘‘lifetime’’ of
unperturbed stateuf j&.

The form of the LDOS for band random matrices h
been analytically studied by Wigner@14#; see also@3#. Par-
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FIG. 8. Nonzero matrix elements of the four operators~a! m1K10K10, ~b! m2K20K20, ~c! m3K21K20, and~d! m4K12K10. Each operator
couples a basis stateuf i& to at most only one other basis stateuf j&.
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ticularly, it was shown that when perturbation is not large
LDOS has the form

wBW~E2Ej
0!5

G/2p

~E2Ej
0!21G2/4

, ~21!

which is nowadays known as the Breit-Wigner~BW! law.
Here,G is the half-width of the distribution. For larger pe
turbations, the form of the LDOS becomes model depend
and in the intermediate region can be approximately
scribed by a Gaussian distribution@26#.

Another important quantity is the shape of eigenfunctio
~EFs!

Wa~E0!5(
j

uCa j u2d~E02Ej
0! ~22!

in the unperturbed energy basis. In our numerical calcu
tions of the LDOS and EFs for the LMG model, in order
suppress fluctuations, we have taken averages over 20
individual distributions in the interval 331< j <530 for the
LDOS and 331<a<530 for the EFs. The averaged distrib
tions will be denoted byw(E) andW(E0), respectively. Be-
fore averaging, we should first expresswj (E) and Wa(E0)
with respect to their centroids, respectively. For the LDO
the centroid ofwj (E) is just Ej

0 @2#,
e

nt
-

s

-

of

,

Ej
05(

a
EauCa j u2, ~23!

so that we can express the LDOS aswj (E2Ej
0). On the

other hand, the centroid ofWa(E0), labeled byea , is de-
fined by

ea5(
j

Ej
0uCa j u2, ~24!

and Wa can be expressed as a function of the shift (E0

2ea).
The dependence of the shape of the LDOS and EFs on

perturbation is presented in Fig. 9. The left column gives
LDOS and the right column shows the EFs.~Notice that the
vertical scale depends on the value ofl.!. The first remark is
that the shapes of the LDOS and of the EFs are quite sim
when the perturbation is not large (l<0.9). On the other
hand, with increasingl, they start to deviate from eac
other. Another result is that for not large perturbation,l
<0.9, there seem to be large peaks that are not washed
by the averaging process over 200 distributions. In fact, t
come from dynamical interference~correlation! effects,
which will be explained in Appendix B.
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FIG. 9. Averaged LDOSs~left column histograms! and eigenfunctions~EF! ~right column histograms! for the LMG model with different
values ofl. Dashed and dashed-dotted curves are fitting curves to the BW and Gaussian forms, respectively.
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The dashed curves in Fig. 9 correspond to the best fi
the BW form and the dashed-dotted curves correspond to
best fit to the Gaussian form. The fitting was made here
the central parts of the LDOS and EFs. Specifically, negle
ing the long tails, we chose for the fitting only the data w
w andW larger than 0.01.

In Fig. 9 it can be seen that forl50.5 the central parts o
both distributions can be well fitted by both the BW a
Gaussian forms~however, the agreement with the Gauss
form extends to the region of the tails!. For stronger pertur-
bationl50.9, the distributions can still be fitted quite we
by the Gaussian form. Finally, when the perturbation is v
strong, for example,l52.0 the LDOS and EFs deviate, a
expected, from both the BW and the Gaussian forms.

The difference between the LDOS and the EFs for la
perturbationsl52.0 is quite evident; however, one shou
note that the LDOS is plotted in the perturbed energy ba
while the EF is plotted in the unperturbed one. Therefore
order to make the comparison meaningful, one should
cale the distribution in a proper way. We use the same
caling as in Fig. 2~c!. After this rescaling~see Fig. 10! they
look more similar to each other than in Fig. 9.

B. The classical limit of LDOS

The classical counterpart of the LDOS, in short, the cl
sical LDOS, labeled bywcl(E2Ej

0), can be defined as th
probability that a phase point, which belongs to the to
corresponding to the quantum numbersmj and nj of uf j&,
has total energyE @4#. It is expressed as a function of th
distance (E2Ej

0) whereEj
0 is the unperturbed energy of th

torusmj ,nj . According to Eq.~15!, in the limit V→`, we
have

br
†br

V
5

~pr
21qr

2!

2
. ~25!

Thus, the torus corresponding tomj andnj is that with (p1
2

1q1
2)52mj /V and (p2

21q2
2)52nj /V.

In analogy to the quantum case, the classical LDOS w
averaged over 200 different tori. In Fig. 11, we show a co
parison between the quantum and classical LDOS fol
50.3, 0.5, 0.9, and 2.0. As discussed in Appendix B,
LDOS for l50.3 depends on strong dynamical quantu

FIG. 10. A comparison between the rescaled LDOSwsc(E)
~solid histogram! and the EFW(E0) for l52 ~dashed histogram!.
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correlations; as is seen from the figure, in the classical li
these correlations disappear. At the same time, the shap
the classical LDOS is, on average, close to the quantum
apart from the tails, which are of quantum origin and are d
to tunneling effects. The data also show that, by increas
the perturbation, the agreement becomes better. The m
difference forl52.0 is that in the center the LDOS is lowe
than the classical LDOS. This may be related to a res
given in Ref.@3# that there is a local minimum in the cente
of the LDOS for relatively strong perturbations.

C. A band random matrix model

Recently it has been shown that realistic conservative s
tems with chaotic properties can be approximated by b
random matrices@1,7–9#. Therefore, it is very interesting to
check whether the Hamiltonian of the LMG model, whic
does not contain any random matrix element, see Eq.~10!,
can be associated with an ensemble of random matrices
be as close as possible to the dynamical model, we introd
here band random matrices of the form

Hran5H01lVran , ~26!

whereH0 is the same as for the LMG model, see Eq.~5!, and
Vran is obtained by replacing the nonzero matrix elements
V of the LMG model by random numbers with Gaussi
distribution. The mean value of the matrix elements (Vran)kl
is zero and the variance, averaged over the nonzero m
elements, is taken to be the same as in the dynamical L
model ^(Vran)kl

2 &5^Vkl
2 &.

Numerical data for both the LDOS and EFs ofHran are
presented in Fig. 12. Averages have also been taken over
LDOSs and EFs, respectively, in the central region of
spectrum, as in the calculations of the LMG model. Intere
ingly, these results are similar to those found for Wign
band random matrices@3#; that is, for small perturbations th
central part of the LDOS is of the BW form, while in th
transition region when the perturbation is relatively strong
can be fitted to the Gaussian form; for stronger perturbati
it can be fitted approximately to the semicircle law

w~E!5
2

pR0
2
AR0

22E2. ~27!

From Figs. 12 and 9, it can be seen that the shape of
LDOS and EFs ofHran for l50.3, 0.5, and 0.9 are muc
smoother than the corresponding LDOS and EFs of the LM
model. This can be explained by the randomness
(Vran)kl ; see Appendix B. Another feature is that the cent
parts of the LDOS and of the EFs forl50.3–0.9 in Fig. 12
are lower than those for the LMG model. This also is
effect of interference. Finally, comparing the two figures,
can be seen that forl<0.9 the central parts of LDOS an
EFs of the LMG model are roughly similar to those ofHran .
Thus, when perturbation is not very large, the LMG mod
can be associated with the above band random matrix m
~26!.
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FIG. 11. Classical counterparts of the LDOS~dashed-dotted curves! for ~a! l50.3,~b! l50.5,~c! l50.9, and~d! l52. For comparison
the corresponding LDOSs are also plotted~solid histograms!.
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VI. LONG TAILS OF LDOS AND EIGENFUNCTIONS

In the preceding section, we have discussed the cen
parts of LDOS and EFs. In this section we study their lo
tails with the help of perturbation theory since, as discus
in Appendix A, long tails are always in the perturbative r
gion.

First we consider the case of smalll for which the coef-
ficients uCa j u decrease very fast asuEa2Ej

0u increases. Let
us start with the left tails of EFs,Ej

0,,Ea , with Ea in the
middle energy region. From Eq.~A4!, we have

Ca j
2 [ z^f j uca& z25U^f j ulVuca&

Ea2Ej
0 U2

. ~28!

As indicated in Sec. II, there are only eight basis states
can be coupled with a given basis stateuf j& by the pertur-
bation V. Denote these states byuf l&, l 5 l 1 ,l 2 , . . . ,l 8 in
order of increasing energy. Notice that since the energy
ferencesd(t) are generally much larger than the local lev
spacings@about 0.1, on average; see Fig. 2~a!#, there are
many basis states located between each two of the a
eight statesuf l&. Therefore, if the termuCaku2 decreases fas
enough with decreasingk in the regionEk

0!Ea , the compo-
nentuCaku for k5 l 8 will be much larger than the sum of th
other seven components; then,
ral
g
d

-

at

f-
l

ve

Ca j
2 '

~lVjl 8
~2!!2

~Ea2Ej
0!2

Ca l8
2 . ~29!

Following the procedure given in Appendix D of Ref.@1#,
one obtains the following estimate for the left tails of th
averaged EFs:

W~j!}expH 22j lnS j

e

2e2

lv ~2!D J ~30!

wherej5uEa2Ej
0u/2e2 and v (2) is the average strength o

V(2) in the low-energy region@Vjl 8
(2) in Eq. ~29! is in the

low-energy region#.
For the right tails of EFs,Ej

0@Ea , similar arguments lead
again to Eq.~30!, with v (2) changed to the average streng
of V(2) in the high-energy region, which, according to Fig.
is approximately equal to the one in the low-energy regio

To obtain an expression for the tails of LDOSs foruf j&
with Ej

0 in the middle energy region, we assume that in t
regions of tails the shapes of different eigenstates are sim
on average; that is,

Ca l8
2̄ 'Ca8 j

2̄ ~31!

for Ea82Ej
0'Ea2El8

0 . Then Eq.~29! gives
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FIG. 12. Same as in Fig. 9 but for the band random matrix modelHran . The solid curve for the LDOS atl52.0 is the fitting curve to
the semicircle law, Eq.~27!, with R0'23.9.
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Ca j
2 '

~lVjl 8
~2!!2

~Ea2Ej
0!2

Ca8 j
2 , ~32!

and, for the two tails of the LDOS, one obtains the sa
expression as Eq.~30!, with j5uEa2Ej

0u/2e2 and v (2) the
average strength ofV(2) in the middle energy region@Vjl 8

(2) in
Eq. ~32! is in the middle-energy region#.

When l is not small, as indicated in Appendix B, mo
research work is needed in order to obtain an analytical
pression for the tails of EFs and LDOSs. However, we c
assume that the tails obey a law somewhat similar to
~30!, with v (2) changed tov ~since whenl is not small, the
tails are determined not only byV(2), but also by the other
V(t)). Here, similar to the smalll case,v is the average
strength of the perturbation in the corresponding regions:
the left and right tails of EFs, the average should be take
the low- and high-energy regions, respectively, while for
two tails of the LDOS the average should be taken in
middle-energy region. According to Fig. 8, the value ofv in
the low-energy region is larger than that in the high-ene
region, so the right tail of the EF should drop faster than
left one, while the two tails of the LDOS should be simila

We have numerically computed the tails of both t
LDOS and EFs for the case of weak perturbationl50.1, and
the results are shown in Fig. 13 in logarithm scale. Ea
point represents an average over 200 states. It can be
that the tails of LDOSs and EFs are quite close to each ot
in agreement with the fact that, for smalll, they obey the
same law given by Eq.~30! with similar values ofv (2). Also
the agreement between the numerical results and the an
cal prediction is quite good.

When the perturbation increases tol50.3, the tails begin
to deviate from the prediction~30!. However, it has been
found that forl>0.3 the tails can be fitted quite well to th
expression~30!, with v instead ofv (2) andj given by

j5S uEa2Ej
0u2x0

10e2
D 2

, ~33!

where x0 is an adjusting parameter. As an example
present in Fig. 14 the results forl50.9. The LDOS and its
fitting curve with x0513 are given in Fig. 14~a!. It can be

FIG. 13. Numerically computed LDOSs~circles! and EFs~tri-
angles! for l50.1. Each value represents an average over
states. The dashed-dotted curve gives the analytical prediction~30!
~with the appropriate normalization factor! for the long tails.
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seen that the agreement is quite good, not only in the l
tail regions, but also in the regions quite close to the cen
part. Figure 14~b! gives the tails for the EF and the fittin
curve with x0516. The figure also verifies the predictio
given above that the right tail drops faster than the left o
for the EF, while the two tails are similar for the LDOS.

For the band random matrix model~26!, as indicated in
Appendix B, the long tails of EFs and LDOSs obey the sa
law given by Eq.~30!. This has been confirmed by numeric
results. As an example, in Fig. 15 we present the tails
LDOS for l50.9 and the prediction given by Eq.~30!. The
agreement between numerical data and the analytical res
again quite good in the long tail regions.

VII. CONCLUSIONS AND DISCUSSION

In this paper we have studied the Lipkin-Meshkov-Gli
~LMG! model in the many-particle basis of noninteracti

0

FIG. 14. ~a! LDOS ~circles! for l50.9 and the fitting curve
~dashed-dotted curve! given by Eqs.~30! and ~33! with x05213.
~b! Similar to ~a! for the EF~circles! with x05216.

FIG. 15. LDOS~circles! of Hran in Eq. ~26! for l50.9 and the
theoretical prediction~30! ~dashed-dotted curve! for its long tails.
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particles. Main attention has been paid to the structure of
local spectral density of states~LDOS! in comparison with
that of eigenfunctions~EFs! defined in the unperturbed en
ergy basis.

Due to its dynamical nature, the properties of the LM
model strongly depend on the energy region. Namely,
strong enough perturbationl, chaotic properties of the
model for low and high excitation energies are stronger t
in the middle of the energy spectrum. This fact is explain
both on the grounds of peculiarities of the quantum mo
and of its classical counterpart. In particular, the eigenst
in the middle of the spectrum are more regular, as compa
with the eigenstates for low and high energies; correspo
ingly, the level spacing distribution is close to the Wigne
Dyson type at the edges of the spectrum, unlike in the ce
of the spectrum where deviations from the Wigner-Dys
form have been detected.

One of the main questions addressed in our study is
dependence of the shape of LDOSs and EFs on the pe
bation strength. Numerical analysis has shown that for r
tively weak perturbations the form of the LDOS is close
the Breit-Wigner form, apart from the tails. This fact is
accordance with several observations for models with r
dom interaction described by different random matrix e
sembles@1,3#. However, detailed studies of LDOSs and E
for the LMG model in the region of not very strong intera
tion have revealed remarkable correlations that can be
lytically explained. In fact, these correlations are due to
dynamical nature of the model, and they are found to
washed out for stronger interaction.

With the increase of perturbation, the form of the LDO
changes, and for a quite moderate perturbation it is well
scribed by a Gaussian distribution. This observation is q
interesting in view of recent numerical data for complex
oms @1# and heavy nuclei@2#, where the form of the LDOS
was found to be quite close to a Gaussian one. The s
effect ~the change of the form of LDOSs from Breit-Wigne
to Gaussian-like! has also been found in numerical inves
gations of Wigner band random matrices@26#. Therefore, our
data for the dynamical LMG model indicate that the abo
fact is of a quite generic nature and occurs also in dynam
models exhibiting strong chaos in the classical limit. Fina
when the perturbation is very strong, the LDOS has b
found to have a quite specific form that is related to
peculiarity of the model under consideration.

Another problem is the relation between the shape of
LDOS and that of EFs. We have found that after a pro
rescaling, the shape of the EFs is similar to the shape of
LDOS, if the perturbation is not very strong. This result i
dicates the absence of localization in the energy shell, wh
has been found in Wigner band random matrices@4#.

As was noticed in@4#, the shapes of both LDOSs and EF
have an analogy in the classical limit. In our paper the re
tion between the LDOS and the corresponding class
quantity has been checked in a dynamical model with a c
otic classical counterpart~see also the recent paper@27#!.
Numerical analysis of the classical model has shown that
form of the LDOS is close to its classical counterpart if t
perturbation is not very weak. This fact allows us to exp
that~in semiclassical regions! the global structure of both th
LDOS and EFs can be directly found from the correspond
e
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classical model. This is important in view of recent resu
@19,22# revealing the direct connection of the shape of EFs
the partition function of isolated systems.

Of special interest is the question about the applicabi
of random matrix models to a given dynamical system in
chaotic region. There are many examples when full rand
matrices or band random matrices can serve as good mo
for the description of statistical properties of spectra a
eigenstates of dynamical models. However, in these
amples the two-body nature of an interaction is, typica
not taken into account. In this paper we have carefully a
lyzed the possibility of a random matrix description of th
model in the energy region where the corresponding class
system can be treated as a chaotic one. Specifically, we
used the same unperturbed part of the Hamiltonian, but w
off-diagonal matrix elements chosen at random with
same variance as in the original dynamical model, keep
zero matrix elements that are due to the specific form of
interaction. This approach also allows us to reveal to w
extent the underlying correlations of the dynamical mo
are essential for its statistical description. Numerical res
with such a random model have shown a quite good ag
ment for global properties of the LDOS and chaotic EFs.
particular, the shapes of LDOSs and EFs turn out to rem
similar in a large range of the perturbation strength. On
other hand, the form of the LDOS and EFs in the rand
model turns out to be smoother and does not reveal
regular deviations due to quantum-dynamical correlatio
which, for a weak interaction, are significant in the dynam
cal model.

Finally, the question of the long tails of LDOS and EF
has been studied in detail, both analytically and numerica
For this, a generalized approach has been developed b
on the standard Brillouin-Wigner perturbation expansio
Namely, the perturbation theory has been extended to str
perturbation in the region of long tails. This has allowed
to find the analytical form for the long tails of the LDOS an
EFs. Numerical data have shown a good agreement with
analytical predictions.
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APPENDIX A: BRILLOUIN-WIGNER PERTURBATION
EXPANSION OF EIGENSTATES

Here we introduce a generalization of the so-cal
Brillouin-Wigner perturbation expansion@28,29#, which can
be shown to be valid even for strong perturbations. In p
ticular, we show that long tails are always in the perturbat
region, and this also explains some previous results@1,3,4#.
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First, we divide the set of basis vectors, i.e., the eig
states of H0, into two parts, $uf i&,i 5p1 , . . . ,p2% and
$uf i&,i 51, . . . ,p121,p211, . . . ,N%. Correspondingly,
there are two projection operators

P5 (
i 5p1

p2

uf i&^f i u, Q512P. ~A1!

The subspaces related toP and Q will be called, in the
following, the P and Q subspaces, respectively. We now s
an arbitrary eigenstateuca& of H into two orthogonal parts

uca&5ut&1u f &, ^tu f &50, ~A2!

where ut&5Puca& and u f &5Quca&. Applying Q to the
Schrödinger equation~13!, we readily obtain

@Ea2H0#u f &5QlVuca&; ~A3!

then,

uca&5ut&1
1

Ea2H0
QlVuca&, ~A4!

in which the eigenstateuca& can either be normalized or no
We remark that in the particular case in whichut& is chosen
as a single basis stateuf i& ( i 5a) andEa taken as

Ea5Ei
01^f i ulVuca&, ~A5!

then the iterative expansion of Eq.~A4! is just the Brillouin-
Wigner perturbation expansion, in which the eigenstateuca&
is not normalized.

Since our purpose is to study the structure of eigenfu
tions and of the LDOS, and not to solve the eigenvalue pr
lem, we takeEa in Eq. ~A4! as a constant, i.e., its exa
~unknown! value, which can be find out by other method
Then the iterative expansion of Eq.~A4! gives

uca&5ut&1
1

Ea2H0
QlVut&

1
1

Ea2H0
QlV

1

Ea2H0
QlVut&1•••

1S 1

Ea2H0
QlVD n21

ut&1S 1

Ea2H0
QlVD n

uca&.

~A6!

If the last term on the right-hand side of Eq.~A6!, denoted
by Tn , tends to zero whenn→`, one has ageneralization of
Brillouin-Wigner perturbation expansion~GBWPE!, which
gives an exact expression foruca& in terms ofut&, Ea , lV,
andH0:

uca&5ut&1
1

Ea2H0
QlVut&1S 1

Ea2H0
QlVD 2

ut&1•••

1S 1

Ea2H0
QlVD q

ut&1•••. ~A7!
-

lit

-
-

.

For example, for a Hamiltonian matrix with band structu
and perturbationV coupling a basis state to at mostb other
states, if theQ subspace is chosen, such that foruf j& in the
Q subspacesuEa2Ej

0u>bVmax, where Vmax is the maxi-
mum of the absolute value of (lVi j ), thenTn will approach
zero whenn goes to infinity.

For each stateuca&, there exists aP subspace with the
minimum number of basis states~denoted byPmin) and cor-
respondingly aQ subspace with the maximal number of b
sis states~denoted byQmax) that ensure that Eq.~A7! holds.
Clearly, from Eq.~A7!, the components of the stateuca& in
theQ subspace are in the perturbative region. Therefore,
expansion of the exact stateuca& in the basisuf j& is natu-
rally divided into two parts: the nonperturbative partutmin&
[Pminuca& and the perturbative part u f max&
[Qmaxuca&. Tails of uca& are always in the perturbativ
region and can be studied with the GBWPE. The same
proach can be applied to the LDOS, which can also be
vided into two parts, perturbative and nonperturbative.

APPENDIX B: A ‘‘PATH’’ APPROACH
TO PERTURBATIVE EXPANSION

In order to study the perturbative part ofuca& in the
GBWPE given in Eq.~A7!, we make use of the concept o
path, in analogy to that in the Feynman’s path integral the
@30#. First we discuss the case of small perturbations. In
case, the termut& can be chosen as the basis stateuf i& with
the smallest value ofuEa2Ei

0u. For an arbitraryuf j& in the
Q subspace, Eq.~A7! gives

Ca j[^f j uca&5
lVji

Ea2Ej
0

1 (
kPQ

lVjk

Ea2Ej
0

lVki

Ea2Ek
0

1 (
k,l PQ

lVjk

Ea2Ej
0

lVkl

Ea2Ek
0

lVli

Ea2El
0
•••. ~B1!

We now term a sequencej→k1→•••→kq21→ i a path ofq
paces fromj to i , if the matrix elements of the perturbatio
Vkk8 corresponding to each pace are nonzero. Attributin
factorlVkk8 /(Ea2Ek

0) to each pacek→k8, the contribution
of a path toCa j is the product of the factors of all its pace
Then, theqth term ofCa j on the right-hand side of Eq.~B1!
can be rewritten as

Fq~ j→ i !5(
s

f q,s~ j→ i !, ~B2!

where s indicates the paths withq paces fromj to i and
f q,s( j→ i ) is the contribution of the paths to Ca j . Defining
A( j→ i ) as

A~ j→ i !5 (
q5q0

`

Fq~ j→ i !, ~B3!

whereq0 is the number of the paces of the shortest path fr
j to i , we have

Ca j5A~ j→ i ! ~B4!

for small lV.
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For the general case, the termut& cannot be chosen as
single basis vector, but must be a superposition of some b
vectors. Writing

ut&5 (
i 5p1

p2

t i uf i&, ~B5!

Ca j5^f j uca& can be expressed as

Ca j5 (
i 5p1

p2

A~ j→ i !t i . ~B6!

For Hamiltonians with band structure, paths have qual
tively different features for small and large perturbation
When the perturbation is small, the difference (p22p1), see
Eq. ~A1!, of the Pmin subspace is smaller than the ba
width b. A path which start fromj ,p1, can reach pointsk
larger thanp2, in other words, a path can ‘‘cross’’ theP
region. Thus, the differenceEa2Ek

0 can be both positive and
negative. This is important for the parameters we have c
sen in Sec. II, which make all the non-zero matrix eleme
of V positive. Whenl is so large thatp22p1 is larger than
b, paths starting fromj ,p1 can no longer reachk.p2, i.e.,
cannot ‘‘cross’’ theP region. Hence the values ofEa2Ek

0

are either always positive or negative for a path.
The above concept of path is very useful in studyi

Hamiltonians with band and sparse structures. For the L
model it is especially useful, since the perturbationV couples
a basis state to at most eight others, as shown in Fig. 1
fact, we have a simple method to find out all possible pa
from j to i . First we write the basis vectorsuf i& in their
equivalent formsumi ,ni&, with mi being the number of par
ticles in the orbital 1 andni the number of particles in the
orbital 2. We denote the changes ofm andn along a path by
Dm5mi2mj andDn5ni2nj , and the changes ofm andn
for a pacer from k5kl to k85kl 11 by dmr5mk82mk and
dnr5nk82nk . Then, if the path hasq paces, we can write

Dm5(
r 51

q

dmr , Dn5(
r 51

q

dnr . ~B7!

Since the interchange ofr does not influence the sum, E
~B7! is also satisfied by some other related paths. Accord
to Eq.~10!, there are only eight possible pairs ofdm anddn,

dm562, dn50 for V~1!,

dm50, dn562 for V~2!,

dm571, dn562 for V~3!,

dm562, dn571 for V~4!; ~B8!

therefore, in order to find out all possibleq-pace paths from
j to i , one should just find out all possible combinations oq
pairs of the possibledm anddn in Eq. ~B8! that satisfy Eq.
~B7! ~if all the intermediate points are in theQ subspace!.

Whenl is small, the termut& in Eq. ~A7! can be chosen
as one basis vectoruf i&, and the expanding coefficientCa j
5^f j uca& is A( j→ i )5(qFq ; see Eq.~B4!. As an example,
let us considerCa j , for which j is determined byDm5mi
sis

-
.

o-
s

G

In
s

g

2mj52, Dn5ni2nj50; i.e., the two unperturbed state
uf i& anduf j& are coupled directly by the termK10K10 in Eq.
~6!. Denote the number of theq-pace paths with positive
contributionsf q,s in Fq @see Eq.~B2!# by Nq1 and the num-
ber of paths with negativef q,s by Nq2 . For the shortest path
with one pace,N1151, N1250. There is no path with two
paces. For q53, there are 12 paths ~e.g.,
K02K02→K20K20→K10K10), N31511, N3251, and for q
54, we haveN41511, N4257. Clearly, the number of
short paths with positivef q,s is much larger than that of shor
paths with negativef q,s . Therefore,uCa j u is quite large and
the dynamical interference effect is strong. Similarly, for t
other sevenuf j& that can be coupled directly touf i& by the
other terms ofV, uCa j u are also quite large. On the othe
hand, foruf j&, which are not coupled directly touf i& by V,
uCa j u are smaller. In fact, the two peaks beside the main p
in Fig. 9 for l50.3 come fromCa j for the eight statesuf j&
coupled directly byV to the stateuf i&. For the band random
matrix model discussed in Sec. V, since the nonzero ma
elements ofVran have random signs, we haveNq1'Nq2 ,
and the dynamical interference effect should be mu
smaller than that in the LMG model.

Finally, let us offer some discussion about the long ta
of LDOSs and EFs whenl is not small. In this case, we
should use Eqs.~B3! and~B6!. In the region of long tails, for
eachA( j→ i ) the main contribution comes from the ter
Fq0

. To see this, we give an estimate ofFq( j→ i ). Since one

base vector can be coupled to at most eight others byV, the
number of possible paths withq paces fromj to i is Mq,
where 0,M,8. Then for long tails we have

Fq~ j→ i !'S Mv

Ea2Ẽj
0D q

, ~B9!

wherev is the average coupling strength of the perturbat
V, and for largeq, Ẽj

0 is approximately equal toEj
0 . When

uEa2Ej
0u is large enough, the valueFq( j→ i ) decreases very

fast with increasingq and the main term is the one with th
shortest path (q0 paces! from j to i . Therefore,Ca j can be
estimated as

Ca j'(
i

t iFq0
~ j→ i !. ~B10!

For the LMG model, due to the dynamical interferen
~correlation! effects, as discussed above,Fq0

( j→ i ) for dif-

ferent i may be equally important. In fact, for largeq0, al-
though the number of paces is large, the number of path
also large and some of the paces atk may have relatively
small values ofuEa2Ek

0u. Thus it is difficult to obtain an
analytical expression for the tails from Eq.~B10!.

For the band random matrix model~26!, the signs of the
nonzero matrix elements ofVran are random. Therefore, a
discussed above, dynamical interference effects are no
large as in the LMG model, and the largest term on
right-hand side of Eq.~B10! is the one with the smalles
number of pacesq0. Sinced(2) is the largest among the fou
d(t), the shortest path fromj to i mainly consists of paces
resulting fromV(2). Then Eq.~29! also holds and the sam
expressions for the long tails of EFs and LDOSs as in
~30! can be found.
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