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Structure of eigenstates and local spectral density of states: A three-orbital schematic shell model
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The average shape of the spectral local density of staf@®S) and eigenfunction§EF9 has been studied
numerically for a conservative dynamical modiree-orbital Lipkin-Meshkov-Glick modgthat can exhibit
strong chaos in the classical limit. Attention is paid to the comparison of the shape of the LDOS with that
known for random matrix models, as well as to the shape of the EFs, for different values of the perturbation
strength. The classical counterparts of the LDOS has also been studied and found to be in remarkable agree-
ment with the quantum calculations. Finally, by making use of a generalization of Brillouin-Wigner perturba-
tion expansion, the form of the long tails of the LDOS and EFs is given analytically and confirmed numeri-
cally. [S1063-651X%97)13012-4

PACS numbe(s): 05.45+b

I. INTRODUCTION well developedsee the revieW12]); however, it cannot be
applied, verbatim, to conservative systems, such as isolated
Recently, growing attention has been paid to the structuratoms, nuclei, atomic clusters, etc. The reason is that the
of the so-called local spectral density of state®OS) as  Hamiltonians of these latter systems expressed in the basis of
applied to both disordered and dynamical systems that exhe reordered unperturbed states have an additional leading
hibit strong chaotic propertigsee, for exampld1-6]). This  diagonal corresponding to the energy density of the unper-
quantity, known in nuclear physics as the “strength func-turbed Hamiltonian. Band random matrices with such an ad-
tion,” is of special interest since it gives information about ditional leading diagonal are known as Wigner band random
the “decay” of a specific unperturbed state into other statesnatrices(WBRMs) (see[4,8,14—-17). Unlike the standard
due to interaction. In particular, the width of the strengthBRMs, the theory of WBRMs is not well developed. On the
function defines the effective “lifetime” of the unperturbed other hand, these matrices are currently under close investi-
basis state. gation, since they are believed to provide an adequate de-
Typically, the shape of the LDOS is assumed to be ofscription for complex system@toms, nuclei, clusters, etc.
Lorentzian form(i.e., the “Breit-Wigner shape), as can be as well as for dynamical conservative systems with few de-
analytically derived for sufficiently weak coupling. How- grees of freedom, which are chaotic in the classical limit.
ever, in a direct computation of the Ce atfhj, it was found In this paper we consider a specific dynamical model of
that at relatively large distances from its center the LDOShis type, namely, the so-called Lipkin-Meshkov-Glick
has an abrupt decay that is extremely fasten faster than model[18]. In our study we follow the approach developed
the exponential This fact, which is quite generic, is due to in [4] where the structure of the LDOS and eigenfunctions
the finite range of the interaction in the unperturbed energyEF9 has been numerically investigated in detail for the
basis[7-9]. As a result, matrix elements of a Hamiltonian WBRMs. The main result of4], which stems from a direct
describing a realistic physical system decay very fast awagomparison of the LDOS and EFs, is the discovery of the
from the principal diagonal, thus leading to an effectiveso-called “localization in the energy shell” for conservative
bandlike structure. systems with chaotic behavior. It is of great interest to apply
Such a band structure of Hamiltonian conservative systhe approach suggested[ii to dynamical systems of inter-
tems can be compared to one known for unitary evolutioracting particles.
operators describing one-dimensional dynamical systems un- In this connection it may be interesting to remark that it is
der periodic perturbations, such as the paradigmatic kickegossible to relate specific properties of chaotic eigenstates to
rotator model(KRM) [10,11. Another example is an en- such observables as the occupation numbers for single-
semble of Hermitian band random matrig®RMs), which  particle levels and transition amplitudésee details if19-
is used to describe quasi-one-dimensional disordered modef?]). The above approaci9-22 has been developed for
in solid-state physicgsee, for example[12,13 and refer- the model of two-body random interaction, by assuming
ences therein The theory of such “standard” BRMs is now completely random two-body matrix elements. Thus, it is
important to extend this approach to dynamical systems of
interacting particles with a chaotic dynamics.
*Present address: Instituto de Fisica, Universidad Autonoma de The paper has the following structure. In Sec. Il we de-
Puebla, Apdo. Postal J-48, Col. San Manuel, Puebla, Puebla, 72578¢ribe the three-orbital Lipkin-Meshkov-GlickMG) model
Mexico. Electronic address: izrailev@physics.spa.umn.edu and discuss its general properties. The classical limit is con-
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sidered in Sec. lll, where the transition to chaos that depends Q@

on the strength of the perturbation is studied. Section IV is Kis= 2 arTyasy, r,s=0,1,2. (3)
devoted to the discussion of the general properties of eigen- r=1

states and spectrum statistics for the quantum model. In Sec,

V we numerically investigate the structure of the LDOS andThe_ operator& oo, Ky, andKy, are number operators of the
eigenfunctions for different values of model parameters. IrPrPitals 0, 1, and 2; anll, for r #s are particle raising and
Sec. VI, we present some analytical and numerical results fdPWering operators, respectively. The commutation relations
the long tails of the LDOS and eigenfunctions. Concluding’o" Krs are
remarks are given in Sec. VII.

[Krs Kprs 1= Kis1 65— Kyrs6ysr 4
Il. THREE-ORBITAL LMG MODEL As a result, the Hamiltonian can be written as a function of
The three-orbital Lipkin-Meshkov-Glick mod¢lL8], or Krs.
for short, the LMG model, is known as some simplification 4

of the shell-model of the nucleus. It was introduced also to H—HO4)\V, HO=¢, K1+ eKyp, V=2 u VO,
check the validity of approximate many-body techniques, in- =1
cluding the random-phase approximation and the Bardeen- 5)
Cooper-Schrieffe(BCS) theory. The symmetric states of the
LMG model, which we will use in our calculations, corre- Where
spond to collective motions that may mimic the collective
motion of the nucleus. " @
The model ha$) particles distributed among three single- V'~ =KidKiot KoiKog,  VI¥'=Kz0K a0+ KoKop,

particle orbitals with the same parity and angular momen- VO = Ko Kot K K VO =K Kot KK
tum. Each orbital i€)-fold degenerate. The ground, first, and 2207 R0z 2y 127107 Troral:
second excited orbitals are labeled by 0,1,2, and the de- (6)

generate states within each orbital are labeled Jy
=1,2,3 ... Q). The energy of each orbital is denoted &y,

In our calculations, for simplicitywithout the loss of gener- ~ The nine operator&s have a very important property,
ality), we will sete,=0. namely, they are invariant under the interchange of the
The Hamiltonian of the model is single-particle-state labelg. Thus, the Hamiltonian also is

invariant under the interchange ¢fand conserves the per-
H=HO+\V, (1) mutation symmetry of the labelg. This makes it possible to

divide the Hilbert space into subspaces according to permu-
tation symmetry. In our quantum calculations, we use a sub-

where space composed of the so-called symmetric states. A conve-
nient basisimn) for such a subspace can be obtained by
0 + " operating the symmetric raising operatérg, andK,yon the
H'=¢ 721 a1,81y| T €2 «/2::1 a2,82y s state with all the) particles in the ground orbital, labeled by
|00),
Q Q
N + |mn)=C(m,n)K K5, 00), (7)
V=1, 21 > (aJ{yaoyaly,aOy,+a$ya1ya0y,aly,) 10K20
y=1,=1

where C(m,n) is the normalizing coefficient. These states
@ a : ) mn) are eigenstates of the number operatéss and K,
+ w2 2 2 (agyaoyazyraoyr+a$yazyaoy,a27r) with m being the number of particles in the orbital 1 amd

r=1y=1 the number of particles in the orbital 2. By conservation of
Q o particles number{) =Ko+ K44+ K,,, the population of the
s > > (ala al ay,+al a,al a,.) ground orbital i) —m—n. The dimension of the symmetric
3_7=1 P e e R AR A ] subspace isN=(Q+1)(Q+2)/2. Notice thaj00)=a/,,- -

o -a},al,/00- - -0), and thereforeymn) are antisymmetric un-
+ t t T der interchange of labey.
e ./21 %l (81,82,81,,80y' + 80,8158, 81') From Eq.(4) it is seen that the particle raising operators
) : Kio and K,q commute (as a consequence of their two-
2 fermionic featurg, and therefore, the stafenn) in (7) is
symmetric under the interchange of the order of raising par-
where a;fy and a,,, are fermionic creation and annihilation ticles. In this sense, raising fermions from the ground orbital
operators obeying the usual anti-commutation relations, antb the two excited orbitals is similar to creation of bosons.
the parameters, uq,u», 13,14 describe the strength of the Indeed, resorting to the generator coordinate method ap-
perturbation. proach to the dynamic group representation, a boson repre-
The Hamiltonian(2) can be expressed in a much simpler sentation has been found for the symmetric stff3524.
form. To this end we introduce the two-fermion operators The above basis states in the boson representation are




57 STRUCTURE OF EIGENSTATES AND LOCAL SPECTRAL ... 325

(bhH™(bH)" 00 ® Krs=b/bg
| |
(m+1)!(n+1)! Kio=K¢=b/VQ—blb,—blb,

[b,,bl1=6,s, [b;,bs]=[b] bl]=0 (9

[mm)=

whereb/ are creation operators of bosons. The relations be-
tween the operator&,s and the creation and annihilation for r,s=1,2. Making use of these relations it is easy now to
operators of bosonls;r andb, are obtain the expressions for the matrix element&/6t

(m'n’"[KyKgdmnmy=y(Q—m—n)(Q—m—n—1)(M+1)(M+2) S m1 2607 1,

(m'n’[KoKogmny={(Q—m=n)(Q—m—n—1)(n+1)(N+2) Sy mbn' ns 25

<m’n,|K21K20|mn>: \/m(Q_ m—n)(n+1)(n+2) 5m’,m715n’,n+21

<m,n’|K12K10|mn>: \/n(Q—m— n)(m+ 1)(m+2)5m/,m+25n',n71- (10)

which can also be found from the commutation relati6hs  states|¢;) with the same energy differena = |E?— E?|,
see[25]. where dV=2¢;, d@=2¢,, d®=2¢,—¢,, and o)
The statesmn) are eigenstates ¢1° with eigenenergies =2€,—€,. The average coupling Strengﬁﬁ:<vi2j> can be
0 found by averaging over the nonzero matrix elements only.
EQ =me;+ne,. 1Y Similarly, for eachv® one can introduceu(®)2=((V{))?),
with the average taken over only the nonzero matrix ele-
ments of VU, respectively. Thereforep®=v®/d® is a
natural measure of the strength \6fY with respect to the
HO ) =E°|¢), E°, ,=EC. (12  energy distance between the basis states coupl&dtpWhe
parameterg, in Eq. (5) are determined by the condition that
Correspondingly, the eigenstates of the total Hamiltomian p®=1 for t=1,2,3,4, so that, on average, the relative

It is convenient to rearrange the eigenstatell bin order of
increasing energy, and we will label them h¥;),

also reordered in energy, will be labeled fay,) strengths o) are the same. Under this condition, we have
u1~0.0116, w,~0.0169, u3~0.0158, andu,~0.00439,
H|¢.)=Edl ). (13) and the estimate of the average coupling strength is
~2.24.

In our numerical computations of the LMG model, we  The global structure of the Hamiltonian matrix is pre-
take () =40; therefore, the dimension of the symmetric sub-sented in Fig. 1, where points represent nonzero off-diagonal
space isN=861. As to the choice of; ande,, we assume, elements(¢;|V|¢;) of the HamiltonianH. As one can see,
without loss of generalitye; =1.1 ande,= 1.61. the matrix is sparse and bandlike. More precisely, the non-

The expressions fov® in Egs. (6) and (10) show that  zero elements of the perturbation form only eight curves,
eachV(® couples the basis stafe;) with only two other  since a basis state;) is coupled byV to at most eight other
basis states. The two inner curves result from the contribu-
tion of V(*®, while the two outer curves come frov(®.
Since d®=2.2~d®=2.12, the curves corresponding to
v(®) andV® are very close to each other and are not sepa-
rated in the figure. The half-band widthdepends orEi0 and
can be analytically estimated to lheaBE?/ €, for Ei°< E’,
and b~2Q0-6(E’—E')/e, for E’>E’, where E’
~2Q0€,/3. In particular, the maximum widtkin the center
of the bandl is b, ,=~2€).

The unperturbed density of statgéE®) of H® is shown
in Fig. 2(@), and turns out to be in agreement with the esti-
, matep(E®) ~b/d®. The perturbed density of statp¢E) is
w shown in Fig. 2b) for A=2.0. For a better comparison of
o 100 200 300 20 300 0 700 w00 p(E) with p(E®), it is convenient to rescale to the same total

i energy interval, namelyy(E)—p,(E)=vp(Ev), wherev is
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FIG. 1. Global structure of the Hamiltonian matrix. The points (Eger— E1)
represent the nonzero off-diagonal elemefits|V|¢;) of the =

y=—"—-. (14
HamiltonianH. (Egel_ E(f)
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30 used in[25] and consists in the direct study of the motion of
coherent states in the limf2 —co. The other method, which

25 (a) will be used here, is based on the boson representation; how-
ever, since the boson representation of the symmetric states
20 is obtained via the coherent-state representation, the two
- methods are basically equivalent.

Qs In order to obtain the classical limit, we introduce the
transformation,

o= La—ip). b=/ Hatip) (@9
5 r 2 r r’s r 2 r r/s

30

for r=1,2. According to Egs(9) and(15), g, and ps obey

the following commutation rules:
25

(b) ;
20 [Or.Ps]= 6 Ors - (16)
Q1 Therefore, the factor &Y plays the role of Planck constant.
Letting the particles numbe — oo, while keeping constant
10 the following parameters
5 61=6,Q, €e=¢6, ,ut’=,u,tﬂz, t=1,2,3,4,

17

one obtains the classical counterpart of the Hamiltotian

30

25

Hoa=H3+\Ve, (18)

[~
=

where

pse(E) and p(E")
o

€ €
Hei=5 (pi+ad)+ 5 (p3+a3),

4
V=3, wive)

0 ;
-10 0 10 20 30 e 40 50 60 70 80 =,u1(q§—pf)(l—G/2)+,u§(q§—p%)(l—G/Z)
FIG. 2. (a) Unperturbed density of stategE®) of H°. (b) Den- wh
sity of statesp(E) of the systemH for A=2. (c) The rescaled + —[(q%—pg)ql-i— 29,p1p2]V1—G/2
density of statep,(E) for A=2 (solid histogram compared with \/E
the unperturbed density of state¢E®) (dashed histogram ,
Mg 2 2
Here, Egs; and E3,; are the highest eigenenergiestofand + E[(ql_ P1U2+20:1p1p2NV1-G/2, (19

HO, respectively. The ground-state energy of the perturbed

Hamiltonian has also been shifted to coincide with the uny, ., G=q§+p§+q§+p§:2(b1b1+b£b2)/9<2. Notice

pgarturbed one. From the result of such rescaling, shown irt"hat the perturbatiolV,, depends also on momentum vari-
Fig. 2(c), one can conclude that the rescaled perturbed de'EbIes ¢

S'tytObett?teS ')\Sf'lm”?hr to the unpeéturbedlone. Fﬁr \t/)vet?ker In order to understand the qualitative properties of the
perturbations, A< 1, the correspondence IS much DEUEr. . 5s5ical model, we have plotted the Poincatefaces of

From Fig. 2c) one can also see that the peakE) is section at different energies. As[i83,25, it was found that

shifted a little towards the center of the spectrum. Moreoverregular regions of phase space are gradually destroyed when
for even stronger perturbations, the peak has been found increases. However, due to the specific form of the classi-

be at the center of the speptrum. These propertles_of thE’al HamiltonianH, in Eq. (19), it has been found that the
global sf[ructure of the Hamlltonlan. and of the densny of otion on low- and high-energy surfaces can exhibit more
states will be used below when we discuss other properties haotic features than on the medium-energy surfaces. Three

the model. typical examples foln =0.9 are shown in Fig. 3. The first
Il THE CLASSICAL LIMIT figure, Fig. 3a), shows the syrfacg of sectl'on at enefgy
=10. It can be seen that trajectories on this energy surface
The classical limit of the symmetric subspace of the LMGare chaotic, except in a small region. The next, Fif),3
model can be obtained by two methods. One method wasorresponds to the ener@= 39, in the middle of the energy
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FIG. 3. Poincaresurfaces of section on the4,p,) plane withg,=0 for A\=0.9 and(a) E=10, (b) E=39, and(c) E=57.

region. Here one can distinguish three regular islands. Fir=0-200 of the basis stat¢g;), and the expansion coeffi-
nally, Fig. 3c) corresponds to the ener@y=57 in the high-  cients look random in the region. For the levels in the middle
energy region. Here most trajectories are seen to be chaotisf the energy spectrunay=430-433, the components of the
with some remaining regular islands. Note that the centrakigenstates|y,) are mainly distributed in the region
region in Fig. 3c) is energetically inaccessible. Whanin-  j=200-700, but the expansion coefficients do not appear as
creases to 2.0, it has been found that almost all regular issompletely random. For example, the coefficiefis| i, )
lands disappear and the system is nearly totally ch&Bt®:  tor , =433 seem to be random, without any structure; in-
4). . _ . stead, fora =431, they look sparse and some structure is
The above peculla_r behavior is due to the particular SUCeen, These figures suggest that eigenstates with low ener-
ture of the perturbatiolV;. Indeed, at energf=39, the gies are more chaotic in the regior:[1,200 than those
value of G can be closer to 2 than for the case whik 10. ith middl ies in th o his is al
Therefore, due to the terms containing{G/2) in Eq.(19) with middle energies in the regire [ 200,70Q. This is also
confirmed by nearest-level-spacing distributions. In Fig. 7

the perturbation at the enerdy=10 is stronger than &t . 2 .
~39. For high energies, instead, sirBes quite close to 2 we plot the nearest-level-spacing distributid®(s) for eight
! ’ ' different regions in the energy spectrumkbffor A=0.9. In

the derivatives)V.,/dp; anddV /dq; can be large and, as a X J) _ )
consequence, the motion at high energiEs=67) is more order to achieve better statistics we have diagonalized the
’ Hamiltonian with five different values of close ton=0.9

irregular than that at the middle ones.
and put together the unfolded sequenaés, . As expected,

the histograms ofP(s) for the lowest- and highest-energy
regions are closer to the Wigner-Dyson distributidiashed
lines) than to the Poisson distributididashed-dotted lings

In the preceding section, we have discussed the classicalhile for « in the interval[440,55Q, P(s) is closer to the
counterpart of the LMG model. In particular, we showed thatPoisson distribution. On the other hand, wheincreases to
for not very large perturbations, the classical motion on low-2, the level spectrum distributidd(s) becomes very close to
and high-energy surfaces is more irregular than on théhe Wigner-Dyson distribution, even in the middle energy
middle ones. In this section, we study some general properegion.
ties of the quantum model, which are related to the above The above numerical results are related to properties of
classical features. the perturbatiorV/, which are determined by the four opera-

In Figs. 5 and 6 we show four typical eigenstatgg) of  torsK,oK1g, KooK, K21Kog, andK K 1o. So, one needs to
the total HamiltoniarH for A =0.9 anda=50-53 and 430— study only nonzero matrix elements of these four operators.
433, respectively, in the basis staths;) (many-particle For example, according to Eq10), for a fixed basis state
states of the unperturbed Hamiltoni&t?). For low levels | ¢;), there is only one basis sta\lt¢j> for which the matrix
a=50-53, the stateqy,) mainly occupy the region element(;|K K1) is nonzero. Therefore, the nonzero

IV. GENERAL PROPERTIES OF EIGENSTATES
AND SPECTRUM STATISTICS

(@)

e ﬁ.:':ﬁ.;.l.
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92 92 Q2

FIG. 4. Same as in Fig. 3 for=2 and(a) E=4, (b) E=43, and(c) E=62.
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FIG. 5. Four typical eigenstatég,) of the HamiltonianH for FIG. 6. Same as in Fig. 5 fof@ a«=430, (b) @=431, (c) «
A=0.9 in the basi§¢;); (@) @=50, (b) =51, (c) a=52, (d) « =432, (d) a=433.

=53.
V. STRUCTURE OF LDOS AND EIGENFUNCTIONS

matrix elements oK oK 1o can be regarded as a functioniof In this section we discuss the shape of the LDOS and of
only. The same is true for the other three operators. Thejgenfunctions for the LMG model, we study the classical
dependence of nonzero matrix elements of the above foufounterpart of the LDOS, and finally we discuss to what
operators on is presented in Fig. 8. Several features can bextent the LMG model can be associated with a band random
seen from this figure. First, on average, the nonzero matrixnatrix model.

elements ofu;K ;0K g are relatively large in the low-energy
region. Second, apart from the two edges, the average values
of the nonzero matrix elements @f,K,K,q are similar in .
different energy regions. However, in the middle of the en- 1€ so-called local spectral density of sta(eBOS) for
ergy region, the operaton,K K, has many very small @n unperturbed stafep;) is defined as

nonzero matrix elements. Third, the matrix elements of

n3KoKog are relatively large, on average, in the high-energy w;(E)= E |Caj|25(E_ E.., (20)
region. Finally, the variation of the matrix elements of a

14K 1Ko in different energy regions is not so large as com-

pared to the other three operators. As a result, the perturbavhereE,, is the eigenenergy of the perturbed eigensitétg
tion is stronger in the low- and high-energy regions than inand C,;=(¢;|#,). The functionw;(E), also known as the
the middle-energy region. “strength function” or “Green spectra,” is quite important

A. Structure of the LDOS and eigenfunctions
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FIG. 7. Histograms of the nearest-level-spacing distributiB(s) for eight energy regions of the Hamiltonidh with A=0.9.(1) 1
<a<110, (2) 110< <220, (3) 220< <330, (4) 330<a<440, (5) 440<a<550, (6) 550< @< 660, (7) 660<a<770, (8) 770<«
<861. The dashed and dashed-dotted curves represent the Wigner-Dyson and Poisson distributions, respectively. Each histogram was
obtained by diagonalizing five different Hamiltonians with values\aflose to 0.9.

for the understanding of generic properties of the quantungefines the energy range associated with the “lifetime” of an
model. In particular, the LDOS shows how the unperturbecunperturbed statgyp, ).

state] ¢;j) is coupled to the exact statpg,) with the specific The form of the LDOS for band random matrices has
energyE, . The width of this functionspreading width”) been analytically studied by Wign¢t4]; see alsd3]. Par-
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FIG. 8. Nonzero matrix elements of the four operat@su K 10K 10, (b) 12Ko0K2g, (€) n3K21Koo, and(d) u,sK4K,9. Each operator
couples a basis staje;) to at most only one other basis stdwg).

ticularly, it was shown that when perturbation is not large the 0
LDOS has the form E?=2 E.IC,l% (23

I'127

0y _
Wew(E~Ej)= (E—E%2+T%4’
]

@D so that we can express the LDOS w§(E—E?). On the

other hand, the centroid oW, (E®), labeled bye,, is de-
which is nowadays known as the Breit-Wign@W) law.  fined by

Here,I" is the half-width of the distribution. For larger per-

turbations, the form of the LDOS becomes model dependent

and in the intermediate region can be approximately de- ea=2 EJQICQI-IZ, (24)
scribed by a Gaussian distributip26]. J

Another important quantity is the shape of eigenfunctions
(EF9 and W, can be expressed as a function of the shif (
—e,).

The dependence of the shape of the LDOS and EFs on the
perturbation is presented in Fig. 9. The left column gives the
LDOS and the right column shows the EfNotice that the
in the unperturbed energy basis. In our numerical calculavertical scale depends on the valuexof. The first remark is
tions of the LDOS and EFs for the LMG model, in order to that the shapes of the LDOS and of the EFs are quite similar
suppress fluctuations, we have taken averages over 200 when the perturbation is not large.€0.9). On the other
individual distributions in the interval 331j=<530 for the hand, with increasing\, they start to deviate from each
LDOS and 33% a<530 for the EFs. The averaged distribu- other. Another result is that for not large perturbatian,
tions will be denoted byv(E) andW(E®), respectively. Be- <0.9, there seem to be large peaks that are not washed out
fore averaging, we should first express(E) and W, (E®) by the averaging process over 200 distributions. In fact, they
with respect to their centroids, respectively. For the LDOScome from dynamical interferencécorrelation effects,
the centroid ofw;(E) is just E]Q [2], which will be explained in Appendix B.

W, (E®) =2 |C,|28(E*—ED) (22)
J
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values ofA. Dashed and dashed-dotted curves are fitting curves to the BW and Gaussian forms, respectively.
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0.06 correlations; as is seen from the figure, in the classical limit
these correlations disappear. At the same time, the shape of
005 i the classical LDOS is, on average, close to the quantum one,

apart from the tails, which are of quantum origin and are due
to tunneling effects. The data also show that, by increasing
the perturbation, the agreement becomes better. The main
difference forn=2.0 is that in the center the LDOS is lower
than the classical LDOS. This may be related to a result
given in Ref.[3] that there is a local minimum in the center

of the LDOS for relatively strong perturbations.
0.01

0.0 C. A band random matrix model

Recently it has been shown that realistic conservative sys-

FIG. 10. A comparison between the rescaled LD@(E) tems with Ch_aOtiC properties can b_e .apprOXi.matEd .by band
(solid histogram and the EFW(E?) for A =2 (dashed histogram random matrice§l,7—9. Therefore, it is very interesting to
check whether the Hamiltonian of the LMG model, which
The dashed curves in Fig. 9 correspond to the best fit t60€S not contain any random matrix element, see(I),
the BW form and the dashed-dotted curves correspond to tHean be associated with an ensemble of random matrices. To
best fit to the Gaussian form. The fitting was made here foP€ as close as possible to the dynamical model, we introduce
the central parts of the LDOS and EFs. Specifically, neglectbere band random matrices of the form
ing the long tails, we chose for the fitting only the data with _
w andW larger than 0.01. Hran=Ho*AVran, (26)
In Fig. 9 it can be seen that far=0.5 the central parts of

both distributions can be well fitted by both the BW and\ynereH, is the same as for the LMG model, see E5), and
Gaussian formghowever, the agreement with the Gaus&anvran is obtained by replacing the nonzero matrix elements of
form extends to the region of the tail§-or stronger pertur- \; 5t the LMG model by random numbers with Gaussian
bation\ = 0.9, the distributions can still be fitted quite well yistribution. The mean value of the matrix elements.()

by the Gaussian form. Finally, when the perturbation is verfig zero and the variance, averaged over the nonzero matrix

strong, for exampleh=2.0 the LDOS and EFs deviate, as glements, is taken to be the same as in the dynamical LMG
expected, from both the BW and the Gaussian forms. model((V,an)2)=(V2)
ran .

The difference between the LDOS and the EFs for large Numerical data for both the LDOS and EFslHf,,, are

perturbationsh = 2.0 ?S quite e\_/ident; however, one ShOUId. resented in Fig. 12. Averages have also been taken over 200
note that the LDOS is plotted in the perturbed energy basi 'DOSs and EFs, respectively, in the central region of the

while the EF is plotted in th'e unpertur_bed one. Therefore, irEpectrum, as in the calculations of the LMG model. Interest-
order to ”_‘a"_e th_e comparison meaningful, one should resihgly, these results are similar to those found for Wigner
cale the distribution in a proper way. We use the same re

) A ! ; . $hand random matricd8]; that is, for small perturbations the
caling as in Fig. &). After this rescalingsee Fig. 10they  coniral part of the LDOS is of the BW form, while in the
look more similar to each other than in Fig. 9. ’

transition region when the perturbation is relatively strong, it
can be fitted to the Gaussian form; for stronger perturbations
B. The classical limit of LDOS it can be fitted approximately to the semicircle law
The classical counterpart of the LDOS, in short, the clas-
sical LDOS, labeled bwc,(E—E?), can be defined as the

probability that a phase point, which belongs to the torus 2 52 =2

corresponding to the quantum numbens and n; of |¢;), w(E)= 7T_R(2) Ro— B~ 27

has total energy [4]. It is expressed as a function of the

distance E— E?) whereEJQ is the unperturbed energy of the

torusm; ,n; . According to Eq.(15), in the limit 3 — o, we From Figs. 12 and 9, it can be seen that the shape of the
have LDOS and EFs oH,,, for A=0.3, 0.5, and 0.9 are much

smoother than the corresponding LDOS and EFs of the LMG
model. This can be explained by the randomness of
(Mran)k; see Appendix B. Another feature is that the central
parts of the LDOS and of the EFs far=0.3-0.9 in Fig. 12
Thus, the torus corresponding ity andn; is that with @  are lower than those for the LMG model. This also is an
+q7)=2m;/Q and (p3+93)=2n;/Q. effect of interference. Finally, comparing the two figures, it

In analogy to the quantum case, the classical LDOS wasan be seen that for<0.9 the central parts of LDOS and
averaged over 200 different tori. In Fig. 11, we show a com-EFs of the LMG model are roughly similar to thosetdf;, .
parison between the quantum and classical LDOS Nor Thus, when perturbation is not very large, the LMG model
=0.3,0.5,0.9, and 2.0. As discussed in Appendix B, thecan be associated with the above band random matrix model
LDOS for A=0.3 depends on strong dynamical quantum(26).

blb, _ (p?+q7)

a 5 (25)
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FIG. 11. Classical counterparts of the LD@fashed-dotted curvefor (a) A=0.3,(b) A=0.5,(c) A=0.9, and(d) A\ =2. For comparison
the corresponding LDOSs are also plottedlid histogramp

VI. LONG TAILS OF LDOS AND EIGENFUNCTIONS ()\V(_|2§)2
2 i 2

In the preceding section, we have discussed the central “JN(EH_ E?)? al8:
parts of LDOS and EFs. In this section we study their long
tails with the help of perturbation theory since, as discusse¢ollowing the procedure given in Appendix D of R§l],
in Appendix A, long tails are always in the perturbative re-one obtains the following estimate for the left tails of the
gion. averaged EFs:
|

First we consider the case of smallfor which the coef-
ficients|C,;| decrease very fast eﬁEa—Eﬂ increases. Let

where é=|E,— EJ|/2e, andv® is the average strength of
V@ in the low-energy region V{7 in Eq. (29) is in the

us start with the left tails of EF£?<<EQ, with E,, in the W(g)ocex% _me(
low-energy regioh

middle energy region. From E@¢A4), we have
For the right tails of EFsEJQ> E, . similar arguments lead
Again to Eq(30), with v*) changed to the average strength
can be coupled with a given basis stage) by the pertur-  Of Vv in the high-energy region, which, according to Fig. 8,
is approximately equal to the one in the low-energy region.

bation V. Denote these states By,), I=1,,l,, ... lg in . : X
order of increasing energy. Notice that since the energy dif- 10 0btain an expression for the tails of LDOSs fetr)

ferencesd® are generally much larger than the local level With Ej in the middle energy region, we assume that in the
spacings[about 0.1, on average: see FigaJ, there are 'egions of tails thg shapes of different eigenstates are similar,
many basis states located between each two of the abo®¥ average; that is,

eight state$¢,). Therefore, if the terniC |2 decreases fast -

enough with decreasingin the regionEE< E,, the compo- C§|8~Ci,i (31
nent|C | for k=1g will be much larger than the sum of the

other seven components; then, for E,/ — E?wEa— E|°8. Then Eq.(29) gives

(29

& 2¢;
e Av@

2

C2i=K il v )=

‘<¢>jl>\V| W) 08
E

0
a_Ej

As indicated in Sec. Il, there are only eight basis states th
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FIG. 13. Numerically computed LDOSsircles and EFs(tri- » s (b)
angles for A=0.1. Each value represents an average over 200 j’o \\
states. The dashed-dotted curve gives the analytical predi@®n ® J N
(with the appropriate normalization facjdor the long tails. P J,‘/O °°\.\
2 S5 J ooo'\_
Cij* ()\VjIBZ Ci/‘! (32) -30 ,J o \.\A
(E,—ED? ! st ] -\
and, for the two tails of the LDOS, one obtains the same v ,;,A \'\
expression as Eq30), with é=|E,— E?|/262 andv® the W0 w0 a0 20 10 P O
average strength &f(?) in the middle energy regio[rvflzg in
Eq. (32) is in the middle-energy regign FIG. 14. (a) LDOS (circles for A=0.9 and the fitting curve

When \ is not small, as indicated in Appendix B, more (dashed-dotted curyegiven by Eqs.(30) and (33) with xo=—13.
research work is needed in order to obtain an analytical ext) Similar to (a) for the EF(circles with xo=—16.

pression for the tails of EFs and LDOSs. However, we CalNoan that the agreement is quite good, not only in the long

assume th?,}) the tails obey a law somewhat similar t0 EGj| regions, but also in the regions quite close to the central
(30), with v** changed ta (since when\ is not small, the  har. Figure 14b) gives the tails for the EF and the fitting
tails are determined not only by®), but also by the other cyrye with x,=16. The figure also verifies the prediction
V). Here, similar to the smalk case,v is the average given above that the right tail drops faster than the left one
strength of the perturbation in the corresponding regions: fofor the EF, while the two tails are similar for the LDOS.
the left and right tails of EFs, the average should be taken in  For the band random matrix mod&6), as indicated in
the low- and high-energy regions, respectively, while for theAppendix B, the long tails of EFs and LDOSs obey the same
two tails of the LDOS the average should be taken in thdaw given by Eq.(30). This has been confirmed by numerical
middle-energy region. According to Fig. 8, the valuevoih results. As an example, in Fig. 15 we present the tails of
the low-energy region is larger than that in the high-energy.DOS for A=0.9 and the prediction given by E(80). The
region, so the right tail of the EF should drop faster than thedgreement between numerical data and the analytical result is
left one, while the two tails of the LDOS should be similar. @gain quite good in the long tail regions.

We have numerically computed the tails of both the
LDOS and EFs for the case of weak perturbatien0.1, and Vil. CONCLUSIONS AND DISCUSSION

the results are shown in Fig. 13 in logarithm scale. Each |n this paper we have studied the Lipkin-Meshkov-Glick

point represents an average over 200 states. It can be se@fMG) model in the many-particle basis of noninteracting
that the tails of LDOSs and EFs are quite close to each other,

in agreement with the fact that, for smal| they obey the / N
same law given by Eq30) with similar values ob (). Also -10 Vi o?,\
the agreement between the numerical results and the analyti- 20 éé"" %
cal prediction is quite good. s °°v%
When the perturbation increaseshie-0.3, the tails begin 0 g %
to deviate from the predictiof30). However, it has been ;.40 ;‘-‘7 %;\
found that forh=0.3 the tails can be fitted quite well to the K \
expression(30), with v instead ofv(?) and ¢ given by ” / '
€ 4
0 2 :
:(W) , (33) -70 ;
10e, /

where Xy is an adjusting parameter. As an example we

present in Fig. 14 the results far=0.9. The LDOS and its FIG. 15. LDOS(circles of H,,, in Eq. (26) for A=0.9 and the
fitting curve withxy,=13 are given in Fig. 14). It can be theoretical predictiorf30) (dashed-dotted curydor its long tails.
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particles. Main attention has been paid to the structure of thelassical model. This is important in view of recent results
local spectral density of statékDOS) in comparison with  [19,22 revealing the direct connection of the shape of EFs to
that of eigenfunction§EF9 defined in the unperturbed en- the partition function of isolated systems.
ergy basis. Of special interest is the question about the applicability
Due to its dynamical nature, the properties of the LMGOf random matrix models to a given dynamical system in a
model strongly depend on the energy region. Namely, fophao_tic region. There are many examples when full random
strong enough perturbation, chaotic properties of the Mmatrices or band random matrices can serve as good models
model for low and high excitation energies are stronger thaf®f the description of statistical properties of spectra and
in the middle of the energy spectrum. This fact is explainecE!9enstates of dynamical models. However, in these ex-
both on the grounds of peculiarities of the quantum modefMPIes th_e two-body nature of an interaction is, typically,
and of its classical counterpart. In particular, the eigenstate@Ot taken into account. In this paper we have <_:ar_efu||y ana-
in the middle of the spectrum are more regular, as compareléfzed the possibility of a random matrix descnpyon of th_e
with the eigenstates for low and high energies; CorresponomOdEI in the energy region where_the correqundlng classical
ingly, the level spacing distribution is close to the Wigner- system can be treated as a chaotic one. Specifically, we have

Dyson type at the edges of the spectrum, unlike in the Centé+sed the same unperturbed part of the Hamiltonian, but with

of the spectrum where deviations from the Wigner-DysonOff'diagonal matrix elements chosen at random with the

form have been detected same variance as in the original dynamical model, keeping
One of the main quest.ions addressed in our study is th&S"° matrix elements that are due to the specific form of the

dependence of the shape of LDOSs and EFs on the pertu||r]teraction. This approach also allows us to reveal to what
bation strength. Numerical analysis has shown that for relaXtent the underlying correlations of the dynamical model

tively weak perturbations the form of the LDOS s close to2'€ essential for its statistical description. Numerical results
the Breit-Wigner form, apart from the tails. This fact is in with such a random model have shown a quite good agree-

accordance with several observations for models with ran™eNt for global properties of the LDOS and chaotic EFs. “.1
dom interaction described by different random matrix en-Particular, the shapes of LDOSs and EFs turn out to remain

sembleq1,3]. However, detailed studies of LDOSs and EI:Ssimilar in a large range of the perturbation strength. On the
for the LMG model in the region of not very strong interac- othgr Ihand, the formbof the LﬁOS agddEFs in the ranldom
tion have revealed remarkable correlations that can be angi0d€! turns out to be smoother and does not reveal any

lytically explained. In fact, these correlations are due to the(egular deV|at|ons. due to q“a”t“”"."dY".‘am'Cfi' correlanon;,
dynamical nature of the model, and they are found to b hich, for a weak interaction, are significant in the dynami-

washed out for stronger interaction. caIFr_nOtIiIeI. h . fthe | ils of LDOS and

With the increase of perturbation, the form of the LDOS inally, the question of the long tails o an .EFS
changes, and for a quite moderate perturbation it is well deftas b?‘e” studied n detall, both analytically and numerically.
scribed by a Gaussian distribution. This observation is quité:or tl‘l;]l& a ggn%ragzglald ?PF\’/(/C.’""C“ has begn .developed _based
interesting in view of recent numerical data for complex at-O" the standard Brillouin-Wigner perturbation expansion.
oms[1] and heavy nuclei2], where the form of the LDOS Namely, the perturbation theory has been extended to strong

was found to be quite close to a Gaussian one. The San{:éerlturbation in the region of long talils. This has allowed us

effect (the change of the form of LDOSs from Breit-Wigner to find the ar_1a|yt|cal form for the long tails of the LDOS _and

to Gaussian-likehas also been found in numerical investi- EFs. l\_lumerlca_l d_ata have shown a good agreement with the

gations of Wigner band random matrid@§]. Therefore, our analytical predictions.

data for the dynamical LMG model indicate that the above

fact is of a quite generic nature and occurs also in dynamical ACKNOWLEDGMENTS
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have an analogy in the classical limit. In our paper the rela-

tion between the LDOS a_nd the co_rresponding _classical APPENDIX A: BRILLOUIN-WIGNER PERTURBATION

quantity h_as been checked in a dynamical model with a cha- EXPANSION OF EIGENSTATES

otic classical counterpaifsee also the recent papgz7]).

Numerical analysis of the classical model has shown that the Here we introduce a generalization of the so-called

form of the LDOS is close to its classical counterpart if theBrillouin-Wigner perturbation expansidi28,29, which can

perturbation is not very weak. This fact allows us to expecte shown to be valid even for strong perturbations. In par-

that(in semiclassical regionshe global structure of both the ticular, we show that long tails are always in the perturbative

LDOS and EFs can be directly found from the correspondingegion, and this also explains some previous regal3,4).
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First, we divide the set of basis vectors, i.e., the eigenfor example, for a Hamiltonian matrix with band structure

states of H?, into two parts, {|¢;),i=p1,...,p,} and and perturbatiorV coupling a basis state to at mdstother
{lé),i=1,... p1—1p,+1,... N}. Correspondingly, states, if theQ subspace is chosen, such that [fgf) in the
there are two projection operators Q subspace$Ea—E?|>meax, where V. is the maxi-

mum of the absolute value ohY;;), thenT, will approach
zero whenn goes to infinity.

For each statéy,), there exists & subspace with the
minimum number of basis statédenoted byP,,;,) and cor-
The subspaces related ® and Q will be called, in the respondingly &Q subspace with the maximal number of ba-
following, the P and Q subspaces, respectively. We now splisis stategdenoted byQ,,,,) that ensure that E4A7) holds.
an arbitrary eigenstate),,) of H into two orthogonal parts  Clearly, from Eq.(A7), the components of the staltg,) in

the Q subspace are in the perturbative region. Therefore, the
[ =1+1f), (tf)=0, (A2) expansion of the exact staté,) in the basig @) is natu-
where |t)=P|y,) and |f)=Q|#.,). Applying Q to the rally divided into two parts: the nonperturbative pét;,)

e : . : =Pninl#.) and the perturbative part |f.0
Schralinger equatior(13), we readily obtain =Qmad o). Tails of |,) are always in the perturbative

P2
P=2 |#)(4l. Q=1-P. (A1)

[E,—HOE)=Q\V|y,); (A3)  region and can be studied with the GBWPE. The same ap-
proach can be applied to the LDOS, which can also be di-
then, vided into two parts, perturbative and nonperturbative.
1 APPENDIX B: A “PATH” APPROACH
) =1t)+ E HoQ)‘VWa)' (A4) TO PERTURBATIVE EXPANSION
in which the eigenstatgy,) can either be normalized or not.  In order to study the perturbative part of,) in the
We remark that in the particular case in whith is chosen GBWPE given in Eq(A7), we make use of the concept of
as a single basis stae;) (i=a) andE,, taken as path, in analogy to that in the Feynman’s path integral theory
[30]. First we discuss the case of small perturbations. In this
E.=E2+(hi|\V]i,), (A5)  case, the ternt) can be chosen as the basis statg with

o _ o o the smallest value ofE,—E?|. For an arbitrary ¢;) in the
then the iterative expansion of E@\4) is just the Brillouin- Q subspace, EqA7) gives

Wigner perturbation expansion, in which the eigenstg
is not normalized. AVj; AV AV
Since our purpose is to study the structure of eigenfunc- CajE<¢j|lﬂa>:
- - E,—E) keQE,—E’E,—Ep
tions and of the LDOS, and not to solve the eigenvalue prob- a = a” =j FaT bk
lem, we takeE, in Eqg. (A4) as a constant, i.e., its exact AV AV AV
(unknown value, which can be find out by other methods. n ik kI LI
Then the iterative expansion of EGA4) gives kI<Q E,~E] E,~E[ E,—E}

(B1)

We now term a sequenge-k;— - - - —Kkq_;—i a path ofg

[a)=1t)+ 5QAV[t) paces fromj to i, if the matrix elements of the perturbation
E.—H Vi corresponding to each pace are nonzero. Attributing a
1 1 factorA\Vy /(E,— EE) to each pac&—k’, the contribution

SQLV oQ)‘V|t>+ . of a path toC,; is the product of the factors of all its paces.

E.—H E.,—H Then, theqth term ofC,,; on the right-hand side of E¢B1)

n—1 n can be rewritten as
1
+ Q\V |t>+ Q\V |1//a>.
(Ea—H° Eo—H Foi—1)=2 fosli—i), (B2)
S

(A6)
where s indicates the paths witly paces fromj to i and

If the last term on the right-hand side of E#\6), denoted fq.s(j—1) is the contribution of the path to C,; . Defining

by T,, tends to zero when— o, one has generalization of

Brillouin-Wigner perturbation expansiofGBWPE), which Alj—=1) as
gives an exact expression fop,) in terms of|t), E,, AV, *
andHO: A(i—i)= 2 Fy(j—i), (B3)
q=do
2
=t + AVIt)+ AWV D+ .. whereqy is the number of the paces of the shortest path from
V=1t Ea—HOQ v Ea—HOQ v j toi, we have
q Caj=A(j—1i) (B4)
QONV| [ty+---. (A7)
o H° & for small\V.
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For the general case, the tefh cannot be chosen as a —m=2, An=n;—n;=0; i.e., the two unperturbed states
single basis vector, but must be a superposition of some basjig;) and|¢;) are coupled directly by the teri;(K 0 in Eq.
vectors. Writing (6). Denote the number of thg-pace paths with positive
contributionsf, s in F, [see Eq(B2)] by Ny, and the num-

It)= § ) (B5) ber of paths with negativg, s by N, . For the shortest path
is, with one paceN;, =1, N;_=0. There is no path with two
paces. For q=3, there are 12 paths (e.g.,
C.j=(®l#,) can be expressed as KoK go— KooK 20— K10K10), N3+ =11,N;3_=1, and forq

- =4, we haveN,,=11,N,_=7. Clearly, the number of
B . short paths with positivé, s is much larger than that of short
C“i_i;pl A(J—Dti. (B6) paths with negativé . 9rherefore,|CC,j| is quite large and
the dynamical interference effect is strong. Similarly, for the
For Hamiltonians with band structure, paths have qualitaother seved¢j) that can be coupled directly {@;) by the
tively different features for small and large perturbations.other terms ofV, |C,;| are also quite large. On the other
When the perturbation is small, the differengg { p;), see  hand, for|¢j>, which are not coupled directly tap;) by V,
Eq. (Al), of the P, subspace is smaller than the band|C,| are smaller. In fact, the two peaks beside the main peak
width b. A path which start fromj <p,, can reach pointk in Fig. 9 forA=0.3 come fromC,; for the eight statessp;)
larger thanp,, in other words, a path can “cross” the  coupled directly byv to the statd ;). For the band random
region. Thus, the differende,— EE can be both positive and matrix model discussed in Sec. V, since the nonzero matrix
negative. This is important for the parameters we have choelements ofV,,, have random signs, we haw,, ~N,_,
sen in Sec. I, which make all the non-zero matrix elementsand the dynamical interference effect should be much
of V positive. When is so large thap,—p, is larger than ~ smaller than that in the LMG model.

b, paths starting fromi<<p, can no longer reack>p,, i.e., Finally, let us offer some discussion about the long tails
cannot “cross” theP region. Hence the values &,—EJ  of LDOSs and EFs when is not small. In this case, we
are either always positive or negative for a path. should use EqgB3) and(B6). In the region of long tails, for

The above concept of path is very useful in studyingeéachA(j—i) the main contribution comes from the term
Hamiltonians with band and sparse structures. For the LMG-q,. To see this, we give an estimatefef(j —i). Since one
model it is especially useful, since the perturbatibnouples  base vector can be coupled to at most eight otherg e
a basis state to at most eight others, as shown in Fig. 1. Inumber of possible paths witly paces fromj to i is M9,
fact, we have a simple method to find out all possible pathsvhere 0<M <8. Then for long tails we have
from j to i. First we write the basis vectoigp;) in their

equivalent formgm; ,n;), with m; being the number of par- o My |9
ticles in the orbital 1 anah; the number of particles in the Fo(i—i)= E _go) (B9)
orbital 2. We denote the changesmfandn along a path by a

Am=m;—m; andAn=n;—n;, and the changes oh andn . . .
for a pacer from k=k; to k' =K., by m,=m. —m, and wherev is the average coupling strength of the perturbation

=0 : ; 0
8n,=nw —ny. Then, if the path hag paces, we can write andofo'r largeq, Ej is approximately equal t&; . When
|E.—E;| is large enough, the valug,(j—i) decreases very
9 g fast with increasingj and the main term is the one with the
Am:z‘l om;, An:;_:l on; . (B7)  shortest pathd, pace$ from j to i. Therefore,C,; can be
- N estimated as
Since the interchange of does not influence the sum, Eqg. - _ L
(B7) is also satisfied by some other related paths. According Caj z.: tiF I —=1)- (B10)
to Eq.(10), there are only eight possible pairsah andén, For the LMG model, due to the dynamical interference
Sm=+2. sn=0 for V(1 (correllat|0r) effects, as o!mcussed above, (j—i) for dif-
ferenti may be equally important. In fact, for largg, al-

Sm=0, on==2 for V2, though the number of paces is large, the number of paths is
also large and some of the paceskatay have relatively
sm=%1 on=+2 for V3 small values of[E,—Ep|. Thus it is difficult to obtain an
analytical expression for the tails from E@10).
sm=+2 sn=x1 for V¥: (B8) For the band random matrix mode6), the signs of the

nonzero matrix elements &f,,, are random. Therefore, as

therefore, in order to find out all possibdepace paths from discussed above, dynamical interference effects are not so
j toi, one should just find out all possible combinationgjof large as in the LMG model, and the largest term on the
pairs of the possiblém and én in Eq. (BS) that satisfy Eq. right-hand side of Eq(B10) is the one with the smallest
(B7) (if all the intermediate points are in th@ subspace number of pacesq. Sinced® is the largest among the four

When\ is small, the ternjt) in Eq. (A7) can be chosen d, the shortest path from to i mainly consists of paces
as one basis vectdr;), and the expanding coefficief,;  resulting fromV(?). Then Eq.(29) also holds and the same
=(¢jlth,) isA(j—i)=24F,; see Eq(B4). As an example, expressions for the long tails of EFs and LDOSs as in Eq.
let us considecC,;, for which j is determined byAm=m (30) can be found.
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