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Singular Laplacian growth
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The general equations of motion for two-dimensional singular Laplacian growth are derived using the
conformal mapping method. In the singular case, all singularities of the conformal map are on the unit circle
and the map is a degenerate Schwarz-Christoffel map. The equations of motion describe the motions of these
singularities. Despite the typical fractal-like outcomes of Laplacian growth processes, the equations of motion
are shown to baot particularly sensitive to initial conditions. It is argued that the sensitivity of this system
derives from a different cause, the nonuniqueness of solutions to the differential system. By a mechanism of
singularity creation, every solution can become more complex, even in the absence of noise, without violating
the growth law. These processes are permitted, but are not required, meaning that the equation of motion does
not determine the motion, even local\561063-651X98)09003-5

PACS numbes): 68.70+w, 02.30.Hq

[. INTRODUCTION In Ref. [7] this process of stripping down was taken one
level further and an unexpected phenomenon came to light.
Laplacian growth, growth of a regioR along the gradi- This case might be called singular Laplacian growth because
ent of its external Green’s function, is a model for a numbeiit is the limiting case in which all the singularities &f are
of growth processes that occur in nature, among them growtan the unit circle|z|=1. In this caseG degenerates to a
by electrodepositiorf1], diffusion-limited aggregatiori2], Schwarz-Cristoffel map onto the exterior of a degenerate
and viscous fingering at fluid-fluid interfaces. These natu- polygonD of zero aredi.e., D looks like a tree graphIn
ral processes exhibit very complicated morphologies, as dodhis limit the dynamics becomes one dimensional and can be
the mathematical model. In spite of the large amount of workunderstood completely. The surprise is that the dynamics al-
that has been done, one still has the feeling that there i®ws the singularities o6 to split and proliferate, but it does
something mysterious about Laplacian growth. In particularpot require this. That is, while the dynamics is formally
its extreme sensitivity to perturbations makes it difficult to given by differential equations, the solutions, for given initial

interpret experiments, real or numerical. data, are not unique. The comment was made in [Ré¢that
A special role is played in the two-dimensional problemthis appears “unlike any other physical model.” In particu-
by the conformal mapping method, as developed4irg|, lar, it is not the same as being very sensitive to initial con-

for example. This method gives insight difficult to attain oth- ditions, as one might have assumed. In fact, as we show
erwise. It is especially simple in radial geometry. In outline,below, singular Laplacian growth is not at all sensitive in this
one parametrizes the growing two-dimensional regidn  way. Its peculiarities have a different origin.

thought of as occupying a bounded, simply connected region Referencd 7] gave only the simplest examp(& which

in the complexw plane, by the conformal map all maps could be written down explicitiyand not a general
computable theory. The present paper gives the general
w=G(2z) (D) theory.
which takes the exterior of the unit didk|>1 onto the Il. DYNAMICS OF SINGULARITIES
exterior of D. The growth ofD is then represented by the
time dependence of the conformal m@p SinceG is holo- Letw=G(t,z) be a time-dependent conformal map of the

morphic in|z|>1 and its dependence at infinity is also pre- exterior of the unit disk in the plane onto the exterior of the
scribed,G may in turn be parametrized by its singularities in domainD in thew plane.G has the form

the unit disk|z|<1. The growth becomes the dynamics of

those singularities. This method eliminates sources of inac- ~

curacy that are unavoidable in other methods, for example, G(t,z)=2>, c(hz™~. (2
the statistical noise that accompanies diffusion-limited ag- k=0

gregation simulations or some of the roundoff and truncation i

errors of more straightforward integration methods. That>UPPose for the moment thaD, the boundary oD, is an
does not make the conformal mapping method necessarili'/”alyt'c Jordan curve so that there is no difficulty in defining
more realistic, of course. Indeed, the noise in other numerical .

methods may model actual physical noise and hence be de- g(t,0)=G(t,e'). €)
sirable if one’s aim is to model particular examples of

Laplacian-like growth. With the conformal mapping method ~As shown by Shraiman and Bensimd¢B], Laplacian
we aim rather to strip the problem down to its simplest formgrowth implies that the conformal map has time dependence
to see what remains and is common to all such processes.given by
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ol = >, dee ke, (5 FIG. 1. The image under a degenerate Schwarz-Christoffel map
k== of an arc containing singularities. . ,8;,7,8>, ... . The image
h comes in from the left, turns through an angler atH(B,), stops
then and reverses direction af(y), turns through an angle,7 at
5 o H(B,), and exits on the left. In this example, a kink is shown in a
L % )=d0+22 dkefik(’. 6) growing needle. Herer;= — a,.
k=1
The «;, B, and y, are by no means arbitrary. First,
Define new scaled variables because the image polygon turns through a total angle 2
one must have, since there ak& branch points and\
a=Ck/Co, by=d/dg (7)  growth tips,
and a new independent varialdg) by M
N+, a=2. (12)
ds/dt=d,. (8) i=1
In terms of these variables, E(f) becomes Second, because _the ima_lge polygon I0(_)ks like a _tree graph,
each edge of the image is traversed twice, once in each di-
ay k rection. This means that the integralsabt/ 9z along arcs of
E:(k—2)akﬂL 212,0 (1-j)ajby_;. (9) the unit circle from one singularity to the next, which are

singular integrals, must cancel in pairs, an intricate condition
L . on the positions of th@'s and y's.

Because of the rescaling in Eq¥) and(8), Eqg. (9) contin- Sup[?ose at tims=g§we ha\)//e such a conformal mah
ues to make sense even in the limit as singularities of thq_he equation of motion foH [Eq. (9)] should be recast as
conformal map move onto the unit circle. For example’equations of motion for the singularities bf. The a,’s of

[bd=<1 for all k, even thougtty blows up. We define the Eq. (9) are just the coefficients in the power series Fbr

by S, In case there are smgulgnUes on the unit circle, to ha\.’%ccording to Eq(10), but we still need thé,’s. To compute
their limiting values as the singularities move onto the unit

circle from the inside. With this understanding, E§) de- the by’s, using Eqs.(5) and(7), we must Fourier transform

. . ; ; 19H/dz| 2, restricted to the unit circle, with the singularities
scribes Laplacian growth, both singular and nonsingular, in,. ; o ) .
, . displaced slightly inside. The Fourier transform integrals are
terms of the scaled mapping function

dominated by they singularities, and as the singularities
move onto the unit circle, the entire contribution comes from

H(s,2)= M:ZE a(s)z . (100  them. Thus there is a simple formula fog,
Co(t(s)) k=0 y
In the singular case, in which all singularitiestéfare on b= 21 vje“(VJ. (13
J:

the unit circle H is a Schwarz-Christoffel map onto a degen-

erate polygon and therefore its derivative has the form Here the weights; are determined by

H N
— = — alBj/7) —al
— J1:[1(1 e'filz) Jk1:[1(1 e z). (12) v fim

z—e'?

oHlaz| 2

z—ei

(14

As a conformal mapk has singularities at points on the unit
circle that we have calle@; andy,. The image of an arc of
the unit circle undeH, so long as it does not contain a
singularity, is a straight line segment. At the singulagty, N
however, the image line turns through the angjer, which > v
may be either positivecounterclockwisgor negative(clock- =1
wise). It is understood thdte;|<1. At the singularityy, the
image turns through the angte i.e., the line retraces itself;
see Fig. 1. They singularity may seem to be only a special w0 N

case of theB singularity, corresponding tee=1, but we _ —k_ Uk

have distinguished it because growth takes place entirely at B(2) g’o bz ,2’1 1-€"lz (18
the y singularities: they's are different(We use the follow-

ing notation:« is an angleB a branch point, ang a growth  Then multiplying each side of Eq9) by z~
tip. The a; of this paper was called;—1 in[7].) ming overk gives

with the constant of proportionality determined by the nor-
malization

=bo=1. (15)

Define the function

k*1 and sum-
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IH approach a state that does satisfy them. We describe these
o5~ HT(@B-1lz—. (17 equilibrium states more precisely below. This stability of the
flow, which is a familiar property of gradient flows, is an
Itis 9H/az rather tharH that we know explicitly, so take the indication that singular Laplacian growth i®t sensitive to
derivative of Eq.(17) with respect toz. The left-hand side initial conditions, contrary to what one might have expected,

becomes and hence that the peculiar sensitivity of Laplacian growth in
general either has been lost in the passage to the singular
9%H (?H a,e Bijz dB; ez dy, case or arises from some other cause. We suggest below that
0 — . T — < this other cause is the nonuniqueness property of the system
9sdz az iBijjz ds (=1 1—¢ ds . . '
=1 1-ePiz k=11-e"Wz (19 still to be described.

The dynamics of singularities described by E4€)—(23)

and the right-hand side becomes an explicitly known expres¢@n be pictured very simply. The's are repelled by thg's
sion. One can now cancel the factei 9H/Jz in all terms. O the unit circle and the's repel each other. The strength
Multiplying by 1—e'Ai/z and taking the limit ag— e'#i iso- with which eachy, repels other singularities is given by the
lates dB;/ds, and similarly multiplying by t-e?/z and ~ correspondingy (always greater than)0The g's, on the
taking the limit asz— €' % isolatesdy, /ds. The result, after Other hand, do not interact directly with each other. No sin-

algebraic simplification, using Eq&L5) and (12), is gularity can pass through another one; they always keep the
same order around the unit circle. Tho8& between any
dB N ~ Yk
W= 3, vieol 25
k=1

two adjacenty’s are, however, driven by them toward some
(19 intermediate point where, in effect, they coalesce into a
single effective 8, characterized by a single effective,
) which is the sum of all the contributing’s. The way ag

singularity approaches its limit position is the wa{s) ap-
proaches 0 in

dyy Y~ B
dS UkJZ a; COf( 2

+ E (v+v: )cot( Ykz Y
(20

We can also note that dx/ds=—x?, (27)

U =W /W, (21) namely,

where X(S) =Xo/(1+XpS), (28

M
Wi = H sinzai( Yk—ﬂj)l-[ Sinz( Yk~ 7j), 22) that isZ it takes an infin_it_e t_ime. By _the second derivative test,
' 2 j#k 2 there is only one equilibrium position for thg's between
each pair ofy’s. Here all theg’s will collect. Thus, in the
N limit as s—o the equilibrium states of singular Laplacian
W= kzl W . (23)  growth havey's and s alternating and look likeN needles
radiating from a single central point. One can even write a
It is understood in Eq(22) that w, is real and positive. formula in closed form foH in this case,
Equations(19)—(23) represent the dynamics of singular La-
placian growth as an autonomous system of ordinary differ- N A 1
ential equation§ODE'’s). H:Zkﬂl (1—e'Pufz) it (29)
Remarkably, this system is a kind of gradient system: N

dB; 1 9 InW where theg’s _and a’s are _the effective ones. We can alsp
ds @ FT (24 _understand this qutcome, in a more physwgl way, by realiz-
! J ing that the continual rescaling means all internal structure

dy, 9 InW shrinks to a point, leaving only the growth tips as visible

(25)  features. What is not obvious from this description, but is
observed, is that typically some of thés are entrained with
the B’s and coalesce with thewhere they contribute- 1 to
the effective «). This amounts to the scaling away of
needles. It turns out that the generic stable equilibria have
g=diag ay, ....au1,....D. (26) N=3. If the initial configuration habl>3 and is the least bit
asymmetrical, some of the growing tips lose out in the com-
Since, according to Eq12), the a's are negative, on aver- petition to grow and disappear as-«, leaving only three
age, ifN>2, this metric is indefinite. The gradient flow is (or fewel needles in the limit.
toward certain critical points of W that are not minima. This result might appear puzzling since it seems to imply
These critical points are the equilibria of singular Laplacianthat Laplacian growth should be a processsimfiplification
growth. They can be found by integrating the system ofcontrary to the increasing complexity that is observed, and is
equations(19)—(23). Even if the starting state does not sat- the whole motivation for studying it. That puzzle is resolved
isfy all the conditions described after EQL2), it will still in the next section.

E_ &yk ’
This is gradient flow in the space of parameters
(B1s -« -Bm Y1s - - - ¥n) €ndowed with the metric tensor
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FIG. 2. A new needle may grow on the outside of the corner in
Fig. 1. Here the singularity; has split into two branch poinig;
and 87 and a new growth tip/’.

-0.5¢ A
III. NONUNIQUENESS OF THE DYNAMICS

If one reverses the sense of time and integrates the syste _
backward, the repelling character of thé&s becomes an at-
traction. In particular, twgd’s adjacent on either side of a
may be attracted to it, move toward it, and coalesce with it-1.5 : . .

. - . . . . -1.5 -1 -0.5 0 0.5 1
essentially annihilating, leaving just the Unlike the coa-
lescence described at the end of the preceding section, which FIG. 3. At each time intervahs=0.1 the growing tip with the
takes an infinite time, this coalescence ocdnra finite time  largest strength is split. The initial configuration was four random
Roughly, one can estimate from Eq9) that aB approaches needles radiating from a point, but the growth law is completely

1k 4

a nearbyy the wayx(s) approaches 0 in deterministic. The failure of the image to retrace itself precisely is a
measure of the numerical error in the method after about 40 branch
dx/ds=1/x (300 points have been generated and moved according to the law of

) ) singular Laplacian growth.
(integrating backward frors=0), namely,

1+«
X(S)= x5+ 2s. (3D _ N L 1AL+ aqtay)
Y= B> l+a25 1T, (34

At times earlier than the coalescence time3/2, the 8 sin-

gularities were simply not present. If one now examines this 1+ a,

solution to the system with the usual forward sense of time, Y= Bo% — \/msm(““l”?, (35)
one sees, at some arbitrary time<§/2, two B singularities !
suddenly produced on either side ofyawhich had not been
there before. To satisfy Eq12), the a's that characterize
theseB’s must add to zero. The geometrical effect of this
process is that a kink of deviation anglesuddenly appears
in the growing needle represented pylike the kink shown

in Fig. 1, which might have formed from a single straight IV. DISCUSSION

needle. This kinking may happen at any arbitrary time. A The gbservations of Sec. Il mean that the system of
more careful argumentn the_AppendD)(_says that if a _kmk ODE’s (19)—(23), although appearing unremarkable, has the
forms aty at s=0, the leading behavior in the motion of pecuyliar property that its solutions are highly nonunique.

with 1+ a;+ a,>0, a1+ a,<0. (In Ref. [7] the factor 1
+ay,+a, in the exponent's denominator mistakenly ap-
peared in the numeratfr.

singularities is New singularities can appear by the above two elementary
T processes at any time. In combination one has more compli-
_ T Man 32 cated processes: A kink followed by a new needle at the
Y= B1 1 S5 (32 . . -
ta; outside of the new corner amounts to tip splitting, for ex-

ample, and this can happen at any time. The equilibria de-
[1tar scribed in Sec. Il are never attained if such processes, which
Y B~ 1+ als ' (33 are allowed by the differential equation, continually inter-
vene. Thus singular Laplacian growth supports complex non-
with a1=— as. equilibrium behavior after all.

In addition, a second kind of coalescence is seen in back- It is interesting to see what the model looks like if one
ward integration, in which twg’s, with anglesa; and a;, integrates it forward, introduces new singularities, integrates
on either side of &, coalesce to leave a singlewith angle  again, adds more singularities, etc. Examples are shown in
1+ a4+ a,. This happens only if +a;+a,>0 and a; Figs. 3 and 4, where symmetrical tip splitting was introduced
+ a»,<<0. Geometrically it corresponds to the shrinking awayat intervals of 0.1 time unit. To interpret the evolving posi-
of a needle in a finite timéthe growth tipy is losY, on the tions of singularities in terms of the corresponding image
outside of a corner of anglela;+ @,. What it means in regionD, which is what is shown, it was necessary to inte-
forward integration is that at any time a needle may begirgrate Eqg.(11) numerically. Each edge is represented by a
growing on the outside of a corner, as in the process thasingular integral. These integrals were done by Gauss-Jacobi
takes Fig. 1 to Fig. 2. The motion of singularities in this casejntegration, as described by Trefethen in H&f. The accu-
in leading order, is mulating error in these numerical integrals, as one steps
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15 - ' ' - ' [7] and in this paper, does not have to be inventiéds
naturally and unavoidably part of the theprgnd it looks
slightly more complicated: Ay gives rise to thregs’s and
anothery (as in Figs. 1 and)2 However, this amounts in fact
to the same thing. The resulting twos are zeros o’ and,
0.5- 1 by the geometry of the situation, the three nedg add to
—1. This means that the thre@'s, from a distance much
greater than their mutual separation, look like a poldH6f
[see Eq(11)]. The mechanism proposed by Blumenfeld and
Ball is thus a kind of smeared version of the singular mecha-
-0.5} . nism, already described in R¢f7]

It is especially remarkable that Blumenfeld and Ball in-
vented their mechanism entirely on the basis of physical phe-
-r 7 nomenology and were unaware of Réf]. Their mechanism
of particle creation, although it iad ho¢ corresponds as
s . . . . . precisely as it could have to ttenly mechanism in the sin-

-15 -1 05 0 05 ! 5 gular theory for nontrivial dynamics. This suggests that the

FIG. 4. At each time intervaks=0.1 a growing tip is randomly ~ Singular theory is close enough to real phenomenology to be
selected and split. The probability of a tip’s being selected is prouseful and it does retain the essential features of Laplacian
portional to its strengthy. The initial configuration was three ran- growth.
dom needles radiating from a point. The failure of one of the edges
to retrace itself accurately is the result of accumulated numerical VI. GENERALITIES
error.

To focus on the details of singular Laplacian growth is, to

along each edge to the next, especially in light of the usuafome extent, to sidestep a much bigger question: What is
sensitivity of numerical conformal maps, might have beendoing on here with nonuniqueness? Are not differential
expected to produce nonsensical pictures, but in fact the nigquations supposed to have unique solutions? We all know
merical error (fa"ure to retrace edges accuraterbg just textbook examples where uniqueneSS fa”s, but the failure
barely visible in these example@ventually, of course, the ©occurs on some small set and for equations that would not
accumu'ating error does become |arge’ but the good numera.rise in phySiCS. Here are equations that arise in a SyStem that
cal behavior of the system again makes the point that singu?@s been much discussed in physics and uniqueness fails for
lar Laplacian growth isiot particularly sensitive to error or €very solution at every time. The least one can say is that the
noise. Its sensitivity to perturbations comes entirely througtequations of motion do not determine the motion, even lo-

the nonuniqueness propeity. cally. o . _ .
| believe this is actually mathematicéérra incognita

Such equations do not even have a name. How would one
V. RELATION TO OTHER WORK characterize them generally? Are they in some sense com-

Most of those who have used the conformal mapping™On. or are they rare? | think of calling them “fragile dif-
method have followed Shraiman and Bensin{& in re- ferential equations” because, at least in this example, the

stricting the derivative of the conformal map to be a ra- nonuniqueness arises by the tendency of singularities. to
tional function. From some points of view this is a rather °réak apart,” but perhaps a more general unQerst?ndlng
drastic restriction on the analytic structuretéf Whether it ~ Would reveal that this name is somehow misleading. “Frag-

is a good enough representationtbfto learn the full impli- ile” sounds a Iittlg bit like “fractal,” but is not the same,
cations of the conformal mapping method is not clear. Argu-2nother reason | like the name. _ _
On a more physical level, what does it mean for a physi-

ments that the boundary value ldf can always be approxi-
y y bp al system if it is described by equations that, in some limit,

mated by the boundary value of a rational function are no e 2 , ,
ecome “fragile?” A fragile system does not fully determine

very convincing in a context where it is precisely the nature
y 9 b y the evolution, but it does restrict it. What is the nature of the

of the singularities that is the basis of the theory. It had - : .
already been noticed in Reff7] that branch points play an restriction? These seem like good questions for the future.

essential role in the singular theory. Nonetheless, an interest-
ing comparison between the singular case and the rational APPENDIX
case is possible.

An example is Ref[8], in which Blumenfeld and Ball
invent a mechanism of “particle creation(i.e., singularity
creation) to model tip splitting. In their model, sindd’ is )
rational, the only singularities are the zeros and poléed 'of be the cor_respondlng angle parameters_lamlie strength of
The mechanism they propose is that a zero creates a secoffd”\ccording to Eqs(19) and (20), keeping only the most
zero and a pole. The two zeros represent the two growingnoular terms, in leading order they obey
tips after the split and the pole represents the division be-
tween them. %: 2v (A1)

Tip splitting in the singular theory, as described in Ref. ds Bi—vy’

We derive Eqs(32)—(35), the leading behavior of singu-
larities B4, y,8, when they are very close to each otliier
that ordey and not close to other singularities. Let anda,
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d 2v where
% ==, (A2)
S BZ_’Y V1=(1+a1+a2)/(2+a1+a2), (AlO)
dy_2vey  2vap (A3) o= 12+ ay+ ay). (A11)
ds y=B1 v—B2 _ o
Since this is supposed to hold 8&Q approach zero, the
Let only relevant value of the constant is zero. The soluffon
P Al =Q is not relevant to this situation sinéeandQ must have
=v= k1, (A4) opposite sign. Thus
Q=vy—B2. (A5) (1+ ay)P+(1+a;)Q=0. (A12)
Then, subtracting, Using Egs.(21)—(23) together with the fact, found in Eq.
dP 2v(1+ay) 2va (A12), that y— B, and y— B, are simply proportional, we
i = z (A6)  see thaw is nonsingular ifa; + a,=0 and
ds P Q
v~ PpT2uT2e (A13)
dQ 2va; 2v(l+a,)
as- P ° Q (A7) if a,+a,<0. Thus, from Eq(AB),
Dividing, we have the homogeneous equation dP/ds~P~! (A14)
dP (14 a1)Q+azP (A8) if @;+a,=0, as in the rough argument of Sec. lll, and
= A8

dQ  a;Q+(1+ayP’

which separates when written in terms of the variaI€).
The complete solution, in implicit form, is

(P=Q)"[(1+ a,)P+(1+ay)Q]"?2=const, (A9)

d_P~ P—2a1—2a2—1

i< (A15)

if a1+ a,<0. These results are summarized in E@2)—
(35).
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