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Singular Laplacian growth

Mark A. Peterson
Physics Department, Mount Holyoke College, South Hadley, Massachusetts 01075

~Received 6 October 1997!

The general equations of motion for two-dimensional singular Laplacian growth are derived using the
conformal mapping method. In the singular case, all singularities of the conformal map are on the unit circle
and the map is a degenerate Schwarz-Christoffel map. The equations of motion describe the motions of these
singularities. Despite the typical fractal-like outcomes of Laplacian growth processes, the equations of motion
are shown to benot particularly sensitive to initial conditions. It is argued that the sensitivity of this system
derives from a different cause, the nonuniqueness of solutions to the differential system. By a mechanism of
singularity creation, every solution can become more complex, even in the absence of noise, without violating
the growth law. These processes are permitted, but are not required, meaning that the equation of motion does
not determine the motion, even locally.@S1063-651X~98!09003-5#

PACS number~s!: 68.70.1w, 02.30.Hq
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I. INTRODUCTION

Laplacian growth, growth of a regionD along the gradi-
ent of its external Green’s function, is a model for a numb
of growth processes that occur in nature, among them gro
by electrodeposition@1#, diffusion-limited aggregation@2#,
and viscous fingering at fluid-fluid interfaces@3#. These natu-
ral processes exhibit very complicated morphologies, as d
the mathematical model. In spite of the large amount of w
that has been done, one still has the feeling that ther
something mysterious about Laplacian growth. In particu
its extreme sensitivity to perturbations makes it difficult
interpret experiments, real or numerical.

A special role is played in the two-dimensional proble
by the conformal mapping method, as developed in@4–8#,
for example. This method gives insight difficult to attain ot
erwise. It is especially simple in radial geometry. In outlin
one parametrizes the growing two-dimensional regionD,
thought of as occupying a bounded, simply connected reg
in the complexw plane, by the conformal map

w5G~z! ~1!

which takes the exterior of the unit diskuzu.1 onto the
exterior of D. The growth ofD is then represented by th
time dependence of the conformal mapG. SinceG is holo-
morphic in uzu.1 and its dependence at infinity is also pr
scribed,G may in turn be parametrized by its singularities
the unit diskuzu<1. The growth becomes the dynamics
those singularities. This method eliminates sources of in
curacy that are unavoidable in other methods, for exam
the statistical noise that accompanies diffusion-limited
gregation simulations or some of the roundoff and truncat
errors of more straightforward integration methods. T
does not make the conformal mapping method necess
more realistic, of course. Indeed, the noise in other numer
methods may model actual physical noise and hence be
sirable if one’s aim is to model particular examples
Laplacian-like growth. With the conformal mapping meth
we aim rather to strip the problem down to its simplest fo
to see what remains and is common to all such process
571063-651X/98/57~3!/3221~6!/$15.00
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In Ref. @7# this process of stripping down was taken o
level further and an unexpected phenomenon came to li
This case might be called singular Laplacian growth beca
it is the limiting case in which all the singularities ofG are
on the unit circle uzu51. In this caseG degenerates to a
Schwarz-Cristoffel map onto the exterior of a degener
polygon D of zero area~i.e., D looks like a tree graph!. In
this limit the dynamics becomes one dimensional and can
understood completely. The surprise is that the dynamics
lows the singularities ofG to split and proliferate, but it does
not require this. That is, while the dynamics is forma
given by differential equations, the solutions, for given init
data, are not unique. The comment was made in Ref.@7# that
this appears ‘‘unlike any other physical model.’’ In partic
lar, it is not the same as being very sensitive to initial co
ditions, as one might have assumed. In fact, as we sh
below, singular Laplacian growth is not at all sensitive in th
way. Its peculiarities have a different origin.

Reference@7# gave only the simplest example~in which
all maps could be written down explicitly! and not a genera
computable theory. The present paper gives the gen
theory.

II. DYNAMICS OF SINGULARITIES

Let w5G(t,z) be a time-dependent conformal map of t
exterior of the unit disk in thez plane onto the exterior of the
domainD in the w plane.G has the form

G~ t,z!5z(
k50

`

ck~ t !z2k. ~2!

Suppose for the moment that]D, the boundary ofD, is an
analytic Jordan curve so that there is no difficulty in defini

g~ t,u!5G~ t,eiu!. ~3!

As shown by Shraiman and Bensimon@5#, Laplacian
growth implies that the conformal map has time depende
given by
3221 © 1998 The American Physical Society
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]g

]t
52 i

]g

]u
LS U]g

]uU
22D , ~4!

where, if

U]g

]uU
22

5 (
k52`

`

dke
2 iku, ~5!

then

LS U]g

]uU
22D5d012(

k51

`

dke
2 iku. ~6!

Define new scaled variables

ak5ck /c0 , bk5dk /d0 ~7!

and a new independent variables(t) by

ds/dt5d0 . ~8!

In terms of these variables, Eq.~4! becomes

dak

ds
5~k22!ak12(

j 50

k

~12 j !ajbk2 j . ~9!

Because of the rescaling in Eqs.~7! and ~8!, Eq. ~9! contin-
ues to make sense even in the limit as singularities of
conformal map move onto the unit circle. For examp
ubku<1 for all k, even thoughdk blows up. We define the
bk’s, in case there are singularities on the unit circle, to h
their limiting values as the singularities move onto the u
circle from the inside. With this understanding, Eq.~9! de-
scribes Laplacian growth, both singular and nonsingular
terms of the scaled mapping function

H~s,z!5
G„t~s!,z…

c0„t~s!…
5z(

k50

`

ak~s!z2k. ~10!

In the singular case, in which all singularities ofH are on
the unit circle,H is a Schwarz-Christoffel map onto a dege
erate polygon and therefore its derivative has the form

]H

]z
5)

j 51

M

~12eib j /z!a j )
k51

N

~12eigk/z! . ~11!

As a conformal map,H has singularities at points on the un
circle that we have calledb j andgk . The image of an arc o
the unit circle underH, so long as it does not contain
singularity, is a straight line segment. At the singularityb j ,
however, the image line turns through the anglea jp, which
may be either positive~counterclockwise! or negative~clock-
wise!. It is understood thatua j u,1. At the singularitygk the
image turns through the anglep, i.e., the line retraces itself
see Fig. 1. Theg singularity may seem to be only a spec
case of theb singularity, corresponding toa51, but we
have distinguished it because growth takes place entirel
theg singularities: theg ’s are different.~We use the follow-
ing notation:a is an angle,b a branch point, andg a growth
tip. Thea j of this paper was calleda j21 in @7#.!
e
,

e
t

n

at

The a j , b j , and gk are by no means arbitrary. Firs
because the image polygon turns through a total anglep,
one must have, since there areM branch points andN
growth tips,

N1(
j 51

M

a j52 . ~12!

Second, because the image polygon looks like a tree gr
each edge of the image is traversed twice, once in each
rection. This means that the integrals of]H/]z along arcs of
the unit circle from one singularity to the next, which a
singular integrals, must cancel in pairs, an intricate condit
on the positions of theb ’s andg ’s.

Suppose at times50 we have such a conformal mapH.
The equation of motion forH @Eq. ~9!# should be recast a
equations of motion for the singularities ofH. The ak’s of
Eq. ~9! are just the coefficients in the power series forH,
according to Eq.~10!, but we still need thebk’s. To compute
the bk’s, using Eqs.~5! and ~7!, we must Fourier transform
u]H/]zu22, restricted to the unit circle, with the singularitie
displaced slightly inside. The Fourier transform integrals
dominated by theg singularities, and as the singularitie
move onto the unit circle, the entire contribution comes fro
them. Thus there is a simple formula forbk ,

bk5(
j 51

N

v je
ikg j . ~13!

Here the weightsv j are determined by

v j} lim
z→eig j

U ]H/]z

z2eig j
U22

, ~14!

with the constant of proportionality determined by the no
malization

(
j 51

N

v j5b051. ~15!

Define the function

B~z!5 (
k50

`

bkz
2k5(

j 51

N
vk

12eig j /z
. ~16!

Then multiplying each side of Eq.~9! by z2k11 and sum-
ming overk gives

FIG. 1. The image under a degenerate Schwarz-Christoffel m
of an arc containing singularities. . . ,b1 ,g,b2 , . . . . The image
comes in from the left, turns through an anglea1p at H(b1), stops
and reverses direction atH(g), turns through an anglea2p at
H(b2), and exits on the left. In this example, a kink is shown in
growing needle. Herea152a2.
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]H

]s
52H1~2B21!z

]H

]z
. ~17!

It is ]H/]z rather thanH that we know explicitly, so take the
derivative of Eq.~17! with respect toz. The left-hand side
becomes

]2H

]s]z
52 i

]H

]z S (
j 51

M
a je

ib j /z

12eib j /z

db j

ds
1 (

k51

N
eigk/z

12eigk/z

dgk

ds D
~18!

and the right-hand side becomes an explicitly known exp
sion. One can now cancel the factor2 i ]H/]z in all terms.
Multiplying by 12eib j /z and taking the limit asz→eib j iso-
lates db j /ds, and similarly multiplying by 12eigk/z and
taking the limit asz→eigk isolatesdgk /ds. The result, after
algebraic simplification, using Eqs.~15! and ~12!, is

db j

ds
5 (

k51

N

vkcotS b j2gk

2 D , ~19!

dgk

ds
5vk(

j 51

M

a jcotS gk2b j

2 D1(
j Þk

~vk1v j !cotS gk2g j

2 D .

~20!

We can also note that

vk5wk /W, ~21!

where

wk5)
j 51

M

sin22a j S gk2b j

2 D)
j Þk

sin22S gk2g j

2 D , ~22!

W5 (
k51

N

wk . ~23!

It is understood in Eq.~22! that wk is real and positive.
Equations~19!–~23! represent the dynamics of singular L
placian growth as an autonomous system of ordinary dif
ential equations~ODE’s!.

Remarkably, this system is a kind of gradient system:

db j

ds
52

1

a j

] lnW

]b j
, ~24!

dgk

ds
52

] lnW

]gk
. ~25!

This is gradient flow in the space of paramete
(b1 , . . . ,bM ,g1 , . . . ,gN) endowed with the metric tensor

g5diag~a1 , . . . ,aM,1, . . . ,1!. ~26!

Since, according to Eq.~12!, the a ’s are negative, on aver
age, if N.2, this metric is indefinite. The gradient flow
toward certain critical points of lnW that are not minima.
These critical points are the equilibria of singular Laplac
growth. They can be found by integrating the system
equations~19!–~23!. Even if the starting state does not sa
isfy all the conditions described after Eq.~12!, it will still
s-

r-

f

approach a state that does satisfy them. We describe t
equilibrium states more precisely below. This stability of t
flow, which is a familiar property of gradient flows, is a
indication that singular Laplacian growth isnot sensitive to
initial conditions, contrary to what one might have expect
and hence that the peculiar sensitivity of Laplacian growth
general either has been lost in the passage to the sing
case or arises from some other cause. We suggest below
this other cause is the nonuniqueness property of the sys
still to be described.

The dynamics of singularities described by Eqs.~19!–~23!
can be pictured very simply. Theb ’s are repelled by theg ’s
on the unit circle and theg ’s repel each other. The strengt
with which eachgk repels other singularities is given by th
correspondingvk ~always greater than 0!. The b ’s, on the
other hand, do not interact directly with each other. No s
gularity can pass through another one; they always keep
same order around the unit circle. Thoseb ’s between any
two adjacentg ’s are, however, driven by them toward som
intermediate point where, in effect, they coalesce into
single effectiveb, characterized by a single effectivea,
which is the sum of all the contributinga ’s. The way ab
singularity approaches its limit position is the wayx(s) ap-
proaches 0 in

dx/ds52x2, ~27!

namely,

x~s!5x0 /~11x0s!, ~28!

that is, it takes an infinite time. By the second derivative te
there is only one equilibrium position for theb ’s between
each pair ofg ’s. Here all theb ’s will collect. Thus, in the
limit as s→` the equilibrium states of singular Laplacia
growth haveg ’s andb ’s alternating and look likeN needles
radiating from a single central point. One can even write
formula in closed form forH in this case,

H5z)
k51

N

~12eibk/z!ak11, ~29!

where theb ’s and a ’s are the effective ones. We can als
understand this outcome, in a more physical way, by rea
ing that the continual rescaling means all internal struct
shrinks to a point, leaving only the growth tips as visib
features. What is not obvious from this description, but
observed, is that typically some of theg ’s are entrained with
theb ’s and coalesce with them~where they contribute11 to
the effective a). This amounts to the scaling away o
needles. It turns out that the generic stable equilibria h
N<3. If the initial configuration hasN.3 and is the least bit
asymmetrical, some of the growing tips lose out in the co
petition to grow and disappear ass→`, leaving only three
~or fewer! needles in the limit.

This result might appear puzzling since it seems to im
that Laplacian growth should be a process ofsimplification,
contrary to the increasing complexity that is observed, an
the whole motivation for studying it. That puzzle is resolv
in the next section.



st
-

i

h

h
e

is

ht
A

f

c

ay

gi
ha
se

p-

of
the
e.

tary
pli-

the
x-
de-
hich
r-
on-

e
tes
n in
ed
i-
ge
te-

a
cobi

eps

r i

m
ely
s a
nch

of

3224 57MARK A. PETERSON
III. NONUNIQUENESS OF THE DYNAMICS

If one reverses the sense of time and integrates the sy
backward, the repelling character of theg ’s becomes an at
traction. In particular, twob ’s adjacent on either side of ag
may be attracted to it, move toward it, and coalesce with
essentially annihilating, leaving just theg. Unlike the coa-
lescence described at the end of the preceding section, w
takes an infinite time, this coalescence occursin a finite time.
Roughly, one can estimate from Eq.~19! that ab approaches
a nearbyg the wayx(s) approaches 0 in

dx/ds51/x ~30!

~integrating backward froms50), namely,

x~s!5Ax0
212s. ~31!

At times earlier than the coalescence time2x0
2/2, theb sin-

gularities were simply not present. If one now examines t
solution to the system with the usual forward sense of tim
one sees, at some arbitrary time2x0

2/2, two b singularities
suddenly produced on either side of ag, which had not been
there before. To satisfy Eq.~12!, the a ’s that characterize
theseb ’s must add to zero. The geometrical effect of th
process is that a kink of deviation anglea suddenly appears
in the growing needle represented byg, like the kink shown
in Fig. 1, which might have formed from a single straig
needle. This kinking may happen at any arbitrary time.
more careful argument~in the Appendix! says that if a kink
forms at g at s50, the leading behavior in the motion o
singularities is

g2b1}A11a1

11a2
s1/2, ~32!

g2b2}2A11a2

11a1
s1/2, ~33!

with a152a2.
In addition, a second kind of coalescence is seen in ba

ward integration, in which twob ’s, with anglesa1 and a2
on either side of ag, coalesce to leave a singleb with angle
11a11a2. This happens only if 11a11a2.0 and a1
1a2,0. Geometrically it corresponds to the shrinking aw
of a needle in a finite time~the growth tipg is lost!, on the
outside of a corner of angle 11a11a2. What it means in
forward integration is that at any time a needle may be
growing on the outside of a corner, as in the process t
takes Fig. 1 to Fig. 2. The motion of singularities in this ca
in leading order, is

FIG. 2. A new needle may grow on the outside of the corne
Fig. 1. Here the singularityb1 has split into two branch pointsb18
andb19 and a new growth tipg8.
em
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g2b1}A11a1

11a2
s1/2~11a11a2!, ~34!

g2b2}2A11a2

11a1
s1/2~11a11a2!, ~35!

with 11a11a2.0, a11a2,0. ~In Ref. @7# the factor 1
1a11a2 in the exponent’s denominator mistakenly a
peared in the numerator.!

IV. DISCUSSION

The observations of Sec. III mean that the system
ODE’s ~19!–~23!, although appearing unremarkable, has
peculiar property that its solutions are highly nonuniqu
New singularities can appear by the above two elemen
processes at any time. In combination one has more com
cated processes: A kink followed by a new needle at
outside of the new corner amounts to tip splitting, for e
ample, and this can happen at any time. The equilibria
scribed in Sec. II are never attained if such processes, w
are allowed by the differential equation, continually inte
vene. Thus singular Laplacian growth supports complex n
equilibrium behavior after all.

It is interesting to see what the model looks like if on
integrates it forward, introduces new singularities, integra
again, adds more singularities, etc. Examples are show
Figs. 3 and 4, where symmetrical tip splitting was introduc
at intervals of 0.1 time unit. To interpret the evolving pos
tions of singularities in terms of the corresponding ima
regionD, which is what is shown, it was necessary to in
grate Eq.~11! numerically. Each edge is represented by
singular integral. These integrals were done by Gauss-Ja
integration, as described by Trefethen in Ref.@9#. The accu-
mulating error in these numerical integrals, as one st

n

FIG. 3. At each time intervalDs50.1 the growing tip with the
largest strength is split. The initial configuration was four rando
needles radiating from a point, but the growth law is complet
deterministic. The failure of the image to retrace itself precisely i
measure of the numerical error in the method after about 40 bra
points have been generated and moved according to the law
singular Laplacian growth.
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along each edge to the next, especially in light of the us
sensitivity of numerical conformal maps, might have be
expected to produce nonsensical pictures, but in fact the
merical error ~failure to retrace edges accurately! is just
barely visible in these examples.~Eventually, of course, the
accumulating error does become large, but the good num
cal behavior of the system again makes the point that sin
lar Laplacian growth isnot particularly sensitive to error o
noise. Its sensitivity to perturbations comes entirely throu
the nonuniqueness property.!

V. RELATION TO OTHER WORK

Most of those who have used the conformal mapp
method have followed Shraiman and Bensimon@5# in re-
stricting the derivative of the conformal mapH to be a ra-
tional function. From some points of view this is a rath
drastic restriction on the analytic structure ofH. Whether it
is a good enough representation ofH to learn the full impli-
cations of the conformal mapping method is not clear. Arg
ments that the boundary value ofH8 can always be approxi
mated by the boundary value of a rational function are
very convincing in a context where it is precisely the natu
of the singularities that is the basis of the theory. It h
already been noticed in Ref.@7# that branch points play an
essential role in the singular theory. Nonetheless, an inte
ing comparison between the singular case and the rati
case is possible.

An example is Ref.@8#, in which Blumenfeld and Ball
invent a mechanism of ‘‘particle creation’’~i.e., singularity
creation! to model tip splitting. In their model, sinceH8 is
rational, the only singularities are the zeros and poles ofH8.
The mechanism they propose is that a zero creates a se
zero and a pole. The two zeros represent the two grow
tips after the split and the pole represents the division
tween them.

Tip splitting in the singular theory, as described in R

FIG. 4. At each time intervalDs50.1 a growing tip is randomly
selected and split. The probability of a tip’s being selected is p
portional to its strengthv. The initial configuration was three ran
dom needles radiating from a point. The failure of one of the ed
to retrace itself accurately is the result of accumulated numer
error.
al
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ri-
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h

g
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st-
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@7# and in this paper, does not have to be invented~it is
naturally and unavoidably part of the theory! and it looks
slightly more complicated: Ag gives rise to threeb ’s and
anotherg ~as in Figs. 1 and 2!. However, this amounts in fac
to the same thing. The resulting twog ’s are zeros ofH8 and,
by the geometry of the situation, the three newa ’s add to
21. This means that the threeb ’s, from a distance much
greater than their mutual separation, look like a pole ofH8
@see Eq.~11!#. The mechanism proposed by Blumenfeld a
Ball is thus a kind of smeared version of the singular mec
nism, already described in Ref.@7#

It is especially remarkable that Blumenfeld and Ball i
vented their mechanism entirely on the basis of physical p
nomenology and were unaware of Ref.@7#. Their mechanism
of particle creation, although it isad hoc, corresponds as
precisely as it could have to theonly mechanism in the sin-
gular theory for nontrivial dynamics. This suggests that
singular theory is close enough to real phenomenology to
useful and it does retain the essential features of Lapla
growth.

VI. GENERALITIES

To focus on the details of singular Laplacian growth is,
some extent, to sidestep a much bigger question: Wha
going on here with nonuniqueness? Are not differen
equations supposed to have unique solutions? We all k
textbook examples where uniqueness fails, but the fail
occurs on some small set and for equations that would
arise in physics. Here are equations that arise in a system
has been much discussed in physics and uniqueness fail
every solution at every time. The least one can say is that
equations of motion do not determine the motion, even
cally.

I believe this is actually mathematicalterra incognita.
Such equations do not even have a name. How would
characterize them generally? Are they in some sense c
mon, or are they rare? I think of calling them ‘‘fragile dif
ferential equations’’ because, at least in this example,
nonuniqueness arises by the tendency of singularities
‘‘break apart,’’ but perhaps a more general understand
would reveal that this name is somehow misleading. ‘‘Fra
ile’’ sounds a little bit like ‘‘fractal,’’ but is not the same
another reason I like the name.

On a more physical level, what does it mean for a phy
cal system if it is described by equations that, in some lim
become ‘‘fragile?’’ A fragile system does not fully determin
the evolution, but it does restrict it. What is the nature of t
restriction? These seem like good questions for the futur

APPENDIX

We derive Eqs.~32!–~35!, the leading behavior of singu
larities b1 ,g,b2 when they are very close to each other~in
that order! and not close to other singularities. Leta1 anda2
be the corresponding angle parameters andv the strength of
g. According to Eqs.~19! and ~20!, keeping only the most
singular terms, in leading order they obey

db1

ds
5

2v
b12g

, ~A1!

-

s
al



.
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db2

ds
5

2v
b22g

, ~A2!

dg

ds
5

2va1

g2b1
1

2va2

g2b2
. ~A3!

Let

P5g2b1 , ~A4!

Q5g2b2 . ~A5!

Then, subtracting,

dP

ds
5

2v~11a1!

P
1

2va2

Q
, ~A6!

dQ

ds
5

2va1

P
1

2v~11a2!

Q
. ~A7!

Dividing, we have the homogeneous equation

dP

dQ
5

~11a1!Q1a2P

a1Q1~11a2!P
, ~A8!

which separates when written in terms of the variableP/Q.
The complete solution, in implicit form, is

~P2Q!n1@~11a2!P1~11a1!Q#n25const, ~A9!
et
where

n15~11a11a2!/~21a11a2!, ~A10!

n251/~21a11a2!. ~A11!

Since this is supposed to hold asP,Q approach zero, the
only relevant value of the constant is zero. The solutionP
5Q is not relevant to this situation sinceP andQ must have
opposite sign. Thus

~11a2!P1~11a1!Q50. ~A12!

Using Eqs.~21!–~23! together with the fact, found in Eq
~A12!, that g2b1 and g2b2 are simply proportional, we
see thatv is nonsingular ifa11a2>0 and

v;P22a122a2 ~A13!

if a11a2,0. Thus, from Eq.~A6!,

dP/ds;P21 ~A14!

if a11a2>0, as in the rough argument of Sec. III, and

dP

ds
;P22a122a221 ~A15!

if a11a2,0. These results are summarized in Eqs.~32!–
~35!.
h-
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