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Onset of sidebranching in directional solidification
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We study the onset of sidebranching of growth cells in directional solidification of impure succinonitrile.
Care is taken to obtain uniform cell spacing over large distances in order to use this variable as a true control
parameter. Two sidebranching modes referring to different crystalline orientations are observed and their
physical equivalence is shown. The onset of sidebranching is identified according to an order parameter and
scanned with respect to pulling velocity, thermal gradient, and cell spacing. Its evolution with the control
parameters surprisingly reveals that increasing thermal gradient at otherwise fixed velocity and cell spacing
enhances sidebranching. These results show the need for improving the experimental characterization and the
theoretical description of sidebranching in directional solidificat[@1063-651X98)04803-X]

PACS numbg(s): 68.70-+w, 81.30.Fb, 47.20.Hw

[. INTRODUCTION stand advection. In crystal growth, the latter property is con-
ditioned by the shapes of the growth states undergoing side-

In the past decade, considerable attention has been givdiianching. We review them below in different kinds of
to the origin of dynamics in out-of-equilibrium systems. In growth.
particular, most of the mechanisms responsible for primary In unlimited free growth, crystal shapes are shown to de-
or secondary instabilities in pattern forming systems havdend sensitively on surface tension and crystalline anisot-
been identified, at least qualitativelft]. However, despite Fopy, which act as singular perturbatiof2]. Then the de-
considerable progress, one remains unsatisfactorily undegeneracy of the family of solutions deduced by
stood. It consists in the repetitive generation of sidebranchedimensionality, the Ivantsov paraboloidi84], is removed
on the growth forms appearing during the solidification ofand anisotropic needle crystals close to, but different from,
crystals(Fig. 1) [2,3]. paraboloids are selected. The extrinsic scenario proposed for

Evidence of sidebranching emissions extends to differengidebranching then consists in a selective amplification of
kinds of growth: unlimited free growtf4—g], free growth  localized thermal disturbances in the course of their propa-
confined to a channgB], or directional growt{10—15. In  gation down the side of the needle crystal. One of its striking
the former case, many improvements have been made tofgature isa Ial’ge SenSitiVity to the Shape of the gI’OWth inter-
noise_amp"fication theori4’16_2q proposed by ana|ogy face: for parabOIOidS, the amplification of thermal noise is
with curved flame front§21]. They revealed a highly sensi- 100 weak to fit with observationsi8]; for nonaxisymmetric
tive dependence of sidebranching on growth foffi2,23, needle cry_stals, it is sufficient to explain the observed ampli-
which contrasts with the uncertainty prevailing at present agudes of sidebranche&3].
to the branch of solutions relevant to confined free growth In confined free growth, the situation is complicated by
[9,24-27 or directional growt{24,2§. On the other hand, the occurrence of two branches of solutions at given under-
some evidence of larger than usual correlation of sidebrancf0ling A, channel widthA, and anisotropyr [27]. One of
emissions[10,29 raises questions as to the universality orthem, the Saffman-TaylofST) branch, has been derived at
relevance of a noise-induced mechanism. Further investigdow Peclet number Pe AV/D, by analogy with viscous fin-
tions seem therefore necessary, in particular in directional
growth, to draw a conclusion on the nature of the sidebranch-
ing mechanism: a noise-amplification phenome[®6] or a
nonlinear global modg31].

This alternative depends on whether cells emitting side-
branches behave as noise amplifiers or as oscillators. In the
former case, their dynamics is extrinsic since it is controlled
by noisy excitations; in the latter case, it is intrinsic since it
corresponds to an attractor of the dynamic system whose
main features do not refer to noise. We notice that the same
problem actually arises in another kind of advective system,
the hydrodynamics of open flows, since mixing layers and
flat-plate wakes induce noise amplification whereas bluff-
body wakes and hot-density jets generate oscillati@.

On this topic, the alternative has been linked to the convec- FiG. 1. Enlarged view of a cell emitting sidebranches in direc-
tive or absolute nature of unstable linear modes: convectivBonal solidification, far from the sidebranching onset. Pulling ve-
instabilities imply noise amplification but absolute instability locity V=24 um/s, planar critical velocityV,=0.75um/s, cell
may yield nonlinear global mod¢83] if perturbations with-  width A =260um, view width 270um.
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gering,D being the solutal diffusivity an& the growth ve-  of solutions in the experimental regime of moderatel&e
locity [24]. It is characterized by a decrease of velocity withnumbers is unknown at the level of accuracy required to
A, (aVI9A),<0, which contrasts with the increase, decide among them. A possibility would be to indirectly in-
(aVIaA) ,>0, displayed in unlimited free growth. This irre- Vvestigate the branch of solution, for instance, from the tem-
ducible difference raises the problem of asymptotic matchingPerature or the curvature radius of cell tips, but this would
going from confined to unlimited free growth @s—co. It not fully characterize the cellular state anyway. To improve
has been solved by the identification by Brener, Geilikmanunderstanding of sidebranching, we have thus chosen to

and Temkin of another branch of solution characterized by*dopPt a different strategy. It consists in indirectly character-
(9VI3A) >0, the so-called dendrite branch, which mergesZi"d the sidebranching phenomenon itself by following its
with the solution of unlimited free growth in the limik onsetin the c_ontrol parameter space of _dlrectlonal_ growt_h.
o0 [27]. These branches, the ST branch at a moderate P e thus obtain relevant information on sidebranching while

clet number and the dendrite branch at a largele®@umber, y-passing the determ_ination of Ce”“'?‘f form. In_ particular,
might correspond to the cell forms observed by Molho gj.the evolution of the critical surface of sidebranching with the

mon, and Libchabef9]. Following a numerical prediction control parameters provides a definite test for further inves-

[26], these authors nevertheless noticed an unsteadiness figgation of the relevance of sidebranching theories.

the crystal shape in the low Blet number regime, which has In this experiment,_ two sidebranching modes showing a
lsomewhat large spatiotemporal coherence have been differ-

further been explained by an instability of the ST branch at’™ . i . T
low Peclet numberg25]. Despite this instability, the ques- entiated according to t_helr growth direction. They proved to
defer to the same physics. Attention has further been focused

tion of the nature of the branch of solution at a moderat . ; .
Peclet number remains. In view of the sensitivity of noise on the very occurrence of S|df_ebranch|ng on spaually o_rdered
ellular fronts rather than on its nonlinear regime. Owing to

amplification to the crystal shape, this greatly complicates.C o g . .
the understanding of sidebranching in this kind of growth_the sensitivity of sidebranching to cell forms, this has re-

On the other hand, we notice that, in contrast with unlimitedqUIred making the cell spacing an effective control param-

free growth, a threshold for sidebranching is displayed ine.ter by improving the reduction of the usual spatial disper-
practice[9]. It is unclear whether it is due to a change of sion of cellular fronts. The sidebranching transition has then

branch or to an instability of a definite branfSi. been identified by the vanishing of an order parameter and its

The last kind of growth is directional growth, in which a location has been accurately determlped if‘ the parameter
melt is forced to solidify at a given velocity within a space V,A,G) of thg SVSte”.‘- Its evolution with .the control
thermal gradienG. Here the ST branch of solutions remains parameters ff_"’ea's Interesting features, especially an appar-
and is stabilized by the thermal gradidB6]. The relevance ently paradoxical destabilizing effect of the thermal gradient.

of this branch, however, is questioned by Weeks and Val:,’his might yield some improvements of the selection of a

Saarloog 28] for different reasons. One of the reasons is that,re'e""’lnt theor_y for S|d_ebranch|ng. .
The paper is organized as follows. The experimental setup

in the experimental regime of a moderateRenumber and ! ;
P g and procedure are reported in Sec. Il. Sections Il and IV are

low effective surface tension, the ST branch implies wide

grooves in contrast with the narrow ones observed experlqlevOteOl to a qualitative and a quantitative analysis of the

mentally [13]. Another reason is that, to satisfactorily ap- sidebranching transition. A discussion of the results and an

proximate cells by the ST profile, an effective surface ten_ap.alysis of their _compati.bility. with linear convective insta-
sion that is one order of magnitude larger than expected ieg'“ty of th? c.eII tip "’:;? g|ver|l in Sec. V. They are followed
required[13]. Both mean that the ST branch may capture th y a conclusion on this work.

cell shape, but for unexpected physical parameters. Here too,

this ambiguity regarding the branch of solution relevant to Il. EXPERIMENTAL SETUP AND PROCEDURE

cellular growth obscures the interpretation of sidebranching: The experimental setup aims at pulling a melt into a tem-

on one hanfd, n”0|se amphﬁcztlon. IS |nbagrﬁement Vt‘)"th theserature gradient so as to force it to solidify at a given ve-
response of cells to imposed noifB4] but has not been |40y v/ Below we report its configuration, its accuracy, and

derived on actu_al cellular profiles; on the oth_er har)d, the_ Sthe procedure required for addressing the sidebranching tran-
branch of solution shows an example of an intrinsic OSC'"a'sition

tory instability [35] qualitatively similar to a vacillating-
breathing instability recently observed on cell pd38]. As
this instability relies on tip oscillations that have never been
observed on sidebranching cell0—15, it cannot be taken The experimental setup, sketched in Fig. 2, is derived
to be a possible mechanism for sidebranching. Yet, it stressdsom that initially introduced by Hunt, Jackson, and Brown
that the nature, extrinsic or intrinsic, of the dynamical[37]. It aims at producing a constant and uniform thermal
mechanisms involved in cellular growth crucially depends ongradient along which samples of alloy are pushed mechani-
the detailed features of cellular forms. cally at a constant speed. We have designed it so as to obtain
The present study addresses the sidebranching phenomdarge accuracy of the control parameters.
enon in directional solidification from an experimental point  The thermal gradient is produced by two heat{hg0 °O
of view. According to the above statements, the branch ofind cooling(10 °C) zones separated by a gap of 0.5-2 cm.
solution actually followed by growth cells appears of pri- Sample translation across the thermal gradient is provided by
mary importance to the sidebranching mechanism. Howeven micro-stepper motor supplemented with a linear ball-screw
determining it appears problematic in practice, since the anarive. Observation of the growth front is achieved through an
lytical expressions of the geometry of the possible branchesxploded optical stage.

A. Configuration
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of their surfaces; thermal dilatation of the heaters is antici-
pated. Then the bottom blocks are placed on three little

m Ballscrew

Glass " Lens springs pushing them_upwards so as to keep the samples
" Nut Motor compressed onto the fixed upper block surfaces.
Sample ::/ Heaters \ Sample translation is provided by a linear ball-screw
L I driven stage. The rotation of a ball screw by a stepper motor
S i I induces a nut translation, which is transferred to the samples
Mior 1 Skid b_y a pushln_g stage. Both the pushlng stage and_the nut are
Peltier devices - : . . fixed on skids mounted on ball bearings and sliding on a
" Michelson interferometer linear track. The screw has a 5-mm pitch. Linking it rigidly
Mirror —#=2%.= === {)=——— Light source to the motor axis proved to reduce vibrations efficiently. The

_ ~ motor is fixed on micropositioners in order to align the screw

_ FIG. 2. Sketch of the experimental setup. The relative dimengn the track accurately. It involves 200 steps per revolution

sions have been changed for convenience. and 32 microsteps per step. To minimize the vibration level,

samples are made of two glass plates, 0.6 mm thic it is slowed by Foucault current at the end of each microstep.
R X e * Cr lline interf wer i

sandwiching two bands of calibrated Mylar sheets placed on Crystalline interfaces were observed according to the

their longer sides and glued with araldite. They thus provideusual method based on the evidence of optical aberration

a Hele-Shaw cell 48 100 mn? large and 50—15gum thick induced on an incident parallel light beam by refraction at

depending on the Mylar sheet. They were filled by capillaritytheb(*]r.OWth front. Hlov(\j/eger, ir_] order to minimize growth per-
with impure succinonitrile purchased from Sigma ChemicalY" atlons,. an explode optical setup has been usgd instead
Co.. St Louis. of a classic microscope so as to decouple the optical stage

A NMR study reveals that the dominant impurity involves from the growth setup. It basically consists in a small focal
an ethylenic chemical bond. As ethylene is used in an interlens yielding large frontal distances and magnifications from
mediate phase of the chemical synthesis of succinonitrile, i t0 40. For the sake of a better comparison between growth
is thus presumably the dominant impurity of the mixture.fronts, the figures of cell patterns presented hereafter will
Partition coefficienk of the mixture has been deduced from involve the same width of 1042m, however. Images were
the melting point of pure succinonitrild,=58.1 K[5]) and  recorded via a charge-coupled devigeCD) camera on a
from the interface temperatures of a planar front solidifyingtime-lapse video recorder and further analyzed by image pro-
(T=Ty+mc,/k) and melting T=Ty+mc,), wherec,, is  cessing.
the solutal concentration anu the liquidus slope. Mean-
while, the value ofmc,, has also been obtained. The solutal B. Accuracy
diffusivity in the liquid phaseD, has been deduced from . .
two different methods: first from the relaxation tiniz/k V2, Owing to the large size of the samples, care has been

of a solidifying planar front to equilibrium and, second, from taken to avoid bgckllng of the glass plates so as to ensure
the critical velocity,V.~DGk/mc,(1—k), of the primary good ho_mogenelty of depth. A Ia_lrge Mylar sheet, of the
instability. Both methods yield the same valuefwithin same thickness as the spacer s_trlps, has_ thus _been_ inserted
experimental accuracy. We obtainedc,=2+0.2 K, k between the two glass plates prior to gluing. With this, the
=0.3+0.05, andD~1x 105 cn? s~ L, glass plates could be glued under pressure on their two wid-
In both the cooling and heating zones, samples are san@St sides so as to ensure the required depth. Relative depth
wiched by temperature-controlled surfaces in close contadiccuracy was better than 5% and remained so after removal
with them, on both their top and bottom surfaces. Heaters argf the large Mylar sheet from one of the shortest sample
made of a copper block, 1 cm thick, and a radiator, with asides.
resistance sheet in between. Coolers consist of a stainless In order to improve uniformity of the thermal gradient
block, 0.5 cm thick and a water circulation stage, with aand reduce its fluctuations, the following precautions were
Peltier device in between. The block surfacess Sent, taken(Fig. 2). The width of the sample&0 mm) was chosen
provide the temperature controlled boundaries. Their temlarge with respect to the gap between the thermal devices
peratures are measured by a thermocouple and electronicallless than 20 miso as to suppress end effects on a large
regulated individually according to a self-tuning algorithm. part, at least 25 mm, of the front. In addition, the extent of
The gap between coolers and heaters is defined by calibratéde contact between the thermal blocks and the lateral sides
spacers. of the setup within which they were inserted was reduced so
Preserving close contact, all along sample translation, beas to minimize lateral thermal losses. Also, these lateral sides
tween large sandwiching thermal surfaces and thin but longvere thermalized by water circulation so as to cut the re-
samples of different depths raises some practical difficultiesmaining lateral heat fluxes. On the other hand, in order to
All misalignment must be prevented, while some mechanicateduce radiative and convective perturbations, the thermal
degree of freedom is nevertheless necessary so as to fit vakilocks were recovered with a reflecting sheet and two hori-
able sample depths. In order to avoid delicate mechanicalontal glass plates filling the gap were placed at a small
controls and better ensure a permanent contact between thstance above and below the samples. Finally, sufficiently
temperature-regulated surfaces and the samples, we halggge metallic blocks were used in each thermal device so as
opted for a self-adjusting mechanical setup. First, the togo filter external perturbations and reduce their effect on the
blocks are mechanically fixed so as to ensure the parallelisiemperature field of the samples.



3192 M. GEORGELIN AND A. POCHEAU 57

Altogether, the above precautions ensure temperatureient time was taken for obtaining a noticeable formation of
fluctuations on the interface of the order of that measured obubbles by demixing. These were then collected at one end
the thermal probes, i.e., better than"10K. This was of the sample so as to avoid further interface perturbations

checked directly on thermocouples placed inside samplegyyring solidification. As expected, bubble formation during
Finally, direct observation has confirmed the absence of;iorface growth then occurred only exceptionally.

measurable inclinations or distortions, either time dependent Owing to the uncertainty in the composition of the alloy,
or permanent, on steady interfaces.

The transport of the thermal field occurs not only by con-f[he criFicaI velocity was sy.stematically'measured by impos-
duction but also by advection, owing to sample translationi"d & linear ramp of velocity and seeking the occurrence of
This induces a nonlinear displacement of the isotherms toRlanar instability. In order to approach the steadiness of the
wards the cold boundary and thus a nonuniform thermal graconcentration profile, the ramp amplitude was as slow as 0.5
dient. Since these effects grow with pulling velocity, they um/s per hour yielding, for typical critical velocities of 1.5
result in increased drifts of both the melting isotherm andum/s, 3 h ofgrowth before instability. Owing to the low
thermal gradienG on the interface. However, the isotherm pulling velocity (=1 um/s), this procedure was analogous
shifts 6z vary on a scale equal to gapand display, in the to a zone melting and resulted in the formation of an inho-
range of parameters used here, a relative amplitdd¥g  mogeneous concentration field. It thus required rehomog-
less than 5%. The relative variation of the thermal grad'entenizing the mixture before proceeding with further study.

on a diffusion length ig the vicin_it_y of the interface is then, in This was achieved by diffusion in the liquid phase enhanced
any case, less than 2%. In addition, we note that, by symmedy shock-induced advection in order to minimize the homog-

::rl)é’séh?/icsi'rr:ilg ?:; ttuz mggg l nglr&déeggpécxg:gu;ﬁntﬁgeiz(;_nenization time. Because further studies of interface growth

therm shift is maximal at this location, we chose to locate theVere performed at larger velocities=(L0 um/s), they pro-
melting isotherm there, so as to minimize the difference beduced much weaker inhomogeneities and thus fortunately
tween the local gradient on the interface and that expectedid not require homogenization until after at least five runs.
from a conductive profile. Anyhow, the actual temperature Without special care, the coherence length of crystal ori-
gradient at the interfac&(V,g) was calculated with a one- entation is small, roughly a few cells. Since crystal anisot-
dimensional model of diffusion advection, the effective ther-ropy monitors the growth direction of cells or of side-
mal diffusivity of the sample being deduced from measurebranches, this may result in pattern spatial disorder, in
ments of the temperature field at differantandg. various dendritic shapg42,39 or in growth frustration as in
The regularity of the sample translation was controlled bythe “algae” regime[38]. In such cases, accurate analyses of
interferometry. For this, a mirror fixed on the stage pushingsidebranching features would be compromised and informa-
the samples was used as the end of an arm of a Michelsafbn about growth would mainly be statistical. In order to
mterfezrometer. Measurement accuracy was typically 2.Serform a careful study of the sidebranching transition and a
X10 “ um, allowing a detailed analysis of the sample getajled comparison between different runs, we prepared the
ftranslatlt_)n and a control _of its perturbations. Two k_mds Ofsamples by grain selection in a definite anisotropy state, the
irregularity have been noticed: one, at large frequencies, conjirections[100] and[010] being parallel to the sample thick-
sists in vibrations either of the setup or o_f thg mterferomet_erness and the pulling direction. The coherence length of crys-
arm; the other, at low frequencies, consists in weak nonlintgjline anisotropy extended up to 100 cells and its fluctua-
earities of the translation. tions were minimized to roughly 2 degrees only.
_ Vibra_ltio_ns are generated_ by translation. Their amplitude The homogeneity of crystalline anisotropy favored the
is, a priori, given by the microstep€0.78 um) but is ex-  achievement of well ordered states: the absence of grain
pected to be smaller, around (u.8n, owing to damping by  poundaries prevented localized phase disturbances and grain
Foucault currents. Their measured amplitudes®fe2um  grifts along the front; phase diffusion could then proceed
atrest,=0.4um at 1 um/s, and+1.4um at 25um/s. The  gyer long distances and over long periods to efficiently re-

increase of vibration amplitydes vyith t.ranslatio_n velocity re-move cell spacing gradients. Typical cell spacing dispersions
sults from the growth of mirror vibrations as its resonanceys |ow assA = +5 um over 30 cells were achieved in prac-
frequency is approached and thus does not refer to vibratiofce (Fig. 3.

of the sample. Anyway, the vibration time scale (£G) is The value of cell spacings could be changed by the his-
presumably too small compared to those of crystal growthory of the velocity increase from the onset: usually, a slow
(1 s at leastfor inducing noticeable effects. continuous ramp favored wide spacing and a quick one small

On the other hand, the weak nonlinearities of the lineaigpacing but combinations of increasing and decreasing ramps
drive occurred periodically at each screw turn, i.e., on timeggy|d yield a large variety of spacings. The range of cell
scales sufficiently large that they may be felt by the growingspacing was increased by the fact that, in the same pattern
interface: 1000 s at a translation speed gfrfi/s to 150 s at  ang for the same history, its values slightly differed from
30 um/s. They were minimized by accurately aligning the grain to grain. We finally notice that, once established, cell
screw on the track and then yielded quasisindabmodula-  spacing evolved very weakly with pulling velocity. The typi-
tions. The relative amplitude of velocity variatidiv/v was  ¢g| range of available cell spacingA was aboutAA
at most+3%. =60 um at any velocity and any gradients for a typical me-
dium spacing value of 10@um. We emphasize that each
spacing value corresponds not to an average value but to a

Impure succinonitrile was introduced by capillarity before definite value displayed over a large set of ce{sig. 3.
sample airtightness was achieved by further gluing. Suffi-Thus, although spacings were not monitored directly, they

C. Experimental procedure
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advection towards the groovésig. 1). We report below its
qualitative features.

A. Anisotropy and sidebranching modes

Owing to crystalline anisotropy, sidebranches are ex-
pected to grow along the principal crystalline directions
26.11.95 THU (100. Two different kinds of sidebranching modes were ob-
13:14:42 72 served. The first, shown in Fig(a&, is similar to that usually
described in the literature. It is characterized by the growth
of distortion orientedwithin the sample plane. The other,
shown in Fig. 4b), is similar to the first but displays a dif-
ferent orientation, with deformation taking place along the
perpendiculadirection of the sample depth. It is reminiscent
of the 3D oscillation reported by Heslot and Libchab#2].

In reference to the orientation of these sidebranching modes
with respect to the sample plane, we shall call the first mode
the parallel mode and the second mode the perpendicular

mode.
Both modes were observed either independeffdigs.
38-85-95 TUE 4(a) and 4b)] or together[Fig. 4(c)] depending on pulling
12:22:55 velocity V, thermal gradientG, sample depttd, and cell

spacing A. In particular, the simultaneous occurrence of
these modes of distortion gave rise to a 3D dendritic mor-
(b) phology[Fig. 4(c)], largely encountered in the literature. We
o . emphasize here, however, that 3D dendritic distortions actu-
FIG. 3. Equally spaced cells. Their different spacings |IIustratea||y correspond to the coexistence tafo perpendicular 2D
the spacing range involved in the studfs) G=140 K/cm, V distortions which can be studiezbparately
=12 pms, \1022'7"“/5'/\/_\:100“"1' (b) G=36K/em, V The fact that each mode could be observed alone shows
=8 pm/s, Ve=0.69um/s, A =150 um. that, in contrast with a previous analy$i&], none of them,
especially the perpendicular mode, can be considered as a
may nevertheless be considered as an accurate control pgrecursor of the other. On the other hand, at low sidebranch-
rameter for the study. ing amplitude at least, both actually behave independently of
Whatever the pulling velocity considered, each observagach other, regarding not only their domain of existence but
tion began after transient decay. The concentration profilg|so their amplitude, frequency, and phase. In particular, trig-
required at least a time dD/kV2 to achieve equilibrium gering a mode by a Ve|ocity increase did not apparenﬂy
(about 100 s at 1m/s to 3 h at lum/s). The steadiness of modify any of the dynamic features of the other mode, so
the cell pattern was favored by the homogeneity of the crysthat their coupling, if any, is weak. Owing to this important
talline orientation and was achieved within a few diffusion property, we could hereafter restrict the description to a
timesD/V2. On the other hand, only crystal growth near thesingle mode without losing essential information.
middle of the sample and over one-fourth of its extent has

been studied in order to avoid (_end effects. _ B. Tip steadiness: sidebranch coherence
In Table I, we report the typical ranges of variables and ) ] )

um. No tip oscillations were noticeable at this accuracy,
even at the largest pulling velocitie® € 30 um/s). By com-
parison, the sidebranch wavelengths and amplitudes ex-
tended to 40 and 2bm, respectively, i.e., a larger order of
From now on, we restrict our attention to single crystalsmagnitude. Similar conclusions of tip steadiness have been
oriented so that their principal axes are directed along therawn in free growtf5-9].
pulling direction, the sample depth, and the mean front di- Observations of sidebranches over many periods revealed
rection. The sidebranching phenomenon consists in the rex noticeable coherence of sidebranching emissions, from
petitive emission of front distortions by the cell tip and their both a spatial and a temporal viewpoint. Determining a rel-

Ill. SIDEBRANCHING TRANSITION:
QUALITATIVE ANALYSIS

TABLE I. Typical ranges of variables and control parameters used in this work.

Parameter g G V, \% VIV, d A Pe
(mm) (K/cm) (umis) (umis) (um) (um)
Minimum 5 36 0.7 6 2.8 50 50 0.5

Maximum 20 140 3 50 37 150 250 4.5
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FIG. 5. Onset of sidebranching on equally spaced c&djspar-
allel mode (G=50K/cm, V=10um/s, V.=0.92um/s, A
=160um); (b) perpendicular modéG=78 K/cm, V=12 um/s,
V.=1.43um/s, e=122 um).
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modes, it is, however, much more accurately identified for
the parallel mode than for the perpendicular mode since the
sidebranch modulations are transverse to the light beam in
the former caséFig. 5a)] whereas they are parallel to it in
the latter casdFig. 5b)]. For this reason, we shall focus
attention on the parallel mode in the following, although a
similar analysis would also hold for the perpendicular mode.

FIG. 4. Equally spaced cells showing the sidebranching modes: At transition to sidebranching, the cellular forms show
(a) parallel mode(G=50 K/cm, V=10um/s, V.=0.8um/s, A  dynamic wavy modulations which stand as elementary side-
=230um); (b) perpendicular modéG=79 K/icm, V=18 um/s,  branches. A typical digitalized profile of a cell boundary
V.=1.44um/s, e=122um); (c) combination of the parallel and above this critical state is presented in Fig. 6. It shows dis-
perpendicular mode&G=>51 K/cm, V=18 um/s, V.=0.93um/s,  tortion of the mean profile whose amplitude grows with the
A=180um, e=122 um).
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evant measure of the level of coherence requires a statistical
analysis that goes beyond the scope of this paper. Neverthe-
less, Figs. #)—4(c), show a phase order extending over
more than five cells, i.e., over a distance significantly larger
than the diffusion length. Also, direct observations show a
phase coherence of sidebranching emissions extending over
roughly ten periods, i.e., over a time much larger than the
coherence time of any fluctuation, especially thermodynamic
fluctuations, in the system.

C. Order parameter

At the optical resolution involved in our experiment, both
sidebranching modes display a definite velocity onset sepa- FIG. 6. Skeleton of a cell emitting sidebranchis: 20 um/s,
rating stable and unstable domains. In its vicinity, side-A=150um, G=78 K/cm. PointP refers to the first noticeable

branching begins to be observggigs. 5a) and gb)]. Al- sidebranchg to its distance from the tip, an#l to sidebranch am-
though this onset regime is qualitatively similar for both plitude.
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may not depend on optical resolution. In the former case, the
onset of sidebranching would only be apparent; in the second
~ s - case, it would be real. The determination of its nature would
10 . require a large variation of the optical resolution, which goes
beyond the scope of the present study. Nevertheless, we
| o 4 stress that, at thfixed optical resolution used here, the van-
ishing of A provides, in either of the above cases, a definite
characterization of sidebranching liable to improve under-
standing of it.

20

A (um)

)
<
=
2

150 ' ' ' l ' D. Dependence on cell spacing, sample depth, and velocity
100 F o . We address the qualitative dependence of the sidebranch-
ing transition on cell spacing, sample depth, and pulling ve-
locity. Patterns displaying either a single cell spacing or a
spacing gradient were studied. Also, not only samples in-
volving uniform depth but also those displaying a wedge
0 5 10 15 20 25 30 parallel to the mean fror_1t direction were considered. _
o) V (ums) _ In any case, increasing splely the yelomty at otherwise
fixed parameters enhanced sidebranching of both the parallel
FIG. 7. Evolution at fixed\ and increasing/ of (a) sidebranch- and the perpendicul_ar mOdeS'_ This‘_ result copfirms the well-
ing amplitude A: open circles refer to zero amplitude ang !(nown role of Velf)c'ty regarding s@ebranchmg and shows
=7.9 4m/s to the onset of sidebranchiri) distances of the first ~ itS relevance to either of the two sidebranching modes and
visible sidebranch from the tip. either to equally or differently spaced patterns.

In this paragraph, we now restrict our attention to the
distance from the tip, then saturates and eventually shrinks iparallel mode. On patterns involving single cell spacing and
the grooves. Some time later, the whole distortion wouldyniform sample depth, this mode occurs on all céfgs.
have been advected along the front, but additional elemens(a), 4(c), 5(a)] or none[Figs. 3a), 3(b), 4(b), and Fb)]
tary sidebranches would have arisen near the tip. Furthegepending on velocity and cell spacing. On patterns involv-
more, all the interface distortions seem to emerge from théng a spacing range and a uniform sample depth, one notices
same specific locatioR where modulation of the mean pro- coexistence between stable and unstable cells separated by
file first begins to be visible. half-unstable cells, i.e., cells unstable on a single side only as

Two quantities worth measuring: the distaref the first  stressed in Ref.2] [Fig. 8a)]. In agreement with the mod-
noticeable sidebrandh from the tip and a characteristic dis- erate value of the Rtet number, cell stability thus appears
tortion amplitudeA (Fig. 6). The value ofé has been deter- influenced by the nearest neighboring cells only, so that a
mined from a series of profiles taken over several sidestability analysis with respect to individual spacing may be
branching periods. Considering the sidebranching amplitudgelevant, although less accurate than in equally spaced cells:
at a given point of the front would rely on a somewhat arbi-only cells involving spacing wider than a definite value then
trary location since its value varies with the distance fromshow sidebranching with a mean frequency function of the
the tip. To get a more intrinsic characterization of the side-pulling velocity but independent of cell spacing and sample
branching phenomenon, we therefore deftnas the maxi-  depth[Fig. 8@a)]. Finally, in samples involving a depth gra-
mum sidebranching amplitude over the cell profile and ovedient along the front, no difference regarding parallel mode
time. This provides us with a global variable characteristic ofwas observed. Following these observations, the parallel
the cell state only. mode therefore stands not as a collective mode, but as a

At fixed thermal gradienG, cell spacingA, and optical  cellular mode whose onset depends on both spacing and ve-
resolution, the typical evolution af andA with velocity are  locity but not on sample depth.
shown in Figs. 7a) and 1b). We note that, at our accuracy, The observations made on the perpendicular mode were
A vanishes below some onset of velocity. Conversely,d  fairly similar. In patterns involving single cell spacing and
displays no peculiar value, even at high velocities, and naniform depth, it occurred on all cell§igs. 4b), 4(c), and
specific evolution, even in the vicinity o¥5. In contrast 5(b)] or none[Figs. 3a), 3(b), 4a), and %a)] depending on
with 6, sidebranching amplitud& thus provides an objective the velocity. In patterns involving a cell spacing range and
definition of the onset of sidebranching in the system: cellauniform sample depth, it still appeared on the whole front
emit no sidebranching in th&=0 domain, infinitesimal [Figs. 8b), 8(c)] or not [Fig. 8a)], but showed the same
ones at the onsea=0", and noticeable ones in th&>0 onset and the same mean frequency irrespective of cell spac-
domain. In the following, we shall use this criterién=0" ing [Figs. 8b), 8(c)]. Finally, in samples involving a depth
to determine the critical surface separating the stable cefijradient along the front direction, the perpendicular mode
domainA=0 from the “dendritic” cell domainA>0 inthe  only appeared above a threshold of sample dépith 9); its
control parameter space. mean frequency, however, appeared independent of both cell

Depending on the nature of the sidebranching mechanisnspacing and sample depth. According to these observations,
noise amplification or oscillation, the vanishingAfmay or  the perpendicular mode stands as a cellular mode whose on-

8 (um)
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FIG. 9. Localization of the sidebranching transition in perpen-
dicular mode by depth gradient. The small difference of depth from
left to right is sufficient to go from a stable to a developed side-
branching regime.

of one another, each refers to growth within a definite plane
with no dependence on the conditions prevailing on the re-
maining direction. They therefore stand as a two-
dimensional growth phenomenon.

E. Marginal stability; critical surface

The experimental originality of our study was to signifi-
cantly reduce the scattering of both crystal orientation and
cell spacing over the growth front. This allowed us to ob-
serve two well-defined transitions from steady cells to cells
emitting sidebranching, one referring to the parallel mode
and the other to the perpendicular mode. As mode coupling
is negligible, the concept of sidebranching transition, which
has been questioned following the scattering induced by spa-
tial disorder{2,13], is actually validated here for each mode.
It is supported, for the parallel mode, by the identification of
an order parameter, the sidebranching amplitddeas de-

FIG. 8. Differently spaced cells showing the sidebranchingfined in Sec. Il C.

modes:(a) parallel mode arising on one cell and its half-neighbors

(G=51K/cm, V=19 um/s, V.=0.98um/s); (b) perpendicular
mode arising on all cells independently of their spaci(@

=80 K/cm, V=30 um/s,V.=1.53um/s, e=108 um); (c) combi-

nation of the parallel and perpendicular mod€&s=79 K/icm, V

=24 um/s,V.=1.51um/s, e=108 um).

Beyond the concept of transition, sidebranching appears
here as a cellular instability involving a stable domain for
A=0 and an unstable domain fé&>0. This,a priori, does
not exclude any origin, intrinsic or extrinsic, for sidebranch-
ing. On the other hand, the fact that, at the accuracy of our
observations, we noticed no jump of order paramaAtat the
transition to sidebranching, suggests that the sidebranching

set depends on both sample depth and pulling velocity bunstability is supercritical. This is corroborated by the ab-

not on cell spacing.

sence of any hysteretic behavior regarding sidebranching.

When observed together at a fixed thermal gradient, the The above analyses show that, for the parajfeirpen-
two modes showed the same mean frequency, which wagiculan mode, the critical surfac& defined byA=0" de-

dependent on the pulling velocity aloffeigs. 4c), 8(c)]. As

pends on pulling velocity, cell spacingA (sample depth

no frequency locking was noticed at the occurrence of a sed), thermal gradienG, and mixture composition, but not on
ond mode, this observation means that mean sidebranchirige history or the stability of the alternate mode. As the mix-
frequency is independent of cell spacing and of sampléure composition kept constant throughout the study, we
depth, in agreement with the conclusions separately drawghall therefore parametrize&& by V, A (d) and G:

for each mode.

S=S(V,A,G). This provides critical functions

The behaviors of the parallel and the perpendicular mode¥s(A,G),A4(V,G) [V4(d,G),ds(V,G)], which correspond
thus show a large similarity. Apart from pulling velocity, to the onset of velocity/ and the onset of spacinfys (ds)
their onset depends on a single geometrical size related for sidebranching:A>0 for either V>V, or A>A4 (d
their sidebranching direction: cell spacing for the parallel>dg); A=0 for eitherV<Vg or A<Ag (d<dg). The fol-
mode and sample depth for the perpendicular mode. Sincégwing section is devoted to quantitatively determinivig,
from a more general viewpoint, they behave independenthA, and the critical surfac8.
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FIG. 11. Mean frequency over a few cycles as a function of
velocity. The line of slope 3/2 shows the relevance of mean scaling
law f2aV3. Open symbols refer to the parallel mode and full sym-
bols to the perpendicular mode.

FIG. 10. Onset of sidebranching for parallel modg(A) (open
circles and for perpendicular mod¥, (d) (full circles) at G
=110 K/cm as a function of either spacindg or sample depthd,
respectively. The collapse of data shows similarity.

_ only be measured on few periods. The collapse of these
IV. SIDEBRANCHING TRANSITION: curves is nevertheless noticeable at the accuracy of our mea-
QUANTITATIVE ANALYSIS surements. It first means that sidebranching frequencies are

After having addressed the physical equivalence of thénuch less dependent on cell spaciigand sample deptd
two sidebranching modes, we perform a systematic study dhan on pulling velocity. It then shows that the dependence
their sidebranching transition. This allows us to analyze théf frequency on velocity is the same for the two modes:
role of the different control parameters and achieve the defi(*)=f.(¢). This corroborates the qualitative observations

termination of the critical surface for sidebranching. of the same frequency for both modes at a given velocity and
gradient, even for differently spaced cells and for different

sample depths.
The mean frequency increases with pulling velocity
The qualitative similarity of the sidebranching modes sug-according to a power laW®= u 2, whereu is a constant of

gests their physical equivalence. To test this property, wabout 5x 10* um®s™! (Fig. 11). This corresponds to side-

compare below at fixed thermal gradients the quantitativédoranch wavelengthsg,=V/f scaling as\3V=p, in agree-

evolution of onseVg and frequencyf of sidebranching dis- ment with[11,2].

played by the two modes. As each mode showed no depen-

dence on the spacing relative to the other mode, the functions

to be compared involve, at each gradient, a single spacing the apove similarities show that the two modes behave in
variable:A for the parallel mode and for the perpendicular e same way regarding their onset and their frequency. De-
mode. Those relative to the paraligerpendicular mode  gpite the differences pertaining to their boundary conditions,
will be indexed by (L). they thus presumably refer to the same physics. We postpone
to Sec. V A the discussion of this physical equivalence.

A. Physical equivalence of the sidebranching modes

3. Physical equivalence

1. Similarity of onset evolutions

We compare the onset evolutiokg,(A,G) [V, (d,G)]
of the parallel[perpendicular mode with spacings\ (d).
Figure 10 displays, on the same graph, the marginal stabilit)ép

curves obtained at a given gradight110 K cm ! and at a . . o
9 g lar mode. This stems from its better visibility and from the

fixed mixture composition. A collapse of the two curves t that it all i £ cell ; h
Vg (A) andVg, (d) is observed. This confirms that the onset; act that it allows a continuous scan of cell spacing, whereas
samples involving a uniform depth, a single spacing value

of each mode is only dependent of its own spacing parameté?

and shows that the relationship between spacing and onset'Rs avall_able for t_h_e perpendicular mode. To determine side-
the same for the two mode¥y(-)=Ve, (). branching transition curves accurately, we shall therefore

mainly focus our attention on the parallel mode in the fol-
lowing.

Since the Pelet number is about unity, cells are at least

Extension of the comparison between the modes to theoupled to their nearest neighbors. Therefore, the onset of
instability domain can be performed by addressing eithetheir parallel mode might not be relevant to their spacing if
sidebranching amplitudes or sidebranching frequencies. Aghey are surrounded by cells involving different spacing. To
measuring sidebranching amplitudes on the same grounds fakoid this, we shall hereafter restrict the analysis to patterns
both modes is problematic, we restrict the analysis to sideglisplaying equally spaced cells. Although this situation re-
branching frequenciet. fers, strictly speaking, to an assembly of cells, the cellular

Figure 11 shows sidebranching frequencigd/),f, (V) rather than collective nature of sidebranching modes and
of the two modes as a function of velocity. Scattering is their physical equivalence ensures that, regarding the onset
noticeable on each curve. It stems from the weak coherenasf sidebranching, it also pertains to the behavior of a single
time of sidebranching, according to which frequencies cartell in a channel.

B. Transition curves

Beyond the above physical equivalence, the parallel mode
pears much easier to study in practice than the perpendicu-

2. Similarity of frequency evolutions
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FIG. 12. Onset of sidebranching for the parallel madg(A)
(open symbolsand the perpendicular modg, (d) (full symbolg FIG. 13. Collapse of the critical curves on the scaling dw
at various gradients as a function of either spacih@r sample and (2) for various v=V/V., A, and G (K/cm) and for d,

depth d, respectively. Squares:G=36 K/cm; circles: G =0.013um andD=1Xx10"° cn¥/s.
=110 K/cm; diamondsG =140 K/cm.
X102 um, A~50-100um, l;~500um so thatdy<A
Figure 12 shows, for different thermal gradiei@s the ~ <I7. Then, bothA/d, andl+/d, are several orders of mag-
onset of velocityV, of the parallel mode as a function of Nitude wide so that a self-similar asymptotic regime of the
cell spacingA:Vg(A,G). A few additional points referring Second kind may be assumptD]. According to this i (¢,)
to the onset of velocity/,, (d,G) of the perpendicular mode Should stand as a power law of its variables:

as a function of sample depthare included for thorough- AVB[ -\
ness. v=c<—) (—T) (1)
Above each curve stands the unstable domain regarding do/ \do

sidebranching. Increasing at constant spacing and gra- .
dient G thus yields sidebranching: one recovers the well- AS y, mAc, and thereforal, have been kept constant in

known destabilizing effect of the pulling velocity regarding the present experiment, we have fittedwith respect toA
sidebranching2,3]. Also, increasing the cell spacing at gndIT. The fO||OV\{Ing values have been selected with a qual-
fixed velocityV and gradienG leads from the stable to the ity factor R=0.95:

unstable regime: cell spacing is destabilizing with respect to c=900+20, B=-2+0.1, y=125-0.1. (2
sidebranching. This effect agrees with previous observations

[13] and with the destabilizing role of the averaged cell spacThey correspond to

ing (A) in the vicinity of the cell-dendrite transitidr2,10]. It o 1a

is, however, confirmed here beyond the statistical level for VA*G™'=C, ©)
each cell spacing considered separately.

The last effect regarding stability is surprising: increasin whereC only depends oik, mc, D, andd,.

. ! X ; 9 The collapse of the critical curves of Fig. 12 onto a single
thermal gradientG at fixed velocityV and spacing\ en- curve defined by relation€l) and (2) is shown in Fig. 13.

hances sidebranching. 'This might appear at first glancﬁccording to this, the critical surface is well characterized by
somewhat paradoxical since the primary effect of the thermaécaling laws(1)~(3) in our experiment

gradie_nt CONSISts in stak_)ilizing the g_rovvth front by_narrowing_ As power laws are weakly sensitive to suitable coupled
the distance between isothermal lines, as, for instance, |g

) - . ) ariations of both prefactors and exponents, this global
ﬁlsagizrnli?ii?r?élgy- We postpone to Sec. V D the discussion o greement between data and scaling law cannot be used for

an accurate identification of exponents. In particular, as a
large family of power laws could equally well fit our data;
C. Critical surface the uncertainty on each scaling exponent considered sepa-

To better characterize the critical surface on which therately IS somewhat larger than might have been expected on

) e X ...~ .-asimple level. i he eff f variati f
onset of sidebranching is observed, we look to identifying |ta f;;n Ec)hi zgfeesrgggglggt\tv:eﬁ sg\t/v(e)zr\llz\:\lla:ggzgsﬂ ,air:jddata
in nondimensional variables. These must be obtained withi&/ '

. . e estimate this uncertainty #88= 8y= *0.1. Despite its
the variables chfar_actenzmg the state Of the _frcman_d_ A, high value, we may ensure that, in relati@, the exponents
and those pertaining to the growth regime, i.e., critical ve-

X e of A and G are certainly positive, in agreement with the
locity V., diffusion lengthlp,=D/V, thermal lengthl; e ; o X
—mAC/G~D/V,, and capillary lengthdy=y/mAc. As destabilizing nature o¥/, A, and, especiallyG in this ex

I+/1p~=V/IV,, the diffusion length may be removed from the periment.

set of essential variables. The equation of the critical surface

may then be sought within the following nondimensional

form: v=y(Aldg,l1/dg), wherev denotes the reduced ve-  The main features of sidebranching observed in Secs. IlI

locity V/IV.. and IV refer to the physical equivalence of the two side-
In the present experiment, the cell spacing stands in abranching modes, to the existence of a critical surface show-

intermediate asymptotic limit regardindy and A: dy~13 ing a destabilizing effect of the thermal gradient, and to some

V. DISCUSSION
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the sidebranches of adjacent cells, are not essential with re-
spect to the onset of sidebranching.

Altogether, these conclusions show that sidebranching
stands as a single-cell instability involving a two-
dimensional nature, negligible coupling with the third di-
mension, and, regarding its onset, no dependence on the na-
ture of the cell boundaries. In particular, even if cells are
immersed in a pattern in the present experiment, their side-
branching instability does not refer to a collective mode but,
instead, to the instability of a single cell growing in a chan-

FIG. 14. Sketch of a cut of the sample showing the differentnel.
boundary conditions applying to parallel and perpendicular modes.

Glass plates< ;

Solid Liquid Channel borders

noticeable coherence of sidebranching. We discuss them be- B. Average spacing, single-cell spacing,
low, in particular in the light of the noise amplification and sidebranching transition

theory. In the literature, the cell-dendrite transition has been
scanned by different means addressing either the mean be-
A. Sidebranching and boundary conditions havior of cells [2,3,10,11 or their individual behavior

Since both sidebranching modes bear a two-dimensionaf-3:43- In the former case, cell spacing is defined in average

nature, the boundary conditions relevant to each of them re2Ver the front and tums out, in practice, to be slaved to

fer to those encountered in their growth plane, i.e., along th¥€!oCity and thermal gradient. In the second case, cell spac-
sample depth for the perpendicular mode and within thdnd 1S cons!dered as a fealure r_elevant to each cell; it may
sample plane for the parallel modgig. 14. They thus dis- thus.take different values at a given vel_ocny and at a given
play the following differences: gradlent. The present experiment fits with t.he latter kind of
The perpendicular mode involvesfixed boundary, the analysis by conS|d'er|ng cell spacing as an mdependent con-
glass plates, enclosing a single d@llg. 14. It is thus simi- trol parameter_of s_ldebranchmg |_nstab|I|ty. The two different
lar to a two-dimensional sidebranching instability of an iso-Ways of considering cell spacing ha_ve Important: conse-
lated cell growing in a capillary. On the other hand, the par-duences on the concept of sidebranching transition.
allel mode involves dree boundary, the channel bordg¥ig.
14), which separates a cell from the remaining pattern.
There, neither boundary dynamics nor coupling with neigh- In this approach, cells and dendrites are considered as two
boring cells can be excluded. different branches of solutions for average spacing: the cell
The importance of cell boundary conditions with respectbranch and the dendrite branch are hereafter labgled
to cell dynamics may be stressed by analogy with anotheand(Ay), respectively. Both are only controlled by the rela-
cell instability, vacillating-breathing instability, in which tive velocity » and the thermal gradientG: (A.)
both cell tip and cell width oscillate36]. If fixed boundaries =(A)(v,G); (Ag)=(Ag)(v,G) [10]. As seen in[2], this
are imposed, the instability addresses a single cell; it thepoint of view is relevant insofar as one can accommodate
refers to a A-O instability, the termO meaning oscillating large standard deviations of cell spacing. Whereas this is the
and the term A meaning that, in a cellular array, the period case from a practical viewpoint, it is not from a fundamental
of instability is equal to a cell spacing. If free boundaries one. In particular, we notice that parametrizing the system
are allowed, the groove between two cells can now oscillatstates byy andG only winds up removing the cell spacing
not only in width but also in position. This may correspond,from the set of control parameters. Then dendrites appear
for instance, to a phase opposition between neighboringhore as another growth stabesidethat referring to cells
cells, according to which the spatial periodicity of the insta-than as an actual dynamic state of cells. In particular, in this
bility extends on two cell spacings. This case is referred to aframework, the cell-dendrite transition is referred to as a
a 2A-0 instability. Stability analysis and observations thenjump between branches of solutions and not as a transition of
reveal that this mode is much more dangerous than tha given branch, the cell branch, to a dynamic regime
former mode[36]: fixed or free boundary conditions are not [2,3,10.
physically equivalent here. At a fixed thermal gradient, the dendrite branch displays a
This example shows that some information regardingdecrease of spacing with velocity whereas the cell branch
sidebranching may actually be gained from the physicashows a decrease at high and low velocity with an increase in
equivalence of the sidebranching modes. It implies the irrelbetween(Fig. 15 [10]. The latter behavior yields a so-called
evance of both cell coupling and cell boundary dynamics a$ shape of the cell branch, which, at high velocities, merges
to sidebranching instability. The former irrelevance meanswith the dendrite branch. The cell-dendrite transition is then
that sidebranching refers not to the pattern mode but to a celbcated in the rising part of the cunf®,10]. This corre-
mode. It thus involves unstable wavelengthsll smaller  sponds not to a definite location in the,) plane but to a
than cell spacingX<A) and therefore does not rely on the domain mainly corresponding to the deep-cell regime. At
dangerous wave-number interaction between the primaryarious thermal gradients, the transition appears as the inter-
spacing wave number 2 A and its half[36]. The latter section between the cell branch and the dendrite branch. This
irrelevance implies that the dynamics of the flux lines delim-criterion ~ for  sidebranching, e, (AJ)(vs,Gy)
iting a cell domain, and thus the phase difference betweer(A4)(vs,Gs), yields the following scaling for the critical

1. “Average spacing” approach
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FIG. 15. Comparison between the “average spacing” and the FIG. 16. Crude model of noisey) amplification(I’), feedback
“single-cell spacing,” approaches. In the “average spacing” ap- (e), and saturatioriw). As the feedback increases, the system turns
proach, the growth state is defined by an average spacing valuom a noise-controlled behavioA& »e") to an intrinsic behavior
This yields a cell brancA.), a dendrite brancAy), and the — (A~e/u).
cell-dendrite transition in between. In the “single-cell spacing” ap-
proach, a two-dimensional domain is accessible. Inside it, a critical According to the above analysis, t&eshape of the cell-
surface separates a stable domain for sidebranching from an uglendrite transition therefore essentially results from the evo-
stable one. lution with V andG of the spacing pdf and negligibly on that
surface: 1p/do=(I7/do)¥ [15]. It corresponds to v, pf S|debr§1nch|ng amplituda(V,A,G). Beyond its practical
— (doV,/D)¥5= 4G5, where u=mc,(1—Kk)/kd, is, on interest, it thus does not refer to fundamental features of the

each run, a constant. According to this approach, therm::f’\fidebranching phenomenon itself.

gradientG is thus, on “average,’stabilizingwith respect to
sidebranching. C. Local convective instability: The noise amplification theory

The selective amplification of noise has been proposed as
a fundamental mechanism for sidebranching. It consists in a

By comparison to the “average spacing” approach, theconvective instability triggered at the tips of growth fronts by
approach followed here may be termed a “single-cell spacthe surrounding noise. Here, the instability undergone by tips
ing” approach since the cell spacing is treated not as afs simjlar to the primary instability of a planar front but
average quantity but as a definite one on a given cell. Thegigiortions are advected towards the grooves. Meanwhile, the
the transition is identified by an order parameter, the sidegigiortion wavelength increases owing to the stretching in-

branching amplitude, and the critical surfake-0* appears duced b ; ;
. y tangential flow. It then parametrizes the growth
to be parametrized not only byandG but also byA. As the time o of the distortion amplitude. At a given distancéom

transition is, at our accuracy, supercritical, it is continuousthe tip measured in terms of curvilinear abscissahis re-

with respect toA. It then cannot be related to a jump be- sults, within a WKB approximation, in a net growth factor

tween branches of solution, since this would likely trigger . .
finite amplitude sidebranches and thus a discontinuitj.of fFr(()lrzt.glven by the convolution of growth rateg(s) over the

Instead, it appears as a dynamic transition efraylebranch
of solution, which, at convenience, may be viewed as trig-

gered by a change of, G, or A. Then thermal gradier® Ir'd)=
is, on a given celldestabilizingwith respect to sidebranch- s=0 U(S)

ing.

2. “Single-cell spacing” approach

=1 o(s)

ds. (4)

. Here, the origin of curvilinear abscissss=0, is located at
3. Link between the two approaches the tip andv . stands for the tangential velocity along the

The “average spacing” approach aims at identifying thefront. _ . _ _
mean behavior of growth fronts. Here, their statistical state is Sidebranching amplituda(l) at a distancé from the tip
implicitly described by a probability distribution function is given by
(pdf) p(A) of cell spacingA, which, in practice, is governed
by V andG: p(A)=p(A;V,G). Combined with the results A(l)=A(0)expT(l), %)
of the “single-cell spacing” approach, the “average spac-
ing” description may then be understood as a convolution ofvhere A(0) stands for the noise amplitude at the tip. Al-
this pdf with the behavior of individual cells along the front though distortions are already present from the tip, they be-
F: the average cell spacingA) is given by (A) come visible when the amplitud&(l) crosses an onset value
=[eAp(A;V,G)dA and the mean dynamic state is linked A. linked to the optical resolution. This provides a criterion
to the mean valuéA) of the sidebranching amplitude over for the distances of sidebranching birth to the tipA(d)
the front:{(A)= [cA(V,A,G)p(A;V,G)dA. Here, cell spac- =A..
ing A no longer stands as a control parameter. In particular, The noise amplification theory has received considerable
the fact that the average spacity) varies withV and G improvements in free growth where wave packets and needle
shows that, in practice, the pdgf(A;V,G) involves large crystals selected by anisotropy of surface tension have been
variations with the control parameters. It thus mainly con-considered[19,20,22,23 By comparison, only its basic
trols the low(large value of(A) and thus the location of the framework has been transposed to directional solidification
cellular (dendritig branch. [30]:
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(i) The growth rater is given by the dispersion relation of growth rates of instability, but by a decrease of the tangen-
the planar instability, with renormalized normal velocky tial advection following a flattening of the tip.
and critical velocityV, to account for the variation of the (i) The dispersion relatior{6) shows that the driving
front normal z—n and the normal thermal gradier® force of the instability, i.e., the positive terq(V—V,)z-n
—G z-n:V—V z-n, andV.—V, z-n. Denotingq as the of the right-hand side, vanishes in the grooves together with
wave number of the perturbation,is written as z-n. This is mainly due to the fact that the front normal
velocity Vz- n goes to zero as the grooves become parallel to
the pulling velocity, so that the front then turns locally stable
with respect to the planar instability. This implies that side-
branching should restabilize in the grooves, as observed ex-
(i) The tangential velocity of perturbations along the perimentally[Figs. Sa), 8(a)]. We note that this restabiliza-
front originates from two contributions: on&/z- = corre-  tion requires going beyond the circular approximation of the
sponds to the advection velocity along the tangent veetor interface and is thus not contained in relati@). On the
of a steady form, which advances at velodityin a medium  other hand, as it relies on geometrical arguments, it also ap-
at rest; the other;- V.z- 7, describes the migration of pertur- plies to confined free growth or to Saffman-Taylor growth
bations along the front in the direction of the tangential ther{4].

mal gradient, i.e., towards low concentration regions. Both (i) As perturbations are considered to be in a linear
give growth regime, they only involve amplitude growth and no

phase dynamics. Accordingly, the phase relations displayed
v,=(V-V¢)z- 7 (7) by sidebranches should simply be those involved in the tip
perturbations some time earlier. As these perturbations are
(iii ) The stretch of perturbations may be derived by stresssupposed to result from thermodynamic fluctuations, side-
ing that, in a steady state of sidebranching, there can be rlaranches should thus be as uncorrelated as the thermal noise.
phase accumulation on any point of the front. Therefore, thét first sight, this does not seem in agreement with our ob-
phase velocity of perturbationgy ., must be constant along servation(Figs. 1 and 4
the front: quv ,= const. (iv) The variable\ in relation (8) recalls that the origin
Since the tangential velocity vanishes at the tip, these desf sidebranching is, according to this theory, an instability of
terminations yield in relatiorf4) a singular kernel as=0, the tip mimicking the primary instability of a planar front. In
which would drive a divergence of the integral. This simply this framework, the source of sidebranching instability can
comes from the fact that, in principle, perturbations can growonly follow the physics of the planar instability: increasing
an infinite amount of time at the tip since they are not ad-the thermal gradient weakens the growth factor, as confirmed
vected. This effect can be removed by introducing a cutofby the decrease of (21/v) with G in relation (8) at other-
length that specifies the lower limit of the integration do-wise unchanged variablesdI(/dG)y 5 r o>0. As this con-
main. Then the tip itself is excluded from the instability do- flicts with our indirect evidence of a destabilizing nature of
main, but its singular nature in this problem remains: the ne6, we turn our attention below to other factors that may help
growth factor is controlled by the cutoff length. solve this contradiction.
Taking as the cutoff length the most unstable wavelength
N\ given by the dispersion relation of the planar instability,
Sarkar obtained, within a circular approximation of the form D. Destabilizing nature of the thermal gradient

of the front near the tip, the following relationship0]: In the planar instability, the thermal gradient is stabilizing
since, for a given perturbation, increasi@gwith otherwise
®) unchanged parameters reduces the undercooling and thus the
' growth rate of instability. Evidence of a destabilizing effect
of G regarding the sidebranching instability thus indicates

whereR stands for the tip radius. We note that, in this rela-that its physics involves more than the usual instability
tion, dy and V. are implicitly parametrized by the tip tem- mechanism of planar fronts. This is why a contradiction
perature, i.e., the tip undercooling: dy=do(A), V. arises with the noise amplification theory when the thermal
=V.(G,A). gradient is seen as only affecting the growth rate of the pla-

Some qualitative features of this theory are presented berar instability at the tip. Resolving it implies either changing
low. The first two agree with the experiment, the third ques-+the theoretical framework or considering other kinds of in-
tions the qualitative consequences of noise, and the lattéluence of the thermal gradient.
conflicts with our observations: The first approach might involve considering other insta-

(i) For fixed tip radiusR and tip undercoolingA (i.e.,  bility regions than the tid2], other regimes than that per-
fixed dy andV,), the noise amplification theory explains the taining to the WKB approximatio32], or other mecha-
destabilizing effect ofV:(dI'/dV), o ra>0 from relation nisms such as those relying on a nonlinear global nj88¢
(8). This refers to the fact that, according to the planar instaThe second approach might consider the effect of the thermal
bility, increasing front velocity promotes instability. It also gradient on the tip undercooling or on the tip radiusR.
suggests a similar effect of\, (dI'/dA)y g a>0, which  The former effect would modify the instability rate at the tip
might simply come from an increase Bfwith A. In such a as considered in stability criteria based on local constitu-
case, at a giveV andG, the net growth time of perturba- tional supercooling28] and the latter would yield a different
tions would be enhanced, not by an increase of the locahdvective velocity and thus a different growing time for per-

V?|z-nl|?
e Dy 6)

o=q(V—V¢)z-n— D

1/2
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turbations. Exploring them goes beyond the scope of thdine orientations, have been identified. Their physical equiva-
present paper. lence shows that sidebranching refers to a framework simpler
than expected: it is independent of boundary conditions, in-
volves weak mode couplings, and essentially corresponds to
L i . . . a two-dimensional phenomenon. The transition to side-
In the vicinity of the transition to sidebranching, side- yranching has been identified by reference to an order pa-
branch emissions occur by burgfsigs. Ja), 8(a)]. Farther  ameter the sidebranching amplitude, and has been scanned
from the onset, modulations of cell form are continuous iny;ith respect to pulling velocity, thermal gradient, and cell
time, periodic, but weakly coherent. Finally, in the nonlineargyacing. In the control parameter space, the critical surface
regime where sidebranching amplitudes saturate in thgf sigebranching shows neither fold nor singularity. This
grooves, sidebranches sometimes show a spatial and tempgygs 1o reject the possibility of a bifurcation of the branch of
ral regularity over typical spatial or temporal lengths as large;q|ution as an origin of sidebranching.
as ten cells or ten cycles. This can be seen on sidebranching 1he collapse of the critical surface determined by a scal-
modes by the periodicity of the groove modulations observeg,q |aw reveals a destabilizing influence of the thermal gra-
on the whole front at a definite tin{€igs. 1, 4c)]. For some  gient that conflicts with the basic features of the primary
unknown reason, the phase order is eventually destroyed kisiapility of planar fronts. This indicates that sidebranching
the emission of a phase defect at cell[fiig. 4@)]. The fact  jcjudesother essential ingredients than the planar instabil-
remains, however, that the instability modes show a tenyy These may include the evolution of tip undercooling or
dency to synchronism that points to a phase-locking mechas; e tip radius with the control parameters.
nism applying to different cells for each mode and to differ-  ajiogether, these results show the need either for improv-
ent periods for each cell. One possibility would be thatihg the noise amplification theory to account for the actual
sidebranches themselves induce perturbations to which thgagres of sidebranching in directional solidification or for
tip is sensitive. Then the system would become a closeg,yestigating other kinds of instability mechanisms. These
loop. In such a case, its features would result from a compesqq stress other instability regions than cell tips or different
tition between the direct effect of noise and the indirect ef5taractions in the growth system, thereby yielding the pos-

fect of the feedback. As is well known, the latter might likely sibility of a transition to a global mode for sidebranching.
have dramatic consequences on system behavior.

To illustrate the above statement, we simply address side-
branchmg in a m|n|m_al mo_o_lel |n_voIV|r_19 the basic ingredi- ACKNOWLEDGMENTS
ents discussed here: instability with noise and feedback. Tak-
ing time delays into account, the feedback loop would yield We thank B. Billia, A. Karma, P. Pel¢®. Oswald, and S.
a model for the phase dynamics of sidebranches but its rele Cheveigndor stimulating discussions, and J. Minelli for
evance would rely on specific discussions that go beyond theechnical assistance. This work was supported by the CNES
scope of the present analysis. We thus prefer to restrict outnd the CNRS.
attention here to sidebranching amplitudes. According to this
crude model, implemented in the Appendix, they would fol-
low the noise level linearly for weak feedback but would be APPENDIX
independent of noise for large ones. This shows that the na-
ture of sidebranching may be deeply modified by feedback
from sidebranches to the cell tip. More generally, nonlinear™
feedback might produce global modes, as recently shown i
the context of hydrodynamical wakg33]. Then, the system
would have bifurcated from a noise amplifier regime to an
oscillator regime.

E. Coherence and global mode

We address sidebranching amplitude within a minimal

odel involving noise amplification and feedback. We thus

late its valueA at a given location to its value at the iy

through an amplification factor, labeleli in agreement with

relation(5). Here A, will be assumed to result not only from

the noise amplitude; but also from a feedback. Leaving

aside the problems of time delay, we reldeto A: F

=F(A). Moreover, in the spirit of a Landau expansion not

involving theA— — A symmetry, we restrict ourselves to the
We have experimentally revisited the sidebranching tranform F(A)=sA— uA? wheree and u, positive, stand for

sition of cells in directional solidification. A great deal of feedback and saturation, respectively. We obtain

attention has been given to determining sidebranching fea-

tures beyond the statistical level, by focusing attention to

their dependence on single-cell spacings rather than on the A=e'A, (A1)

average value of spacing over undetermined spacing distri-

butions. This approach has been made possible by an accu-

rate selection of the crystalline orientation over a large part A+ eA— uA%+ 7. (A2)

of the sample. It enabled us to characterize the sidebranching

of a given cell through those displayed by an assembly of

equivalent cells. Meanwhile, it enabled the accuracy of the The solution of this system givesA=[B+(B?

study to be enhanced by avoiding spurious spatiotemporat 7u)Y?]/u where B=g—e'. We consider that noise

effects induced by pattern defects, anisotropy, or couplingind saturation are sufficiently weak with respect to amplifi-

between cells of different sizes. cation so thatpue?’ <1. In a weak feedback regime, i.e.,
Two sidebranching modes, referring to different crystal-ee’ <1, we obtain a sidebranching amplitude= 7e', di-

VI. CONCLUSION
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rectly dependent on the noise amplitudiég. 16). Thisisin  and controlled by intrinsic variables of the systesrand u,
agreement with the noise amplification theory. In a largeonly (Fig. 16). This is in qualitative disagreement with the
feedback regime, i.ese! >1, the model yields a sidebranch- noise amplification theory. The nature of sidebranching thus
ing amplitudeA~¢/u, independent of the noise amplitude depends here on the level of feedback in the system.
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