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Forces on bins: The effect of random friction
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Department of Mathematics, State University of New York, Buffalo, New York 14214
(Received 13 August 1997

Theq model of Coppersmitlet al.[Phys. Rev. E53, 4673(1996] has renewed interest in understanding the
forces generated along the walls and at the bottom of a silo filled with a granular material. Fluctuations in the
mean stress have been characterized fogtineodel, and related to experimental work on stress chains. The
classical engineering approach to bin loads follows from Janssen’s anglysiéer. Dtsch. Ing.39, 1045
(1895)], predicting a saturation of stress, as a function of depth, in a tall silo. In this paper we reexamine the
Janssen theory, introducing randomness into the important parameters in the theory. The Janssen analysis relies
on assumptions not met in practice. For this reason, we numerically solve the partial differential equations
governing the equilibrium of forces in a bin, again including randomness in parameters. We show that the most
important of these parameters is a coefficient of friction at the wall of the bin. This random friction model
combines some features of fluctuations as seen in experiments, with a classical continuum mechanics approach
to describing granular materialsS1063-651X98)03003-1

PACS numbe(s): 83.70.Fn, 81.40.Lm, 02.60.Lj

I. INTRODUCTION consider the Janssen derivation, include a random compo-
nent into the grain friction, and reformulate the balance law
The classical engineering theory of JansgEhprovides as a stochastic differential equation. Standard results of sto-
an estimate for the mean vertical stress in a silo filled with achastic calculus provide an estimate of the mean stress and
granular material. The principal feature of the Janssen analyits variance, at any height. In Sec. Ill, we numerically solve
sis is that, under passive stress conditions, the mean stregfe complete stress equilibrium equations, assuming a Mohr-
saturates, asymptoting to a value depending on bin radiugoulomb constitutive relation, and again including a random
and wall and internal friction coefficients, but independent ofcomponent in the friction. Under passive loading, the stress

the height. The Janssen theory relies on two assumptionggyyrates; stress fluctuations are not significant until near
assumptions which do not hold in practice. Nevertheless, thggyration.

analysis gives a reasonable estimate of the bin loads, and its 5, experimental finding closely related to the current note
simplicity is its virtue. Several analyses have attempted tqs Ref. [6]. That paper reported careful measurements of

remove some of the assumptions of the Janssen theory; tl?grce fluctuations in tall narrow bins, bins whose widths
interested reader should consult ReX].

Recently Coppersmith and co-workd%4] developed a range from 3-8 gr_ain (_jiameters and whose depth ranges up
model for the force distribution in a bin. In thisg‘model,” to about 100 grain d|ameters.. Measyred average _vert|cal
any one particle within the sample transmits its weight tostress at any depth is systematically higher than predicted by

neighbors that are below it, in a random manner. The author'® Jansen theory, and fluctuations in this stress range up to

derived a mean field theory based on this model, and foun@Pout 20%. These fluctuations are apparent only after the

fluctuations in the forces felt by the lowest row of particles. Stress starts to saturatSocolar[5] also found the Janssen

Under most assumptions on the choice of random numbetress to be smaller than his calculated average stress, at any

distribution, the number of occurrences of a fluctuation of adepth) These experiments also demonstrated a dependence

given size decays exponentially with size. of stress on ambient temperature, an effect we do not con-
The current incarnation of the model is scalar: only the sider here.

vertical force is balanced. Recently, Socdlafintroduced a

generalization, the so-called model, which balances verti-

cal and horizontal forces and angular moment. #mmodel Il. GENERALIZED JANSSEN ANALYSIS

contains three random variables, and analysis appears diffi-

cult. However numerical simulations modeling rough walled We Driefly review Janssen's theory, and provide a sto-

bins appear consistent with the classical continuum theorychaStIC generalization of that analysis. See IReJ.for the

numerical simulations modeling infinitely wide bins appearfundamental mechanics of granular media. All of this study

consistent with the] model for a special distribution of the Is restricted to two space dlmen5|ons. —
q's Let the average vertical stress be denoted
: . . . . . _ (b2
To provide a framework for introducing fluctuations into = J=pr2 0”Y(x,y) dx, wheres™, ¢™, and¢”Y are thexx,
a continuum setting, we incorporate some of the randomneggy, andyy components, respectively, of theymmetrig
of the @ model into the Janssen analysis. In Sec. Il we re-Stress tensor. . o o
Consider the force diagram in Fig. 1; at equilibrium, the
average stress gtandy+ Ay, gravity, and wall frictionr
*Electronic address: pitman@galileo.math.buffalo.edu are balanced:
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the solutionm= E(o_), is, not surprisingly, the Janssen solu-

top of fill r--=rr-reeefm=mmmomo--—o y=0 _
tion (3). The second momem=£(o?), satisfies
B , Y .
I ey P=(—2a+€*)P+2mpg.
peg
Thus
2m
__________________ N p= 9 (1 exd— (20— Ayl ®)
20— €®
FIG. 1. Force balance for Janssen’s analysis. On the slice,
stresses and gravity are balanced by wall friction. The standard deviation igP—m?, and an order of magni-
- tude estimate gives the deviatienme/\2«, after the stress
— 27 has saturated.
dyo+ F:PQ- ) An alternative hypothesis is that randomness in packing

leads to fluctuations in the density, and thus to fluctuations in

Now we make two assumptions, critical to the Jansserihe stress. That is, the weigpg must include a random
theory, but which do not hold in practice. component due to voids. This assumption leads to the equa-

(1) At every pointa™ and ¢¥¥ are the principal stresses tion
(i.e., the eigenvalues of the stress tempsord the Coulomb

frictional condition implies thate™(x,y) =Ka¥¥(x.y), K do=—ac dy+pg dy+epg dW. (6)
(14 B T . . o
tio(nlansgglle(.l s), ands=sin(¢), and ¢ is the internal fric The mean of the solution is, again, given by E8). The

_ P H _ a 1/2
(2) Along the wall, 7= 0(= D/2y) = 5™ (= D/2y) standard deviation isepg)/\2a[1— exp(2ay)]"2

where §=tan(¢,,), ¢, is the wall-material friction angle.

Combining these assumptions, we arrive at the equation lll. EQUILIBRIUM ANALYSIS

The Janssen analysis relies on assumptions not met in

ﬁycr_+ ao=pg, a= 25K_ 2) practi_ce. In this section we solye _the fl_JII stress equiIibrium
D equations for a Coulomb material in a bin. Although analysis
_ is possible in the limiting case of smooth waléee Ref[2]),
Solving subject tor— 0, asy—0, gives this section determines solutions numerically.
The stress equilibrium is written
— P9
a(y)= E[l_eXF{_aW]- ©) IxOxxF Oy =0, (7)
It is apparent that the average stress saturates, the asymptotic IxTyxt dyoyy=pg. (8)
value pg/a depending on the material and wall parameters o o o
and the bin diameter. A common constitutive assumption is that the material is

The formula forK is based on the assumption that the Mohr-Coulomb, at incipient yield. That is, one assumes the
stress field is in the passive state, with thestress the major ratio of the shear stress, to the mean stress, is a con-
principal stresdthe larger of the eigenvaluesnd theyy  Stant, where
stress the minofthe smaller eigenvalyelf the material is in
the active state, thgy stress is major, th&x stress minor, o
andK is replaced byK ~1. For a typical materialg may be 2
30°, soK=3 in the passive state. In the active state this )
parameter ig, and saturation of the stress requires a bin tha@"do1 ando are the eigenvalues of the stress tersofhe
is an order of magnitude taller. Mohr-Coulomb condition reads

Now assume that the coefficient of the stress in &.
has both mean and fluctuating components. This fluctuating r
component might arise from randomness in the friction o
angle, for example. Assuming an Iformulation for the re-
sulting stochastic differential equation, write

O'1+O'2 01— 02

y T 9

=s, (10

The Mohr-Coulomb condition can be viewed as a nonlin-
ear relation for, sayg, in terms ofo,, andaoy, . Itis often
convenient to make a change of variables that incorporates
this relation. With the mean stress defined above, intro-

Here dW(y) is a Wiener measure associated with the randuce the angle/, measured from the horizontal, such that
dom fluctuations, ane is a measure of the size of the fluc- [COS®). sin()] is an eigenvector ol associated with;.
tuations. Standard arguments give the following resisée, 1hen write

e.g., Chap. 8 in Ref7]). A formal solution may be obtained .

by a variation of parameters argument, but more insightful T—o 10 tos cod2y) sin(2y)

are formulas for the first and second moments. The mean of 0 1 sin(2y) —cog2y)/’

do=—ac dy—eo dW+pg dy. (4)
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FIG. 2. (8) Theyy component of the stress at the centerline and the wall, with no random component of friction. For comparison the
Janssen solution is also plotted. Here the nominal internal friction ahgl@0° and the nominal wall friction anglé= 15°. (b) Similar plot,
but with a random component added to the friction angles.

This equation specifies the stresses in terms of two depemnents of the span of friction angles, we conservatively set
dent variabless and ¢, whose evolution is determined by ¢(=0.1. So, for a nominal friction angle of 30°pgc

the equilibrium equations. €[28.5, 31.5; the sine of this angle is used in the constitu-
This change of variables may be used to rewrite the motive relation, and this sine=[0.477, 0.522, about a=5%
mentum equations as swing. Of course variations of friction in a real sample may
have spatial correlations; absent good modeling justification
1+scoq2y) —2ossin2y)\ (o for a particular choice of correlation, none is used here. A
s sin(2¢) 20s cog2y) | X\ random component of the wall friction anglthe boundary
condition §) is added in a manner similar . We empha-
ssin(2¢)  20s cog2y) o 0 size that our choice of sets the imposed variation in the
1-scog2¢) 2ossin2y) ]\ - pg) fri(t:)t.ion angle, and thus of the stress, but this choice is rather
arbitrary.

We nondimensionalize by scaling length by the bin diameter The first result to understand is a typical stress profile,
D, and stress bygD. All calculations are reported in non- Without any friction fluctuation, and the same parameters but
dimensional units. The independent variable aré<x<31  with fluctuation. This is shown in Fig. 2, which displays the
and O<y=<H. This system of partial differential equations is Yy component of the stress at the centerline of the bin and at
strictly hyperbolic, with characteristics inclined at an anglethe bin wall. For comparison, the Janssen stress is also
+[(wl4)—(4/2)] from the direction of major principal Shown. We have imposed the “initial conditions=0 on
stress. The direction may be taken as the timelike direction. y=0. However, the condition for a surfage=h(x) to be
“Initial” conditions for o and ¢ are imposed at the top of stress free igin general inconsistent withy = const; impos-

the fill, y=0, and the equations are solved downward. Atthe

boundaries, the bin wallg= =+ 3, the wall friction angle is e random friction

—— no random friction

imposed: /= 6. The system of equations is solved by a
modification of the total variation diminishingVD)/central
difference scheme of Nessyahu and Tadh&)r The method

is second order accurate, and designed to avoid spurious 0s-
cillations common to many higher-order schemes for hyper-
bolic systems. For the computations reported here, a grid sizeg 105
of Ax=0.02 was used. On very coarse grids, fluctuations are
larger than shown; after sufficient refinement, the size of 100}
fluctuations appears to stabilize.

To introduce fluctuations, at each gridpoint at each level,
the friction angle is chosen with a random component. Spe-
cifically, if ¢ is the nominal friction angle, the angle used is e
biuct= P(L.0+ £§), where¢ is chosen randomly from a uni- 00 o8 05 04 02 00 02 04 06 08 10
form distribution betweep—0.5,0.5, and{ is an adjustable orizontal position
parameter measuring the extent of variation in the friction FiG. 3. variation in theyy stress across the width of the bin, at
angle. Depending on testing apparatus, variations in meg;=10. Shown are results both with and without a random compo-
surements of the internal friction angle are as largec&S,  nent of the friction angles. In both cases, the nominal friction angles
more than 10% of typical valud$]; without good measure- are ¢=30° ands=15°.
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FIG. 4. (a) Theyy component of the stress at the centerline for different nominal internal friction angles. The nominal wall friction is
held fixed §=15°. (b) The yy component of the stress at the centerline for different nominal wall friction angles, with a fixed nominal
internal friction angle¢=30°.

ing o=0 leads to a free boundary problem for the upperplotted. In each case, the equations were solved thrgqugh
surface, a problem we do not wish to address here. The regu=50. The centerline stress for 2y <50 was extracted, and
lar oscillations in Fig. 2a) are due to mismatch in the im- the average computed; this average should be the asymptotic
posed stress at the intersection of he0 surface and the value of the stress. A normalized deviation from the mean
bin wall, and are well documentedee, e.g., references in was found by subtracting the mean from the sample value,
Ref. [2]); the period of these oscillations is related to theand dividing by the mean. For viewing, one signal is offset
speed of the characteristics of the hyperbolic system. In Figoy 0.05. For the baseline cage=30° and§=15°, the in-
2(b), fluctuations at the walls are larger than at the centerlineternal friction angle varies by about 1.5°, and the wall
and the wall stress is some 15% larger than at the centerlinéiction angle by about-0.75°; the stress exhibits fluctua-
Notice that the regular oscillations in Fig(a® are dissipated tions of about+4%. For the caseg=30° ands=5°, the
by the randomness. internal friction angle again varies by abatitl.5°, but the

In Fig. 3, theyy stress is shown as a function of position wall friction varies by only +0.25°; the stress fluctuates
across the bin, at the depit= 10, the terminus of the com- about+2.5%.
putations in Fig. 2. The variation across the bin illustrates the Figure 6 provides a plot of spectral power for the baseline
limitations of the Janssen assumptions. Nonetheless, Figs.cases¢$=30° and §=15°. The stress was computed to a
and 3 show that the Janssen analysis provides a good esfiepth ofy=50; recall from Fig. 2 that, for the given friction
mate of the centerline stre¢andnot of the average strebs  angles, the stress saturates well befprel0. The centerline
This partially explains why the measurements of Réf.are  stress is sampled at every second time step, from apout
larger than the Janssen predictions. The centerline stress 4520 to 50. The power is computed using a Welch window

typically 15-20 % smaller than the largest stresses, found atith overlap, on the last 2560 sampled values. Shown is the
the wall.

Figure 4 illustrates the sensitivity of computations to
changes in the nominal friction angles. In Figay the wall
friction is held fixed, while the nominal internal friction
angle ¢ is varied from 15° to 30%recall that the random
fluctuation is 5% of the nominal angléwith lower internal
friction, fluctuations become more pronounced. We conjec-
ture that this is due to a lower friction angle transmitting a
smaller fraction of streséand of stress fluctuationgo the
walls, leaving a larger fraction of stregand of stress fluc-
tuationg to be transmitted vertically. Notice too that, at the
smallest friction angle, the regular oscillations of the stress
reappear. When internal friction is held constant but wall
friction is varied[Fig. 4(b)], the stress saturates deeper in the
bin, and fluctuations are not apparent until after this satura-
tion. We note that, with no wall friction, no weight is trans-
ferred to the bin walls and a hydrostatic stress results. Simi-
larly, when periodic boundary conditions are imposed, a FIG. 5. Normalized fluctuations in the centerligg stress for
hydrostatic stress results. two pair of friction angles. Both signals are demeaned; for viewing,

In Fig. 5, fluctuations for two sets of friction angles are the top signal is vertically offset by 0.05.
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FIG. 7. A histogram of the normalized deviation of the center-

o . work of Ref.[6]. The primary contribution to stress fluctua-
(base 10 log of thepower for four variations(i) no random  tjons is randomness in the wall friction, a boundary condi-
component of friction(ii) a random component of both in- tjon. The fluctuations found in this model are set by a free
ternal and wall friction (iii) a random component added t0 parameter defining the magnitude of random friction. Our
internal friction only,(iv) a random component added to wall ¢cpoice of this parameter results in fluctuations of about 5%
friction only. The power for wall friction only lies atop the of the mean stress, much less than the 15—-20 % found in
spectrum for wall and internal friction. The power for inter- experiments.
nal friction only deviates from these at lower wave numbers. The results presented here are in qualitative agreement
Thus fluctuations in the stress are essentially due to a randoith those of Socolar'sy model. His calculations incorpo-
component in the wall friction angle. From Fig. 5, these fluc-yateq stress balance in both horizontal and vertical directions,
tuations range up to abott4% of the mean. Recall that this and a balance of angular momentum. The essential feature of
variation is based on about a 5% variation in the frictionthe o model is that particle friction transmits stress from
coefficient. The fluctuations reported in R3] are as large particle to particle and, ultimately, to the walls of a bin.
as 20%. This comparison suggests that a 15-20 % variatioppese stresses, and any stress fluctuation, are partially ab-
in the friction coefficient is not an unreasonable parameter i, rped by the wall. In contrast, tigemodel only considers
stochastic models like the present. vertical forces; stresses predicted by thenodel are more
Analysis of theq model shows that the number of occur- jike hydrostatic forces, and there is no mechanism for dissi-
rences of a fluctuation of a given size decays exponent|all¥,a»[ing fluctuations.
with size. Recent experiments0] on short bins verify this A difficulty faced by all of these models is correlations.
finding, for stresses Ia_lrger than the mean; stresses Sma”E&periments[ll] show chains of particles experiencing high
than the mean decay like a power law. Figure 7 presents thgyess(the frequency of which falls off exponentially with
distribution for the random friction model. The equilibrium size. These pictures, and many other experiments, suggest
equations were solved to a deptk-50, and the centerline hat grain forces are correlated. However, we lack adequate
stress was recorded. Ten thousand realizations were madgformation to introduce correlations into models in a mean-
The average over all realizations was calculated, subtractqqgfm way. Experimental results reported REF0] measure
from the sample value, and this difference was normalizedatic forces on short bins, and show no evidence of correla-
by the average. Figure 7 is a histogram of these relativgions. The question of whether there are correlations, and
deviations. The distribution of fluctuations appears Gaussiamyer what length scales are they important, is central to the
not exponential. entire formulation of a continuum framework for granular
materials. Experimental and theoretical work is necessary to
understand the nature of correlations.
Mueth, Jaeger, and NagelQ] also studied the frequency
We reexamined the Janssen analysis incorporating a raef fluctuations in three dimensional systems. They found
dom component of friction, solving for the mean and thethat, for fluctuations larger than the mean, the frequency of
second moment of the stress. For comparison, the nonlinefluctuation of a given size decays exponentially with size of
equilibrium equations for a Mohr-Coulomb material with fluctuations. For fluctuations smaller than the mean, the de-
random friction were solved numerically. The analysis sug-cay follows a power law. Furthermore, their findings are
gests that fluctuations are significant only after the stress bdargely unaffected by changes in the boundary friction. For
gins to saturate, a finding consistent with the experimentapurposes of comparison with this work, several factors are

IV. SUMMARY
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important. The experimental setup has a depth-width aspedeviation, Eq.(5) in the a—0 limit, is epg+/y. For a short
ratio of about 1-1.5. The glass beads and acrylic used in thigin, y=~1, and fluctuations are on the order efimes the
experiment are very low friction materials, with both internal mean stress. Packing variations, interpreted as voids fraction,
and wall friction angles about 10°—15°. From the continuumcan range up to 20—30 %. However, even this model does
perspective, stresses measured in this arrangement are hydrt explain all the physics of small aspect ratio bins.
staticlike. Walls do not support the bead pack, and even
moderate changes in the wall friction would have only minor
effects on stress measurements. We do not view these find-
ings as invalidating the random friction model proposed | would like to thank Josh Socolar and Heinrich Jaeger for
here, at least not for engineering applications. The randomroviding me with preprints of their work, and Dave Schaef-
packing model offers one possible explanation for these exter for his comments about the manuscript. Research was
perimental findings. The mean stress for this model is giversupported in part by the National Science Foundation under
by Eq. (3) in the limit «@—0, and equalggy; the standard Grant No. DMS9504433.
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