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Forces on bins: The effect of random friction

E. Bruce Pitman*
Department of Mathematics, State University of New York, Buffalo, New York 14214

~Received 13 August 1997!

Theq model of Coppersmithet al. @Phys. Rev. E53, 4673~1996!# has renewed interest in understanding the
forces generated along the walls and at the bottom of a silo filled with a granular material. Fluctuations in the
mean stress have been characterized for theq model, and related to experimental work on stress chains. The
classical engineering approach to bin loads follows from Janssen’s analysis@Z. Ver. Dtsch. Ing.39, 1045
~1895!#, predicting a saturation of stress, as a function of depth, in a tall silo. In this paper we reexamine the
Janssen theory, introducing randomness into the important parameters in the theory. The Janssen analysis relies
on assumptions not met in practice. For this reason, we numerically solve the partial differential equations
governing the equilibrium of forces in a bin, again including randomness in parameters. We show that the most
important of these parameters is a coefficient of friction at the wall of the bin. This random friction model
combines some features of fluctuations as seen in experiments, with a classical continuum mechanics approach
to describing granular materials.@S1063-651X~98!03003-7#

PACS number~s!: 83.70.Fn, 81.40.Lm, 02.60.Lj
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I. INTRODUCTION

The classical engineering theory of Janssen@1# provides
an estimate for the mean vertical stress in a silo filled wit
granular material. The principal feature of the Janssen an
sis is that, under passive stress conditions, the mean s
saturates, asymptoting to a value depending on bin ra
and wall and internal friction coefficients, but independent
the height. The Janssen theory relies on two assumpti
assumptions which do not hold in practice. Nevertheless,
analysis gives a reasonable estimate of the bin loads, an
simplicity is its virtue. Several analyses have attempted
remove some of the assumptions of the Janssen theory
interested reader should consult Ref.@2#.

Recently Coppersmith and co-workers@3,4# developed a
model for the force distribution in a bin. In this ‘‘q model,’’
any one particle within the sample transmits its weight
neighbors that are below it, in a random manner. The auth
derived a mean field theory based on this model, and fo
fluctuations in the forces felt by the lowest row of particle
Under most assumptions on the choice of random num
distribution, the number of occurrences of a fluctuation o
given size decays exponentially with size.

The current incarnation of theq model is scalar: only the
vertical force is balanced. Recently, Socolar@5# introduced a
generalization, the so-calleda model, which balances verti
cal and horizontal forces and angular moment. Thea model
contains three random variables, and analysis appears
cult. However numerical simulations modeling rough wall
bins appear consistent with the classical continuum the
numerical simulations modeling infinitely wide bins appe
consistent with theq model for a special distribution of th
q’s.

To provide a framework for introducing fluctuations in
a continuum setting, we incorporate some of the randomn
of the q model into the Janssen analysis. In Sec. II we
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consider the Janssen derivation, include a random com
nent into the grain friction, and reformulate the balance l
as a stochastic differential equation. Standard results of
chastic calculus provide an estimate of the mean stress
its variance, at any height. In Sec. III, we numerically sol
the complete stress equilibrium equations, assuming a M
Coulomb constitutive relation, and again including a rand
component in the friction. Under passive loading, the str
saturates; stress fluctuations are not significant until n
saturation.

An experimental finding closely related to the current no
is Ref. @6#. That paper reported careful measurements
force fluctuations in tall narrow bins, bins whose widt
range from 3–8 grain diameters and whose depth range
to about 100 grain diameters. Measured average ver
stress at any depth is systematically higher than predicted
the Jansen theory, and fluctuations in this stress range u
about 20%. These fluctuations are apparent only after
stress starts to saturate.~Socolar@5# also found the Jansse
stress to be smaller than his calculated average stress, a
depth.! These experiments also demonstrated a depend
of stress on ambient temperature, an effect we do not c
sider here.

II. GENERALIZED JANSSEN ANALYSIS

We briefly review Janssen’s theory, and provide a s
chastic generalization of that analysis. See Ref.@2# for the
fundamental mechanics of granular media. All of this stu
is restricted to two space dimensions.

Let the average vertical stress be denoteds̄
5 *2D/2

D/2 syy(x,y) dx, wheresxx, sxy, andsyy are thexx,
xy, and yy components, respectively, of the~symmetric!
stress tensorT.

Consider the force diagram in Fig. 1; at equilibrium, t
average stress aty and y1Dy, gravity, and wall friction t̄
are balanced:
3170 © 1998 The American Physical Society
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57 3171FORCES ON BINS: THE EFFECT OF RANDOM FRICTION
]ys̄1
2 t̄

D
5rg. ~1!

Now we make two assumptions, critical to the Jans
theory, but which do not hold in practice.

~1! At every pointsxx andsyy are the principal stresse
~i.e., the eigenvalues of the stress tensor! and the Coulomb
frictional condition implies thatsxx(x,y)5Ksyy(x,y), K
5(11s)/(12s), ands5sin(f), andf is the internal fric-
tion angle.

~2! Along the wall, t̄ 5sxy(6D/2,y)5dsxx(6D/2,y)
whered5tan(fw), fw is the wall-material friction angle.

Combining these assumptions, we arrive at the equat

]ys̄1as5rg, a5
2dK

D
. ~2!

Solving subject tos̄→0, asy→0, gives

s̄ ~y!5
rg

a
@12exp~2ay!#. ~3!

It is apparent that the average stress saturates, the asym
value rg/a depending on the material and wall paramet
and the bin diameter.

The formula forK is based on the assumption that t
stress field is in the passive state, with thexx stress the major
principal stress~the larger of the eigenvalues! and theyy
stress the minor~the smaller eigenvalue!. If the material is in
the active state, theyy stress is major, thexx stress minor,
andK is replaced byK21. For a typical material,f may be
30°, so K53 in the passive state. In the active state t
parameter is13, and saturation of the stress requires a bin t
is an order of magnitude taller.

Now assume that the coefficient of the stress in Eq.~2!
has both mean and fluctuating components. This fluctua
component might arise from randomness in the frict
angle, for example. Assuming an Itoˆ formulation for the re-
sulting stochastic differential equation, write

ds̄52as̄ dy2es̄ dW1rg dy. ~4!

Here dW(y) is a Wiener measure associated with the r
dom fluctuations, ande is a measure of the size of the flu
tuations. Standard arguments give the following results~see,
e.g., Chap. 8 in Ref.@7#!. A formal solution may be obtained
by a variation of parameters argument, but more insigh
are formulas for the first and second moments. The mea

FIG. 1. Force balance for Janssen’s analysis. On the s
stresses and gravity are balanced by wall friction.
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the solution,m8E( s̄ ), is, not surprisingly, the Janssen sol
tion ~3!. The second momentP8E( s̄2), satisfies

Ṗ5~22a1e2!P12mrg.

Thus

P5
2mrg

2a2e2
$12exp@2~2a2e2!y#%. ~5!

The standard deviation isAP2m2, and an order of magni-
tude estimate gives the deviation;me/A2a, after the stress
has saturated.

An alternative hypothesis is that randomness in pack
leads to fluctuations in the density, and thus to fluctuation
the stress. That is, the weightrg must include a random
component due to voids. This assumption leads to the eq
tion

ds̄52as̄ dy1rg dy1erg dW. ~6!

The mean of the solution is, again, given by Eq.~3!. The
standard deviation is (erg)/A2a@12exp(22ay)#1/2.

III. EQUILIBRIUM ANALYSIS

The Janssen analysis relies on assumptions not me
practice. In this section we solve the full stress equilibriu
equations for a Coulomb material in a bin. Although analy
is possible in the limiting case of smooth walls~see Ref.@2#!,
this section determines solutions numerically.

The stress equilibrium is written

]xsxx1]ysxy50, ~7!

]xsyx1]ysyy5rg. ~8!

A common constitutive assumption is that the material
Mohr-Coulomb, at incipient yield. That is, one assumes
ratio of the shear stress,t, to the mean stress,s, is a con-
stant, where

s5
s11s2

2
, t5

s12s2

2
, ~9!

ands1 ands2 are the eigenvalues of the stress tensorT. The
Mohr-Coulomb condition reads

t

s
5s. ~10!

The Mohr-Coulomb condition can be viewed as a nonl
ear relation for, say,syy in terms ofsxx andsxy . It is often
convenient to make a change of variables that incorpor
this relation. With the mean stresss defined above, intro-
duce the anglec, measured from the horizontal, such th
@cos(c), sin(c)# is an eigenvector ofT associated withs1.
Then write

T5sS 1 0

0 1D 1ssS cos~2c! sin~2c!

sin~2c! 2cos~2c!
D .

e,
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FIG. 2. ~a! The yy component of the stress at the centerline and the wall, with no random component of friction. For compari
Janssen solution is also plotted. Here the nominal internal friction anglef530° and the nominal wall friction angled515°. ~b! Similar plot,
but with a random component added to the friction angles.
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This equation specifies the stresses in terms of two de
dent variabless and c, whose evolution is determined b
the equilibrium equations.

This change of variables may be used to rewrite the m
mentum equations as

S 11s cos~2c! 22ss sin~2c!

s sin~2c! 2ss cos~2c!
D ]xS s

c D
1S s sin~2c! 2ss cos~2c!

12s cos~2c! 2ss sin~2c!
D ]yS s

c D 5S 0

rgD .

We nondimensionalize by scaling length by the bin diame
D, and stress byrgD. All calculations are reported in non
dimensional units. The independent variable are2 1

2 <x< 1
2

and 0<y<H. This system of partial differential equations
strictly hyperbolic, with characteristics inclined at an ang
6@(p/4)2(f/2)# from the direction of major principa
stress. They direction may be taken as the timelike directio
‘‘Initial’’ conditions for s and c are imposed at the top o
the fill, y50, and the equations are solved downward. At
boundaries, the bin wallsx56 1

2, the wall friction angle is
imposed: c5d. The system of equations is solved by
modification of the total variation diminishing~TVD!/central
difference scheme of Nessyahu and Tadmor@8#. The method
is second order accurate, and designed to avoid spuriou
cillations common to many higher-order schemes for hyp
bolic systems. For the computations reported here, a grid
of Dx50.02 was used. On very coarse grids, fluctuations
larger than shown; after sufficient refinement, the size
fluctuations appears to stabilize.

To introduce fluctuations, at each gridpoint at each lev
the friction angle is chosen with a random component. S
cifically, if f is the nominal friction angle, the angle used
ffluct5f(1.01zj), wherej is chosen randomly from a uni
form distribution between@20.5,0.5#, andz is an adjustable
parameter measuring the extent of variation in the frict
angle. Depending on testing apparatus, variations in m
surements of the internal friction angle are as large as65°,
more than 10% of typical values@9#; without good measure
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ments of the span of friction angles, we conservatively
z50.1. So, for a nominal friction angle of 30°,ffluct
P@28.5, 31.5#; the sine of this angle is used in the constit
tive relation, and this sineP@0.477, 0.522#, about a65%
swing. Of course variations of friction in a real sample m
have spatial correlations; absent good modeling justifica
for a particular choice of correlation, none is used here
random component of the wall friction angle~the boundary
conditiond) is added in a manner similar tof. We empha-
size that our choice ofz sets the imposed variation in th
friction angle, and thus of the stress, but this choice is rat
arbitrary.

The first result to understand is a typical stress profi
without any friction fluctuation, and the same parameters
with fluctuation. This is shown in Fig. 2, which displays th
yy component of the stress at the centerline of the bin an
the bin wall. For comparison, the Janssen stress is
shown. We have imposed the ‘‘initial condition’’s50 on
y50. However, the condition for a surfacey5h(x) to be
stress free is~in general! inconsistent withy5const; impos-

FIG. 3. Variation in theyy stress across the width of the bin,
y510. Shown are results both with and without a random com
nent of the friction angles. In both cases, the nominal friction ang
aref530° andd515°.
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FIG. 4. ~a! The yy component of the stress at the centerline for different nominal internal friction angles. The nominal wall frict
held fixedd515°. ~b! The yy component of the stress at the centerline for different nominal wall friction angles, with a fixed no
internal friction anglef530°.
e
eg
-

n
he
Fi
in
lin

n
-
th
s
e

ss
d

to

ec
a

e
es
a
h
r

s-
im
,

re

h

totic
an

lue,
et

-

s

ine
a

ut
w
the

ng,
ing s50 leads to a free boundary problem for the upp
surface, a problem we do not wish to address here. The r
lar oscillations in Fig. 2~a! are due to mismatch in the im
posed stress at the intersection of they50 surface and the
bin wall, and are well documented~see, e.g., references i
Ref. @2#!; the period of these oscillations is related to t
speed of the characteristics of the hyperbolic system. In
2~b!, fluctuations at the walls are larger than at the centerl
and the wall stress is some 15% larger than at the center
Notice that the regular oscillations in Fig. 2~a! are dissipated
by the randomness.

In Fig. 3, theyy stress is shown as a function of positio
across the bin, at the depthy510, the terminus of the com
putations in Fig. 2. The variation across the bin illustrates
limitations of the Janssen assumptions. Nonetheless, Fig
and 3 show that the Janssen analysis provides a good
mate of the centerline stress~andnot of the average stress!.
This partially explains why the measurements of Ref.@6# are
larger than the Janssen predictions. The centerline stre
typically 15–20 % smaller than the largest stresses, foun
the wall.

Figure 4 illustrates the sensitivity of computations
changes in the nominal friction angles. In Fig. 4~a!, the wall
friction is held fixed, while the nominal internal friction
anglef is varied from 15° to 30°~recall that the random
fluctuation is 5% of the nominal angle!. With lower internal
friction, fluctuations become more pronounced. We conj
ture that this is due to a lower friction angle transmitting
smaller fraction of stress~and of stress fluctuations! to the
walls, leaving a larger fraction of stress~and of stress fluc-
tuations! to be transmitted vertically. Notice too that, at th
smallest friction angle, the regular oscillations of the str
reappear. When internal friction is held constant but w
friction is varied@Fig. 4~b!#, the stress saturates deeper in t
bin, and fluctuations are not apparent until after this satu
tion. We note that, with no wall friction, no weight is tran
ferred to the bin walls and a hydrostatic stress results. S
larly, when periodic boundary conditions are imposed
hydrostatic stress results.

In Fig. 5, fluctuations for two sets of friction angles a
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plotted. In each case, the equations were solved througy
550. The centerline stress for 20,y,50 was extracted, and
the average computed; this average should be the asymp
value of the stress. A normalized deviation from the me
was found by subtracting the mean from the sample va
and dividing by the mean. For viewing, one signal is offs
by 0.05. For the baseline casef530° andd515°, the in-
ternal friction angle varies by about61.5°, and the wall
friction angle by about60.75°; the stress exhibits fluctua
tions of about64%. For the casesf530° andd55°, the
internal friction angle again varies by about61.5°, but the
wall friction varies by only60.25°; the stress fluctuate
about62.5%.

Figure 6 provides a plot of spectral power for the basel
casesf530° andd515°. The stress was computed to
depth ofy550; recall from Fig. 2 that, for the given friction
angles, the stress saturates well beforey510. The centerline
stress is sampled at every second time step, from aboy
520 to 50. The power is computed using a Welch windo
with overlap, on the last 2560 sampled values. Shown is

FIG. 5. Normalized fluctuations in the centerlineyy stress for
two pair of friction angles. Both signals are demeaned; for viewi
the top signal is vertically offset by 0.05.
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~base 10 log of the! power for four variations:~i! no random
component of friction,~ii ! a random component of both in
ternal and wall friction,~iii ! a random component added
internal friction only,~iv! a random component added to wa
friction only. The power for wall friction only lies atop the
spectrum for wall and internal friction. The power for inte
nal friction only deviates from these at lower wave numbe
Thus fluctuations in the stress are essentially due to a ran
component in the wall friction angle. From Fig. 5, these flu
tuations range up to about64% of the mean. Recall that thi
variation is based on about a 5% variation in the fricti
coefficient. The fluctuations reported in Ref.@6# are as large
as 20%. This comparison suggests that a 15–20 % varia
in the friction coefficient is not an unreasonable paramete
stochastic models like the present.

Analysis of theq model shows that the number of occu
rences of a fluctuation of a given size decays exponenti
with size. Recent experiments@10# on short bins verify this
finding, for stresses larger than the mean; stresses sm
than the mean decay like a power law. Figure 7 presents
distribution for the random friction model. The equilibrium
equations were solved to a depthy550, and the centerline
stress was recorded. Ten thousand realizations were m
The average over all realizations was calculated, subtra
from the sample value, and this difference was normali
by the average. Figure 7 is a histogram of these rela
deviations. The distribution of fluctuations appears Gauss
not exponential.

IV. SUMMARY

We reexamined the Janssen analysis incorporating a
dom component of friction, solving for the mean and t
second moment of the stress. For comparison, the nonli
equilibrium equations for a Mohr-Coulomb material wi
random friction were solved numerically. The analysis su
gests that fluctuations are significant only after the stress
gins to saturate, a finding consistent with the experime

FIG. 6. Log ~base 10! of the spectral power for four variation
of the base case. The variations are no random component of
tion, a random component of both internal and wall friction, a ra
dom component added to internal friction only, and a random c
ponent added to wall friction only. The nominalf530° andd
515°.
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work of Ref. @6#. The primary contribution to stress fluctua
tions is randomness in the wall friction, a boundary con
tion. The fluctuations found in this model are set by a fr
parameter defining the magnitude of random friction. O
choice of this parameter results in fluctuations of about
of the mean stress, much less than the 15–20 % foun
experiments.

The results presented here are in qualitative agreem
with those of Socolar’sa model. His calculations incorpo
rated stress balance in both horizontal and vertical directio
and a balance of angular momentum. The essential featu
the a model is that particle friction transmits stress fro
particle to particle and, ultimately, to the walls of a bi
These stresses, and any stress fluctuation, are partially
sorbed by the wall. In contrast, theq model only considers
vertical forces; stresses predicted by theq model are more
like hydrostatic forces, and there is no mechanism for dis
pating fluctuations.

A difficulty faced by all of these models is correlation
Experiments@11# show chains of particles experiencing hig
stress~the frequency of which falls off exponentially with
size!. These pictures, and many other experiments, sug
that grain forces are correlated. However, we lack adequ
information to introduce correlations into models in a mea
ingful way. Experimental results reported Ref.@10# measure
static forces on short bins, and show no evidence of corr
tions. The question of whether there are correlations,
over what length scales are they important, is central to
entire formulation of a continuum framework for granul
materials. Experimental and theoretical work is necessar
understand the nature of correlations.

Mueth, Jaeger, and Nagel@10# also studied the frequenc
of fluctuations in three dimensional systems. They fou
that, for fluctuations larger than the mean, the frequency
fluctuation of a given size decays exponentially with size
fluctuations. For fluctuations smaller than the mean, the
cay follows a power law. Furthermore, their findings a
largely unaffected by changes in the boundary friction. F
purposes of comparison with this work, several factors

ic-
-
-

FIG. 7. A histogram of the normalized deviation of the cent
line yy stress from the mean, evaluated aty550. Friction param-
eters weref530° andd515°. Computed for 10 000 realizations
the distribution appears Gaussian, not exponential, as predicte
the q model.
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57 3175FORCES ON BINS: THE EFFECT OF RANDOM FRICTION
important. The experimental setup has a depth-width as
ratio of about 1–1.5. The glass beads and acrylic used in
experiment are very low friction materials, with both intern
and wall friction angles about 10° –15°. From the continuu
perspective, stresses measured in this arrangement are h
staticlike. Walls do not support the bead pack, and e
moderate changes in the wall friction would have only min
effects on stress measurements. We do not view these
ings as invalidating the random friction model propos
here, at least not for engineering applications. The rand
packing model offers one possible explanation for these
perimental findings. The mean stress for this model is gi
by Eq. ~3! in the limit a→0, and equalsrgy; the standard
-
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deviation, Eq.~5! in the a→0 limit, is ergAy. For a short
bin, y'1, and fluctuations are on the order ofe times the
mean stress. Packing variations, interpreted as voids frac
can range up to 20–30 %. However, even this model d
not explain all the physics of small aspect ratio bins.
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