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Director configuration of planar solitons in nematic liquid crystals
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The director configuration of disclination lines in nematic liquid crystals in the presence of an external
magnetic field is evaluated. Our method is a combination of a polynomial expansion for the director and of
further analytical approximations which are tested against a numerical shooting method. The results are par-
ticularly simple when the elastic constants are equal, but we discuss the general case of elastic anisotropy. The
director field is continuous everywhere apart from a straight line segment whose length depends on the value
of the magnetic field. This indicates the possibility of an elongated defect core for disclination lines in nematics
due to an external magnetic field51063-651X%98)15602-7

PACS numbes): 61.30.Jf, 11.27d

I. INTRODUCTION Il. DIRECTOR FIELD EQUATION AND BOUNDARY
CONDITIONS FOR PLANAR SOLITONS
Nematic liquid crystals are systems which are positionally
disordered, but reveal a long-range orientational ofdgér ) ] o
This property is described on a mesoscopic level by a unit The geometry for planar solitons in nematic liquid crys-
vector fieldn(r), which is calleddirector. Due to the absence tals is drawn schematically in Figs.(fositive soliton and 2
of a permanent polarization in the nematic phase the directdfegative soliton The director field is essentially planar,
just indicates the orientation, but its has neither head nor taiPerpendicular to a disclination line of strengtfy along the
This particular feature yields very interesting defect strucZ direction of a Cartesian coordinate frame. Because the
tures in nematic liquid crystals. For instance, the directotructure is independent an we restrict ourselves to the
field shows line defects in three dimensidos, equivalently, Y Plane ¢=0). Now we impose a magnetic field in the plane
point defects in two dimensionscalleddisclinations which ~ ©of the director along ther axis. Due to the magnetic anisot-
have been studied and classified by topological methdds ropy of the nematic the director tends to align along the
5]. Unlike in spin systems, disclinations of topological magnetic field. However, the topological charge of the dis-
charge +} are possible and stable in nematics. When arflination has to be conserved. The resulting structure is a
external magnetic field is applied perpendicular to such &@lanar domain wall of Nel type[15,16,1Q, which ends in
disclination line, the resulting director configuration becomeghe disclination ling7,6]. Locally, close to the disclination,
even more interesting; it can be regarded as a domain Wa“']e director field preserves the defect structure. However, in
filling a half-plane which terminates in the disclination line. & Plane at a finite distance from the disclination line, which is
Such walls with edges, known as planar solitgf have  given by the half widthy, of the planar Nel wall (Figs. 1
been discussed for superfluftHe by Mineyev and Volovik and 2, the director field is aligned parallel to the external
[7]. Whereas the qualitative behavior of these solitonlike obmagnetic field 7,6].
jects is well-established, a quantitative understanding of their Due to the translational symmetry along theaxis it is
structure can be obtained 0n|y from a thorough ana|ysis oﬁufﬁCient to perform the calculations in two dimensions Only.
the underlying field theory. Its is the aim of our paper to
perform such calculations. Our approach is based on a poly-
nomial expansion of the director field. This method has been y
used previously both in relativistic field theorig%9] and for
the evaluation of domain wall dynamics in nemafi&§]. It
yields approximate analytical solutions for the director ori-
entation.

The paper is organized as follows. In Sec. Il the director
field equation for the planar solitons is derived. Section I f
develops a method for obtaining an approximate solution for (o | z
the tilt angle of the director. Our technique is a combination D
of the polynomial expansiof8—10] with further approxima-

tions that are tested by means of a numerical shooting
method[11]. The discussion is performed within the frame-

work of the Oseen-Zcher-Frank elasticity12—14. In Sec. —Yo
IV we estimate the energy of the defect core of the planar '
solitons, and we minimize the total energy of the solitons in

order to determine the length of the core. Section V contains FIG. 1. Geometry and coordinates for a positive planar soliton
concluding remarks. in a nematic liquid crystal.

A. Free energy and field equation
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Fnen= i (Ki1F Kaa) (DF+ D7) + 1 (Kaz— K1) (PF— D))
X coS2D + 3 (K33~ K1) @ P sin2d
Yo

— L oA xH3(1+ cos2Db). (4)

____% H
X In Eq. (4) ®, and ®, denote partial derivatives of the tilt
angle with respect to the spatial coordinates. The energy of

the defect coré ., will be discussed separately in Sec. IV.

g * The director configuration for the planar soliton, which
minimizes the energy of the nematic phase, follows as a
/— solution of the corresponding Euler-Lagrange equation

—yo 5‘¢nem= [?fnem_ ) [?fnem — 0 (5)
on; o an; ) (9((9“’],) '

The resulting equation for the tilt angle fiedl(x,y) can be
FIG. 2. Geometry and coordinates for a negative planar solitorwritten in the following form:
in a nematic liquid crystal. L
D+ Pyy+ K[y (Py cos2P) — 9y (P, cOS2D) ]
The director orientation is then completely determined by the _ _
tilt angle field®(x,y), which is measured with respect to the +K[dy(Dy SiN2D) + gy (Dy sin20) |+ K(DF—DF
direction of the magnetic fielth (x axis),

20,0, sinzw— M0 G op o 6
n=cosb(x,y)x+sind(x,y)y, H=Hox. (1) «Py) sin2® =k, SN2 =0, ©
We look for static director configurations, hendedoes not where
depend on time.
The geometry of Figs. 1 and 2 holds for nematic materials pa Kz~ Ky
with positive magnetic anisotropg y. The same director K11+ Kss
configuration can be achieved for negativg, too. In the ) ]
latter case the magnetic field should be applied alongythe IS the elastic anisotropy.
direction.
The static director orientation inside the soliton corre- B. Boundary conditions

sponds to a configuration minimizing the total free endfgy ~ The boundary conditions are an essential feature of the
(per unit length in thez direction which contains both the planar solitons. As discussed above, the defect structure is
energy of the nematic pha$g,and the core energy of the syrrounded by a homogeneous director field and by a planar
disclinationF ¢ore. (Within the defect core local phase tran- Neel wall. According to the choice of our Cartesian coordi-
sitions may occuy.The nematic energf e is the area in-  nate frame(Figs. 1 and 2the tilt angle should be zero gt
tegral of a free energy densit}e,. This free energy den- = +y, wherey, is the half width of the Nel wall. Addi-

sity, in turn, consists of elastic contribution&lue to tionally, it should glue smoothly to the homogeneous orien-

distortions of the director fieldand of a magnetic paftak-  tation. Thus the boundary conditions in thedirection (per-
ing into account the interaction of the nematic with the ex-pendicular to the magnetic fildre given by

ternal magnetic field henceF en= Felastt Fmag- The elastic
free energy density follows from the OseeneBer-Frank d(x,y=yg)=0,
expressiorf12—-14,
O(X,y=—Yo) =%,
Feias= 3 K11(div n)2+ 3K 35(nx curl n)2, 2

_ Dy (X,y=*Yq) =0, (7)
In Eg. (2) K;; andK 33 denote the elastic constants fplay
andbenddeformations in the nematic. Due to the restrictionwhere = 7r is for the positive and negative soliton, respec-
to planar director fields according to E€l) there are no tively.
twist deformations and the elastic const&nt does not enter In the x direction (parallel to the magnetic fieldthe di-
the calculations. rector field atx<0 coincides with the planar Néwall. For
The magnetic free energy density couples the direttor  increasingx coordinate the domain wall structure is de-
the magnetic fieldd via the anisotropy of the magnetic sus- stroyed and the director field changes towards the homoge-
ceptibility Ax (no means the magnetic field constant neous orientation, parallel to the magnetic field, which is
reached ak,. Hence,
fmag: - %/—LOAX(n' H)z-
_ , , _ DO(x=0y)=Pnee(y), P(X=Xq,y)=0. 8
When inserting the ansatz for the planar director figly
into Egs.(2) and(3), we obtain the free energy densify., It is important to note that the value ®f is yet unknown at
of the nematic phase, this stage.
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The function ®..(y) describes the director inversion We can derive boundary conditions for them by inserting Eq.

due to the planar N& wall. It can be determined by solving (12) into Eqg.(8). This yields(for the positive solitons

the field equatior{6) in one dimension. Fox<0 there is no

dependence on the coordinateand the field equation is T L
simplified to Do(x=0)=7, Po(x=%9)=0, (13
2
W, 2 - - /"LOAXHO . . T
(1-K cos2D)P,+ KDy sin2d Ko+ Ko sin2d=0. C(x=0)= 4_y(3)' C(x=Xg)=0. (14)

©)

The center line of the cross section of the domain wall
with the x-y plane coincides with the ling<0, y=0, with
tilt angle ® =+ 7/2 on it. Now, following the approach de-
veloped in our recent publicatigiO], we apply apolyno-
mial expansiorof the tilt angle up to third order in the dis-
tancey from the center line,

Our ansat£12) is continuous everywhere apart from the
axis (y=0). When crossing th& axis betweerx=0 andx
=Xp, @ jump in the director orientation from ®y(x) to
—®dy(x) occurs. This is connected to the physical singularity
of the disclination line in the center of the defect. Most sig-
nificantly, due to the influence of the external magnetic field
the cross section of the defect core is no more a pointlike
3 object in thex-y plane, but it is extended to a segment of a

) (10) straight line of lengthx,. However, although the core of the
defect is now striplike(if we take into account the direc-
tion), one can define its center line. It is locatedxat x4,

The different signs are valid for positive and negative SO”'whered)O(x:xd): /4, which gives the largest jumequal
tons, respectively. Due to the choice of the coefficients in the, 712) in the director'orientation at=0. At x<0 there is

expansion(10), the boundary condition$7) are fulfilled. no physical singularity, because,= — /2 is equivalent to
With the approximate expressiqt0) for ®yee(y) we can o=+ 7/2.
satisfy Eq.(9) up to terms proportional to the first power of "¢ giscontinuity of Eq(12) aty=0 reflects the fact that

y. This fixes the half widtly, of the planar Nel wall, the continuum approach is no more valid close to the defect
core, where strong gradients of the orientational order are
_3_7" Kneel Ko =] 1+ 2% | Koo K apparent. On a molecular length scale around the core the
yo_4H0 woldy' —Neel g 2/ 3 it mesoscopic director loses its physical significance as the av-
(11) erage molecular orientation. Remarkably, although when us-
ing the director approach we cannot determine the orienta-
It is of the order of the magnetic coherence length. Equationtional order within the defect core, our investigation gives
(11) and (10) are used in Eq(8), which now provides the hints on a possible elongated shape of the core of the discli-
boundary conditions in thr direction. nation line in the presence of the magnetic field. The exten-
The approximate solutiof10) could be improved by tak- sion of the defect cor@.e., the actual value ofy) can only
ing a higher order polynomial. If it is of the ordgf', then be determined when including the core energy into the in-
Eq. (9) can be satisfied up to terms proportionalyt 2. In  vestigation. This will be performed in the following section.
the present paper we shall restrict ourselves to cubic polyno- We now proceed by inserting the third order polynomial
mials iny, which are sufficient to reveal our method of ob- expansion(12) into Eq. (6). By comparison of the coeffi-
taining the approximate director field for the planar soliton. cients for the first two powers in thg coordinate(i.e.,
y°,y1) we obtain two ordinary differential equations for the
IIl. TILT ANGLE FIELD FOR PLANAR SOLITONS UnknOWn eXpanSion CoefﬁCien.@()(X)' and C(X) |t is con-
venient to change to a set of dimensionless variables by mea-
Our strategy for solving the nonlinear partial differential suring all length scales in units gf,
equation(6) for the tilt angled®(x,y) proceeds in two steps.
First we apply the polynomial expansion of the tilt angle X=YoX, V=2, r=yiC. (15)
field in they coordinate. After separating thyedependence,
we are left with a set of ordinary differential equations whichWe also introduce the notation
is solved both numerically and, approximately, analytically.
Of course, the polynomial expansion ynmust satisfy the
boundary condition§7). Therefore, up to third ord¢in con- — =1+
gruence with the expansion for the ®lavall (10)] it reads 7

T
DeelY) = iEI

1+97T2 K.
16 )

The equations fo andI’ have the following form:

Dy(x)
W) =| + + FYo)? — — e
(x.y) ( ¥ C(X)y>(y+y°) mod, L(1+K cosP)W” +(1—K cos¥)(W—4T)—K[: w2
for y=0,y=<0 resp.(12) — (T =W)2]sin® + 2K (T'' — ") sin¥ + 2K (I' — W)
The polynomial expansiolril2) contains two unknown X! COsI/_K_([‘_\I;)\I;I sin\I’—izsin\If=0 (16)

functions®y(x) and C(x) that depend on thg coordinate.
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and

_ 1— _ _
B(1+K cost)(I" =)~ SK(T' = W)W" sin¥ +3(1~Kcost)T'+K(I —W)(¥ —4T") sin¥

—%K_[\If’(l“'—\If’)—Z(F—\If)(‘lf—4F)] siny +K(W' —4T") sin¥

_ 1 _
—K(F—W){Z\If'?—(r—\lf)z cosP +2K(I'—¥)(I''—¥') cosP
—2KW/ (I —W¥)2sin¥ —KW¥' ([ — )2 cos\lf+2if(r—qf)(r'—qﬂ)

siny

1
cost —K|(I'-¥)(I'"=¥')+ E‘I”(\If—4[‘)

1
+ 5 W (W —4T)

—%(r—qf) cosP=0. (17)

In Egs.(16) and(17), ' denotes derivatives with respect to  An approximate analytical solution of Eq4.6) and(17)
the dimensionless variabbe. can be achieved, which turns out to be quite accurate, as
The set of ordinary differential equatiorié6) and (17)  being revealed by a comparison with the numerical solutions.
becomes much simpler for the one-constant approximatiodVe start from the observation that the free energy density of
(K=0). In this particular case the equations above art;I'he ?]GLE?CLCOE’ WThCh tcorreTp?ndts to a dlsorcfieﬂzed phas? IS
equivalent to the following ones: much higher than the typical elastic energy ot the nematic.
Therefore we expect that the core siggis small in com-
V"=8I"-2V¥ +2 sin, (18)  parison with the half-width of the Mg wall y,, i.e., X,
=Xo/Yo<<1. Furthermore, and I' change by a finite
I"=2r-2v+2(I'-¥) cos¥ +2 sin’. (19  amount on the intervdl0,x ], namely, byr or /4, respec-
tively. Therefore, the derivative¥’, I'' are of the order
Nevertheless', we shaI.I analyzeihe @8), (17). It turns out 7/X,. They are much larger thar andT'. One cannog
that a numerical solution and, K is not too large, also an priori exclude that also the second-order derivatives are

approximate analytical solution can be obtained. large, of the orderm/x2. The approximation consists of
According to Eqs(13) and(14) the boundary conditions kegpi'ng in Eqs(16) and0(17) the Iper;ding terms only. Then

(for positive solitons now read(with X o=Xq/yo) Eq. (16) reduces to
V(x=0)=m W(x=xq)=0, (20) .
(1+K cost)¥"— EK_\P’Z sin® =0, (22)
I s -
F(XZO):Z’ I'(x=xg)=0. (21

Equationg16), (17), (20), and(21) define a standard two- which can immediately be integrated yielding

point boundary value problem. It can be solved numerically,
for instance by ahooting methodl18,19,11. Satisfying the (1+K cosP)Y2P’ = const. (23)
boundary conditions at =0, the ordinary differential equa-

tions (16) and(17) are integrated numerically up t%0,. The L L
integration constants are adapted iteratively in order to mini!n the same approximation E¢L7) simplifies to

mize the discrepancy between the numerical solution and the
boundary conditions at . For obtaining solutions fo# ( x)

and I'(x) we used a computer code from R¢L1]. Our
calculations were performed for parameters corresponding to _
the liquid crystalline material-(p-methoxybenzylidene ~W¥)¥'2 cos¥ —K(I'—=W¥)¥” sin¥ =0. (24
p- buthylaniline (MBBA) and p-azoxyanisole(PAA) (see

Sec. V). In these cases the numerical solution almost coin- N — )
cides with the approximate analytical solution presented be- In addition to the smallness of, one can also exploit the
low. fact that the elastic anisotropg can be rather small. For

_ _ 1
(1+K cost) (I = W) =KW/ (I =¥") sin¥ - SK(T



57

example, for MBBA its value is 0.11, while for PAA it is

0.36. Moreover, in Eq9422) and(24) K is multiplied by the

sinus or cosinus o¥; this effectively diminishes the signifi-

cance of the terms proportional koeven further. Therefore,
it is natural to look for solutions of Eq$22) and(24) in the

form of an expansion into powers Kf. Up to first order irK
we obtain

X 1— X _
‘I’=7r(l—;>——K sin (1—% +0O(K?),
Xo) 2 Xo
(25
and
F—z(l—Z)—ZK_ r{ (1—% + 37 1—%
T ) S ) R
X (1+cos{ 77( 1— g +0O(K?). (26)
Xo

A comparison with the numerical solutions of E¢82) and
(24) shows that the functions in Eq®5) and(26) yield very

good approximations up t§=0.6.
IV. LENGTH OF THE DEFECT CORE

Up to this stage, the length of the planar solitan(or,
equivalently,x = Xq/yg) is unknown. We fix it by minimiz-

1
ing the total free energy, which includes the elastic and mag- F_ .~ Z(K11+ K33)<D§x0
netic energy of the nematic phase as well as the energy of the

defect core.
Let us first calculate the total nematic enefgy., (per

unit length along the axis) for the soliton extending over

the rectangle &x<xq, —Yyo<Yy=<Yy,, which contains the

DIRECTOR CONFIGURATION OF PLANAR SOLITONS ...
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elastic energy of a defect with a pointlike core would be
infinite, because for such a defec=0.

The expressiorf28) would suggest thak, should be as
large as possible; thef, e, would be minimal. In fact, this
is notthe case, due to the very large free energy stored in the
defect core, where local transitions into disordered phases
may occur. Let us perform an estimate of this core energy.
(Again, it is understood that we consider the energy per unit
length along thez axis) The energy of the core is due to
large gradients in the orientational order, which appear on a
molecularlength scale. Therefore, it cannot be expressed in
terms of the mesoscopic director field, but it is related to the
molecular interaction potential across the discontinuity in the
tilt angle on the segmentOx=<x, of the x axis. This mo-
lecular interaction energy is small at the beginning and at the
end of the core where the molecules on both sides of the
segment are almost parallel. However, inside the core the
molecules can even be perpendicular to each other. In this
latter case the discontinuity of the tilt angle is equaki,
and the separation of centers of mass of the molecules is of
the ordero,/+\/2 whereo, denotes the molecular length. In
the present paper we shall be satisfied with a rough estimate
obtained by assuming that the core energy density is given
by Eq. (4), when all terms are neglected except fdiK,;
+Kaa @7, with @~ (7/2)/(ay/\2). The width of the core
is taken to be of the order,/+/2. This yields an estimate for
the total energy of the core

Og

= 77_2(K + K )&X
\/E 8\/5 " 3 0o 0
(29)

The total energy of the planar soliton is thén=F .y,
+Fcore- We now insert Eqg28) and(29) and then minimize

core of the defect ag=0. Outside this rectangle there is the F With respect to the reduced core length. It is easy to

planar Nel wall at x<0, —y,<y<y,, and the homoge-

find out that thex—o corresponding to the minimum total en-

neous director orientation parallel to the external magneti@rgy is given by
field along the three remaining sides of the rectangle. There-

fore the rectangle contains the total elastic and magnetic en-
ergy of the distorted nematic due to the presence of the de- Xo

fect. It is given by the integral

Fon=2 fox°dx f0y°dy Fred®xy)], (27

whereF o, is given by Eq.(4). For the tilt angle® (x,y) we
use the approximate solution according to E{), (15),

(25), and(26). The integrals in Eq(27) can be calculated by

help of a computer algebra systdmg.,MAPLE). The result
has the following form:

0.58 _
———0.72%,

1
FnemZE(Kll"' Ks3) "
0

. (29

0.19 _
+K|[ ==+0.93-11.6%,
Xo

The terms proportional to X_/o stem from elastic energy

0.58+0.1K

v2— _
1.7/ 0o—0.72- 11.6K

(30

Let us computex for particular nematic materials. For
N-(p-methoxybenzylidenep-buthylaniline (MBBA) at
25°C[17] the elastic constants ake;;=6.0x 10 > N and
K33=7.5x10"'2 N. The magnetic anisotropy igtoAx
=9.7x10 8 V s/A m, the molecular lengtlr,=30 A. The
magnetic field strengthl, is chosen 500 Oe, according to a
magnetic flux densityBy=uoHy=0.05 T. Then, the elastic
anisotropy isk =0.11. Equation(11) yieldsy,=3900 A. Fi-
nally, x2~0.0027, and,~202 A.

For p-azoxyanisoldPAA) at 125°C[17] the elastic con-
stants areK,;=4.5x10 12 N andK33=9.5x10 12 N. The
magnetic anisotropy isupAx=12.1x10"8 Vs/Am, the
molecular lengthr,=20 A. The magnetic field strengtf,
is again chosen 500 Oe. The elastic anisotropi{ #s0.36,
Yo=4940 A, and finallyx 2~0.0015,xo~191 A.

We notice that in both examples; is rather small, in-

terms in F,e, proportional tod)i. Due to these terms the deed. This is consistent with the assumption leading to the
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core length [arb. units]

FIG. 5. Tilt angle field for a positive planar soliton in MBBA at
FIG. 3. Free energyper unit length F’ vs core Iengthx_o for 25°C. Spatial coordinates in arbitrary unit;=x/y0, y_= ylyo
MBBA at 25 °C. Both quantities are in arbitrary unidimension-  (y,=3900 A).
less. F'=F/Ka, Xo=XolYo, With units K,=3(Ki+Ksg
=6.75<107 "N, y,=3900 A. Dashed line, analytical solution for somewhat misleading, because it does not take into account

the energy of the nematic phase; rhombs, numerical solution for thghat the director is an object without arrowhead. For instance,
energy of the nematic phase; dotted line, analytical solution for th%t X=0 y_=0+ there is a jump byr which in fact means

energy of the defect core; crosses, humerical solution for the energ n orientational change of zero angle, exactly the same as for

of the defect core; solid line, total energy. R — ] )
X=X=0.052,y=0=x. As already stated in the preceding

imat ut 5 and (26). Th " hvsical section, due to the periodocity af for tilt angle changes the
approximate solution$25) and (26). The resulting physica largest orientational jump occurs fory3=0.025,y4=0=*,

length of the core, is relatively large and it probably could where the tilt angle ist 77/4. This point can be defined as the

be seenin appropriate expen.ments. The dependence of t@(?:-nter of the core which is related to the original disclination

nematic, core, and total energies on the reduced length of tr]ﬁ.]e (in three dimensions

defect core is plotted in Figs. @BBA) and 4(PAA). These particular features become obvious from a lattice

With the determination of the reduced core lengththe  visualization of the director field, which is presented in Figs.

calculation of the director field for the planar soliton is com- 7 (positive soliton and 8(negative solitoh (In these figures

pleted. The tilt angle field is shown in Figs.(positive soli-  thex andy dimensions ar@ot proportionally scaled.Rods

ton) and 6(negative soliton The core line ay=0 is clearly  of unitary length placed on the sites of a rectangular lattice

visible by the jump of the tilt angle. However, this picture is indicate the local orientation. The dashed line means the de-
fect core and the small circle marks the center of the core,
according to the previous discussion.

50
V. REMARKS

é 40 \/ (i) The positive and negative planar soliton are distin-
2 30 b L guished by the boundary conditiof®0) and(21), but not by
- . e
GE 20 el “ | tilt angle
M) L - v", 7777 [deg] .
g 0 T % i
& T

0 - : 22

0.02 0.04 0.06 0.08

core length [arb. units]

FIG. 4. Free energyper unit length F’ vs core lengthx for
PAA at 125 °C. Both quantities are in arbitrary unfitimension- T . 0.05 '1/ 000‘
les. F'=F/K,,, Xo=Xo/Yo, With units Ky=2(K;+Kzg)=7
X 10712 N, yo=4940 A. Dashed line, analytical solution for the
energy of the nematic phase; rhombs, numerical solution for the
energy of the nematic phase; dotted line, analytical solution for the FIG. 6. Tilt angle field for a negative planar soliton in MBBA at
energy of the defect core; crosses, numerical solution for the energ®5 °C. Spatial coordinates in arbitrary units=x/y,, y=yly,
of the defect core; solid line, total energy. (Yo=3900 A).
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FIG. 8. Lattice visualization of the director configuration for a

FIG. 7. Lattice visualization of the director configuration for a X ’
negative planar soliton.

positive planar soliton.

i _ responding to a critical flux density of 5.64 T. However, it
the field equat|on§. Therefore they cover exacply the samgnould be remembered that HGD) has been derived under
area, although their energy content is slightly different. Theh tion thax? is small. so it mayv become wron
tilt angle field for the negative solito® ~(x,y) is obtained the assumption kg 1S smat, y vrong
from the positive soliton solutiof(x,y) presented above by WeII___before reaching the critical value of the magnetic fle_ld.
a sign inversion of the expansion coefficiend: () (iii) Ip the .presgnt paper we have assumed that thg direc-
- N 0 tor configurations in all the planes perpendicular toztais
- ___(DO(X) and_C () =—C(x). . . are identical. One could attempt an analysis of more general

(i) Expression(30) reveals_a rather mterest-lng. depen- configurations by combining ideas of the present paper and
dence of the reduced core lengtg on the magnetic fieltl,  of Refs.[9,10]. In [10] we have evaluated the time evolution
which enters througly, [see Eq.(11)]. For weak magnetic of cylindrical Bloch and Nel domain walls in a nematic
fields we have largg,, hencexg is small and it tends to zero liquid crystal, and in9] the dynamics of a generic, curved
when the magnetic field vanishes. However, the physicatelativistic domain wall in a scalar field model is investi-
length of the core is equal tey=y,x and it increases as 9ated; in both papers the polynomial approximation is used.
1/\/H, when the magnetic field decreases. The physical realVithin a generalized calculation we expect that the functions
son is that for a weaker magnetic field the distance ovef @nd®q in the polynomial expansion, as well as the half-
which the director field can be reorientated by a given anglVidth yo of the Neel wall would depend on the coordinates
is larger. In the case of planar solitons the required reorienX; Z, and on timet. The variabley would have to be inter-
tation is such that the tilt angle changes frabp.(y) to- Preted as a comoving coord|na{t9,_10]. The director con-
wards zero. Of course in this limit the width of the’ e figuration will be tme-dependent in general. Equations for
domain wall(11) also increases, asH¢, hence faster. On C, ®o, andy, could be obtained from the torque balance
the other hand, with increasing magnetic figlg decreases
and x increases. From inserting E(L1) into Eq. (30) it is
noticed that formally there is a finite critical value for the
magnetic field at whichxy becomes infinite. For MBBA the

dependence of the reduced and physical core Iew_gthnd . ) . , )
X, 0N the reduced magnetic fietd= H[ O€]/500 is where y; is the rotational viscosity of the nematic. Because
of the larger number of independent variables, such equa-

tions will be much more difficult to solve, and we expect that

an; . 5?_0 32
’}/1 (9.[ 6ni_ ’ ( )

h A 1057 approximate analytical solutions can be found only in some
)(_020_551 / Xo[A] — ‘ particular cases. On the other hand, one may expect that due
112.8-h" 202 h(112.8-h)’ to the viscous torques the evolution of the director field

(3)  n(r,t) will terminate in a stable, time-independent configu-
ration of minimum energy. The planar soliton defect dis-
cussed in the present paper is probably an example of such a
which yields a critical reduced magnetic fidlg=112.8, cor-  stable configuration.
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To conclude, we found an approximate solution for the ACKNOWLEDGMENTS
director configuration in planar solitons in nematics. It is
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This points out the possibility of an elongated shape of the The paper was supported in part by KBN Grant No. 2
defect core in disclination lines due to an external magneti®03B 095 13. J.S. gratefully acknowledges his individual
field. grant from the Alexander-von-Humboldt Stiftung.

[1] P. G. de Gennes and J. Proshe Physics of Liquid Crystal [11] W. T. Vetterling, W. H. Press, S. A. Teukolsky, and B. P.

(Oxford Science Publications, Clarendon Press, Oxford, 1993 Flannery, Numerical RecipegCambridge University Press,
[2] G. Toulouse and M. Kiman, J. Phys(France Lett. 37, L149 Cambridge, 1986

(1976. [12] C. W. Oseen, Trans. Faraday S@e, 883(1933.
[3] N. D. Mermin, Rev. Mod. Physs1, 591 (1979. [13] H. Zocher, Trans. Faraday So29, 945 (1933.
[4] V. P. Mineyev, Sov. Sci. Re\A 2, 173(1980. [14] F. C. Frank, Discuss. Faraday S@&, 19 (1958.
[5] H.-R. Trebin, Adv. Phys31, 195 (1982. [15] L. Neéel, J. Phys. Radiun 7, 250 (1956.
[6] S. Chandrasekharliquid Crystals (Cambridge University [16] W. Helfrich, Phys. Rev. Let21, 1518(1968.

Press, Cambridge, 1992 [17] M. J. Stephen and J. P. Straley, Rev. Mod. PH&. 617
[7] V. P. Mineyev and G. E. Volovik, Phys. Rev. B8, 3197 (1974.

(1978. [18] R. Kippenhan, A. Weigert, and E. Hofmeister, Methods.
[8] H. Arodzand A. L. Larsen, Phys. Rev. B9, 4154(1994. Comp. PhysZ7, 129(1968.
[9] H. Arodz, Phys. Rev. 052, 1082(1995. [19] F. S. Acton,Numerical Methods That Woidarper and Row,

[10] J. Stelzer and H. Arod2hys. Rev. B56, 1784(1997). New York, 1970.



