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Heat conduction in one-dimensional chains

Bambi Hul? Baowen Li! and Hong Zhab?
IDepartment of Physics and Centre for Nonlinear Studies, Hong Kong Baptist University, Hong Kong, China
2Department of Physics, University of Houston, Houston, Texas 77204
3Department of Physics, Lanzhou University, 730000 Lanzhou, China
(Received 8 August 1997

We study numerically the thermal conductivity in several different one-dimensional chains. We show that
the phonon-lattice interaction is the main ingredient of the Fourier heat law. Our argument provides a rather
satisfactory explanation to all existing numerical results concerning this prop&i63-651X98)10803-§

PACS numbe(s): 44.10:+i, 05.45:+b, 05.60+w, 05.70.Ln

It is still an open and challenging problem to understandrather satisfactory explanation to all existing numerical re-
the macroscopic phenomena and their statistical properties sults, qualitatively and quantitatively. The possible connec-
terms of deterministic microscopic dynamics. The crucialtion with the experimental results is also discussed.
point is how to connect the irreversibility with the time re-  Normal thermal conductivity— Both the ding-a-ling and
versible deterministic microscopic dynamics. One outstandthe ding-dong model are more or less artificial models. We
ing problem is whether or not the heat conduction in a onewould like to turn to a more realistic model, which is close to
dimensional(1D) chain obeys the Fourier heat laiwormal  a true physical system, i.e., the Frenkel-Kontoroval model. It
thermal conductivity and if so under what condition. describes a particlgatom) chain connected by harmonic

The first convincing result of the Fourier heat law in a Springs subject to an external sinusoidal potential. It has been
classical system was given by Casattial. [1]. They studied Wwidely used to model crystal dislocation, charged density
the so-called ding-a-ling model, which is a 1D chain consistWave, magnetic spirals, absorbed epitaxial monolayers, etc.
ing of the fixed equidistant hard-point particle harmonic os-in condensed matter physi¢4]. This model displays very
cillators, and in between two fixed particles there is a fregich interesting phenomena. However, we shall not discuss in
particle. The particles have the same mass. The two ends @tail all of these properties in this paper; for more details
the chain are put into two thermal reservoirs. Classically, thilease see Ref$4,5]. Our attentions in this paper are fo-
system can be changed from integrable to fully chaotic bycused on thermal conductivity.
adjusting the system parameter. They found that the key in- The existence of the thermal conductivity of this model
gredient for the normal thermal conductivity is chaos. Laterhas been proved by Gillan and Holloway by using different
on, Prosen and Robnil2] studied the ding-dong model by numerical techniqueg6]. The classical Hamiltonian of the
three different numerical methods and verified the Fouriestandard FK model is
heat law. The ding-dong model is a modification of the ding-
a-ling model. The only difference is that in the ding-dong H‘E _i+Z Yoo X —g)2—
model the fixed harmonic oscillators are allowed to collide T4 2m 2( i~ Xi-1—a)
and there is no free hard-point particles in between. Further-
more, they have studied the temperature dependence of thgy convenience of numerical calculations, we shall scale
thermal conductivity and found that it increases monotonithis Hamiltonian into a dimensionless one,
cally with temperature.

Most recently, Lepriet al. [3] have studied the Fermi- p2 1
Pasta-Ulam(FPU) 8 model. This model represents the sim- H :2 7'+§(xi—xi,1—,u)2—
plest anharmonic approximation of a monoatomic solid. !

They have the Noskloover thermostats acting on the first ) ) ) ) ) )
and the last particle keeping constant temperafureand By doing this, we have obtained a new effectlve dimension-
T_, respectively. They show that there exists a simple nonl€SS temperatur&. The real temperaturg, is related toT
trivial scaling relation for the increasing number of particles.through the following relation:

The thermal conductivity, however, diverges approximately 21,2

as N2 N is the number of particles. They claimed that T _ Mo T 3)
chaos is not sufficient to ensure the Fourier heat law. " kg

In this paper, we shall investigate the mechanism leading
to the Fourier heat law. In other words, we would like to Wherem is the mass of the particley the elastic constant,
answer the following question: under what condition doesandb the period of external potential, which is unitary after
the heat conduction of a 1D many-body Hamiltonian systen$caling.a is the equilibrium distance of the particle; it is
have the Fourier heat law. To this end, we shall consider a/b after scalingK=A/yb? is a rescaled strength of the
different models, such as the Frenkel-Kontor¢#&) model  external potentialw3= y/m is the oscillator frequencyg is
and the harmonic dissipative model for example. We willthe Boltzmann constant. In this paper, the winding number in
show that by invoking a simple mechanism we can obtain dhe FK model is kept at 1/3.
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It is helpful to establish the above relationsk#). It can 0.30

give us very useful information about the corresponding true
temperature to that one we used and enable us to gain sor
physical insights. For instance, for the typical values of at- o | .
oms, i

b~10"1 m, wy,~10" sec?,

0.26 |- i}
m~10%-10"%" kg, kg=1.38x10"2% JK 1, L

we haveT,~ (10°—10°) T, which means that the room tem- ¢4 |- i
perature corresponds to the dimensionless temperdture o
about the order of 0:21. So, if T is very high such as to [
1%, then the actural temperature is about1Q 0 K, at this 022 |- \
temperature the displacment of the particle from its equilib-
rium can be up to the order of 10, which we think is unreal-
istic for physical systems. Therefore, like Casattial. [1], 0.20 . . . . , L , . .
we always keepl at very small values in our numerical 0.0 0.2 0.4 0.6 0.8 1.0
simulations. i/N

The Hamiltonian(2) is a very special case. In fact, we can

write it into a general form, FIG. 1. Temperature profile for the FK mod@) with param-

p-2 eterK=5. T, =0.3, T_=0.2. The average is taken over the® 10
H=> Hi, Hi=—+V(Xi_1,%)+U(X). (4)  interval after the transient time ioThe particle numbers are 300
i 2 (solid line), 200 (dashed ling and 100(dotted ling, respectively.

Here V(x;_,,x;) stands for the interaction potential of the owential, if its strengthK is sufficiently large(compared
nearest-neighbor particlesl(x;) is a periodic external po- it the temperatujie we can obtain the same scaling rela-
tential, which is an analog of the lattice, and as we shall segs, as that obtained by Lept al. This scaling indicates
later that it plays a crucial role in determining the behavior ofi, 4t the temperature gradient scalesNas!. We have con-
the thermal conductivity. IU(x;) vanishes and/(xi—1,X)  firmed that this scaling relation is also true for many differ-
takes the anharmornic form, E¢4) is then the FPUB  ont modified FK models. For example, we have changed
model, Wh_lch has been discussed by L_&nral. [3]. There- V(x;_1,%;) to the anharmonic case as discussed by Lepri
fore, a variety of 1D models can be put into the framwork of ;" o, changed the external potentidi(x;) to one with a
Eqg. (4). By changing the form\V(x;_;,X;) and U(x;), we higher harmonic term, such as
will obtain different thermal conductive behaviors.

To study the heat conduction in 1D model, we choose the K K
same approach as that used by Legiral. [3], namely, two U(X)=— ——cog2mx) — —=—cog4mx). (7)
NoseHoover thermostat§7] are put on the first and last )? 2
particle, keeping the temperature & and T_, respec-
tively. The equations of motion of these two particles are The derivation of the heat flux of thigh particle differs

determined by slightly from that of Lepriet al. The local heat flux(x,t) is
) ) defined by the continuity equation. Taking the volume inte-
X1= =Xt =1y, gration on both sides of this equation, we can obtain
Xn=—{ Xnt fn— o, ) : - \
Ji_Ji—lzxi&—Xi(Xi,Xi+1)—Xi—1m(Xi—1,Xi)- (8)

Lo=X3T,—1, (_=x3IT_—1.

. . . . Thus the heat flux is defined by
The equation of motion for the central particles is

. . . oV
Xi:fi_fiJrla i=2,...N-1, (6) Jizxig(xi,)(prl). 9
|
wheref;=—V'(x;,_1—x;) —U’(X;) is the force acting on the
particle.xo=0 andxy.1=0. Numerically, the time averagé=(J;(t)) is independent of
We have carried out extensive numerical simulations withthe indexi for long enough time.
a large range of parameters Wf T, andK for a variety The N dependence aiN is plotted in Fig. 2 for different

forms of V(x;_;,i) andU(x;). We used the seventh-order models. As is easily seen for different FK modpigth dif-
and eighth-order Runge-Kutta algorithm, which providesferentV(x;_,,x;) and/or differentU(x;)], as long adJ(x;)
very stable and more accurate results than those of the usual nonzero and at sufficiently lower temperatudd\ is a
fifth-order Runge-Kutta method. The spatial temperatureconstant, implying that 1/ diverges withN. Since the tem-
profile for the standard FK model is shown in Fig. 1. It is perature gradient vanishes WS as shown in Fig. 1, the
clear that although our FK model has an additional externaFourier heat law is justified.
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4 demonstrate thalN diverges as approximately2, which
P means that the thermal conductivity divergesN#&. This
./ agrees with that of Lepret al. at much higher temperature.
s L /./ Based on the above results, we are convinced that the key
® point of the normal thermal conductivity is theeriodic ex-
/ ternal potential, which is analogous to the lattice.
If the lattice is absent, and the interparticle potential is
2| / harmonic, then no phonon-phonon interaction exists; thus the
o heat transfer would take place at the speed of sound and the
i / thermal conductivity would be infinite, as pointed out by
® Debye in 1914(However, if we add a dissipative term to the
harmonic oscillator chain, then we could obtain the Fourier
heat law, even though we do not have a lattice. This is be-
A cause with dissipation the heat radiates during the transport.
© Our numerical results have verified this. But we will discuss
this in more detail in another papgs].)
R e T  ——— In the case of an anharmonic interparticle potential
0 s0 100 150 200 250 300 V(x;_1,X;) such as that in the FPU model, the phonon-
N phonon interaction is produced due to the anharmonicity.
Although the temperature gradient can be formed, neverthe-
less, as is shown by the work of Lemt al. at high tempera-
ture as well as ours at low temperature, the thermal conduc-
tivity diverges.

JN

FIG. 2. JN vs the number of particlel for different models.
T,=0.3 andT_=0.2 for all cases. The solid circle represents the
results of the FPU3 model (8=0.5). The open circle is the result

of the FK model given by Eq2) with K=5; the solid square is for As | he latti . he bh il b d
the FK model with an external potentiél), with K;=5 andK, s long as the lattice exists, the phonons will be scattere

=15; and the open triangle is for the FK model with=x2/2 by it and thi; results in thermal res!stancg, eventually leading
+Bx%4, U=—Kcos(2m)(2m? B=0.9,K=5. The lines are (O the Fourier heat law. In the ding-a-ling model and the
drawn to guide the eyes. ding-dong model the fixed harmonic oscillator plays the role
of the lattice, whereas in the FK model it is the periodic
T .. external potential. In these three cases the Fourier heat law is
o e e Yo e numercaly. Tus e befeve ta  might e g

’ .eral rule that if the phonon-lattice interaction is dominant,

does not obey the Fourier heat law neither for the harmonnl:he heat conduction will obey the Fourier heat law, no matter

form V(xi_l,xi).nor for the anharmonic form such as the \ether the interparticle interaction is harmonic or anhar-
FPU B model discussed by Lepst al. Our results for the .

FPU B model at very low temperature shown in Fig. 3 also Temperature dependence of As discussed above, the

crucial point of the Fourier heat law is the phonon-lattice
interaction. The mean free path of the phonons is determined
by the density of the lattice and does not change with the
temperature. By increasing the temperature, more and more
high energy phonons are excited, which results in the growth
of the heat flux, and thus the increment of the thermal con-
ductivity. Whereas in the absence of the lattice, increasing
temperature will produce more phonons, which in turn re-
duces the phonons’ mean free path, consequently decreasing
the heat flux. Therefore, the temperature dependence behav-
ior for normal and abnormal thermal conductivity should be
very different. Our numerical calculations exactly demon-
strate this point.

In Fig. 3, we plot the temperature dependence of heat flux
for different models. The particle number is kept Mt
=100, and in all cases the temperature difference is fixed at
L AT=T,—T_=0.1, thusJ has the same behavior as the

1.8 thermal conductivityx. For the FPUB model (3=0.9, solid
circle), the heat flux decreases monotonically with tempera-
ture, whereas in the standard FK mod& =5, solid tri-

FIG. 3. The temperature dependence of heat Jidiar the FPU ~ @Ngl8 it increases with temperature. o _
B model (3=0.9, solid circlg, the standard FK model E2) (K Another very important thing worth noting is the case in
=5’ solid ’[riang|el and the FK models with an anharmonic inter- Wh|Ch the anharm0n|c|ty and the eXternaI pOtentIal coexist. It

particle potential V(x)=x%/2+x%4 and external potential S€ems that this case is closer to the real phy;ical system than
K cos(2m)/(2m)? at 8=0.9, K=5 (solid squark The line is drawn  others. We have performed the numerical simulation by us-
to guide the eyes. ing V=x2/2+ Bx*4 andU = —Kcos(2mx)/(2m)? in Eq. (4).
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The temperature dependenceldofs shown in Fig. 3(solid  whereas it decreases at high temperature. This can be under-
squarg. The heat flow is affected not only by the phonon- stood well from the mechanism discussed in this paper.
lattice interaction, but also by the phonon-phonon interac- In summary, by studying the dynamical equations of the
tion. In the low-temperature region, the factor determininglD particle chain, we came to understand more about the
the heat conduction is the phonon-lattice interaction, thereb€at conduction mechanism. Our numerical results as well as
fore, the heat conduction obeys the Fourier heat law, but thethers up to date confirm our conjecture that the phonon-
heat flux is bigger than in the standard FK modsblid lattice interaction is the key factor in the Fourier heat law.

triangl® due to the anharmoncity, which produces more©nly the phonon-phonon interaction cannot give rise to the

phonons to transfer heat. The anharmonicity becomes mo[léourier heat law; instead we will have the abnormal thermal

and more important when the temperature is increased: th&onductivity, i.e., the thermal conductivity diverges as the

is why in the higher-temperature region a relative flat regiorP 2 iCI€'S number. In the former case, the thermal conductiv-
g . ity grows with the temperature monotonically, whereas in the
shows up in Fig. 3. Furthermore, it must be noted that ou

numerical results show that for the FK model shown in Fig.Eatter case it decreases.
3 the Fourier heat law is valid only at the lower-temperature ~ We would like to thank Dr. Zhigang Zheng for many
region T<1, at higher temperature the Fourier heat lawuseful and stimulating discussions and for bringing our at-
broke down for the reason mentioned above. tention to Ref.[6]. Thanks also go to Dr. Jilin Zhou for
From many experimental resulgsee, e.g., Srivastaj@]  kindly providing the seventh-order and eighth-order Runge-
or other textbooks of solid state physics, such as that oKutta integration program. This work was supported in part
Kittel [10]), we observe that the thermal conductivity in- by the grants of the Hong Kong Research Grants Council
creases with temperature in the lower-temperature regiorand Hong Kong Baptist University.
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