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Energy spectrum in the inertial and dissipation ranges of two-dimensional steady turbulence
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The energy spectrum in the inertial and dissipation ranges in two-dimensional steady turbulence is examined
theoretically and by high resolution direct numerical simulatidDhlS) up to N=4096. A theoretical spec-
trum smoothly joining the two ranges is derived using theran-Howarth-type equation. In the inertial range
we obtain an asymptotic form of the energy spectrunEés) = C %k 3(k/kq) ~ T In(klk)]~ @ V6= with
small . It is found from the DNS that decreases slowly with the microscale Reynolds number and the
constantC is of the order of unity but increases with the microscale Reynolds number. In the far dissipation
range, we derivéE (k) ok~ (3T 972g~2(k/ka) \which agrees with the DNS results. The slapedepends explic-
itly on the microscale Reynolds number and agrees with the DNS values. Universality of the spectrum in the
two ranges is also discuss¢®1063-651X98)10703-1

PACS numbds): 47.27.Gs, 47.27.Jv, 47.27.Ak

[. INTRODUCTION former spectrum approaches the latter in the asymptotic
limit. Also, less attention has been paid to the form of the
The energy spectrum is the guantity of central interest irspectrum in the dissipation range. For decaying turbulence,
the study of turbulence. Recent high performance computerfatsumi and Yanasg5] studied an analytical form of the
enable us to simulate two-dimensional turbulence with veryspectrum in this range using the Modified Zero-4th theory.
high resolution1-12]. Most of the studies using direct nu- The form is
merical simulation(DNS) have been concerned with decay- 5
ing turbulence, in which long lived coherent vortices emerge E(K) k> exf — ax(k/ky)], %)
and are strongly dependent on initial conditions. In this case, _
one is unlikely to see universality in the satistics of the tur- az(7)=brIn(R.7)] 75, )
b_ulence_-. On the other ha_nd, in the case of St?ady WOl hereb is a constant of the order of unitR_=ugq/ vk is the
dimensional turbulence excited by pumping of vorticity with

a macroscale k{, it is commonly seen that irrespective of macroscale Reynolds, number ame Ugk;t is nondimen-
) ) monly . P sional time. But no studies have been done for steady turbu-
forcing mechanisms, self-similar, very thin vortex layers de-

velop in between vortices having the forcing scale. The in lence.

: : o " In this paper we present a simple analysis of the energy
fmal r?régi i;?(e_cgtrurr} predlcteq[ t&y thegfp—17 is of the spectrum that smoothly joins the inertial and dissipation
orm of E(k) or log-corrected one, ranges for normal viscosity, and compare with DNS results
of steady turbulences of high resolution up Xb=4096

E..(K) o 7?33 In(k/k) ]~ Y3, @D 1112,

by Kraichnan[18], where % is the average rate of the
enstrophy dissipation. The energy spectrum in the enstrophy
cascading range by the DNS has been observed to be The equation for the second-order moment of vorticity
k=% with 0< §<1 for normal viscosity3,10-13 and to  differenceQ,(r,t) = ((w(X+r,t) — w(x,1))?) is given by
tend to bek3[In(k/k)]~ Y2 for hyperviscosity{ 10]. 0 .

It still is an open question what the form of the energy dQa(r,t)  dQg(r,t
spectrum is in the inertial-to-far dissipation ranges at large g ar; =—4n+t20ViQu(rt), (4
but finite Reynolds numbers. What we need to know is the
statistics of two-dimensional turbulence with normal viscos-where = v{(Jw/dx,)?) is the average rate of enstrophy dis-
ity, and the energy spectrum is fundamental. Most high resosipation per unit massQs;(r) ={u;(r)[ dw(r)]%) and du;
lution DNS’s use hyperviscosity in order to obtain wider =u;(x+r)—u;(x). Since for|r|=r<1/k,, the turbulence
inertial range than in the case of normal viscosity. Howeverfield is homogeneous, isotropic and in a quasi-steady-state,
using hyperviscosity changes completely the statistics of theve putdQ,/dt=0 andQs;(r)=Qs(r)r;/r whereQs(r) is a
scales of motion in the range of inertial to dissipation, andnondimensional function. Substituting this expression into
would affect the higher order moments, which may not beEg. (4) and integrating with respect towe obtain
independent of the viscosity, as shown in recent studies of a 40,(1)
passive scalar convected by a random velocity fi&fi14]. (T

For finite Reynolds number, as we see in the latter sec- Qs(r)=—29r+2v dr - ®)
tions, the spectrum where the inerial effect is dominant is
approximately algebraic, while for infinite Reynolds numberin the inertial ranger>14=(v°/5)Y®=1/ky, the viscosity
it is of log-corrected form, Eq(l). It is not known how the term can be neglected; then E§) becomes

II. ANALYSIS OF THE ENERGY SPECTRUM
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Qsi(Nrilr=—=2qr, (6)

2985

where b is the scale at which the inertial and dissipation
ranges cross over. This may be compared with the formula in

which is a two-dimensional analogue of Kolmorogov’s 4/5 three-dimensional turbulence,

law in three-dimensional turbulence.

Whenr is in the dissipation range, we must retain the
viscosity term. Multiplying Eq.(5) by r,/r we have the

equation projected onto a one-dimensional axis as

d
le(x):_an‘FzV%. (7)

For x<ly4, we can write

Q31(X) S 7
3 =g 5,200, (8)

lim
x—0 X

whereS, is the two-dimensional skewness

Uy dw)\?

x| ax

$=-2 U\ 2 2 [ 2 C)
ax ax

and(} is the total enstrophy defined by

Q=3 {w?. (10

It should be noted that closure of the third order moment is

made by using the two-dimensional skewn&ss which is

the product of the velocity gradient and the vorticity gradi-

ent. Substituting Eq(8) into Eq. (7), integrating oveix and
using the Padapproximation we have

~ ~ -~ S - a%x 2
— 2/ —_yv2_ "% 1/354 6\
F(x)=272RQ,(x)=Xx 3R X +0(x ©) WRSTE
11
a?=32/(S,R3) (12)
for Xx=xkq<1, where
Q3/2
R)\ET (13

is the microscale Reynolds numide9].

In the inertial range we assume tentatively that the energy

spectrum is of the form

-0
E(k)=C’ 7,2’3k—3(k—:) (14)

with 6=0, which mean®,(x)~ »**x? and
F(X)~X?% Xx>1. (15)

A smooth function that matches both E¢kl) and(15) is

~ X 2 16(2— 6
F(x)= = : b2:6(—l/3),
[1+(X/b)?]?~ 912 RY

(16)

15 ~ X2
(Z/)l/ZQZ(X )N [1_}_(")2/(:)2]2/3'
au\3
, 8 15% <(5) >
X

studied by Batcheldf20], whereS; is the three-dimensional

skewnessx =x/l43 and | 43=(v°/ €)* is the Kolmogorov
length (for more elaborate expressions with or without inter-
mittency correction, see Refl1,22)).

The one-dimensional correlation function for the vorticity
is given by

Wi (X)=(o(x+ X )o(X)){w?)=1- . ! F(X),

2/3
R

(18

and the corresponding one-dimensional spectrum can be
written as

S
Wl(k)zﬁfi W;(Xx)e **dx

N ('IZ)" —
_Aﬁ b K,(bk)

b275

A K=kl _10
- ds O-_Ta

87 (o +1/2)RZ?

(19
whereK ,(2) is the modified Bessel function of the order
The energy spectrua(k), then, is given by 23]

E(K)=E(k)K3Q=

Abl—(r~ .
5 k73j~ {[b?Z*+40(o—1)
o k

dz

ZO'

1/22_ k2

+1]K,_4(b2)—20bzK,(b2)}

(20)
The asymptotic form of the spectrum is
E(K)xk= 39 for k<1,

KB +I2g-ak  for  K>1, (21

In the inertial rangéE (k) is proportional tok~ 9 while in

the dissipation range it decays exponentially at a tagtelt
should be noted that the exponent of the prefactor in the
dissipation range is- (3+ 6)/2, half of the exponent in the
inertial range. This can be compared with the resug{k)
«k~ 2 in the inertial range and k3exd — a,(k/ky)] in the dis-



2986 TOSHIYUKI GOTOH 57

sipation range by the statistical theories of turbulence such as TABLE |. DNS parametersN, resolution; ky,,, maximum
the direct interaction approximatio(DIA) [24], Modified  wave number;y, kinematic viscosity;s, the exponent defined by

Zero-4th[25], and Lagrangian renormalized approximation Ed. (14).
(LRA) [26]. There, the exponent of the prefactor is 3, which

is different from —(3+6)/2 as found in Eq(21). The expo- runl run2 run3 run4
nential decgy is the same. N 1028 2048 40967 40962
We obtaina; as K 483 965 1931 1931
16(2— )\ 12 v 1.0x10°* 20x10°° 7.0x<10° 3.0x10°
= —) R, Ve, (22) At 5.86x10°4 2931074 7.32x10°4 1.47x10°*
2 R, 2.3x10° 1.4x10* 4.1x10 9.2x 10*
which may be compared to E¢B) for decaying turbulence. sz 23 40 59 67
Equation(3) depends on the macroscale Reynolds numbeKu)/2 0.170 0171 0.157 0.142
while Eq.(22) depends on the microscale Reynolds numbek} 4.36 4.63 4.50 4.35
R, . The decay rater, depends explicitly orR, ¢, which 1k 0.660 0.729 0.744 0.733
arises from the normalization factor &,, whose depen- A 3.32<10°? 1.94x10°% 1.40<10°? 9.78x10°°
dence orR, is very weak. Kg 85.7 177 279 414
In three dimensional turbulence, on the other hand, they 0.40 0.25 0.16 0.136
decay ratea; of the energy spectrum in the dissipation S, 0.700 0.723 0.730 0.673
range, where E(k)xexd—as(k/ky)], is given by az é 0.509 0.430 0.374 0.355
=(16\/15/S;)"2, which has no explicit dependence &,  @» 3.463 3.181 3.023 3.11
[22,27). If, therefore, the skewnes3; does not depend on C 0.825 1.07 1.39 1.46
Ry, In three dimensiongalthough it actually depends on c’ 0.596 0.726 0.893 0.931
Ry, Vvery weakly, the energy spectrum in the dissipation
range is independent o, . The difference is due to the y L0\ 12
fact that in three dimensions the third order moment appear- L=1k,= —1L/3 )\E(—) , (27)
ing in the Kaman-Howarth equation contains only the ve- 7 Y

locity difference agQ3°(r)=(éu;(r)[ u(r)]?), while in two
dimensionsQ;i(r) =(u;(r)[ dw(r)]?) contains velocity and
vorticity differences. In other word€Qs;(r) has contribu-

respectively, and the integral-scale Reynolds number is

2
tions from two ranges of wave numbers, nkaandky. This RL:&: (u”) ) (28)
affects the closure of the third order moment using the skew- v 2up'B
nessS, in the far dissipation range, so th&;  depen-
dency appears. In the second equality of Eq28), an estimate fom,
11l. COMPARISON WITH THE DNS — u
) (29

Let us compare our results with the DNS resiilt§,12.
The vorticity equation integrated using the pseudospectrgs ysed. The details of numerical parameters are listed in

method is Table 1. Note that the integral-scale Reynolds nunReiis
do  Apw) very large while _the microscalg Reynolds numisey is
_ = V2w + 1’V 2w+ (X 1), (23)  Moderate and varies slowly agaift. The Reynolds num-
a  axy) ber in the usual sense is given By andR, is introduced to
) characterize the inertial effect at small scales.
Vi=-o, (24 Figure 1 shows the time averaged energy spectra for four

R,’S, Which are multiplied byk®*? in order to show the
plateau over a range of wave numbers. In that range we
pbserved also that the enstrophy flliXk) was nearly con-
stant. Values ob in Fig. 2 are determined by least square fit

(F(x,t)f(x",s))=F(x—x")8(t—s), (25)

wherev' is introduced to shut down the inverse cascade o
the energy to low wave numbers, and set to be 2kfsi3 ; -
and zero otherwise. The random foréex,t) is Gaussian (O Several choices of wave-number ranges for a gikgn

white and its spectrum suppdei(k) is limited to the band Itis founq that the yalue’ 0.5 satisfies the upper bourd
4<k=6 and normalized a5 (0)= 10°At. The total energy <2/3 derived from Haler's inequality[28] and lower than
is defined by 4/7 derived by Polyakoy29]. The value of§ decreases

roughly asR; 13, although it is difficult to definitely deter-
(u?) mine the slope due to the fluctuations &f
=5 Figure 3 shows the compensated spektfd 9’2 E(k) in
the dissipation range. The slope of the spectrum was deter-
where u, is the root mean square of the one-dimensionaimined by least square fit over the range of wave numbers of
component of the velocity vector. The integral scale and mil<k/ky<4. We observe that the compensation of the pref-
croscale are defined by actork~ 3+ 92 s crycial to obtain long linear portions of the

E =u?, (26)
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FIG. 3. Scaled energy spectk& " 92E(k)/ 5?° in the dissipa-
tion range. Solid lineR, =67; dashed lineR, =59; dotted line,
R\ =40; fine dotted lineR, =23.

FIG. 1. Scaled energy spectrk®*°E(k)/ %% in the inertial
range. Solid line;R,=67; dashed lineR,="59; dotted line,R,
=40; fine dotted lineR, =23.

spectra in the far dissipation range. Whkt' °E(k) was
plotted againsk/ky, the curves appeared to be convex up-
ward and would wrongly be read asE(k)«x
exd —as(klky)”], y>1 as the width of the far dissipation Must be finite and the logarithm of the wave-number ratio
range is not enough. We thus conclude that the prefactor i/k; comes from the integral dd . In the inertial range, the
of the form ofk~ (972 in the dissipation range. enstrophy transfer rate

Variation of the skewnesS, with R, is shown in Fig. 2
and appears to be very insensitiveRQ as in the case db,
in three dimensions. This means that the slapevaries as .
R{l’e’. Figure 4 shows the comparison of the slope observeﬁs1
in the DNS witha,, Eq.(22) using the measured value 6f
of the DNS. Agreement is satisfactory, but the slope by theth
theory is slightly larger than the DNS values.

k
= wi= fk p’E(p)dp (30
[

A(K)~ wk3E(K) (31)

independent of the wave number and equaktco that
e exponent-1/3 of Eq.(1) is obtained.
When Eq.(14) is substituted into Eq(30), the width of
e wave number range contributing £, increases with
decreasingé and the integral is asymptotically close to
In(k/k). It then follows thatE(k) must contain a factor of
In(k/k)) for A(k) to be independent of the wave number.
Now we assume that the energy spectrum in the inertial
When the viscosity is sufficiently small, we expect tidat range is of the form

is very small and the energy spectrum in the inertial range
tends to Eq(1). However, Eq(14) does not. It is interesting k

'”(k.)

where B is assumed to be a function & When this is

substituted into Eq9.30) and (31), we obtain

IV. THE LIMIT OF SMALL &

E(k)=C»n?% 2 : (32

to see how the energy spectrum approaches the log-corrected
one asé vanishes. For this purpose, it is useful to briefly
review the process of deriving E€}.). That is, for very small
viscosity, the strain acting on the scal& flenoted by

K

1 5
08 _
4t
0.6 - S
; . ’}‘ """"""""""""""""""" -
04 -
) o
S 6 ’
02 -
| | | | I J . . . .
! X - - p” - 2 30 40 50 60 70
R; )

FIG. 2. Variation of§ (solid line with error bar and skewness
(plus) with R, . Dotted lines show the slopes 1/3 and 1/6.

FIG. 4. Comparison ofv,. Dashed line, theory; symbols with
error bar, DNS.
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C k\ ¢ 102
" n2’3( k—) [In(krk)T: %, (39
d 10!
C3/2 k ) —3612 0 A
A(K)~ — In(k/K (173[3)/2. 34 10° | / QUL SR S VN g

107}
Since A (k) is very weakly dependent on the wave number
when § is small but finite, the “inertial range” referred to

previously should be understood as a quasi-inertial range
The total enstrophy) is roughly approximated by putting 107
k=Kkq for Q,, so that for smalls, R, is approximately

1072

T2 (k) In(i k) PE(R)

32 0.01 0.1 1
R)\~(—1_IB) [In(Kq/k)) ]3P (35 Kk
FIG. 5. Comparison of the energy spectra by DNG,.=67.

The matching conditions for the functi¢{(x) in the case SQ!% , line, 757/_2/3k3(k/kd)_5[|n(k/kl)]_BE(k); dashed line,
of the energy spectrum E(32) are given by 7 K (Klkg) " E(K).

- a slightly wider plateau than the one by EG4). The con-

' (36) stantsC’ andC in the inertial range spectrum from the DNS
are of the order of unity but increase slowly wifty, (see
Fig. 6). The values ofC are consistent with the values of
2.626 by the test field modd€llFM) [18] and 1.44 by the
12 _ LRA [30]. The functional form of the slope, by Eq.(22) is

m) [In(kq/k))]EA"2x4+0(X ©), unchanged. When the formula E§2) is used, the values for

37) 6 anda, become smaller than those in Table | by about 10%

and 5%, respectively.

for small X, WhereRiB in Eq. (11) is replaced by the ap- For relatively larges~1, on the_ other hand3=1/5, a
proximation Eq.(35) for the argument below. Then a smooth smaller exponent of the logarithmic factor than 1/3, which

. ~ o . . . means that the ener spectrum becoméqk
functionF(x ) satisfying the matching conditions is given by ok~ In(kk)] Y5 and is co%ysistetr)ut with the obser\f'sio)n of
the equation !

the energy spectrum in the DNS at low to moderate Rey-
%2 nolds numbers.

(39)

F(x)~Xx?

1)

for large’x (for details of calculation see the Appenyiand

F(SZ)%'%Z—%

F0o [1+(x/b(x ))?] 2272
V. SUMMARY AND DISCUSSION

with a slowly varying functiorb(x) instead of the constant We analyzed the energy spectrum using arrian-
b; that is, Howarth-type equation and compared it with the results of
[281(2-8)] high resolution DNS. The analysis yielded the spectrum in
In ﬁ the inertial-to-far dissipation ranges at large but finite Rey-
kX nolds numbers. It was shown that the inertial range energy

spectrum is of the form given by E¢32) and the exponent
162—8)( C |72 Capn
~—s, \1-g [InCky/k)]

b2(X )= . for  x>1,

2 T T T T

(39)

~ 15t i

for x<1. (40

If we assume that E(36) and Eq.(40) can be extrapolated © 7L
to X~1, respectively, and match each other, the exponen°

must satisfy the relation-28/(2— 8)=—(1—B)/2 for X
~1, so that we have 0.5+ j

2_
B=5"% (41 0

S%)

S

20 30 40 50 60 70
R

When é tends to zeroB approaches 1/3 anti(k) becomes *

independent of the wave number. In fact, we observe in Fig. FIG. 6. Variation of the constant§ and C’ with R, . Solid

5 that the compensated spectra using E88) and(41) has line, C; dashed lineC’.
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B(8) of the correction[In(k/k)] #? approaches 1/3 aé  ergy spectrum to consider the relations amddg, R, , |4
vanishes, that is, Kraichnan’s spectrum, B, is recovered =1/Kgy, N andL=1/k, . Using Eqs.(26)—(29), we have
for infinite Reynolds number. It was found from the DNS
data thats decreases &R, increases. The consta@tof the EN R-12 I_d
inertial range spectrum was also measured by the DNS and L Y
found to be of the order of unity and to increase with the )
Reynolds number. In the dissipation range, the exponent of° that the ratidy/L becomes
the prefactor in the spectrum is half that in the inertial range. |
The exponential decay rate of the energy spectrum in the E”(RLRU—”Z- (43
dissipation range is dependent &, and ¢ for finite Rey-
nolds numbers. The microscale Reynolds number is

In the above discussion, no effects of forcing have been y
taken into account. If they are included, a term 032 L0 02 )2
—(2Ir)for’ F(r')dr’ is added to the right-hand side of Eq. Ry=—-"=——~ FRL~RE, (44
(5). When the spectrum support of the forcing centeredt,on K nov

is narrow as in our DNS, then this yields the contribution | . 1 aans thaR, is independent oR, . We infer from
—7kfx*4  and  gives the slope aj=ax(1  the DNS data that this would occur at very high. It is
—4(k, /kd)2/(SzR>{’3)). Thus we conclude that the correction natural to assume thaj is finite in the limit of vanishingly
for the forcing with narrow spectrum support néaris neg-  small viscosity, and the total enstrophy is conserved and fi-
ligible as long ak;<kq. nite in the inviscid limit when forcing is absent. From these
Also not included in the analysis are the intermittencytwo facts, it is quite reasonable to expect that the microscale
effects of the vorticity field. If these effects were included, Reynolds numbeR, approaches a nonzero finite value in
they would appear predominantly as fluctuation&pélue to  the inviscid limit, although the limiting value is not known.
the spatial variation ofp(x) [24]. Locally definedky(x)  If this statement is correct, the ratig/\ becomes constant
=[ 5(x)/v*]"® fluctuates in space so that regions having aandly/L depends only oiR_. That is,R, is the only domi-
large amplitude ofp(x) dominating the energy spectrum in hant control parameter in the limit of vanishingly small vis-
the far dissipation range becauseE(k,x)xexp cosity. In this sense, our values & are large but not
{—a[klky(x)]} and larger 5(x) leads to smaller slope €enough to study the limit of consta, .
a,(Kq/kg(X))< a,. This explains the smaller values of slope  For finiteR, , it is observed from the DNS that the expo-
observed in the DNS than in the curve given by theory. Thenent § in the inertial range decreases very slowly wiRp
dependency of the skewneSs on R, exists but is weaker because it decays slowly wit, . In this sense the spectrum
than the effects of fluctuations ky(x). in the inertial range is not universal. Similarly the exponen-
Let us consider the approximation in Egd1)—(16). tial decay raten, in the far dissipation range also decreases
First, the Pad@pproximation in Eq(11) is used to infer the asR, /°, and thus it is not universal for finite_ . However,
approximate position of the pole &(X ) in the complexx ~ WhenR, becomes infinite, we can expect thiavanishes and

plane. In order to obtain a more precise position of the polethe spectrum in the inertial range tends to Ep. which is
we could proceed to the higher order terms in the Tayloldependent only ork,. Also, «, becomes independent of
expansion ofs;(X ) such as the term @d(X ®). This would R, , so that we can consider that the energy spectrum in the

: : : ga dissipation range tends to a universal form of exponential
require knowledge of the higher order correlations such a r . . =3/2 S
(8U;(r)[ Sw(r)]4), ((duy/9x)(dwlax)*), and so on, which decay with the algebraic prefatlr='<. Although it is diffi-

means that we would have to take into account the highe.?u.lt to iqcreaseRL even for.the high performance computer,
order correlations of vorticity and velocity fields. As the or- Itis _deswable_ ar_1d Interesting to Smdy the spectrum in both
der of correction increased, the pole position would be corlnema_I Z_md d|SS|pa_t|on ranges at higher Reynolds nur_n_bers.
rected and approach more precise position, which would IeaélTo’ IthS chal'lengln% t.o stgdy WTether or not the limiting
to a precise estimate of the slope of the energy spectrum i2lu€ Of Ry exists and is universal.

the far dissipation range. However, the inclusion of the

higher order moments of vorticity and/or velocity is physi- ACKNOWLEDGMENTS

cally equivalent to taking into account the effects of inter-

— R)\_ 1/2 , (42)

The author expresses his deep thanks to Mr. Hibino and

mittency on the slope or the pole positionfofx ). We thus ;. Takahashi for their computational assistance. A discus-
estimate that the order of the error associated with the Padg§o with Dr. Kraichnan is gratefully acknowledged.

approximation is roughly of the order of the distance be-
tween the theoretical curve and the DNS values in Fig. 4.
Second, the essential feature of the approximate form Eg.
(16) is the exponent (2 6)/2, which leads to the exponent  First we consider the one-dimensional enstrophy spectrum
—(3+6)/2 in the prefactor of the energy spectrum in thew(k,), which is computed as
dissipation range. From Fig. 3, we conclude that the match-
ing form Eq.(16) is well supported, although more compari- = K2E(K)
son at higher Reynolds numbers is necessary. W, (kq)= — d
It is useful for understanding the universality of the en- ky VK== k]

APPENDIX

k. (AL)
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Substituting Eq(32) into this, we have F(x)=27"2%Q,(x;)
5 [ dk -8 *2’3fwvv ky)[1—cogkyx;)]dK
Wi (kp)~C %% fk “lIn(k/k)]™ B\/Tki 7 o 1(k1)[1—cogksXy)]dky
kg
dk ~8CB(6 k5J ky T OIn(ky k)] P
Ncn2/3k5(f f ) “9In(k/k,)]~# o (0)kg gL [InCky/kp)]
! X[1—cog k;x;)]dk,
~Cp?%5(11+1,). (A2)

The integralsl; and I, are approximately evaluated for
k,>k, as follows:

1/x K,
~8CB(5)|<§<J 1+f ‘ )k[(“‘”[ln(kllk,)]‘ﬁ

ek dk s
I1=f 1k_,s[|n(k/k,)]—ﬁ—k T ~8CB(8)k3(J;1+Jy). (A7)
k p—
! ! The two integrals); andJ, are approximated as follows:
B (e dk 1x
~ky 1 7lIn(ka /)] Bfkl N Ji= Jk "k O In(ky 1K) ] B[ L — cosKyxg) ]dk,
|
elé+\(ek)?—1 X3 ek 1My dk,
~K; T [In(k, 7k;) ] PlIn| — m—U +f )k” In(ky k)] F—
1 [ ( 1 I)] k%-f—\/ki—l 2 k| ek, 1 [ ( 1 |)] kl
~ky T In(k, 1K) (A3)

X dk,
31( k2~ 5] [In(ky k)1~ B—
In the integrall 5, the factor 11</k2—k21 is approximated as
1/k in the range of integration ovds, so that

+indkg, )1 [

ek

lki‘ﬁdkl)

f k= [In(k/k)]~ ﬂ

1
k2—k3 3
2(2 5)X1[In(k1* k)1~
ki _(144) _.dk
%fkk A+ n(k/k))] 3? ek <Ky, <1l/Xq, (A8)
eky
and
mkl_(lJr&)fln(kd/kl)e_(1+§)SS_ﬁdS 5
In(eky /k|) Jzzf k; T OlIn(ky /k)) ] A[1—cogkyx;) 1dky
KL ( (gl ~(1+) Ky (19 1y
~— | — In(ek, /k,)] #— ( ) k
1+6 (ku) inceta )™= 5 ~ | kO In(ky 1K) ] Bdk,
1/xq
X[In(kq/k)] #-B In(k"/k')e<1+5>Ss<1+ﬂ>dsJ
i In(eky /k;) ~[IN(Ky,y /K)]™ Bf ky A 9dk,
—(1+9) i
_8 ki Y[ In(ek, /k)]*# A4 ? ~B -9
1t [In(eky k)17, (A4) ~XLIN(Kyes 7K1 P[1=(kgX1) ™1/ S,

to the leading order ik, /k;>1, where integration by parts Uxy<Kiex <Ka. (A9)

is used in the fourth line of EJA4). Substituting EQqs(A3)  Since the functioriin(k,/k)]# with <1 is a very slowly

and (A4) into Eq. (A2), we obtain the asymptotic form of varing function ofk, /k,, we can reasonably pit, ~ 1/x;

Wi (k) as ~Ky,, in Egs.(A8) and(A9). When 1k, approache&y, J,
becomes smaller thad,. Then we obtain the asymptotic

ki\~° ) =
W, (k,)~CB(8) 772/3k11(k_c11) [In(ky/k)]"#, (A5)  form of the functionF(x) as

where F(X)~A(8)X? , (A10)

e (1+9)

1+o (A6)  WhereA(9) is given by

B(&)=1+ ——
4CB(5)

The functionF(X ) is given by the Fourier transform (9)= 2-6

(A11)
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The total strain acting on the wave numlikeis computed

as

Y _C 2B k(£)5 -pdP
0= [ prEap=cr[ 2] ok #

kq) ~° sin(k/k,)
— 23 d 8-1 -8
Cry (kl) 1) Jo e 't~ ~dt

2991

-6
_ an/s( %) 8 1y(1— B, sIn(k/k)))
|

C

_— 2/35 - 1-8
57| Dintak) T,

= (A12)

where y(u,z) is the incompletey function.
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