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Anomalous scaling for a passive scalar near the Batchelor limit
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A class of phenomenological Hopf equations describing mixing of a passive scalar by random flow close to
the Batchelor limit(i.e., advection by random strain and vortigity analyzed. In the Batchelor limit multipoint
correlators of the scalar are constructed explicitly by exploiting the IR} symmetry of the Hopf operator.

Hopf equations close to this “integrable” limit are solved via singular perturbation theory based on matched
asymptotic expansions. The solution for the three-point correlator exhibits anomalous scaling indicating per-
sistence of the small scale anisotropy for the scalar. In addition to the exponent, the full configuration depen-
dence of the correlator is obtaind&1063-651X98)08703-(

PACS numbes): 47.27—i

I. INTRODUCTION —@—gr. This puts a “force” gv on the right hand side of
Eqg. (1.1 which is a sensible idealization of how an experi-
The advection of a passive scafdrby a turbulent veloc- ment maintains a statistically steady state.
ity field [1] is of interest to experimentalists and theorists |t is natural to ask whether the intermittency seen in the
alike both in the context of the problem of turbulent mixing, scalar field is merely a passive translation of that already in
and because of its similarities to the more challenging probthe velocity or whether it is intrinsic to E¢L.1), i.e., present
lem of turbulence itself. The governing equation is simply for a Gaussian velocity field as well. Kraichnan long ago
R [7,8], argued that advection by a Gaussi&norrelated ran-
30O+7-VO=kV?0, (1.7 dom strain, gave nontrivial intermittency, and more recently
Holzer and Siggid9] showed the same numerically for a
wherex is the diffusivity, which is analogous to the viscosity velocity field with Kolmogorov like power law correlator,
in the Navier-Stokes equation. Obukh®] and Corrsin[3]  and nons-correlated temporal correlations. In particular, for
observed that when the velocity is in the Kolmogorov 19415imu|ations with a mean gradient, the skewness was very
scaling[4] (K41) regime, the scalar should also display thesimilar to that in the shear flow experiments.
same wave number spectrum and the scalar variance should Recently a number of grougd0—17 realized that non-
cascade from large to small scales at a etdetermined by  trivial exponents for scalar correlations of order 3 and greater
the large scale boundary conditions. The analogy with therre associated with the zero modes of the so-called Hopf
statistics of the velocity fluctuations persists also in the manioperator that controls the temporal evolution of the equal
festation of the violations of th&41 scaling as the fourth time multipoint correlators. Following Kraichndi7,8], this
and higher order correlations of the scalar became increagperator can be derived exacfly3] for a model with veloc-
ingly non-Gaussian—the phenomenon known as intermitity that is white in time and Gaussian: the Kraichna@s
tency[5]. correlated model. Further approximations, either a closure
One of the puzzling departures from Kolmogorov predic-for the dissipation ternil4], an expansion for large dimen-
tions[4], particular to the scalar, is that the derivative skew-sjon[10], or about the “weak coupling” molecular diffusion
ness s3=((3x0)%/((3,0)%*% observed in shear flows |imit [11], or the “strong coupling” random straining limit
with an imposed large scale scalarg., temperatuyegradi-  [15]; are necessary to obtain explicit answers.
ent, turns out to be of order one and Reynolds independent The work detailed in this article is devoted to another
[6,1]. This quantity measures violation of parity symmetry model [12,16] that remains more faithful to the temporal
on small scales. Kolmogorov phenomenology does notorrelations of the velocity dictated by the Navier-Stokes
merely assume that the small scales are as universal as syatuations at the expense of the exact derivation of the Hopf
metry and dimensional considerations allow, but supplies @perator from Eq(1). The models we consider are phenom-
prediction as to how paritjand isotropy breaking by a large  enological and are best thought of by drawing an analogy
scale gradientg influences the small scales, vizsy  between the Hopf operator and a Hamiltonigor a quantum
~g/{(,0)?)2~R" 2 or in the inertial range,50,  mechanical many-body systgnthe latter defines the evolu-
=0(r)—0(0), S,=(803)~r53 (versusr* in experiments  tion operator for a wave function, the former—the evolution
The force of this contradiction caused the early workers taperator for the multipoinfequal time correlator. The study
carefully search for systemmatic errors in their probes, bubf the appropriateeffective Hamiltonians is often fruitful
the effect remained. even in the absence of their full microscopic derivation.
To model this effect in Eq(1.]) it is convenient to as- Similarly we construct and investigate a class of phenomeno-
sume that the large scale gradient is uniform and to $hift logical or effective Hopf operators the stationary modes of
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which approximate the correlators in question. The effectivavhere the coefficients are constrained by incompressibility
Hopf operator inevitably contains free parameters which arevhich demandsi,D,,=0. Since the correlation functions
to be fixed through comparison with experiment; yet as longare translationally invariant, they do not depend on the center
as the number of such parameters is small, the phenomenof mass coordinate WX;r; . It is convenient to define a set
logical model retains predictive power. of reduced coordinates, e.g., fr=3:

An important aspect of the physical velocity field is that

the change in the relative distance of a pair of material points 1 1 1

in the flow over the correlation timghe eddy turnover time - = —

is of the order of the separation itself. The absence of any . i3 v3 -

dimensional parameters in the inertial range implies that on Po 1 1 [1

any scale, dv(r)7(r)~r, whereris the Lagrangian corre- pPr|=| — —— 0 ra (2.2
lation time. Thus the Lagrangian displacement over one cor- P2 V2 V2 r3

relation time is approximately described by an order one 1 1 2

volume preserving mapping. The effective Hopf operator is - = - \/:

then written as a sum of what we call the “Batchelor- L \/6 \/6 3_

Kraichnan” piece, which accounts for the large scale, coher- . L . .
ent strain and vorticity{17,7]; and a second, dissipative, or pi=M;;F; in a more compact notation. MatrM is ortho-
term, analogous to an eddy diffusion. The later expresses tH'Mal: MikMj=di;, which makesp; independent so that
effect of the small scales of the velocity field which fluctuated;=d/dp;=Mj;d, , has the property?p= dapdi - Thepy,
independently at the distinct points of the correlator. Theare the relevant reduced vectors, independent of the center of
derivation[12] of the resulting Hopf equation is only heuris- mass variables,. This definition is readily generalized to
tic and will not be repeated here: instead we shall dwell orany N. It is easy to check that the characteristic inter-point
its analysis. distance, which we'll call the radius of gyration, B?

The Batchelor-Kraichnan operator is highly Symmetri_c=E~ij2k=Ei'\':_11ﬁi2 and the LaplaciarEJN 12 =3N15% In
and in Sec. Il we show that it is integrable by Lie algebraic ] Pi
methodg12]. (See also Refd.18] and[19] for the analysis
of the Batchelor limit Section Ill introduces the simplest d
model of dissipation, which we call the “Laplacian model” Lo= E
(or L mode), which preserves some symmetry, and allows ab=11i,
us to solve for the anomolous skewness and flatness expo- (2.3
nents, both numerically via an ordinary differential equation
shooting method, and via a matched asymptotic expansion. The Lo operator turns out to be invariant under the group
This dissipation model is not, however, consistent with Kol-0f general linear transformatiops— g;; p; which mix differ-
mogorov scaling when two points in the correlator coalesceent reduced coordinate vecto(Below we shall on occasion
Hence in the remainder of Sec. Ill we introduce an improvedeéfer to the reduced coordinate labekss pseudospagelhis
model, we we call the “pseudo-Kolmogorov mode(dr K group factorizes into dilationg;— Bp; and the volume pre-
mode). The singular perturbation expansion is generalizedserving transformations, with dgt=1, which constitute the
to treat this more interesting model yielding the anomalousSL (N—1,R) group. The origin of this invariance traces to
scaling exponent and the full configuration dependence ofhe fact that under large scale strain and vorticity Lagrangian
the three-point function. The results of the calculations decoordinates evolve according tP—m,,p? (Where myy,
scribed here have been previously reported in R&f3.and  =d,v,, is the strain-vorticity matrix clearly this dynamics is
[15]. The singular perturbation theory described here hagvariant undeip;—g;j;p;. The infinitesimal SL transforma-
also been applied to the calculation of the anomalous skewtions are generated by
ness exponent in thé-correlated velocity model near the
Batchelor limit reported in Ref.16].

the reduced variables

N—-1

L@+ D)5 562 =2(pf0} + plp]) 17

- 1
Gij=pi-dj— 5 dijA, (2.43

Il. PROPERTIES OF THE BATCHELOR-KRAICHNAN

OPERATOR wheren=N-—1 for convenience and is the dilation opera-

tor,
A. Definitions and skewness in two dimensions

— a-a
The Batchelor-Kraichnan operator describes the evolution A=pidr. (2.4

of passive scalar correlators under the action of random large

scale strain and vorticitj17,7,13, Remembering that in addition to dilation and SfL; is

rotationally invariant, one can list all the invariant quadratic
ab operators. They are, aside fraf
cOE%‘J Dan(ri = 1) 70y, (2.1a
with :
the Casimir operator of SLn (i.e.,[G;; ,G?]=0) and the

j ’
Dap(r)=(d+1)82Pr2—2r3rb, (2.1  total angular momentum square
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On the physical grounds one must demakhdo remain fi-
nite, hencer<\/2, or more strongly, differentiable:\/2
=v+k, integer k=0. Thus the lowest\ mode: A\/2=v
=—1. (Furthermore, modes with/2> v vanish at collinear-
ity and therefore do not contribute to the structure funcjion.
Equation(2.9) becomes\?+ 2\ —31?=0 and thed=n=2
spectrum,

L2=1>

2 (pfo7=pPaD)? (2.5D

Symmetry dictates thaf, can only be a linear superpo-
sition of these, which turns out to be:

2

A
Lo=—(d+1)L?+2dG?+d(d—n) n—d+A . (2.6

(2.11

AL k)=2k—1+ J1+3I2.
In order to completely diagonaliz&, acting onnxd di- i ,
mensional space we must find a solution with the same num- 1 N€ évolution equatioril.1) makes¢ odd under reflec-
ber of quantum numbers. Let us consider first the simplesions, SO theN=3 correlator is odd under reflections and
casen=2,d=2. In addition toL?, G2, andA one can simul-  proportional to{V®). Thereford is odd, the lowest relevant
taneously diagonaliz&,=i(G;,— G,7) which generates ro- mode isl =1, and the leading anomalous scaling exponent,
tation in two-dimensional pseudospace. It is possible to di-

A(1,0=1. (2.12

rectly construct a functioﬂfﬁql(p), which is an eigenstate of
all these operators:

. 2m 2 Lo+ ea(a)P?m('//)
Tﬂ"(p):fo dwfo doe'’ “””hu,q(w)'
(2.79
Whq(p)=[detpM>T(5), 2.7h

where n(¢),e(0) are 2D unit vectors parameterized by
anglesy, 6, respectively, and we introduced a homogeneous

function h, 4(x)=sign(x)9x|?". The T9!(p) is just the
transformation matrix for ther representatiorj20] corre-
sponding to SI2) group element$ (normalized so as to
make dep=1). The set of functionslfﬁqI forms a represen-
tation of SL(2)XSO(2)X A, i.e., transforms linearly under
the action of the group elements.

It is sufficient to consider only=—1/2 for which the
integrals are well defined. The integration ahand ¢

projects ontd andqg angular and pseudoangular momentum

sectors. E.g., pseudospace rotation pdf by angle ¢, p
—R(¢)p, can be absorbed into redefinitiofy— i+ p
which leads toT9(R(¢)p)=e'9¢T% . The scaling dimen-
sion is N AW,=\¥),. We have used
detp=g¢; eabpiap}’—the area of triangleq, r,, rz as the nor-

Note, that the pseudoangular momentum quantum number,
g, did not enter the eigenvalue equati¢h9), so that the

spectral exponents are infinitely degenerate. This degeneracy

is a consequence of the &R) symmetry and is lifted by
the dissipation ternCp, which we will treat perturbatively
in the next section.

B. Properties of the Batchelor-Kraichnan operator
for N>3 or d>2

Let us now generalize the analysis 6§ to arbitraryN
andd. First we find the spectrum of,. The eigenvalue of
angular momentunt.? in d dimensions id ?=1(l+d—2).
The spectrum ofG? can be found by noting the following
duality relation. Defining®®=p2P—1/d 8*°A, which gen-
erates SL{,R) transformations acting on real spagather
than pseudospagene can prove

d—n [ \?
cr—p- 9" —+)\).

5 (2.13

nd

Now, the spectrum o6? is determined by the structure
SL(n,R) group which does not depend ah Hence the
spectrum ofG? can be found from Eq(2.13 evaluated for

malizing factor because it is invariant not only under spatiald=1 for which J=0, yielding

rotations but also under $2): it is easy to verify that
G;; detp=0. Finally, the eigenvalue dB? can be computed
directly by differentiating(2.7g9 and exploiting the homoge-
neity of h,

G =v(v+1)¥)

»ql - (2.9

Thus from Egs.(2.6) and (2.8) we have for the zero
modes(d=2, n=N—-1=2),
LoW) i =[—31P+4v(v+1)]¥) ,=0. (2.9

Curiously, for anyn=d in Eq. (2.6), A does not appear di-

-1
2_
G°= on A(A+n) (2.14a9
and by the same token,
P=—— \(\+d). (2.14h

2d

Strictly speaking\, which enters here, is the homogeneity
degree of the representation functions constructed fdom
=1 and may differ from the ful\ by an integer if invariants

rectly. It does, however, enter indirectly via the boundaryexist, e.g., dep for the d=n case as we have seen already

condition at dep=p,[06,=0. As shown in Appendix Bfor
v=—3) in the limit detp—0,

W)q(p)— |detp| M2, (2.10

for d=n=2. Using Eq(2.13 one can rewrite Eq2.6) more
compactly:

Lo=(d+1)L2+2d % (2.15
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Equation(2.14 will suffice for the calculation of the small-

est\, which from Egs.(2.6) and (2.14h obeys @+ 1)I(l
+d—2)—(d—1)AN(A+d)=0, so that

=

2 2

d

1
-1 [(1+d—-2)—-1]|. (2.16

A1)

Remarkably, the spectrum of leading zero mode exponent gt€Nce&(6) - p1X po=

Ly does not depend oN! This might have been expected
because’, represents only the advective part of the evolu-
tion so that points can be brought together, efd.behaves
like 6. Hence the spectrum for any is a subset of that for
largerN.

Equally remarkably, we observe that for tlse wave
A(0)=0, and for thep wave\(=1)=1, independent od!
Ford>I| we havex(l)~1+ O(1/d). Thes-wave channel of
course is relevant for the even order correlatoms., even
N).
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_ p1X P2
\1,7\. . (p)=|p1Xp (A=2p)/2y! i
V‘q,|‘m‘m p |p1 p2| m |P1XP2|
XJZWd_"/’ 2740 iqusimo
0 2w 0 2w

th,q(ea( a)p?ni(l//)), (2.18

where unit vectore(6) rotates about theg; X g, direction

0.

The L, eigenfunction Eqs(2.7) and(2.18 and the corre-
sponding spectrum provide the point of departure for the
perturbative calculation described next.

Ill. PERTURBATION ABOUT THE BATCHELOR LIMIT

A. Skewness for the Laplacian dissipation model
(the L model)

Let us first develop the perturbation theory for the sim-
plest case of the dissipation operatof2l] Lp

Certain of the eigenfunctions can be constructed via inte= e(ziéf)(zjﬁf) for the skewnesa=2, ind=2.

gral representations analogous to E27), e.g., for the flat-
ness i=3) in three dimensions we can write

Tz;p,q;l,m(P) = |detp|()\_zv)/3

x [ ahy [ 00,30 Yh(Dh(Digpf), (207

which has the spatial angular momenturhn{), pseu-
dospace angular momentumq,p), and the G?=(n
—1/n)v(2v+n) which agrees with Eq(2.14 for A=2v,
which corresponds to the loweststate. Actually, Eq(2.19
is not a complete set of states, because we only have s
guantum numbers instead of nine. Additional quantum num

bers can be introduced taking a somewhat more complex

h,(x) and by replacing integrals over unit vectors
fdQlYg(Q)--- by integrals over triadgi.e., rotation matri-
ces: [dRD,(R)andD (R) is an S3) representation
matrix —q=<p, p’'<q. This will yield three real space an-
gular quantum numbers plus three pseudospace \pdunl v

for a total of eight. We believe this is the correct count and

that the eigenvalue problem f@&? in the nine-dimensiongi
space is nonintegrable. More explicitly, if we change frpm
to the Euler variable¢see Appendix Ain G2, impose the
angular quantum numbers aidthere remains a second or-

der partial differential equation in two variables. Our asser- . . . :
b d gemain good. Thus in analogy with E@®.7) we factorize the

tion is that it cannot be solved by separation of variables an
its solutions are labeled by alone.

The “duality” between the SLi) acting on pseudo-space
indices and the Sld) acting in real space is particularly
useful when constructing eigenfunctions fo#d as it al-
lows us to work with the smaller of the two. An interesting
example of then#d case is the skewness in three dimen-
sions, which can easily be adapted to describe the flathess
d=2. In contrast to they=d case, there is now a vectgy
X p» which is invariant under S2); an arbitrary function of
which can multiply the integral in EJ2.7). Thus,

It is convenient to work in the Euler coordinates defined
in Appendix A and introduce a reduced variable= ¢!
=2 detp/R? and write the Laplaciafisee Eq.(A13)] acting
on an eigenmode nondimensionalized Bydetp, viz.,
\P()\)/g)\IZ as

Lo=4€ (1—W?)d2+[N—(2+ M)W w14,
AA -2 1 2, 42
t o | 5T LW g g (G gt 2Wa,d) |
(3.1a

ix The Batchelor-Kraichnan operator in the same variables is

2

Lo=4W?d,(1—W?)dy,+ T

2 2 -1
(2+5—2w19,0,)

+395. (3.1b
The ¢ and y dependence is trivially diagonalized by go-

ing to the angular momentum representatiod;, =iq, d,

il . The diagonalization reflects the fact th is invariant
with respect to rotations not only in spa@ee., ¢— ¢+ 6)
but also rotations in pseudospdge., rotation acting on i
index, y—x+6'). The SL2)XSQ(2) is broken down to
SO(2)XSO2) but no further, and the,l quantum numbers

zero mode as¥}, | = (¢/|w|)M?exp(l p+igx)ely(w). The ad-
ditional w*'? factor means thab is being nondimensional-
ized with R? rather than dep.

We observe that whil€, scales asv to the zeroth power
asw—0, Lp scales asv~? and hence fore/w?>1 domi-
nates overL,. Physically this region corresponds to nearly
gollinear configurations of points.

Let us first consider the leading term of the combin&d

=(3)(Lo+ Lp) in the w—0 limit (which comes entirely
from Lp),
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A 1
= 1)w‘2} oyl lwM?=0, (3.2 LP=5+ 5=

A
Pt AW Loyt 5 | 5

2

a\® (q)?
E) _(E) 22— 22(1+2%) 92— (2+ 8) 29,

_ 53
which implies ¢} (W)=A, ;+B, qw. As the area/—0 Z°0. (3.6

(with R~cons) w~ ¢ and the overall eigenfunction The two zero modes of(© are easily found:

YN ~el PHaX(A +B) qw)R. (3.3 o 0(2)=1, (3.79
In order to work with fractional we have tacitly as- e =[zV1+Z2+In(V1+Z%+2)]. (3.7

sumedw>0 or ¢,£,= p,0p,>0. However, from the defini-
tion of the Euler coordinateAppendix A the interchange
of ry, corresponds t@,— —p1, po—pz OF E1——§&1, &
— &, (hencew— —w) and y— — x, ¢— ¢. Any zero mode
of £ must be smooth22] aroundw=0 since the Laplacian z
is dominant there. This can be insured by imposing the <p(Z)=1+J dz'J1+z'?
boundary conditionsA ;=A, _, and B, ;= —B, _,. Be- 0

It is convenient to invertZ(® and rewrite£L$=0 in the
integral form

cause we are factoring the physical coordinates, there is a S dz' _ _
gauge like symmetry that must be imposed so that the fac- X C—J s (YL + L) o(2") |
S . : . : o (1+27)
torization does not induce any spurious singularif@d.
To construct a global solution we must connect tire (3.9
<€ region dominated by to thew?s> e region dominated
by £, where the effect ofZy is just a regular perturbation. The perturbative solution is obtained simply by iterating

Zero modes ofC only occur for discrete values of. For Eq. (3.8) starting with ¢=1: ¢(2)=1+ €M) (2)
given |, theL operator has an exact symmetry under,d) +epP(2) 4+,
— —(w,q) just noted in connection with Eq3.3). Hence

the eigenvaluea. corresponding ta-q must be identical. 19

Numerically the eigenvalues can be determined by taking the ¢ (2)= 2 Z, (3.99
dominantO(1) solution aroundv=0, adding a constari

times theO(w) solution and propagating the sum towards 2 q\2

w~1. There are two linearly independent solutions near e¥(2)=— S |9+3-13 +C0Y(2). (3.9

=1, only one of which is finite. Imposing finiteness at
=1 and insisting orx(q) =\ (—q) results in two conditions
which determinex andb.

To do the matching betwean=0,1 perturbatively ine,
we go to a scaled variable=w/ /e and expand the resulting
equation in powers oé*2. The rescaling is chosen in such a
way that the far field region of the “boundary layer?
>1, still resides(providedz< e~ *?) within smallw asymp-

We have expanded the constali Co+ €¥2C,+ eCy+ - -

and setCy,=0, C;=0q/2. The later conditions are required
be<:ausep(2°)(z)~z2 for large z, which unless multiplied by
constant ofO(e) would lead to the appearance ef ‘w?
term—inconsistent with the asymptotics of the Batchelor re-
gime. As is, we have in the matching regiorct<e 1,

totics of the outer solutiorw<1, which is controlled by q 1 1 (q)\?
Batchelor-KraichnarCy,. e(Ww)=1+-w— < |6+ z— ( —) w?
It is convenient to work in terms af defined above since 2 2 2 \2

it goes to a constant as—0. [We have restricted to thie 2
=1 angular momentum sector and have suppressea,the 2 2w € €

g , +C2W+6|n—+§+o —| |, (3.10
guantum number labels ap(z).] It solves Ve w

Zo(2)=0 (3.49 The termsO(e?/w?) are negligible because?>e¢ in the

region of interest and we shall only be interested in terms of

O(€%) anyway. To that order, the “inner” solution, Eq.

(3.10 must be matched to the “outer” solution composed of

- ~ _ - the zero modes of,, the w<1 asymptotics of which is

L=LO4ZLW 1 ef@ 4. (3.4b  computed in Appendix C. These are the Legendre functions
of v=13 and oddg. Scaling as forp,

with £=222z~ (2 or, explicitly,

Since forl=1 we expech~1 we definex =1+ €5 with §

to be determined. We have 2 21
WP W ) ~1+ 5 w- q§+sgr(q>(q y sz
70— 2y 52
L (1+2z%) 95— 24,, (3.5 +O(elnw). (3.1
Z(“:gz (3.50) Comparing EQs.(3.10 and (3.11) to the leading order
27 ' [22, 23 we identify
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q°—1 so thatL], has the same form a8y in Eq. (3.1) but with e
o= (312 replaced byeF(w,). As a consistency check, neaj.
—0, F~(W?+4x%)?? and the Laplacian behaves li
+55.
All arguments concerning the singular nature of the per-
q?>—1 turbation neaw=0 hold except the condition fof;, domi-
sz—sgr(q)( ) (3.13 nance, which becomes<eF(0,y). In analogy with Sec.
4 A we define W}(w,x)=(¢/w)*2®}(w,x) and expand
L®=0. Repeating the steps that led to E85) we now find

and

The identification ofC, with the part odd undegq— —q is

forced by the fact tha€,¢%)(z) ~ C,z for smallz, and the TO—[f(y)+22]0%— 20 (3173
analyticity acrossz=0 requires invariance unde;— —q, ‘ “
z— —2z, as mentioned earlier. wheref(x)=F(0,x),
Thus we have calculated the correction to the scaling ex-
ponents of modes with differernt ~ iz
LY=-=3, (3.17p
9°-1 312
Ng)=1l+e€ +0(€e%9). (3.19

LP=5+31(x0) +5[F(x) + 2295~ [f(x) +22]2%5%
Predictably the infinite degeneracy of the Batchelor limit —[6+2f(x)+72%]23,. (3.179
is lifted. The threefold permutation symmetry of the cor-
relator dictatesq=3n. The requirement thalt,q have the
same parity makegq odd. The lowesh thus corresponds to
g=*3: M\z=~1+4e, which is in excellent agreement with
the exponent found numericall{t2], when the constanteX
is adjusted in the definitions afp . -

The Laplacian damping was convenient because it could Inversion of £(?) yields
be diagonalized for eaalp separately. However, this implies

Because of the expliciy dependence of the dissipation
operator the crossover equation is no longer “diagonaltjin
modes. Remarkably, however, because there are no deriva-
tives with respect toy in £(% it can still be inverted as before
and the general solution can be constructed explicitly.

that the analytic behavior around~ 0 is obtained for ally, _ 12 %4 Froao2

in particular aty=nm/3. At these points, two of thg coa- Plzy)=al)+e Jodz f0+27) b0

lesce, e.g.i=1,2 and we expect the correlator to behave as ,

C1+C,r23 (assumingk41). Thus the more physical model of _ fz' dz (204 YZF @D (2 y)
dissipation must mix they modes. Such a model will be f(x)+2"°]%* X )
analyzed in the next section. The results of the pre&amd (3.18
the following section is generalized to three dimensions in '
Appendix D. wherea(y),b(x) introduce the zero modes @® and in

analogy with the previous calculation we chogy)
B. Skewness‘for. thg pseudo-Kolmogorov model =—i/2 f(X)flIZO—,Xa(X) +i ellzb()(), which eliminates the
of dissipation (the K model) term Y222 for large z. We anticipate thab(y) will not
The Laplacian dissipation model is unphysical as it forcesappear in the computation to the leading order. Iterating Eq.
analytic behavior of the correlation with a pair of points ap-(3.18 results in
proaching coincidence. This can be remedied by replacing

theR?= 52+ 55 factor in £, by a functionR?F (5, /R, 5,/R) B w? 1 ’ i

which vanishes as thg power—to reproduce Richardson P(w.x)=alx) 2 | f( )+ 2+ 4 7y [alx) 2 Wa,a

diffusion—whenever two points coincide. A convenient .

form is +i'5(X)f dw’ JVef () +w’2. (3.19
0

ria a5, 2
r 2
Lp=eR R® v (319 Matching with the solution in the Batchelor regime will now

require a superposition of mammymodes,
which in Eulerian coordinates implies

D (W, x)=w2Y, a el piiw ), (3.20
F(W,x)=(1— VI—W? cos %)2° 7
2 213 which asymptotically fow<<1 becomes
X|1—y1—-w? cosz<X+—Tr ymp y
8 w? [ iw?
0.\ 123 d(w,x)~a(x)+ - d°a— = wd,a+ — H[(1+4%)a],
x| 1—J1—w? cosZ{X— %” , (3.19 8 27 4 X(S 21)
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whereH[a(x)] denotes the Hilbert transforifwhich is de-
fined simply the Fourier space by Fj[H(a)]
=i sgn@)F4[a]). Matching requires thaa(y) satisfy both
Eq. (3.19 and Eq.(3.21) which is true only if

1

—aa a=0.

(3.22

é
oo
Note that because the region 6f dominancen<ef(y) is
pinched whenevef(y)=0, which happens ay=1,*(#/3)
corresponding to one of the;;|=0. Equation(3.22 is sin-
gular at those points. Permutation of theplus reflection,
corresponds toe— y + (7/3). Thus Eq(3.22 can be solved
with antiperiodic boundary conditions on the interval
[0,77/3]. Symmetry abouty=0 [a consequence o0p;

— —py po—p, implies in addition that(/6)=0].
Local analysis neay=0 dictates

2/3

6
e x5 Sx+ -+

(3.23

The matching condition(3.22 looks like a Sturm-
Liouville problem with § entering like an eigenvalue. Yet,
for Eq. (3.22 to determine the eigenvalu&we must specify
the boundary condition at=0. However, the matching pro-
cedure that led to this equation holds only fgr €2 since

a(x)=ao[ 1+ 6235y %3+ --

for smaller y the matching would have had to pass through

the regiony<w< e'? whereasy>w was assumed and nec-

essary. In order to bridge the gap, let us consider the region
x<<1 andw<1, corresponding to near coincidence of the
two observation points in the correlator, directly via the local

expansionp;<<p,. In that limit the correlator has the form

‘I’(M(ﬁlypz P2|Pz| 1U( |p1 pe ), (3.29
p2| " |pal
or in the Euler coordinates,
TN (w,y,p)=eMwMu(w, y). (3.29
The dissipation operator,
Lo~ e|pa| " ps| 07 = Ae(w?+ 4x*) S
X[ 5+ 105+ 2w To,d,+w 2L257], (3.2

must be balanced against the leading termZgfsee Eq.
(3.1b] yielding

1 [
:e(w2+4xz)2’3(a§v+4ia§)+ 92 Wt (?X)'FEW&X
i Ly =0 3.2
+H3l3 7/ (uw,x)=0. (3.27)

The last term is due to the action of thegd, part of Ly on

wM(5,,p,). Note that all of the terms can be balanced by

rescalingw= ¥4, y= €%y although according to tha
=1+ €6 assumption, the last term remains sntHlE).

Now, we observe that provides®< e[ w?+ (2x)?]?3 the
second term in E¢(3.27) can be neglected compared to the

first and the third, so that the “inner” series solution balanc-
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A

Batchelof

172

Dissipation

8‘5/2

x

FIG. 1. A schematic drawing of different asymptotic domains.
The dotted curve separates the regiongf dominance(above
from the region of the£,, dominance(below). The crossover oc-
curs atw~o(e'?) for y>¢€*2 and atw~o(e%?) for y<e'? The
perturbative crossover solution holds in the shaded re@fiomhich
overlaps the domain of validity of the local expansi®rabout the
w, x=0 singular point.

ing the latter two terms is valid in the narrow strip alomng
=0 (see Fig. 1. We are interested in the solution that goes to
a constant atv=y=0 and is locallys wave. Hence,

u(w,x)=1- ; )\T (7\+3)(W2+4X2)1/3+ e
(3.28

which is valid in the domain extending &/?< y<1,w <y.
Equation(3.28 must be compared witk3.23 but the two
can only be reconciled by setting=0.

Thus we concludg24] that =0+ o(e*?), which is con-
sistent with the numerical solution by Purh#5]. Curiously,
even though there is no correction to the exponent in the
leading order ire, Eq. (3.22 with §=0 leads to a nontrivial
a(x) and hence a nontrivial superposition of the degenerate
g modes. In the limite—0, singular perturbatioselects a
particular superpositiorof degenerate Batchelor modes.

The physical meaning @( y) is evident from Eqgs(3.20
and (3.21): it controls the behavior of the correlator with
three points on one line and determines the superposition of
the g modes away from collinearity. The solution of Eq.
(3.22 for =0 that satisfies the symmetry conditions is

i a
a(é)=ao Sln(g—lél) , (329
which has an appareid| singularity at the origin. The con-
figuration dependence of the correlator away from collinear-
ity is found from Eq.(3.20 either as a sum ovey modes
given by Eq.(C3) or via integral representatiaiC1).

C. Flatness and higher order functions for theL model

It is not too difficult to apply the matched asymptotics
perturbation theory developed in Sec. Il A to the computa-
tion of the higher order multipoint functions for the Laplac-
ian model. Let us consider evant+1 order correlators in
d=2. The difference with the skewness calculation will be
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that we must start with the genenalform of Lo+ £p and

study thel=0 angular momentum sector for which as we

saw in Eq.(2.18 the unperturbed value afis equal to 0. As
we shall see the matching will requite~ O( /€).

As with the eigenfunctions of the Batchelor-Kraichnan

operator in Eq.(2.9 we seek a solution in the form

BORIS I. SHRAIMAN AND ERIC D. SIGGIA

QZ
TZ

(1+2%) 3%+ (n—2)z 19,— 2l po(2)

2+\
_)\(T— zaz> ®o(2). (3.33

é“MZ‘Dx(_\'V,)A(), where the scaling dimension is carried by theNext we set seemingly arbitrarily at this poikt= \es with
determinant and the arguments are scale invariant and des yet to be determined and keep only the leading terma. in

pend only on the configuration of the+1 polygon. The
variablesw, y are defined in Appendix A in terms of the
Euler factorization ofp?. The operator’ in these coordi-
nates, acting o analogous to Eq(3.1) has the form(see
Appendix A, Eq.(A12), but note that hera>d)

Lo=(1—W?)dZ+[A—(2+N)w?w 14,

4e
+)\)\1 _21 1A2
227 a e A

+(n—2){(w‘2—1)waw— % w2

1 n
_§W_223 [AZ +A%, +V1-wA(AZ —AZ )],
(3.30

where operatord,, ; rotating the pseudo-space bagisare
defined in Appendix A, Eq(All). This differs from Eq.
(3.1 (then=d=2 case in extra terms on the last two lines
(provided we identifyA;,=id,4 , as the derivative with re-
spect to the angle of rotation in thg , plane.

Let us consider only the leading part 6f in the w—0
limit, which scales asv™2. According to the method pre-

sented in Sec. Il A, this singular part of the perturbation

operator will combine with the leading?(1), part of theZ,
to define the crossover equatipine., the analogue of Eq.
(3.4)] in the scaled variable=w/\e. Only a few of the
terms in Eq.(3.30 survive:

Leg=W?32+4€| 92+ (N +n—2)w 14,

A 1 -
Zin— —2_ -2 2
2+n 3)W W 0;:3 Al

A
2
(3.3)

The w—0 asymptotics of the solution to E@3.3)) is

wMZ=QU(X). Let us seek the solution in the form

<bx<w.5<>=w—“2§ boUo(X)¢o(2),  (3.32

whereU Q()}) is the eigenfunction 0}52:3Aia operator with
the eigenvalue— Q2. The w~? divergence in Eq(3.32
will be compensated by the determinant factd® and the
full solution will be well behaved at collinearity as long as
¢o(0) is bounded. We can rewrite E(B.31) as

The operator on the left hand side of £g§.33 is related to

the hypergeometric equation and can be inverted. However,
we shall only need an explicit solution for tii@=0 mode,
which has the form

z
¢0(2)=1+02f dzf—n(1+22)(n—2)/2
0
o (z
_\/EEJ dzZ "(1+2z%) (-2
0

z
xf dz’z’"2(1+ 2’2"+ O(e). (3.34
0

The c, must be set to 0 to prevent divergenceat0. In
the matching region, ¥z<e 2 expression3.34 reduces
to

rn—2
(3.3

5 o0
0o(2)=1-Cyz=1— \/EE ZJ dz'
0

which must be compared to the asymptotic behavior of the
Batchelor-Kraichnan eigenfunctions in the<1 limit. The
latter are Legendre-Jacobi functions witke 0+ O(\/€) [see

Eq. (C1)], which behave like

|q

Pg,O(Wfl)gl_?W_i_... , (3.39

whereq is the eigenvalue of\;, and is not to be confused
with Q? the eigenvaluesjA7,; the two operators do not

commute. The actual solution is a superposition of the
modes and the matching requires

% ag(Xa: -+ xn) €9P1ZPG (W)

:% boUo(Xa) 9ol W/ e). (3.37)

It can be shown from Eq3.33) that ¢o(z) =1—Cqz for
large z; we have seen this explicity foQ=0 in Eq.
(3.39. [ForQ#0 theCq, constants can be computed from
Eqg. (3.33 with A=0 via the hypergeometric functign.
Hence we match separately the constant and the linear
=w//e terms,

; aq<3(3,...,5<n>e“*¢12=§ boUo(Xa), (3.383
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|q| _ 1 CONCLUSIONS
- AN Qb R
zq: 2 ag(X3,- - Xn)€'912= 2_\/; &o CaboUqlxa) In the preceeding sections we have presented the singular
perturbation theory tools for calculating low order multipoint
n—-1 correlators of the passive scalar near Batchelor limit. The
Jar o R upshot of the analysis was the calculation of thoe &der
+0 = boUo(x.),  function for a phenomenological modéthe K mode),
2r<_) which appears sufficiently realistic to merit detailed compari-
2 son with the experiment. The experimental data for the scalar

(3.38)  skewnesg26] indicates that its exponent is very close to 1,
which supports our argument that the passive scalar advected
by the turbulent flow is described by a Hopf equation close
to the Batchelor limit. Furthermore, the calculation of the full
configuration dependence of the three-point correlator should
allow a detailed test of the model even if the exponent is
used to fix the unknown parameter of the model.

Many open questions remain. It would be interesting to
calculate the four-point function for thi€ model in pertur-

" bation theory. Although the calculation for themodel in-
dicates that the scaling exponent a¢e'?) the complete
matching analysis of th& model is considerably more dif-
ficult (than the three-point casbecause of the more com-
plex structure of the singular manifold. There are also more
fundamental issues. Tha-point correlators are just the
eigenvectors of the Hopf operator and are thus dependent on
the details of the model. Are there more universal aspects of
the problem? Perhaps the asymptotic large deviation behav-
ior of the probability distribution function or the behavior
near the center of the distribution? In addition to looking for

\/;F( u) less model-dependent objects one should seek to improve the

where on the right hand side we have separated ouQthe
=0 contribution and substituted the value@f computed in
Eq. (3.35. Unlike C,, which isO(\/e), otherCq turn out to

be nonzero in the—0 limit. Hence, to compensate for the
Je factor in the denominator on the right hand side of
(3.380 bo~O(\e) and only by=1. This explains our
choice ofA~O(€?): it was necessary since without it Eqs
(3.34 and(3.36 could not be matched.

Let us now determiné from Eq. (3.38). Since allQ+#0
are higher order ir*?, the eigenvalues can be determined
by projection onto th& =0 mode. Borrowing Dirac’s nota-
tion we rewrite Eq(3.38 in the form

%aq|P1Q>:bo|p:Q:0>+O(\/z), (3.393

|al 2 effective Hopf models, perhaps by making them more prop-
(P.Q=0] ( Eq: 2 aqlp,q) =0 n bo. erly hierarchical. Hopefully the contact with experiment will
2 2 help direct further efforts in this subject.
(3.39h
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and can be used to label bothand Q? eigenstates. These

eigenstates have the form pth order harmonic polynomials

in x.-€ with an arbitrary pseudospace unit vecéor APPENDIX A
Sincea, can be found from E¢(3.393 by projection onto Euler parametrization

|p,q) states the computation @freduces to Clebsh-Gordon . .
calculations. The calculation is particularly simple for the ~Here we describe the properties of the Euler parameter-

case of flatness)= 3, whereq,Q are simply the eigenvalues |;ation ofﬁi which is_ defined by singular_valug decomposi-
of rotationsA,, and A, about the axisy; and y,, respec-  ton. Consider the simplest cases d=2, first with

tively. The fourfold permutation symmetry of the physical

correlator implies that the nontrivial mode of the lowest rank pi=>, Rai(X)€aRua(®), (A1)

is p=4. We have(p=4q=4|p=4,Q=0)=70/16 and a

(p=40=2|p=4Q=0)=—5/472; the only nonzero

overlaps, which contribute to Eq3.39h. Evaluating Egs. Py P> Flcd)cxjL £,54S, £1C4S,—£,5,C,
3.39 we conclude that the flathess exponent is =
(339 P oL o) 68, 6048, £18,8,+ £:C,C,
(A2)
45
Na=== €2+ 0(e), (3.40 ) ; -
32 with the notationC ,=cos¢ andS,=sin ¢. For later conve-

nience, signs are chosen in the rotation matrices so that

which agrees well with the direct numerical solution @  Raa($)Na(6)=n.(6—¢). The triangle g“eflzizﬁlmﬁz
+Lp=0 found by the “shooting” method which does not =detp=£&é&. The radius of gyratioR*=37_,57=Tr pp'
involve perturbation theory ie. The calculation of the scal- =§f+ §§. The rotation matrixR, 5(¢) describes the spatial

ing exponents for highem is continued in Appendix E. orientation of the {;,r,,f3) triangle.
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The pseudospace rotatid®y, ;(x) can be determined by wherei=1,..n anda=1,...d. The magnitude of the diago-
diagonalizing a matrix of spatial invariants. Note that> y nal elementsf are defined as the eigenvalues of then
+a (or ¢—d+m) is equivalent toé&;——¢&; and &, matrix p"p, i.e., where we contracted on the real space index
— —¢&, while £, ¢, interchange is equivalent t¢g—¢  a. In Eq.(A8) x is a square orthonormal matrix ang, are
+(m/2), x— x— (w/2). Therefore by an appropriate defini- orthonormal vectors. Clearly EqéA5), (A6), and (A7) ap-
tion of y,¢» we can restrict to &|&,|<¢,. Also note that ply for generald. We can describe the case<n by inter-
simultaneousy— x+ m and ¢— ¢+ 7 leavesp invariant, changing the pseudospace and real space labels.
which means that the Euler representation is double valued. Let us give explicit expressions for various differential
The coordinateg, ,R(x) can be determined by diagonaliz- operators in Euler variables:

ing . ; .
R N @ oz 2_ g2\-1/ B «a
[ & hes] (& ai= 2 XA gt Ekl (62— €)' (XPmaéa
P1-P2 P2 & P n
+ @B + 2 _ g2y-1
from which Xi Uagﬂ) Xk 0")([? bZl a,ﬂ2=l (ga gﬁ)
25 2)sin 2y, Ada) o a a J
Pu P (€= E)sin 2 (A4 X (X nsEat xEnién)| nf aﬂg)
pi—py=(E—E3)cos 2, (A4b) . .
-1,a _ BB
which is combined with + 2 X P ,321 ”a”b) ang (A9)
p1+ p2 §1+ §2, (Adc)  where the last term contributes only whdk-n. (The case
of n>d is obtained by interchanging and » matrices)
p1X pr=E&1éy (A4d) The G2 operator is
inati 1/ 9\ 12 9 \2
for complete determination Ozfa,)( Note that the¢;=¢, G?l—_ = 2 e 2| +2 E ¢
point corresponding t@, - 5,=0, p3= 3 is special: in that 2n \ ;=1 7% 9&, 2 % \7Y9¢,
casep=¢&1R(¢)R(&) andy can be absorbed into redefinition )
of ¢ (alternatively ¢— ¢p+A, y—x—A is an additional +} > ¢ i—g J94° 1 £a€5
“gauge” symmetry at that point Explicitly, for & # &,, 2 Zp\% 0k, “Pogs) 285 (£-E5)7
1 215 P AT }
=-tg ! 5. A5 X|AZ 4+ B2 ,— A,zB.sl, A10
X=319 7= 2 (A5) 8 BT e, BPap (A10)
To relate these variables directly to the triangle configu-Where
ration we express thg; distances: n 5 p
Agg=i> | x* —5—xF — (Alla)
52_52 af =1 XI aXIB XI ﬁX|a
(§1+§2) 1+ § 2 cos ZX+AI1) (A6)
1 and
with A1,=0, Ays=—(27/3), A3;=+(27/3). The mapping d P P
of xd0,27] into triangle configuration space is two to one. Bup=i 2 ( N2 — B 7,5 —a> (Allb)
For collinear configurationg; =0 and we have a=1 an; Ing
f1 1-cos 2 are r(_)tation_ operators. _
= ) (A7) It is straightforward but tedious to check that fdre=n
M23 1—cos4 _ 2_7’ =2. Equation(Al0) is just the Legendre operator in a re-
3 duced variable= (£2+ £2)/2£2£2 and the angleg and ¢:
1 2 162

The valuesy=0, —(27/3), +(27/3) (and those translated ) ) (92+(9 —280,04
by ) correspond tar;,=0, or r,3=0, respectively. Quite G™=| 9(&"—1)d.+ W
generally, as is evident from E§A6) the permutation of;
points corresponds to the translatign- x+ (27/3). Inter-  the eigenfunctions of which are the Legendre-Jacobi func-
change of ; andr, corresponds to4; ,x)— —(£1,x), leav-  tions
ing (&5, ¢) invariant. o o

gl\/(lo?e(ﬁg)enerally fom#d (e.g.,n<d) we can write GAe N P (&)]=p(v+ 1)[e'qX+"¢P§’l(§)]-(A13)

. (A12)

n
=S vt 8 (A8) Equation(2.7) provides an integral representation of these
Pharar eigenfunctions as shown in Appendix B.
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For thenxd Laplacian widthd=n,

n n

# 1
PIRAEDS

_+_
=1 & 08, 2 878

L tEp
> (&5-£5)°

4€.8p
2 o
X| A2+ B2t — Zie A.pBagp

n

+2

a# B

28,

& §2 +(d—n)E?t

d
€,
(92

n
+ 2 §a2( 5ab_ 2 Ugﬂg) aq
a=1 =1

N9 My

—(d— n)E &2n8 (A14)

ang’

where all repeated,b indices are summed from 1 th For
n=d=2 this can be rewritten in terms @fand {=detp:

Lo=4€ d(£2=1)0+2(1— & 2 Eded + E(T7—,)

1 &
4821

+ (54 T5+2E19,0,)|. (A15)

APPENDIX B

Integral representation of the eigenfunctions

2975

a2 d
CEIV)EJ _lﬂ cosqy cos” i
—7l2

sin W(@—V> raa+2v )F(g— )
= al . (B2
22T 5 1+

The integral appearing on the second line of Hgl)
defines the Legendre-Jacobi functidf'(£) with ¢=(¢&2
+£5)12£,£,. Note that its constant prefact@!” actually
vanishes for integer and half-integer valuesrofTo define
the P function via the double integral representation appear-
ing on the first line of Eq(B1) in that case requires dividing
by C{ and taking a careful limit that effectively introduces
a logarithm into theh function in the integrand.

Note that for near collinear configuratiorg é,=detp
—0 (e.g.,&,—0 while £&;=cons). From Eq.(B1) it follows
that in that limitT%'~|detp| ™

The eigenfunction oL, given in Eq.(2.7) in Euler vari-
ables becomes

‘Pz;,q,l(p):g}\/zeiq){+il¢m'|(§)- (B3)

Similar manipulations allow us to reexpress tNe=3d
=3 eigenfunction given in Eq(2.18 in the Euler coordi-
nates: p?=32_ R, i(x)é,n%. Orthonormal vectorsy, ,
span the plane g, , while the third vector of Cartesian triad
73 is parallel tog; X p,. MatricesR,; and »% can be rotated
away by shiftingy and 6 in the integral(see Eq. 2.1Byield-
ing

Here we evaluate the eigenfunctions introduced in Eg.

(2.7 explicitly writing p as in Eq. (Al), ie., npe
=(R,n,)"E(Ry4N,) whereE is a diagonal matrix with ei-
genvalues, . After substituting into the integral in EQR.7)
the R, andR, rotation matrices can be absorbed #y- i
+x and — 6+ ¢ leading to

Ti= (616, re*1?

27 27 d@
<[5

o 2w Jo

X[ &1 cos @ cosy+ &, sin 6 sin ]

ell6+|q|//h
2m

_C(V)elq)(+|l¢f 2 % eil 0+iatg™ (&2 /é1)tg6) & coZ 0
—ml2 T 2
+ & sir? 0} , (B1)
&

W e (P) = |1 52Dy () PI™ (),
(84)

wherem’ is not summed.

APPENDIX C
Asymptotic behavior of Legendre-Jacobi functions

To match the zero mode between the regimes where the
dissipation dominatesy~0 andw=<1 (Sec. Ill) required the
large é=w~* limit of P33(£) (q odd) for the skewness and
7?8'0(5) (g even for the flatness. Using

/2 d@
Pl |
Y -2 T

é cog 0+ & S|n20

§2 &1

gl 0+iqtg~ (&, /£)tg0]

(CD

where the second line is obtained by shifting and integrating

over ¢ and usingh, 4(x)=[sgn&)]%x*". Note that 6— 6
+a or y— i+ change the sign of the argument lof

Hence,q,l must have the same parity for the integral to be

nonzero. This parity is used in line two of E®.10 to half
the domain of integration. The multiplicative constant is

one finds the required asymptotic expressions:

-1 [n|/2 2
A=) ~[1mete 7. 2
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o niz 2n wheref(y) =1 for theL model equal$(0,y) [cf. Eq.(3.16
P (&) =VE+1 (§+1 1+ 1 and below for the K model.

%§1/2+(n+§)§71/2

—5(3n%+3n+3)E ¥ (CY
ST e
172 §+1
%51/2_(n+§)§71/2
+3(n?+n-HE ... (CH

APPENDIX D
Skewness for theL model in d=3

For the skewness id=3 the general expressions 6¢,
Eq. (A10) andV?, Eq. (A9) reduces to the following:

e () TMGPW =WPd(1- W) Ay y

1 2wqoy— (q2+ o2)w?
+- 2 Y
4 (1-w?)
(DY)

wherew= ¢~ 1 and where-B, ,= o0y, y= e ' MNAp | Also
R2
i _ g
e lax(¢) N2 8 Vi\y

=[aw(l—WZ)aWJr(lﬂ)(l—wz)wlaw+%>\2/w2
+3(2qwoy— 02— 03)/(1-w?)

+%W_1( ? (73 91) +§ (13 92) ” (D2)

where 73 is understood as the cross productgf and 7,
and differentiated accordingly. Our conventitf|< &, en-
ters in the choice of root taken when we reexprés&, in
terms ofw.

Forl =1 we superimpose functions of the fof2118 that
are linear in7; . However, anything linear im is ruled out

The eigenvalue problem is derived by matching the com-
ponent ofe that dominates neaw= 0, which is the second.
If its amplitude is denoted bg(x) then
F(A—1)a=0,

af(x)(d+1)a+ (D4)

whenf=1,a=¢'9, which determines the eigenvalue for the
L model. The eigenvalue was also checked by solviig
+ L,=0 numerically, fora in the range 0.01-0.5, and fit-
ting (\—1)/a to a polynomial in«? For the pseudo-
Kolmogorov dissipation, theK model, the w=0,y=0
boundary condition dictates\(- 1)/a=0+0(a*?), by the
same argument as oh=2, see Sec. Il B.

APPENDIX E
Higher order functions for the L model

In the case of generat we observe that\;, and Q2
=3"_,A% are invariant under rotations in—2-dimen-
sional space orthogonal to the 12 plane. Below we will ex-
plicitly compute § for the modes that are invariant under
such rotations. In this cas@=0 condition implies that the
eigenfunctions are also singlet under 8©(1) rotations
about y,, the total angular momentum for which ®?
+3" ,8>3A . This implies that the eigenfunctions are poly-
nom|als iny,: e and= (x.-€)2. To simplify the notation let
Xo= Xo- € for the remainder of this section. We can choose

UP (x)=H[x5],

where H[ ---] is the Harmonic projection operator which
turns thepth order polynomial into an eigenstate of total
angular momentunp; its explicit form will not be needed
here but can be found in RgR0]. One can write

(ED)

(X2)P=2"P[(x2+ix)+(x2—ix01°

=2" PZ CROXatix)? Mxo—ix)*  (E2
and thekth term in the sum correspondsde- p— 2k. (Also
note that because the projection operatbris linear and

rotationally invariant, it commutes with,,.) It follows that

because the skewness is even under reflections in a plane

containing the external gradient. Thus the Hopf oper&@ipr
+ Lp reduces to a pair of second-order differential equations

in w and it is convenient computationally to write

= y,(W) 71 +iv2(W) 75 in which caseo, becomes the con-

ventionally defined Pauli matrix acting ony{,vy,). With

these conventionsy behaves in the Batchelor limit as

wM2yo=[3|glw+ 3 (1-g?)w?, (1-5q wz)sgnq)]/(qz—l)-

The crossover equation becomes §or y/w'?

(W205 = Wiyt sW2J5— 3iWayd, ) @

) , 1. 1,5
+§af()() (9W+Wﬁw+z(9 +Z—Z(1 O'Z)

—3(1+0)/W?| e+ 3(A—1)p=0, (D3)

ap,2k=2_pCEb0 (ES)

Is correct toO(€'?). We can now evaluate the left hand side
of Eq. (3.39H
p
27P72 3 [p—2KICRHL (X2 X0 (x2=ix0)"]

p—k k
=27P" 12 lp—2KICk 2GRt 2 Cryim

XH[(x2)P™ ™ M2(x,)™ " M)
and project it ont@)=0 SOn— 1) singlet by averaging with

respect to all rotations about,. This average is nonzero
only for terms with evenm;+m,=2l and replaces

(E4
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x?—Ba(x2—x3)', where B2=T(1+1/2)l'((n—1)/2)/

I'd+(n—1)/2I'(1/2). Now, the terms involving powers of
(rotationally invariant Xi do not survive the harmonic pro-
jection since they have total angular momentum less than

Hence the required projection onto tQe=0 sector is found
by reading of the coefficient of thgd term. This yields the
following expression ford and hencen for arbitrary even

N=n+1:
N—1
2r > [p/2]
AP =e?— 2P Y (p-2k)Ch
— 2
e
2
p—k k
X > ChEY CE(—D)™By +m,. (ED
my=0 1m2:0 2 1 2
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As before in the case of flatness, the permutation symmetry
of the N=n+1 points implies that the lowest nontrivial
mode hasp=N. Evaluating Eq(E5) for N=4 we recover

the result for the flathed8.40. For higherN we find

Ne=2.31V2+ O(e), (E69

Ag=3.31eY?+ O(e). (E6b)

Numerical evaluation of EqEES) for large N yields an ap-
proximate expression: Ay~ (—0.39+0.4N)e¥2  How-

ever, this perturbative result is only expected to hold for
€”’N<1. Finally, we note that an analogous calculation can

be carried out for the odd moments.
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