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Anomalous scaling for a passive scalar near the Batchelor limit
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~Received 6 August 1997!

A class of phenomenological Hopf equations describing mixing of a passive scalar by random flow close to
the Batchelor limit~i.e., advection by random strain and vorticity! is analyzed. In the Batchelor limit multipoint
correlators of the scalar are constructed explicitly by exploiting the SL (N,R) symmetry of the Hopf operator.
Hopf equations close to this ‘‘integrable’’ limit are solved via singular perturbation theory based on matched
asymptotic expansions. The solution for the three-point correlator exhibits anomalous scaling indicating per-
sistence of the small scale anisotropy for the scalar. In addition to the exponent, the full configuration depen-
dence of the correlator is obtained.@S1063-651X~98!08703-0#

PACS number~s!: 47.27.2i
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I. INTRODUCTION

The advection of a passive scalarQ by a turbulent veloc-
ity field @1# is of interest to experimentalists and theoris
alike both in the context of the problem of turbulent mixin
and because of its similarities to the more challenging pr
lem of turbulence itself. The governing equation is simpl

] tQ1vW •¹W Q5k¹2Q, ~1.1!

wherek is the diffusivity, which is analogous to the viscosi
in the Navier-Stokes equation. Obukhov@2# and Corrsin@3#
observed that when the velocity is in the Kolmogorov 19
scaling@4# (K41) regime, the scalar should also display t
same wave number spectrum and the scalar variance sh
cascade from large to small scales at a rateeu determined by
the large scale boundary conditions. The analogy with
statistics of the velocity fluctuations persists also in the ma
festation of the violations of theK41 scaling as the fourth
and higher order correlations of the scalar became incr
ingly non-Gaussian—the phenomenon known as interm
tency @5#.

One of the puzzling departures from Kolmogorov pred
tions @4#, particular to the scalar, is that the derivative ske
ness sd5^(]xQ)3&/^(]xQ)2&3/2; observed in shear flow
with an imposed large scale scalar~e.g., temperature! gradi-
ent, turns out to be of order one and Reynolds independ
@6,1#. This quantity measures violation of parity symmet
on small scales. Kolmogorov phenomenology does
merely assume that the small scales are as universal as
metry and dimensional considerations allow, but supplie
prediction as to how parity~and isotropy! breaking by a large
scale gradientgW influences the small scales, viz.,sd

;g/^(]xQ)2&1/2;R2(1/2) or in the inertial range,dQ r

5Q(r )2Q(0), Sr5^dQ r
3&;r 5/3 ~versusr 1 in experiments!.

The force of this contradiction caused the early workers
carefully search for systemmatic errors in their probes,
the effect remained.

To model this effect in Eq.~1.1! it is convenient to as-
sume that the large scale gradient is uniform and to shifQ
571063-651X/98/57~3!/2965~13!/$15.00
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→u2gr. This puts a ‘‘force’’ gv on the right hand side o
Eq. ~1.1! which is a sensible idealization of how an expe
ment maintains a statistically steady state.

It is natural to ask whether the intermittency seen in
scalar field is merely a passive translation of that already
the velocity or whether it is intrinsic to Eq.~1.1!, i.e., present
for a Gaussian velocity field as well. Kraichnan long a
@7,8#, argued that advection by a Gaussiand-correlated ran-
dom strain, gave nontrivial intermittency, and more recen
Holzer and Siggia@9# showed the same numerically for
velocity field with Kolmogorov like power law correlator
and non-d-correlated temporal correlations. In particular, f
simulations with a mean gradient, the skewness was v
similar to that in the shear flow experiments.

Recently a number of groups@10–12# realized that non-
trivial exponents for scalar correlations of order 3 and grea
are associated with the zero modes of the so-called H
operator that controls the temporal evolution of the eq
time multipoint correlators. Following Kraichnan@7,8#, this
operator can be derived exactly@13# for a model with veloc-
ity that is white in time and Gaussian: the Kraichnan’sd-
correlated model. Further approximations, either a clos
for the dissipation term@14#, an expansion for large dimen
sion @10#, or about the ‘‘weak coupling’’ molecular diffusion
limit @11#, or the ‘‘strong coupling’’ random straining limit
@15#; are necessary to obtain explicit answers.

The work detailed in this article is devoted to anoth
model @12,16# that remains more faithful to the tempor
correlations of the velocity dictated by the Navier-Stok
equations at the expense of the exact derivation of the H
operator from Eq.~1!. The models we consider are phenom
enological and are best thought of by drawing an analo
between the Hopf operator and a Hamiltonian~for a quantum
mechanical many-body system!: the latter defines the evolu
tion operator for a wave function, the former—the evoluti
operator for the multipoint~equal time! correlator. The study
of the appropriateeffectiveHamiltonians is often fruitful
even in the absence of their full microscopic derivatio
Similarly we construct and investigate a class of phenome
logical or effective Hopf operators the stationary modes
2965 © 1998 The American Physical Society
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which approximate the correlators in question. The effect
Hopf operator inevitably contains free parameters which
to be fixed through comparison with experiment; yet as lo
as the number of such parameters is small, the phenom
logical model retains predictive power.

An important aspect of the physical velocity field is th
the change in the relative distance of a pair of material po
in the flow over the correlation time~the eddy turnover time!
is of the order of the separation itself. The absence of
dimensional parameters in the inertial range implies that
any scaler , dv(r )t(r );r , wheret is the Lagrangian corre
lation time. Thus the Lagrangian displacement over one c
relation time is approximately described by an order o
volume preserving mapping. The effective Hopf operato
then written as a sum of what we call the ‘‘Batchelo
Kraichnan’’ piece, which accounts for the large scale, coh
ent strain and vorticity@17,7#; and a second, dissipative
term, analogous to an eddy diffusion. The later expresses
effect of the small scales of the velocity field which fluctua
independently at the distinct points of the correlator. T
derivation@12# of the resulting Hopf equation is only heuris
tic and will not be repeated here: instead we shall dwell
its analysis.

The Batchelor-Kraichnan operator is highly symmet
and in Sec. II we show that it is integrable by Lie algebra
methods@12#. ~See also Refs.@18# and @19# for the analysis
of the Batchelor limit.! Section III introduces the simples
model of dissipation, which we call the ‘‘Laplacian mode
~or L model!, which preserves some symmetry, and allo
us to solve for the anomolous skewness and flatness e
nents, both numerically via an ordinary differential equati
shooting method, and via a matched asymptotic expans
This dissipation model is not, however, consistent with K
mogorov scaling when two points in the correlator coales
Hence in the remainder of Sec. III we introduce an improv
model, we we call the ‘‘pseudo-Kolmogorov model’’~or K
model!. The singular perturbation expansion is generaliz
to treat this more interesting model yielding the anomalo
scaling exponent and the full configuration dependence
the three-point function. The results of the calculations
scribed here have been previously reported in Refs.@12# and
@15#. The singular perturbation theory described here
also been applied to the calculation of the anomalous sk
ness exponent in thed-correlated velocity model near th
Batchelor limit reported in Ref.@16#.

II. PROPERTIES OF THE BATCHELOR-KRAICHNAN
OPERATOR

A. Definitions and skewness in two dimensions

The Batchelor-Kraichnan operator describes the evolu
of passive scalar correlators under the action of random la
scale strain and vorticity@17,7,13#,

L0[(
i j

Dab~r i2r j !] r i

a ] r j

b ~2.1a!

with

Dab~r !5~d11!dabr 222r ar b, ~2.1b!
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where the coefficients are constrained by incompressib
which demands]aDab50. Since the correlation function
are translationally invariant, they do not depend on the ce
of mass coordinate 1/N( i rW i . It is convenient to define a se
of reduced coordinates, e.g., forN53:

F rW 0

rW 1

rW 2

G53
1

)

1

)

1

)

1

&
2

1

&
0

1

A6

1

A6
2A2

3

4 F rW1

rW2

rW3

G ~2.2!

or rW i5Mi j rW j in a more compact notation. MatrixM is ortho-
normal, MikM jk5d i j , which makesrW i independent so tha

]W i[]/]rW i5Mi j ]W r j
, has the property] i

ark
b5dabd ik . TherW 1,2

are the relevant reduced vectors, independent of the cent
mass variablerW 0 . This definition is readily generalized t
any N. It is easy to check that the characteristic inter-po
distance, which we’ll call the radius of gyration, isR2

5( jkrW jk
2 5( i 51

N21rW i
2 and the Laplacian( j 51

N ] r j

2 5( i 51
N21]r i

2 . In

the reduced variables

L05 (
a,b51

d

(
i , j 51

N21

@~d11!rW i•rW jd
ab22~r i

ar j
b1r i

br j
a!#] i

a] j
b .

~2.3!

TheL0 operator turns out to be invariant under the gro
of general linear transformationsrW i→gi j rW j which mix differ-
ent reduced coordinate vectors.~Below we shall on occasion
refer to the reduced coordinate labelsi as pseudospace.! This
group factorizes into dilationsrW i→brW i and the volume pre-
serving transformations, with detg51, which constitute the
SL (N21,R) group. The origin of this invariance traces
the fact that under large scale strain and vorticity Lagrang
coordinates evolve according tor i

a→mabr i
b ~where mab

5]avb is the strain-vorticity matrix!: clearly this dynamics is
invariant underrW i→gi j rW j . The infinitesimal SL transforma
tions are generated by

Gi j [rW i•]W j2
1

n
d i j L, ~2.4a!

wheren[N21 for convenience andL is the dilation opera-
tor,

L[r i
a] i

a . ~2.4b!

Remembering that in addition to dilation and SL,L0 is
rotationally invariant, one can list all the invariant quadra
operators. They are, aside fromL,

G2[ 1
2 (

i j
Gi j Gji , ~2.5a!

the Casimir operator of SL (n) ~i.e., @Gi j ,G2#50! and the
total angular momentum square
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L25 1
2 (

i
(
ab

~r i
a] i

b2r i
b] i

a!2. ~2.5b!

Symmetry dictates thatL0 can only be a linear superpo
sition of these, which turns out to be:

L052~d11!L212dG21d~d2n!S L2

nd
1L D . ~2.6!

In order to completely diagonalizeL0 acting onn3d di-
mensional space we must find a solution with the same n
ber of quantum numbers. Let us consider first the simp
casen52,d52. In addition toL2, G2, andL one can simul-
taneously diagonalizeGy[ i (G122G21) which generates ro
tation in two-dimensional pseudospace. It is possible to
rectly construct a functionCnql

l (r), which is an eigenstate o
all these operators:

Tn
q,l~ r̂ !5E

0

2p

dcE
0

2p

dueil u1 iqchn,qS ea~u!r i
ani~c!

det r D ,

~2.7a!

Cnql
l ~r!5@det r#l/2Tn

q,l~ r̂ !, ~2.7b!

where n̂(c),ê(u) are 2D unit vectors parameterized b
anglesc, u, respectively, and we introduced a homogene
function hn,q(x)[sign(x)quxu2n. The Tn

q,l( r̂) is just the
transformation matrix for then representation@20# corre-
sponding to SL~2! group elementsr̂ ~normalized so as to
make detr̂51!. The set of functionsCnql

l forms a represen
tation of SL~2!3SO~2!3L, i.e., transforms linearly unde
the action of the group elements.

It is sufficient to consider onlyn>21/2 for which the
integrals are well defined. The integration onu and c
projects ontol andq angular and pseudoangular momentu
sectors. E.g., pseudospace rotation ofr i

a by angle f, r
→R(f)r, can be absorbed into redefinitionc→c1f
which leads toTn

ql
„R(f)r…5eiqfTn

ql . The scaling dimen-
sion is l: LCnql

l 5lCnql
l . We have used

detr[eijeabri
arj

b—the area of triangler 1 , r 2 , r 3 as the nor-
malizing factor because it is invariant not only under spa
rotations but also under SL~2!: it is easy to verify that
Gi j detr50. Finally, the eigenvalue ofG2 can be computed
directly by differentiating~2.7a! and exploiting the homoge
neity of h,

G2Cnql
l 5n~n11!Cnql

l . ~2.8!

Thus from Eqs.~2.6! and ~2.8! we have for the zero
modes~d52, n5N2152!,

L0Cn,q,l
l 5@23l 214n~n11!#Cn,q,l

l 50. ~2.9!

Curiously, for anyn5d in Eq. ~2.6!, l does not appear di
rectly. It does, however, enter indirectly via the bounda
condition at detr5rW1∧rW250. As shown in Appendix B~for
n>2 1

2! in the limit detr→0,

Cnql
l ~r!→udet ru~l/2!2n. ~2.10!
-
st

i-

s

l

y

On the physical grounds one must demandC to remain fi-
nite, hencen<l/2, or more strongly, differentiable:l/2
5n1k, integer k>0. Thus the lowestl mode: l/25n
>2 1

2 . ~Furthermore, modes withl/2.n vanish at collinear-
ity and therefore do not contribute to the structure functio!
Equation~2.9! becomesl212l23l 250 and thed5n52
spectrum,

l~ l ,k!52k211A113l 2. ~2.11!

The evolution equation~1.1! makesu odd under reflec-
tions, so theN53 correlator is odd under reflections an

proportional tô ¹W Q&. Thereforel is odd, the lowest relevan
mode isl 51, and the leading anomalous scaling expone

l~1,0!51. ~2.12!

Note, that the pseudoangular momentum quantum num
q, did not enter the eigenvalue equation~2.9!, so that the
spectral exponents are infinitely degenerate. This degene
is a consequence of the SL~2,R! symmetry and is lifted by
the dissipation termLD , which we will treat perturbatively
in the next section.

B. Properties of the Batchelor-Kraichnan operator
for N>3 or d>2

Let us now generalize the analysis ofL0 to arbitraryN
andd. First we find the spectrum ofL0 . The eigenvalue of
angular momentumL2 in d dimensions isL25 l ( l 1d22).
The spectrum ofG2 can be found by noting the following
duality relation. DefiningJab[r i

a] i
b21/ddabL, which gen-

erates SL(d,R) transformations acting on real space~rather
than pseudospace! one can prove

G25J22
d2n

2 S l2

nd
1l D . ~2.13!

Now, the spectrum ofG2 is determined by the structur
SL(n,R) group which does not depend ond. Hence the
spectrum ofG2 can be found from Eq.~2.13! evaluated for
d51 for which J250, yielding

G25
n21

2n
l~l1n! ~2.14a!

and by the same token,

J25
d21

2d
l~l1d!. ~2.14b!

Strictly speaking,l, which enters here, is the homogene
degree of the representation functions constructed fromd
51 and may differ from the fullL by an integer if invariants
exist, e.g., detr for the d5n case as we have seen alrea
for d5n52. Using Eq.~2.13! one can rewrite Eq.~2.6! more
compactly:

L05~d11!L212dJ2. ~2.15!
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Equation~2.14! will suffice for the calculation of the small
est l, which from Eqs.~2.6! and ~2.14b! obeys (d11)l ( l
1d22)2(d21)l(l1d)50, so that

l~ l !5
d

2 FA11S 2

dD 2 d11

d21
l ~ l 1d22!21G . ~2.16!

Remarkably, the spectrum of leading zero mode exponen
L0 does not depend onN! This might have been expecte
becauseL0 represents only the advective part of the evo
tion so that points can be brought together, e.g.,u2 behaves
like u. Hence the spectrum for anyN is a subset of that for
largerN.

Equally remarkably, we observe that for thes wave
l(0)50, and for thep wavel(51)51, independent ofd!
For d@ l we havel( l )' l 1O(1/d). Thes-wave channel of
course is relevant for the even order correlators~i.e., even
N!.

Certain of the eigenfunctions can be constructed via in
gral representations analogous to Eq.~2.7!, e.g., for the flat-
ness (n53) in three dimensions we can write

Cn;p,q; l ,m
l ~r!5udet ru~l22n!/3

3E dV̂1E dV̂2Yp
q~V̂1!Ym

l ~V̂2!hn~V̂1ar i
aV̂2i !, ~2.17!

which has the spatial angular momentum (l ,m), pseu-
dospace angular momentum (q,p), and the G25(n
21/n)n(2n1n) which agrees with Eq.~2.14! for l52n,
which corresponds to the lowestl state. Actually, Eq.~2.19!
is not a complete set of states, because we only have
quantum numbers instead of nine. Additional quantum nu
bers can be introduced taking a somewhat more com
hn(x) and by replacing integrals over unit vecto
*dV̂1Yp

q(V̂)••• by integrals over triads~i.e., rotation matri-
ces!: *dRDpp8

q (R) andDpp8
q (R) is an SO~3! representation

matrix 2q<p, p8<q. This will yield three real space an
gular quantum numbers plus three pseudospace, plusl andn
for a total of eight. We believe this is the correct count a
that the eigenvalue problem forG2 in the nine-dimensionalr
space is nonintegrable. More explicitly, if we change fromr
to the Euler variables~see Appendix A! in G2, impose the
angular quantum numbers andl, there remains a second o
der partial differential equation in two variables. Our ass
tion is that it cannot be solved by separation of variables
its solutions are labeled byn alone.

The ‘‘duality’’ between the SL(n) acting on pseudo-spac
indices and the SL(d) acting in real space is particularl
useful when constructing eigenfunctions fornÞd as it al-
lows us to work with the smaller of the two. An interestin
example of thenÞd case is the skewness in three dime
sions, which can easily be adapted to describe the flatne
d52. In contrast to then5d case, there is now a vectorrW 1
3rW 2 which is invariant under SL~2!; an arbitrary function of
which can multiply the integral in Eq.~2.7!. Thus,
of

-

-

ix
-
x

d

-
d

-
in

Cn;q; l ,m,m8
l

~r!5urW 13rW 2u~l22n!/2Ym
l S rW 13rW 2

urW 13rW 2u D
3E

0

2p dc

2p E
0

2p du

2p
eiqc1 im8u

3hn,q„ea~u!r i
ani~c!…, ~2.18!

where unit vectorê(u) rotates about therW 13rW 2 direction
hence,ê(u)•rW 13rW 250.

TheL0 eigenfunction Eqs.~2.7! and~2.18! and the corre-
sponding spectrum provide the point of departure for
perturbative calculation described next.

III. PERTURBATION ABOUT THE BATCHELOR LIMIT

A. Skewness for the Laplacian dissipation model
„the L model…

Let us first develop the perturbation theory for the si
plest case of the dissipation operator@21# LD

5e(( i]W i
2)(( jrW j

2) for the skewnessn52, in d52.
It is convenient to work in the Euler coordinates defin

in Appendix A and introduce a reduced variablew[j21

52 detr/R2 and write the Laplacian@see Eq.~A13!# acting
on an eigenmode nondimensionalized byz[detr, viz.,
C (l)/zl/2 as

LD54eF ~12w2!]w
2 1@l2~21l!w2#w21]w

1
l

2 S l

2
21Dw221

1

4

1

12w2 ~]x
21]f

2 12w]x]f!G .
~3.1a!

The Batchelor-Kraichnan operator in the same variable

L054w2]w~12w2!]w1
w2

12w2 ~]x
21]f

2 22w21]x]f!

13]f
2 . ~3.1b!

The f andx dependence is trivially diagonalized by go
ing to the angular momentum representation:]x5 iq, ]f
5 i l . The diagonalization reflects the fact thatLD is invariant
with respect to rotations not only in space~i.e., f→f1u!
but also rotations in pseudospace~i.e., rotation acting on ‘‘i ’’
index, x→x1u8!. The SL~2!3SO~2! is broken down to
SO~2!3SO~2! but no further, and theq,l quantum numbers
remain good. Thus in analogy with Eq.~2.7! we factorize the
zero mode asCq,l

l 5(z/uwu)l/2exp(ilf1iqx)wql
l (w). The ad-

ditional wl/2 factor means thatw is being nondimensional
ized with R2 rather than detr.

We observe that whileL0 scales asw to the zeroth power
as w→0, LD scales asw22 and hence fore/w2@1 domi-
nates overL0 . Physically this region corresponds to near
collinear configurations of points.

Let us first consider the leading term of the combinedL
5( 1

4 )(L01LD) in the w→0 limit ~which comes entirely
from LD!,
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F]w
2 1lw21]w1

l

2 S l

2
21Dw22Gwq,l

l /uwul/250, ~3.2!

which implies wq,l
l (w)5Al ,q1Bl ,qw. As the areaz→0

~with R;const! w;z and the overall eigenfunction

Cq,l
~l!;eil f1 iqx~Al ,q1Bl ,qw!Rl. ~3.3!

In order to work with fractionall we have tacitly as-
sumedw.0 or j1j25rW 1∧rW 2.0. However, from the defini-
tion of the Euler coordinates~Appendix A! the interchange
of r 1,2 corresponds tor1→2r1 , r2→r2 or j1→2j1 , j2
→j2 ~hencew→2w! andx→2x, w→w. Any zero mode
of L must be smooth@22# aroundw50 since the Laplacian
is dominant there. This can be insured by imposing
boundary conditionsAl ,q5Al ,2q and Bl ,q52Bl ,2q . Be-
cause we are factoring the physical coordinates, there
gauge like symmetry that must be imposed so that the
torization does not induce any spurious singularities@20#.

To construct a global solution we must connect thew2

!e region dominated byLD to thew2@e region dominated
by L0 where the effect ofLD is just a regular perturbation
Zero modes ofL only occur for discrete values ofl. For
given l, theL operator has an exact symmetry under (w,q)
→2(w,q) just noted in connection with Eq.~3.3!. Hence
the eigenvaluesl corresponding to6q must be identical.
Numerically the eigenvalues can be determined by taking
dominantO(1) solution aroundw50, adding a constantb
times theO(w) solution and propagating the sum towar
w;1. There are two linearly independent solutions neaw
51, only one of which is finite. Imposing finiteness atw
51 and insisting onl(q)5l(2q) results in two conditions
which determinel andb.

To do the matching betweenw50,1 perturbatively ine,
we go to a scaled variablez5w/Ae and expand the resultin
equation in powers ofe1/2. The rescaling is chosen in such
way that the far field region of the ‘‘boundary layer,’’z
@1, still resides~providedz!e21/2! within small w asymp-
totics of the outer solutionw!1, which is controlled by
Batchelor-KraichnanL0 .

It is convenient to work in terms ofw defined above since
it goes to a constant asz→0. @We have restricted to thel
51 angular momentum sector and have suppressed thel,q
quantum number labels onw(z).# It solves

L̃w~z!50 ~3.4a!

with L̃5zl/2Lz2(l/2) or, explicitly,

L̃5L̃~0!1e1/2L̃~1!1eL̃~2!1••• . ~3.4b!

Since forl 51 we expectl'1 we definel511ed with d
to be determined. We have

L̃~0!5~11z2!]z
22z]z , ~3.5a!

L̃~1!5
q

2
z, ~3.5b!
e

a
c-

e

L̃~2!5d1
1

2
2S q

2D 2

2S q

2D 2

z22z2~11z2!]z
22~21d!z]z

2z3]z . ~3.6!

The two zero modes ofL̃(0) are easily found:

w1
~0!~z!51, ~3.7a!

w2
~0!5@zA11z21 ln~A11z21z!#. ~3.7b!

It is convenient to invertL̃(0) and rewriteL̃f50 in the
integral form

w~z!511E
0

z

dz8A11z82

3FC2E
0

z8 dz9

~11z92!3/2 ~e1/2L̃~1!1eL̃~2!!w~z9!G .
~3.8!

The perturbative solution is obtained simply by iterati
Eq. ~3.8! starting with w51: w(z)511e1/2w (1)(z)
1ew (2)(z)1••• ,

w~1!~z!5
q

2
z, ~3.9a!

w~2!~z!52
z2

2 Fd1
5

2
2S q

2D 2G1C2w2
~0!~z!. ~3.9b!

We have expanded the constantC5C01e1/2C11eC21•••
and setC050, C15q/2. The later conditions are require
becausew2

(0)(z);z2 for largez, which unless multiplied by
constant ofO(e) would lead to the appearance ofe21w2

term—inconsistent with the asymptotics of the Batchelor
gime. As is, we have in the matching region 1!z!e21,

w~w!511
q

2
w2

1

2 Fd1
1

2
2S q

2D 2Gw2

1C2Fw21e ln
2w

Ae
1

e

2
1OS e2

w2D G , ~3.10!

The termsO(e2/w2) are negligible becausew2.e in the
region of interest and we shall only be interested in terms
O(e0) anyway. To that order, the ‘‘inner’’ solution, Eq
~3.10! must be matched to the ‘‘outer’’ solution composed
the zero modes ofL0 , the w!1 asymptotics of which is
computed in Appendix C. These are the Legendre functi
of n5 1

2 and oddq. Scaling as forw,

wl/2P1/2
q,1~w21!'11

q

2
w2Fq2

8
1sgn~q!S q221

4 D Gw2

1O~e lnw!. ~3.11!

Comparing Eqs.~3.10! and ~3.11! to the leading order
@22, 23# we identify
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d5
q221

2
~3.12!

and

C252sgn~q!S q221

4 D . ~3.13!

The identification ofC2 with the part odd underq→2q is
forced by the fact thatC2w2

(0)(z);C2z for small z, and the
analyticity acrossz50 requires invariance underq→2q,
z→2z, as mentioned earlier.

Thus we have calculated the correction to the scaling
ponents of modes with differentq:

l~q!511e
q221

2
1O~e3/2!. ~3.14!

Predictably the infinite degeneracy of the Batchelor lim
is lifted. The threefold permutation symmetry of the co
relator dictatesq53n. The requirement thatl ,q have the
same parity makesq odd. The lowestl thus corresponds to
q563: l3'114e, which is in excellent agreement wit
the exponent found numerically@12#, when the constant 2el
is adjusted in the definitions ofLD .

The Laplacian damping was convenient because it co
be diagonalized for eachq separately. However, this implie
that the analytic behavior aroundw;0 is obtained for allx,
in particular atx5np/3. At these points, two of therW i coa-
lesce, e.g.,i 51,2 and we expect the correlator to behave
c11c2r 12

2/3 ~assumingK41!. Thus the more physical model o
dissipation must mix theq modes. Such a model will be
analyzed in the next section. The results of the present~and
the following! section is generalized to three dimensions
Appendix D.

B. Skewness for the pseudo-Kolmogorov model
of dissipation „the K model…

The Laplacian dissipation model is unphysical as it forc
analytic behavior of the correlation with a pair of points a
proaching coincidence. This can be remedied by replac
theR25rW 1

21rW 2
2 factor inLD by a functionR2F(rW 1 /R,rW 2 /R)

which vanishes as the43 power—to reproduce Richardso
diffusion—whenever two points coincide. A convenie
form is

LD8 5eR2S r 12
2 r 23

2 r 31
2

R6 D 2/3

¹2, ~3.15!

which in Eulerian coordinates implies

F~w,x!5~12A12w2 cos 2x!2/3

3F12A12w2 cos 2S x1
2p

3 D G2/3

3F12A12w2 cos 2S x2
2p

3 D G2/3

, ~3.16!
x-

t

ld

s

s
-
g

so thatLD8 has the same form asLD in Eq. ~3.1! but with e
replaced byeF(w,x). As a consistency check, nearr 1,2

→0, F;(w214x2)2/3 and the Laplacian behaves like]w
2

1 1
4 ]x

2.
All arguments concerning the singular nature of the p

turbation nearw50 hold except the condition forLD8 domi-
nance, which becomesw!eF(0,x). In analogy with Sec.
III A we define C l

l(w,x)5(z/w)l/2F l
l(w,x) and expand

L̃F50. Repeating the steps that led to Eq.~3.5! we now find

L̃~0!5@ f ~x!1z2#]z
22z]z , ~3.17a!

where f (x)[F(0,x),

L̃~1!52
iz

2
]x , ~3.17b!

L̃~2!5d1 1
2 f ~x!1 1

4 @ f ~x!1z2#]x
22@ f ~x!1z2#z2]z

2

2@d12 f ~x!1z2#z]z . ~3.17c!

Because of the explicitx dependence of the dissipatio
operator the crossover equation is no longer ‘‘diagonal’’ inq
modes. Remarkably, however, because there are no de
tives with respect tox in L̃(0) it can still be inverted as before
and the general solution can be constructed explicitly.

Inversion ofL̃(0) yields

F~z,x!5a~x!1e1/2E
0

z

dz8Af ~x!1z82H b~x!

2E
0

z8 dz9

@ f ~x!1z92#3/2 @L̃~1!1e1/2L̃~2!#F~z9,x!J ,

~3.18!

wherea(x),b(x) introduce the zero modes ofL̃(0) and in
analogy with the previous calculation we choseb(x)
52 i /2 f (x)21/2]xa(x)1 i e1/2b̃(x), which eliminates the
term e1/2z2 for large z. We anticipate thatb̃(x) will not
appear in the computation to the leading order. Iterating
~3.18! results in

F~w,x!5a~x!2
w2

2 F d

f ~x!
1

1

2
1

1

4
]x

2Ga~x!2
i

2
w]xa

1 i b̃~x!E
0

w

dw8Ae f ~x!1w82. ~3.19!

Matching with the solution in the Batchelor regime will no
require a superposition of manyq modes,

F~w,x!5wl/2(
q

aqeiqxP1/2
q,1~w21!, ~3.20!

which asymptotically forw!1 becomes

F~w,x!'a~x!1
w2

8
]x

2a2
i

2
w]xa1

iw2

4
H@~11]x

2!a#,

~3.21!
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whereH@a(x)# denotes the Hilbert transform~which is de-
fined simply the Fourier space byFq@H(a)#
5 i sgn(q)Fq@a#!. Matching requires thata(x) satisfy both
Eq. ~3.19! and Eq.~3.21! which is true only if

1

2
]x

2a1F d

f ~x!
1

1

2Ga50. ~3.22!

Note that because the region ofLD8 dominancew!e f (x) is
pinched wheneverf (x)50, which happens atx51,6~p/3!
corresponding to one of theur i j u50. Equation~3.22! is sin-
gular at those points. Permutation of therW i plus reflection,
corresponds tox→x1(p/3). Thus Eq.~3.22! can be solved
with antiperiodic boundary conditions on the interv
@0,p/3#. Symmetry aboutx50 @a consequence ofr1
→2r1 r2→r2 implies in addition thata(p/6)50].

Local analysis nearx50 dictates

a~x!5a0@1162/3dx2/31•••#1a1Fx2
62/3

5
dx5/31••• G .

~3.23!

The matching condition~3.22! looks like a Sturm-
Liouville problem with d entering like an eigenvalue. Ye
for Eq. ~3.22! to determine the eigenvalued we must specify
the boundary condition atx50. However, the matching pro
cedure that led to this equation holds only forx@e1/2 since
for smallerx the matching would have had to pass throu
the regionx!w!e1/2 whereasx@w was assumed and nec
essary. In order to bridge the gap, let us consider the re
x!1 and w!1, corresponding to near coincidence of t
two observation points in the correlator, directly via the loc
expansionr1!r2 . In that limit the correlator has the form

C~l!~rW 1 ,rW 2!5rW 2ur2ul21US rW 1

ur2u
,

rW 2

ur2u D , ~3.24!

or in the Euler coordinates,

C~l!~w,x,f!5eifzl/2w2l/2u~w,x!. ~3.25!

The dissipation operator,

LD'eur2u2/3ur1u4/3]1
254e~w214x2!2/3

3@]w
2 1 1

4 ]x
212w21]w]z1w22z2]z

2#, ~3.26!

must be balanced against the leading terms ofL0 @see Eq.
~3.1b!# yielding

H e~w214x2!2/3~]w
2 1 1

4 ]x
2!1Fw2S ]w

2 1
1

4
]x

2D1
i

2
w]xG

1Fl2 S l

2
11D2

3

4G J u~w,x!50. ~3.27!

The last term is due to the action of ther2]2 part ofL0 on
C (l)(rW 1 ,rW 2). Note that all of the terms can be balanced
rescalingw5e3/2w̄,x5e3/2x̄ although according to thel
511ed assumption, the last term remains smallo(e).

Now, we observe that providedw2!e@w21(2x)2#2/3 the
second term in Eq.~3.27! can be neglected compared to t
first and the third, so that the ‘‘inner’’ series solution balan
n

l

-

ing the latter two terms is valid in the narrow strip alongw
50 ~see Fig. 1!. We are interested in the solution that goes
a constant atw5x50 and is locallys wave. Hence,

u~w,x!512
9

4

l21

e
~l13!~w214x2!1/31••• ,

~3.28!

which is valid in the domain extending toe1/2!x!1, w !x.
Equation~3.28! must be compared with~3.23! but the two
can only be reconciled by settingd50.

Thus we conclude@24# thatd501o(e1/2), which is con-
sistent with the numerical solution by Pumir@25#. Curiously,
even though there is no correction to the exponent in
leading order ine, Eq. ~3.22! with d50 leads to a nontrivial
a(x) and hence a nontrivial superposition of the degene
q modes. In the limite→0, singular perturbationselects a
particular superpositionof degenerate Batchelor modes.

The physical meaning ofa(x) is evident from Eqs.~3.20!
and ~3.21!: it controls the behavior of the correlator wit
three points on one line and determines the superpositio
the q modes away from collinearity. The solution of E
~3.22! for d50 that satisfies the symmetry conditions is

a~j!5a0 sinS p

6
2uju D , ~3.29!

which has an apparentuju singularity at the origin. The con
figuration dependence of the correlator away from colline
ity is found from Eq.~3.20! either as a sum overq modes
given by Eq.~C3! or via integral representation~C1!.

C. Flatness and higher order functions for theL model

It is not too difficult to apply the matched asymptotic
perturbation theory developed in Sec. III A to the compu
tion of the higher order multipoint functions for the Lapla
ian model. Let us consider evenn11 order correlators in
d52. The difference with the skewness calculation will

FIG. 1. A schematic drawing of different asymptotic domain
The dotted curve separates the region ofL0 dominance~above!
from the region of theeLD dominance~below!. The crossover oc-
curs atw;o(e1/2) for x.e1/2 and atw;o(e3/2) for x,e1/2. The
perturbative crossover solution holds in the shaded regionA, which
overlaps the domain of validity of the local expansionB about the
w, x50 singular point.
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that we must start with the generaln form of L01LD and
study thel 50 angular momentum sector for which as w
saw in Eq.~2.18! the unperturbed value ofl is equal to 0. As
we shall see the matching will requirel;O(Ae).

As with the eigenfunctions of the Batchelor-Kraichn
operator in Eq. ~2.9! we seek a solution in the form
zl/2Fl(w,x̂), where the scaling dimension is carried by t
determinantz and the arguments are scale invariant and
pend only on the configuration of then11 polygon. The
variablesw,x̂ are defined in Appendix A in terms of th
Euler factorization ofr i

a . The operatorLD in these coordi-
nates, acting onC analogous to Eq.~3.1! has the form~see
Appendix A, Eq.~A12!, but note that heren.d!

1

4e
LD5~12w2!]w

2 1@l2~21l!w2#w21]w

1
l

2 S l

2
21Dw222

1

4

1

12w2 A12
2

1~n22!F ~w2221!w]w2
l

2
w22G

2
1

8
w22 (

a53

n

@A1,a
2 1A2,a

2 1A12w2~A1,a
2 2A2,a

2 !#,

~3.30!

where operatorsAa,b rotating the pseudo-space basisx̂ are
defined in Appendix A, Eq.~A11!. This differs from Eq.
~3.1! ~the n5d52 case! in extra terms on the last two line
~provided we identifyA125 i ]f12

as the derivative with re-

spect to the angle of rotation in thex̂1,2 plane!.
Let us consider only the leading part ofLD in the w→0

limit, which scales asw22. According to the method pre
sented in Sec. III A, this singular part of the perturbati
operator will combine with the leading,O~1!, part of theL0
to define the crossover equation@i.e., the analogue of Eq
~3.4!# in the scaled variablez5w/Ae. Only a few of the
terms in Eq.~3.30! survive:

Lco5w2]w
2 14eF ]w

2 1~l1n22!w21]w

1
l

2 S l

2
1n23Dw222

1

4
w22 (

a53

n

A1,a
2 G .

~3.31!

The w→0 asymptotics of the solution to Eq.~3.31! is
w2l/26QUQ(x̂). Let us seek the solution in the form

Fl~w,x̂ !5w2l/2(
Q

bQUQ~ x̂ !wQ~z!, ~3.32!

whereUQ(x̂) is the eigenfunction of(a53
n A1,a

2 operator with
the eigenvalue2Q2. The w2l/2 divergence in Eq.~3.32!
will be compensated by the determinant factorzl/2 and the
full solution will be well behaved at collinearity as long a
wQ(0) is bounded. We can rewrite Eq.~3.31! as
-

F ~11z2!]z
21~n22!z21]z2

Q2

4
z22GwQ~z!

52lS 21l

4
2z]zDwQ~z!. ~3.33!

Next we set seemingly arbitrarily at this pointl5Aed with
d yet to be determined and keep only the leading term ine.
The operator on the left hand side of Eq.~3.33! is related to
the hypergeometric equation and can be inverted. Howe
we shall only need an explicit solution for theQ50 mode,
which has the form

w0~z!511c2E
0

z

dzz22n~11z2!~n22!/2

2Ae
d

2 E
0

z

dzz22n~11z2!~n22!/2

3E
0

z

dz8z8n22~11z82!n/21O~e!. ~3.34!

The c2 must be set to 0 to prevent divergence atz50. In
the matching region, 1!z!e21/2 expression~3.34! reduces
to

w0~z!512C0z512Ae
d

2
zE

0

`

dz8
z8n22

~11z82!n/2 ,

~3.35!

which must be compared to the asymptotic behavior of
Batchelor-Kraichnan eigenfunctions in thew!1 limit. The
latter are Legendre-Jacobi functions withn501O(Ae) @see
Eq. ~C1!#, which behave like

P0
q,0~w21!'12

uqu
2

w1••• , ~3.36!

whereq is the eigenvalue ofA12 and is not to be confused
with Q2 the eigenvalue(3

nA1a
2 ; the two operators do no

commute. The actual solution is a superposition of theq
modes and the matching requires

(
q

aq~ x̂3 ,...,x̂n!eiqf12P0
q,0~w21!

5(
Q

bQUQ~ x̂a!wQ~w/Ae!. ~3.37!

It can be shown from Eq.~3.33! thatwQ(z)512CQz for
large z; we have seen this explicitly forQ50 in Eq.
~3.35!. @For QÞ0 theCQ constants can be computed fro
Eq. ~3.33! with l50 via the hypergeometric function.#
Hence we match separately the constant and the linez
5w/Ae terms,

(
q

aq~ x̂3 ,...,x̂n!eiqf125(
Q

bQUQ~ x̂a!, ~3.38a!
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(
q

uqu
2

aq~ x̂3 ,...,x̂n!eiqf125
1

2Ae
(

QÞ0
CQbQUQ~ x̂a!

1d

ApGS n21

2 D
2GS n

2D b0U0~ x̂a!,

~3.38b!

where on the right hand side we have separated out thQ
50 contribution and substituted the value ofC0 computed in
Eq. ~3.35!. Unlike C0 , which isO(Ae), otherCQ turn out to
be nonzero in thee→0 limit. Hence, to compensate for th
Ae factor in the denominator on the right hand side
~3.38b! bQ;O(Ae) and only b051. This explains our
choice ofl;O(e1/2): it was necessary since without it Eq
~3.34! and ~3.36! could not be matched.

Let us now determined from Eq. ~3.38!. Since allQÞ0
are higher order ine1/2, the eigenvalued can be determined
by projection onto theQ50 mode. Borrowing Dirac’s nota
tion we rewrite Eq.~3.38! in the form

(
q

aqup,q&5b0up,Q50&1O~Ae!, ~3.39a!

^p,Q50uS (
q

uqu
2

aqup,q& D 5d

ApGS n21

2 D
2GS n

2D b0 .

~3.39b!

Because the perturbation operatorLD respects SO(n) rota-
tion symmetry the total angular momentum,p @defined by
1
2(a,bAa,b

2 5p(p1n22)# remains a good quantum numb
and can be used to label bothq and Q2 eigenstates. Thes
eigenstates have the form ofpth order harmonic polynomials
in x̂a•ê with an arbitrary pseudospace unit vectorê.

Sinceaq can be found from Eq.~3.39a! by projection onto
up,q& states the computation ofd reduces to Clebsh-Gordo
calculations. The calculation is particularly simple for t
case of flatness,n53, whereq,Q are simply the eigenvalue
of rotationsA12 and A13 about the axisx̂3 and x̂2 , respec-
tively. The fourfold permutation symmetry of the physic
correlator implies that the nontrivial mode of the lowest ra
is p54. We have ^p54,q54up54,Q50&5A70/16 and
^p54,q52up54,Q50&52A5/4&; the only nonzero
overlaps, which contribute to Eq.~3.39b!. Evaluating Eqs.
~3.39! we conclude that the flatness exponent is

l45
45

32
e1/21O~e!, ~3.40!

which agrees well with the direct numerical solution ofL0
1LD50 found by the ‘‘shooting’’ method which does no
involve perturbation theory ine. The calculation of the scal
ing exponents for highern is continued in Appendix E.
f

CONCLUSIONS

In the preceeding sections we have presented the sing
perturbation theory tools for calculating low order multipoi
correlators of the passive scalar near Batchelor limit. T
upshot of the analysis was the calculation of the 3d order
function for a phenomenological model~the K model!,
which appears sufficiently realistic to merit detailed compa
son with the experiment. The experimental data for the sc
skewness@26# indicates that its exponent is very close to
which supports our argument that the passive scalar adve
by the turbulent flow is described by a Hopf equation clo
to the Batchelor limit. Furthermore, the calculation of the f
configuration dependence of the three-point correlator sho
allow a detailed test of the model even if the exponent
used to fix the unknown parameter of the model.

Many open questions remain. It would be interesting
calculate the four-point function for theK model in pertur-
bation theory. Although the calculation for theL model in-
dicates that the scaling exponent iso(e1/2) the complete
matching analysis of theK model is considerably more dif
ficult ~than the three-point case! because of the more com
plex structure of the singular manifold. There are also m
fundamental issues. Then-point correlators are just the
eigenvectors of the Hopf operator and are thus dependen
the details of the model. Are there more universal aspect
the problem? Perhaps the asymptotic large deviation be
ior of the probability distribution function or the behavio
near the center of the distribution? In addition to looking f
less model-dependent objects one should seek to improve
effective Hopf models, perhaps by making them more pr
erly hierarchical. Hopefully the contact with experiment w
help direct further efforts in this subject.
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APPENDIX A

Euler parametrization

Here we describe the properties of the Euler parame
ization of rW i which is defined by singular value decompos
tion. Consider the simplest case,n5d52, first with

r i
a[(

a
Ra,i~x!jaRa,a~f!, ~A1!

Fr1
x r2

x

r1
y r2

yG5F j1CfCx1j2SfSx j1CfSx2j2SfCx

j1SfCx2j2CfSx j1SfSx1j2CfCx
G
~A2!

with the notationCf[cosf andSf[sinf. For later conve-
nience, signs are chosen in the rotation matrices so
Ra,a(f)na(u)5na(u2f). The triangle areaz[rW 1∧rW 2

5detr5j1j2. The radius of gyrationR25( i 51
2 rW i

25Tr rrT

5j1
21j2

2. The rotation matrixRa,a(f) describes the spatia
orientation of the (rW1 ,rW2 ,rW3) triangle.
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The pseudospace rotationRa,i(x) can be determined by
diagonalizing a matrix of spatial invariants. Note thatx→x
1p ~or f→f1p! is equivalent to j1→2j1 and j2
→2j2 while j1↔j2 interchange is equivalent tof→f
1(p/2), x→x2(p/2). Therefore by an appropriate defin
tion of x,f we can restrict to 0<uj1u,j2 . Also note that
simultaneousx→x1p and f→f1p leavesr invariant,
which means that the Euler representation is double valu
The coordinatesja ,R(x) can be determined by diagonaliz
ing

rrT5F rW 1
2 rW 1•rW 2

rW 1•rW 2 rW 2
2 G5RT~x!F j1

2

j2
2GR~x! ~A3!

from which

2rW 1•rW 25~j1
22j2

2!sin 2x, ~A4a!

rW 1
22rW 2

25~j1
22j2

2!cos 2x, ~A4b!

which is combined with

rW 1
21rW 2

25j1
21j2

2, ~A4c!

rW 13rW 25j1j2 ~A4d!

for complete determination ofja ,x. Note that thej15j2

point corresponding torW 1•rW 250, rW 1
25rW 2

2 is special: in that
caser5j1R(f)R(j) andx can be absorbed into redefinitio
of f ~alternatively f→f1D, x→x2D is an additional
‘‘gauge’’ symmetry at that point!. Explicitly, for j1Þj2 ,

x5
1

2
tg21

2rW 1•rW 2

rW 1
22rW 2

2 . ~A5!

To relate these variables directly to the triangle config
ration we express ther i j distances:

r i j
2 5~j1

21j2
2!F11

j1
22j2

2

j1
21j2

2 cos 2~x1D i j !G ~A6!

with D1250, D2352(2p/3), D3151(2p/3). The mapping
of xe@0,2p# into triangle configuration space is two to one

For collinear configurationsj150 and we have

r 12

r 23
5

12cos 2x

12cos 2S x2
2p

3 D . ~A7!

The valuesx50, 2(2p/3), 1(2p/3) ~and those translate
by p! correspond tor 1250, or r 2350, respectively. Quite
generally, as is evident from Eq.~A6! the permutation ofr i
points corresponds to the translationx→x1(2p/3). Inter-
change ofr 1 andr 2 corresponds to (j1 ,x)→2(j1 ,x), leav-
ing (j2 ,f) invariant.

More generally fornÞd ~e.g.,n,d! we can write

rai5 (
a51

n

x i
ajaha

a , ~A8!
d.

-

where i 51,...n anda51,...,d. The magnitude of the diago
nal elementsja

2 are defined as the eigenvalues of then3n
matrix rTr, i.e., where we contracted on the real space ind
a. In Eq. ~A8! x is a square orthonormal matrix andhW a are
orthonormal vectors. Clearly Eqs.~A5!, ~A6!, and ~A7! ap-
ply for generald. We can describe the cased,n by inter-
changing the pseudospace and real space labels.

Let us give explicit expressions for various differenti
operators in Euler variables:

]ai5 (
a51

n

x i
aha

a ]

]ja
1 (

a,b,k51

n

~ja
22jb

2 !21~x i
bha

aja

1x i
aha

bjb!S xk
b ]

]xk
aD 1 (

b51

d

(
a,b51

n

~ja
22jb

2 !21

3~x i
aha

aja1x i
bha

ajb!S hb
b ]

]hb
aD

1 (
a51

n

ja
21x i

aS dab2 (
b51

n

ha
bhb

bD ]

]hb
a ~A9!

where the last term contributes only whend.n. ~The case
of n.d is obtained by interchangingx andh matrices.!

The G2 operator is

G252
1

2n S (
a51

n

ja

]

]ja
D 2

1
1

2 (
a

n S ja

]

]ja
D 2

1
1

2 (
aÞb

S ja

]

]ja
2jb

]

]jb
D 2

2
1

2 (
aÞb

ja
2jb

2

~ja
22jb

2 !2

3FAab
2 1Bab

2 2
ja

21jb
2

jajb
AabBabG , ~A10!

where

Aab[ i(
i 51

n S x i
a ]

]x i
b2x i

b ]

]x i
aD ~A11a!

and

Bab[ i (
a51

d S ha
a ]

]ha
b2ha

b ]

]ha
aD ~A11b!

are rotation operators.
It is straightforward but tedious to check that ford5n

52. Equation~A10! is just the Legendre operator in a re
duced variablej[(j1

21j2
2)/2j1

2j2
2 and the anglesx andf:

G25F]j~j221!]j1
]x

21]f
2 22j]x]f

4~j221!
G , ~A12!

the eigenfunctions of which are the Legendre-Jacobi fu
tions

G2@eiqx1 i l fPn
q,l~j!#5n~n11!@eiqx1 i l fPn

q,l~j!#.
~A13!

Equation ~2.7! provides an integral representation of the
eigenfunctions as shown in Appendix B.
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For then3d Laplacian widthd>n,

(
g51

n

]ag
2 5 (

a51

n
]2

]ja
2 1

1

2 (
aÞb

n ja
21jb

2

~ja
22jb

2 !2

3FAab
2 1Bab

2 1
4jajb

ja
21jb

2 AabBabG
1 (

aÞb

n F 2ja

ja
22jb

2 1~d2n!ja
21G ]

]ja

1 (
a51

n

ja
22S dab2 (

b51

n

ha
bhb

bD ]2

]ha
a]hb

a

2~d2n! (
a51

n

ja
22ha

a ]

]ha
a , ~A14!

where all repeateda,b indices are summed from 1 tod. For
n5d52 this can be rewritten in terms ofj andz[detr:

LD54eF]j~j221!]j12~12j22!j]j]z1j2~]z
22]z!

1
1

4

j2

j221
~]x

21]f
2 12j21]x]f!G . ~A15!

APPENDIX B

Integral representation of the eigenfunctions

Here we evaluate the eigenfunctions introduced in
~2.7! explicitly writing r as in Eq. ~A1!, i.e., n̂rê
5(Rxn̂c)TJ(Rfn̂u) whereJ is a diagonal matrix with ei-
genvaluesja . After substituting into the integral in Eq.~2.7!
the Rf andRx rotation matrices can be absorbed byc→c
1x andu→u1f leading to

Tn
ql5~j1j2!2neiqx1 i l f

3E
0

2p dc

2p E
0

2p du

2p
eil u1 iqchn,q

3@j1 cosu cosc1j2 sin u sin c#

5Cq
~n!eiqx1 i l fE

2p/2

p/2 du

p
eil u1 iqtg21@~j2 /j1!tgu#Fj1

j2
cos2 u

1
j2

j1
sin2 uGn

, ~B1!

where the second line is obtained by shifting and integra
over c and usinghn,q(x)5@sgn(x)#quxu2n. Note that u→u
1p or c→c1p change the sign of the argument ofh.
Hence,q,l must have the same parity for the integral to
nonzero. This parity is used in line two of Eq.~2.10! to half
the domain of integration. The multiplicative constant is
.

g

Cq
~n![E

2p/2

p/2 dc

p
cosqc cos2n c

5

sinFpS uqu
2

2n D GG~112n!GS uqu
2

2n D
22nGS uqu

2
111n D . ~B2!

The integral appearing on the second line of Eq.~B1!
defines the Legendre-Jacobi functionPn

q,l(j) with j[(j1
2

1j2
2)/2j1j2 . Note that its constant prefactorCq

(n) actually
vanishes for integer and half-integer values ofn. To define
theP function via the double integral representation appe
ing on the first line of Eq.~B1! in that case requires dividing
by Cq

(n) and taking a careful limit that effectively introduce
a logarithm into theh function in the integrand.

Note that for near collinear configurationsj1j25detr
→0 ~e.g.,j1→0 while j25const!. From Eq.~B1! it follows
that in that limitTn

q,l;udetru2n.
The eigenfunction ofL0 given in Eq.~2.7! in Euler vari-

ables becomes

Cn,q,l
l ~r!5zl/2eiqx1 i l fPn

q,l~j!. ~B3!

Similar manipulations allow us to reexpress theN53,d
53 eigenfunction given in Eq.~2.18! in the Euler coordi-
nates: r i

a5(a51
2 Ra,i(x)jaha

a . Orthonormal vectorsĥ1,2

span the plane ofrW 1,2 while the third vector of Cartesian tria
ĥ3 is parallel torW 13rW 2 . MatricesRa,i andha

a can be rotated
away by shiftingc andu in the integral~see Eq. 2.18! yield-
ing

Cn;q; l ,m,m8
l

~r!5urW 13rW 2ul/2eiqxDmm8
l

~ ĥ !Pn
qm8~j!,

~B4!

wherem8 is not summed.

APPENDIX C

Asymptotic behavior of Legendre-Jacobi functions

To match the zero mode between the regimes where
dissipation dominates,w;0 andw<1 ~Sec. III! required the
largej5w21 limit of P1/2

q,1(j) ~q odd! for the skewness and
P0

q,0(j) ~q even! for the flatness. Using

Pn
q,l5E

2p/2

p/2 du

p
eil u1 iqtg21@~j2 /j1!tgu#

3Fj1

j2
cos2 u1

j2

j1
sin2uGn

~C1!

one finds the required asymptotic expressions:

P0
0,2n~j!5S j21

j11D unu/2

'S 12unuj211
n2

2
j22D , ~C2!
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P1/2
2n11,1~j!5Aj11S j21

j11D n/2S 11
2n

j11D
'j1/21~n1 1

2 !j21/2

2 1
2 ~3n213n1 1

4 !j23/21••• , ~C3!

P1/2
22n21,1~j!5Aj21S j11

j11D n/2

'j1/22~n1 1
2 !j21/2

1 1
2 ~n21n2 1

4 !j23/21••• . ~C4!

APPENDIX D

Skewness for theL model in d53

For the skewness ind53 the general expressions forG2,
Eq. ~A10! and¹2, Eq. ~A9! reduces to the following:

e2 iqx~z!2l/2G2C5w2]w~12w2!]wg

1
1

4

2wqsx2~q21sx
2!w2

~12w2!
g,

~D1!

wherew[j21 and where2B1,25sx , g5e2 iqxzl/2C. Also

e2 iqx~z!2l/2
Rg

2

4
¹r

2C

5F]w~12w2!]w1~11l!~12w2!w21]w1 1
4 l2/w2

1 1
4 ~2qwsx2q22sx

2!/~12w2!

1 1
2 w21S j2

j1
~ ĥ3•]Y1!21

j1

j2
~ ĥ3•]Y2!2D Gg, ~D2!

where ĥ3 is understood as the cross product ofĥ1 and ĥ2
and differentiated accordingly. Our conventionuj1u<j2 en-
ters in the choice of root taken when we reexpressj1 /j2 in
terms ofw.

For l 51 we superimpose functions of the form~2.18! that
are linear inhW i . However, anything linear inh3 is ruled out
because the skewness is even under reflections in a p
containing the external gradient. Thus the Hopf operatorL0
1LD reduces to a pair of second-order differential equatio
in w and it is convenient computationally to writeg
5g1(w)h11 ig2(w)h2 in which casesx becomes the con-
ventionally defined Pauli matrix acting on (g1 ,g2). With
these conventions,g behaves in the Batchelor limit a

wl/2gq
05@ 1

2 uquw1 1
4 (12q2)w2,(12 1

8 q2w2)sgn(q)#/(q221).
The crossover equation becomes forw5g/wl/2:

~w2]w
2 2w]w1 1

4 w2]x
22 1

2 iwsx]x!w

1 2
3 a f ~x!S ]w

2 1
1

w
]w1

1

4
]x

21
5

4
2

1

4
~12sz!

2 1
2 ~11sz!/w

2Dw1 5
3 ~l21!w50, ~D3!
ne

s

wheref (x)51 for theL model equalsF(0,x) @cf. Eq.~3.16!
and below# for the K model.

The eigenvalue problem is derived by matching the co
ponent ofw that dominates nearw50, which is the second
If its amplitude is denoted bya(x) then

a f ~x!~]x
211!a1 10

3 ~l21!a50, ~D4!

when f 51, a5eiqx, which determines the eigenvalue for th
L model. The eigenvalue was also checked by solvingL0
1LD50 numerically, fora in the range 0.01–0.5, and fit
ting (l21)/a to a polynomial in a1/2. For the pseudo-
Kolmogorov dissipation, theK model, the w50,x50
boundary condition dictates (l21)/a501o(a1/2), by the
same argument as ind52, see Sec. III B.

APPENDIX E

Higher order functions for the L model

In the case of generaln we observe thatA12 and Q2

5(a53
n A1a

2 are invariant under rotations inn22-dimen-
sional space orthogonal to the 12 plane. Below we will e
plicitly compute d for the modes that are invariant und
such rotations. In this caseQ50 condition implies that the
eigenfunctions are also singlet under SO(n21) rotations
about x̂2 , the total angular momentum for which isQ2

1(a,b>3
n Aab

2 . This implies that the eigenfunctions are pol
nomials inx̂2•ê and(a(x̂a•ê)2. To simplify the notation let
xa[x̂a•ê for the remainder of this section. We can choo

U0
~p!~x!5H@x2

p#, ~E1!

where H@•••# is the Harmonic projection operator whic
turns thepth order polynomial into an eigenstate of tot
angular momentump; its explicit form will not be needed
here but can be found in Ref.@20#. One can write

~x2!p522p@~x21 ix1!1~x22 ix1!#p

522p(
k51

p

Ck
p~x21 ix1!p2k~x22 ix1!k ~E2!

and thekth term in the sum corresponds toq5p22k. ~Also
note that because the projection operatorH is linear and
rotationally invariant, it commutes withA12.! It follows that

ap22k522pCk
pb0 ~E3!

is correct toO(e1/2). We can now evaluate the left hand sid
of Eq. ~3.39b!

22p21(
k50

p

up22kuCk
pH@~x21 ix1!p2k~x22 ix1!k#

522p21(
k50

p

up22kuCk
p (

m150

p2k

Cm1

p2k (
m250

k

Cm2

k i m12m2

3H@~x2!p2m12m2~x1!m11m2# ~E4!

and project it ontoQ50 SO(n21) singlet by averaging with
respect to all rotations aboutx2 . This average is nonzero
only for terms with even m11m252l and replaces
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x1
2l→b2l(xa

22x2
2) l , where b2l5G( l 11/2)G„(n21)/2…/

G„l 1(n21)/2…G(1/2). Now, the terms involving powers o
~rotationally invariant! xa

2 do not survive the harmonic pro
jection since they have total angular momentum less thap.
Hence the required projection onto theQ50 sector is found
by reading of the coefficient of thex2

p term. This yields the
following expression ford and hencel for arbitrary even
N5n11:

lN
~p!5e1/2

2GS N21

2 D
ApGS N22

2 D 22p (
k51

@p/2#

~p22k!Ck
p

3 (
m150

p2k

Cm1

p2k (
m250

k

Cm2

k ~21!m1bm11m2
. ~E5!
r-

v

,

As before in the case of flatness, the permutation symm
of the N5n11 points implies that the lowest nontrivia
mode hasp5N. Evaluating Eq.~E5! for N54 we recover
the result for the flatness~3.40!. For higherN we find

l652.31e1/21O~e!, ~E6a!

l853.31e1/21O~e!. ~E6b!

Numerical evaluation of Eq.~E5! for large N yields an ap-
proximate expression:lN'(20.3910.45N)e1/2. How-
ever, this perturbative result is only expected to hold
e1/2N!1. Finally, we note that an analogous calculation c
be carried out for the odd moments.
,
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