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Fluid particle model
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We present a mechanistic model for a Newtonian fluid called fluid particle hydrodynamics. By analyzing the
concept of “fluid particle” from the point of view of a Voronoi tessellation of a molecular fluid, we propose
a heuristic derivation of a dissipative particle dynamics algorithm that incorporates shear forces between
dissipative particles. The inclusion of these noncentral shear forces requires the consideration of angular
velocities of the dissipative particles in order to comply with the conservation of angular momentum. It is
shown that the equilibrium statistical mechanics requirement that the linear and angular velocity fields are
Gaussian is sufficient to construct the random thermal forces between dissipative particles. The proposed
algorithm is very similar in structure to thgsothermal smoothed particle hydrodynamics algorithm. In this
way, this work represents a generalization of smoothed particle hydrodynamics that incorporates consistently
thermal fluctuations and exact angular momentum conservation. It contains also the dissipative particle dy-
namics algorithm as a special case. Finally, the kinetic theory of the dissipative particles is derived and explicit
expressions for the transport coefficients of the fluid in terms of model parameters are obtained. This allows us
to discuss resolution issues for the mod&1063-651X98)07803-9

PACS numbd(s): 03.40.Gc

[. INTRODUCTION force. The technique thus allows one to solve partial differ-
ential equatioPDE’s) with molecular dynamics codes. An-
Complex fluid systems such as colloidal or polymeric sus-other advantage of a Lagrangian description relies on the fact
pensions, micelles, immiscible mixtures, etc., represent ¢hat no expensive recalculations of the mesh are required as
challenge for conventional methods of simulation due to thehe dynamics takes care of it. Smoothed particle hydrody-
presence of disparate time scales in their dynamics. There igamics has been used for simulating astrophysical flows with
presently a great effort in developing new techniques ohonviscous termghis was the original aim of the technique
simulation that overcome some of the difficulties of micro-at the early 1970'§2]), and very recently in the study of
scopic (molecular dynamigsand macroscopignumerical  viscous[3,4] and thermal flow$5,6] in simple geometries. It
solution of continuum equatiopsonventional techniques.  has not been applied to the study of complex fluids and this
On one hand, molecular dynamics captures all the demay be due, in part, to the fact that there is no easy imple-
tailed dynamics from times scales of the order of atomicmentation of Lagrangiafiuctuatinghydrodynamicg7] with
collision times to macroscopic hydrodynamic times. How-SPH. Such implementation would be highly desirable in or-
ever, in order to explore these large macroscopic times thder to study the Brownian realm in which many of the pro-
number of particles required is enormous. Although largecesses in complex fluids take place. It must be noted that the
scale molecular dynamics simulations with millions of par-particulate nature of the algorithm in SPH produces fluctua-
ticles are currently performed one realizes that not all theions that, from a computational point of view, are regarded
information generated is actually required or even relevant aés numerical noise It is not clear that in the presence of
the time scales at which rheological processes in compleyiscous terms this noise satisfies the appropriate fluctuation-
fluids take place. dissipation theorem. A second problem with SPH is that for
On the other hand, from a continuum point of view theviscous problems the noncentral nature of the viscous shear
conventional solution of partial differential equations like theforce breaks the conservation of angular momentum, even
Navier-Stokes equation encounters difficulties due to thehough the initial continuum equations are perfectly isotropic
cumbersome treatment of moving boundary conditions to beand conserve angular momentum.
imposed in a system as, for example, a colloidal suspension. In between microscopic and macroscopic descriptions,
These problems can be alleviated by the use of Lagrangiamesoscopic levels of description are gaining attention in or-
descriptions in which the discretizing grid moves accordingder to address flow problems in complex fluids and/or geom-
to the flow. A particularly exciting development has been theetries[8]. Lattice gas automaf®,10], lattice Boltzmann au-
technique of smoothed particle hydrodynanm(@®®H), which  tomata[11] or the direct simulation Monte Carlo method for
is essentially a discretization by weight functions that transdilute gaseg12] have been useful tools in studying hydro-
forms the partial differential equations of continuum me-dynamic problems in complex geometries. For the case of
chanics into ordinary differential equatiorid,2]. These colloidal suspensions, lattice Boltzmann techniques represent
equations can be further interpreted as the equations of ma serious competitor to Brownian dynamjds] or Stokesian
tion for a set of particles interacting with prescribed laws ofdynamics[14] in that the computational cost scales linearly
with the number of colloidal particles whereas, as a conse-
quence of the long ranged hydrodynamic interactions, it in-
*Electronic address: pep@fisfun.uned.es creases with the cube of the number of particles in the latter

1063-651X/98/5{3)/293(0(19)/$15.00 57 2930 © 1998 The American Physical Society



57 FLUID PARTICLE MODEL 2931

techniqueg11]. A drawback of the lattice approaches is that We show that the form of the equations of this fluid par-
the dynamics is constrained by the lattice. This makes théicle model at zero temperatuevhen fluctuations are ab-
consideration of boundary conditions on shaped bodies cunsen} and with no angular variables is identical to the form of
bersome. the equations obtained in a simple version of smoothed par-
In the same spirit of looking at mesoscopic descriptions, dicle hydrodynamics as applied to fluid systems. In this
very appealing idea was introduced by Hoogerbrugge angense, this work can _be regard_ed as a _generaliz;_itio_n of SPH
Koelman[15,16] in which a coarse grained description of the that includes fluctuations consistent with the principles of
solvent fluid in terms of dissipative particles was devised Statistical mechanics and that conserves exactly the total an-

The technique was coined dissipative particle dynamicQUIar momentum of the system. In other words, the obtained

(DPD) and it is an off-lattice technique that does not suffer/Uid particle algorithm may be viewed as a Lagrangian dis-

from the above mentioned drawbacks of lattice gas and |at<_:retization of the equations @othermal fluctuating hydro-

tice Boltzmann simulations. DPD consists essentially on éjynamlcs. . . .
molecular dynamics simulation in which the force between The.p?‘.pef IS struptured_as TOHOWS' Section Il conIS|ders
particles has, in addition to a conservative part, a dissipativg1e dgfmmon of'a fluid particle n terms of the Voronoi tes-
part represented as a Brownian dashpot. This Browniaﬁellatlon and this serves to motivate the type of forces and
dashpot damps out thielative approaching velocitgetween torques between fIU|d_ particles introduced in Sec. I_II. Section
particles and introduces a noise term that keeps the system W presents the Qquwalt_ant Fokker-Planck equation to .the
thermal agitation. The dissipative particles are understood agduations of motion. This allows one to establish require-
“droplets” or cluster of molecules that interact with each ments on the model parameters in order to have a proper

other conserving the total momentum of the sysfag 17, equilibrium distribution. A summary of the model is pre-

This global conservation law has its local counterpart in theSenteOI in Sec. V. Section VI contains the kinetic theory of

form of a balance equation for the momentum density, antﬁhe model in the simple case when conservative forC‘?S are
the dissipative particles behave hydrodynamically in the lo psent. The.transpgrt coefficients are computed and th's. per-
wave number and frequency regime. mits us to discuss its dependence on the number density of

DPD has received substantial theoretical support. It haguid particles ir) Sec. VII. Afingl discussion and conclusions
been shown that the original DPD algorithm of Rdf5] has are presented in the last section.
associated, under a slight modification, a Fokker-Planck
equation with Gibbs equilibrium stat$8]. The extension to
multicomponent systems has also been considgtéf A
first principles derivation of DPD for a harmonic chain has
been presented if20]. The macroscopic hydrodynamic In an attempt to better understand the physical meaning of
equations have been obtained with projection operator tecitdPD, we have devised a coarse graining procedure for a
niques[21]. A very important further step has been the for- molecular dynamics simulation of point particlegoms in-
mulation of the kinetic theory for DPD by Marsh, Backx, teracting through continuous potentigls’]. The coarsening
and Ernst{22], which allows one to relate the transport co- is performed through the Voronoi tessellation, which allows
efficients in the hydrodynamic equations with the DPDone to divide physical space into a set of nonoverlapping
model parameters. Finally, the effect of finite time steps orcells that cover all the space in a well-defined manner. Given
the equilibrium state of the system has been considered ia discrete set of poinighat can be distributed at randpthe
[23]. DPD has been since applied to the study of colloidalVoronoi tessellation assigns to each pdicdlled “cell cen-
suspension$16,24,23, porous flow[15], polymer suspen- ter”) that region of space that surrounds it and that is nearer
sions[26], and multicomponent flowg27]. to this point than to any other point of the set. With this

In this work we provide a more precise meaning to thetessellation the atoms of the molecular dynamics simulation
concept of “droplet” or “fluid particle” from a Voronoi are distributed into clusters around the centers of the Voronoi
tessellation of physical space. This conceptual frameworkells. The practical way to perform the Voronoi tessellation
allows one to model the different processes that intervene iin the simulation is by computing the distance of a given
the interaction between fluid particles or mesoscopic clusteratom to all the center cells and assign that atom to the nearest
of atoms of the fluid. The outcome is a generalization of thecenter. Subsequently, the Voronoi cells are set in motion
algorithm of DPD that includes shearing forces between theaccording to the velocity and acceleration of the center of
fluid particles. These forces are noncentral and do not cormass of the particles that are within the cell. In this way, the
serve total angular momentum. This enforces the inclusion iells capture the motion of the fluid at mesoscopic scales.
the model of a spin variable with a well-defined physical The Voronoi cells are a well defined realization of what is
meaning for the fluid particles. In this way angular momen-loosely regarded in fluid mechanics textbooks as “fluid par-
tum conservation is restored. We also investigate the strudicles.” We would like to know how these fluid particles
ture of the random forces that must be included in order tanove, that is, which explicit law of force between fluid par-
recover a Gaussian distribution of linear and angular velociticles would reproduce the actual motion of the Voronoi cells
ties for the fluid particlegnote that the equilibrium fluctua- observed in the simulations. It is apparent that the number of
tions of the hydrodynamic velocitffeld are Gaussian The  cells is much smaller than the number of atoms in the mo-
structure of the random forces is postulated after analoglecular dynamics simulation, and therefore if one knows how
with the structure of the random stress tensor in terms of théhe clusters move, one can try to simulate the clusters and
Wiener process in the fluctuating hydrodynamics theorycapture the mesoscopic behavior of the underlying liquid
[29]. with much less computational effort.

Il. FLUID PARTICLES
THROUGH VORONOI TESSELLATION
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For sufficiently large clusters, that is, when the typicalwhere we have decomposed the angular momentum of the
distanceh s between cell centers is much larger than thesystem of particles in cell as the sum of the angular mo-
typical distance\ ;. between atoms we expect that the clus-mentum of the center of mass with respect to the origin plus
ters movehydrodynamically More precisely, we consider the intrinsic angular momentus of the particles of the cell
the conserved densities with respect to the center of mass of the cell. We could, in
principle, compute the inertia tenséy for the system of

przy, particles in cellr and define the angular velocity, through
r
P _
9=y, ® o=17'S:. @
r
er=5, The reason the angular momentum density is usually not
Vi considered in the derivation of Newtonian hydrodynamics is

. that the second contribution in E) vanishes in the “con-
whereM, ,P, ,E, are the instantaneous total mass, momen-. NS )
nuum limit.” This can be seen by noting th&t must scale

tum, and energy, respectively, of the system of particles thatf

happen to be within the Voronoi cell centered &ndV, is as a typical size of the cell. In the continuum limit this typi-
the volume of the cell. One also introduces cal distance goes to zero and there is no intrinsic angular

momentum contribution. The situation here is different from
o the case of molecular fluids with spj@8], where the rota-
EEv (2 tion of the molecules themselves originates an angular mo-
mentum that does not scale with the size of the cells and
which is the instantaneous velocity of the center of mass ofroduces a finite value in the continuum limit.
the system of particles within the Voronoi cell at
If (1) the cells are large enough for the system of particles
that are within it to be considered as a thermodynamic Sys- lIl. MODELING THE FORCES AND TORQUES
tem, and(2) the variations of the conserved quantities from BETWEEN ELUID PARTICLES
neighbor cells are small, then the variablds obey the
equations of fluctuating hydrodynamitg| (see[29] for the

nonlinear case The conserved quantitigd) are subject to

fluctuations because the atoms can enter and go out from tlﬁ"}eset of simplifying hypotheses. I.n the real clusters, the mass
Voronoi cells due to their thermal agitation. The size of fluc-'S @ fluctuating quantity as particles can enter and go out

tuations, that is, the noise amplitude appearing in the eque{fom the Voronoi cell. Also, the'shape of thg cglls changes as
tions of fluctuating hydrodynamics is proportional to the the cells_movc_—z. Howe\_/er, the_: first assumpthn is t_hat aII_cIus-
square root of the inverse of the volume of the cell, in ac1€rs are identical, having a fixed massand fixed isotropic
cordance with the 1/N dependence of fluctuations in equi- Inertia tensor of moment qf inertih We assume t.hat the
librium ensemble theory29]. Therefore, depending on the State of the cluster system is completely characterized by the
“resolution” (the number of Voronoi cells per unit volume Positionsr;, the velocities of the center of magsand the
used to describe the system, the amplitude of the noise ter@ngular velocitiesw; . Note that we do not include any in-
in the hydrodynamic equations that govern the instantaneou¢rnal energy variable and therefore the resulting algorithm
values of the conserved variables will be different. will not capture appropriately the thermal effects that occur
Now, one is faced with two possible routes in order toin real fluids. This may be a minor problem when one is
simulate the dynamics of clusters. The first route is to coninterested only in rheological properties. A generalization of
sider the conserved discrete variablés as the state vari- the model including energy conservation has been recently
ables and update them according to some discretized versigtoposed independently in Ref80,31).
of the equations of hydrodynamics. This poses some subtle The next step is to specify the forces and torques that are
problems regarding the formulation @tictuatinghydrody-  responsible for changing the values of the linear and angular
hamics in & moving mesh, in particular with the treatment ofyeocities of the clusters. We model the forces between two
the 1AV, singularity. The second route, which is the one wecjusters by considering several heuristic arguments about
follow in this paper, is tgpostulatethe laws of force between how one expects that the actual Voronoi clusters interact
cells. Despite the strong assumptions made to model thesgith each other. In this respect we make first a strong pair-
forces, the final expressions satisfy symmetry requiremenigjise additivity assumption. In the real system one expects
that ensure that the behavior of the clusters will be, on averihat the force between two clusteithat is between all the
age, that of real clusters. atoms of the first cluster that are interacting with the atoms
A final word on the angular momentum is in order. We of the second clustgmill depend in general not only on the
have not included in the above set of conserved varialiles  state variables of these two clusters but also on the configu-

Ve

In this section we formulate the fluid particle model under

the angular momentum density defined by ration of other neighboring clusters. For the sake of simplic-
ity, though, we neglect this collective effect and assume that
= § the force between two clusters depends only on the position
J=rxg+—, () "
Uy and velocities of these two clusters.
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The equations of motion are therefore wherev;; =v;—v; is the relative velocity and the dimension-
_ less matrixMT(rij) is the most general matrix that can be
ri=vj, constructed out of the vectoy;=r;—r;, this is

o1 MT(rj)=A(rj)1+B(r;)e;e;, (10)
Vi:mz Fij ©)
J#i

where 1 is the unit matrix,e;=r;; /rj; is the unit vector
joining the particlesy;;=|r;;| and the dimensionless func-
: _}2 N tions A(r) and B(r) provide the range of the force. The
W= | = ij fricti . . .
7 riction coefficienty has been introduced as an overall factor

for convenience and has dimensions of inverse of time. The

whereF;; ,N;; are the force and torque that clusfeexerts on first contribution to the dissipative forg®) is in the direc-

clusteri. We require that the forces satisfy Newton’s third tion of the relative velocities and tends to damp out the dif-

law, Fjj=—F;;, in such a way that the total linear momen- ference between the velocitids.is a shearing force, which
tum P=3;mv; is a dynamical invariantP=0. In addition, is noncentral The second contribution is directed along the
we assume that the torques in Ef) are given by joining line of the particles and damps out the relative ap-
proaching motion of the particles. The dissipative force in
Nij=— 31 X Fj (6)  the original algorithm of Hoogerbrugge and Koelman is ob-

) . tained withA(r) =0 [15]. Note that the form of the forcEE
and one checks immediately that the total angular momens the more general expression for a vector that depends on
tum rij and is linear in the relative velocities.
We now discuss the effects of rotation in the dissipative
J=2 rxXp+le (7)  force. Let us assume for a moment that the clusteand |
[ were spheres of radius;/2 in contact and spinning with
. angular velocitiego; , w; With no translational velocities. We
is exactly conserved]=0. would have a relative velocity at the “surface” of the
We will model the force between clusters according to  spheres equal térij X (w;+ ;) and it is plausible to asso-
_ ciate a friction force between the spheres proportigiral
Fi=Fs+F+F +F;. (8)  matrix sensgto this relative velocity. Therefore, the rota-
tional contribution to the dissipative force is of the form
The first three contributions are deterministic forces whereas
the last one is random. We discuss them separately. R_ R
Fij=—ymM7(rij)-

A. Deterministic forces . . . .
_ L ) _Again, the dimensionless matriM® depends only on the
The first COI’]tI‘IbutIOI’Fij to the force is assumed to arise vectorr;; and therefore it must have the form

from a conservative potenti®l(r) that depends on the sepa-
ration distance between clusters. In H&f7] we have argued MR(rij)=C(r;;)1+D(rij)&;e; (12
that a plausible definition of this potential is through the
logarithm of the radial distribution function of cluster cen- whereC(r),D(r) are scalar functions. The first part of the
ters. The resulting soft potential has a bell-shaped form anghatrix gives rise to a friction force proportional to the rela-
has the virtue that when used as the potential between clu§ve velocity at the “surface” of the spheres. The effect of
ters in a molecular dynamid®1D) simulation, it reproduces this force is twofold. On one hand, the spinning of a particle
consistently the radial distribution function of the real clus-causes translational motion onto the neighboring particles.
ters(as has been checked through an actual MD simulation On the other, it also causes rotational motion in such a way
It therefore captures the static or equilibrium properties ofthat two neighboring particles prefer to be with opposite an-
the system of clusters. The physical interpretation of thisgular velocities(in a sort of “engaging” effect The pres-
force is that it provides the excluded volume effect of eachence of a third particle frustrates the spinning of both par-
cluster. The center of the clusténd its center of magss  ticles and, therefore, the global effect of this force is to damp
usually located “in the middle” of the cell and therefore it is out to zero the angular velocities of the particles. The second
not very probable that two cluster centers are closer to eacgontribution to the forcg12) is actually zero because the
other than the typical size of the cell. cross product is perpendiculareég . We retain this term just

It is clear, though, that this conservative contribution canto maintain the analogy between both matri3in Eq. (9)
not be the only contribution to the force because it does noandM" in Eq. (11). Finally, we use the same value fgrin
capture friction effects between clusters. These friction efEq. (9) and in Eq.(12) because any difference can be taken
fects will depend on the velocities between clusters and wilinto account through the functiows(r),B(r),C(r),D(r).
give rise to dissipative processes. The second contribution in If we use, instead of the polar vector representation for
(8) is a friction force that depends on the relative translathe angular velocity, the antisymmetric tensor representation
tional velocities of the clustersj with positionsr;,r; and — @yxy= — =, (cyclic), we can write the force in the form

velocitiesv; ,v; in the following way:
r..
R_ R ij
Fl=—ymMT(r;)- vy, (9) Fij=—ymM7(ryj) - (wi+ @) (13
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which shows explicitly the vectorial nature of the fordbat ~ From this stochastic property, one derives straightforwardly
is, FiFJ-‘ transforms under rotations as a vegtor the following rules from the different parts in E(L4):

B. Random forces tr[dW“ r]tr[dw“ r] = [ 5” §i i + 5” ’ 5“ r]D dt,

The first three contributionEy; ,Fj ,Ff} to the force be- dWi dw
tween clusters in Eq8) are deterministic while the last one 1
is stochastic. The reason we introduce a random force is that _
it is well known that whenever a coarse graining procedure is [0y 017y + 81y 9 '][2 (OpurBptur + Oyuar Ours)
performed, dissipation and noise arise and both are related 1
through a fluctuation-dissipation theorem. After discussing _ =
the form of the dissipative forces we will now consider the D
form that the random force should have. / /

Inspired by the tensorial structure of the random forces dwi‘i“,“‘ dwﬁV,V =[68j6irjr+ 88511
that appear in the fluctuating hydrodynamics thd@$j, we
expect that the dissipation due to shear has associated a

6

1

1
5 6 ! /_5/“/' /,L/V)dt’

traceless symmetric random matrix and that the dissipation XE( uwrZuty
due to compressions has associated a diagonal trace matrix. (18)
By symmetry reasons, we expect that the noise associated to
rotational dissipation will involve an antisymmetric matrix. tr[dWii,]dVVﬁFO,
Therefore, wepostulatethe following velocity independent
random force: tr[dWiir]dWﬁ;O,
~ ~ —S_ ~ 1 r !
Fijdtz O'm( A(r”)dWI] + B(r”)Btr[dW”]l dWiSiI;L,U« dWﬁ‘;V =0.

_ These expressions show that the traceless symmetric, the
+ C(fij)dWﬂ\) "€, (14  trace, and the antisymmetric parts are independent stochastic
processes. The apparently complex structure of the random
force(14) is required in order to be consistent with the tensor
whereA(r),B(r),C(r) are scalar functionsr is a parameter ~ structure of the dissipative friction forc€8) and(11). This
governing the overall noise amplitude, and we introduce thevill become apparent when considering the associated
following symmetric, antisymmetric and traceless symmetricFokker-Planck equation in the next section and requiring that
random matrices it has a proper equilibrium ensemble.
Despite the heuristic arguments and strong assumptions
1 made in order to model the fordg; between clusters, we
dWﬁ’”z S[AWA+dW]H], note that this force is the most general force that can be
2 constructed out of the vectors,r;,v;,vj,w;,w; and that
satisfies the following propertiegl) It is invariant under
1 translational and Galilean transformations and transforms as
A . - . .
dWij‘“’= g[dWﬁ”—dWﬁ“ , (15) a vector undgr_ rotathns(_Z) It is I_mear in the_ linear and
angular velocities. This linearity is required in order to be
consistent with the Gaussian distribution of velocities at
1 equilibrium, as we will show later(3) It satisfies Newton’s
dWp =dw; - 5tr[dwﬁ]l, third law F;= —F;; and, therefore, the total linear momen-
tum will be a conserved quantity of the system.

The overline in a matrix denotes its traceless part. Heres, IV. FOKKER-PLANCK EQUATION
the physical dimension of space adW/" is a matrix of AND EQUILIBRIUM STATE
independent Wiener increments, which is assumed to be

symmetric under particle interchange The equations of motion(5) are Langevin equations,

which in the form of proper stochastic differential equations
(SDE) become

dWi"=dwj". (16)

dri = Vidt,

This symmetry will ensure momentum conservation because 1 . . . _
Fij=—F; . The matrixdW/" is an infinitesimal of order dVFEZ [Fii,+Fii,+F”,]dt+Z dvii,, (19
1/2, and this is summarized in the Ito mnemotechnical rule : :

i’

1 hiir T R Mg iy~
’ 2 y — — — —X o .. —_— —X Gy
AW AW = (8,810 + 851 8318,08, wdt. (A7) 0 T2 o ¥R Rl T2 Xy,

i’
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where we have introduced

+B(rii1)

i’

- 1.
dvii = EF“ dt=0 (A(r“ )dW

1 ~
XBII‘[dW”/]l-I—C(I’“/)dW{?,> €. (20)

In principle, one should specify which stochastic interpreta-
tion (It0 or Stratonovich must be used in these equations

2935

The steady state solution of E(R1), d,p=0, gives the
equilibrium distributionp®%. We now consider the conditions
under which the steady state solution is the Gibbs canonical
ensemble:

1
pr,v,w)= ZeXp{—H(r,v,w)/kBT}

:%exp[—<zi gvi2+|§wi2+V(r)>/kBT],

(26)

[32]. Nevertheless, both interpretations produce the same an-

swers because the random forces are velocity independentwhereH is the Hamiltonian of the systeri, is the potential
Associated to the SDEL9) there exists a mathematically function that gives rise to the conservative foré€s kg is

equivalent Fokker-Planck equati¢RPE). The FPE governs Boltzmann’s constant is the equilibrium temperature, and

the distribution functiorp(r,v,w;t) that gives the probabil-

Z is the normalizing partition function. We note that the

ity density that theN clusters of the system have specified velocity and angular velocitfieldsare Gaussian variables at
values for the positions, velocities, and angular velocitiesequilibrium and, therefore, one expects that the distribution

We show in the Appendix that the FPE is given by

ap(r,v,0;t)=[L+LT+LRp(rv,o;t). (2D

The operatol© is the usual Liouville operator of a Hamil-
tonian system interacting with conservative foré€sthis is,

1
E Vit (9r, i E Il(?V (22)
The operatord.",LR are given by
0
T T
LT=23 oIk L+LR,
I
(23
m a [r
R 1] T R
- lif7i de; | 2 Ly +bad).
with
o2
J Jd
T=__ T _
L F 2 T” (9Vi an '
(24)
m o? I J J
R_ R 1)
=—_ el =X —+ —].
L F | 2 TIJ 2 &(x)i &w]D

Here, the matrixT;; is given by

1. ~ 1\~ 1_
Tij :E[Az(rij)+cz(rij)]1+ - B)Az(rij)+ EBZ(HJ)

2

€& - (29

1.
_Ecz(rij)

function of the discrete values of these fields is also Gauss-
ian.

The canonical ensemble is the equilibrium solution for the
conservative system, i.&.Cp®%=0. If in addition the follow-
ing equations are satisfied

ed=(
|]p 27)

|]p =0,
then we will haveL p®¥=0 and the Gibbs equilibrium en-

semble will be the unique stationary solution of the dynam-
ics. Equationg27) will be satisfied if

_om 28
Y= m, (28

which is a detailed balance condition, and also
MR(rij)=MT(rj)=Tj. (29

This is the fluctuation-dissipation theorem for the fluid par-
ticle model. We observe, therefore, that the initial hypothesis
for the tensorial structure of the dissipati¥®), (13), and
random(14) forces was correct and consistent with equilib-
rium statistical mechanics.

A final word about an H-theorem is in order. It has been
shown in Ref.[22] that the original DPD algorithm has an
H-theorem that ensures that the equilibrium ensemble is the
final solution for whatever initial condition selected. In the
model presented in this paper there is also a functional of
p(2) that is a Lyapunov functional. It is not necessary to
prove again that an H-theorem exists for the fluid particle
model, because generalH-theorem exists foany Fokker-
Planck equatiof33]. The only condition is that the diffusion
matrix accompanying the second derivative terms of the FPE
is positive(sem) definite. However, in the model presented
in this paper the diffusion matrix is positive semidefinite by
construction, because the FPE has been obtained from a
SDE. The diffusion matrix is obtained from the product of
two identical matrices. Therefore, its eigenvalues are the
square of the eigenvalues of these matrices and are necessar-
ily positive (or zerg.
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V. SUMMARY OF THE FLUID PARTICLE MODEL

In this section and for the sake of clarity we collect the
results presented so far. The fluid particle model is define

by N identical particles of mass and moment of inertia.

The state of the system is characterized by the positipns

velocitiesv;, and angular velocities; of each particle. The
forces and torques on the particles are given by

Fi = 2 F” y
(30)
rij
N;=— 2 7 X Fij ,
where the force that particieexerts on particlé is given by
Fi=F +F+Fi+F;. (31)

The conservative), translational T), rotational R), and
random(tildes) contributions are given by

Fi=—V'(rijs;,
F;IJT: — ’ymT” 'Vij ,

(32

F:T: - ’ymT” .

rij
?X(a)i+wj)
~ _ — e~ 1
F,Jdt=(2kBTym)1/2( A(I’,])dW” + B(r”)Btr[dW”]l

The random bits are defined in E@L5) and its stochastic
properties are given in Eq18). Here, the matrixT is given

by
Tij=A(rij)1+B(rjj) &8, (33
where
1 —
A(r)IE[AZ(f)JFCZ(f)],
(34

1. —~ 1 ~
B(r)=5[A%(r)=C*(r)]+ g [B*(r) = A%(n)].
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The model presented in the language of SDE is more

appropriate for its direct use in simulations. For theoretical

nalysis it is more convenient to use the corresponding FPE,
hich is given by

ap(r,v,0;)=[L+LT+LRp(r,v,0it), (35
where
g FF 4
C—_ AT
L Eiv, ar, moav;’
=S LTl (36)
igZioy - TuE
m da |
R_ ] T R
=——2 — | =X[Li+L]].
L 5% doy |\ 2 (L L”])
Here, the vector operators are given by
. keT[ 0 ]|
Lij=7Tj- Vij"’Fé,_Vi_é,_Vj =vyTij- Vi,
rii kgT/r;; d d
R_ 1] B ij
= | =XTw 4w ]|+ — =X —+ —
b VT”[ o <ot v |(2 [awi awjl)]
3
=yTij- Wi S

where the last equality defines the two vector operators
Vij 1Wij .

VI. KINETIC THEORY

One would like to predict the macroscopic behavior of the
fluid particle model and, in particular, check that this behav-
ior conforms to the laws of hydrodynamidss expected
from symmetry considerationsind predict the value of the
transport coefficients in terms of model parameters. The glo-
bal conservation laws of mass and linear and angular mo-
mentum in the fluid particle model have a local counterpart
in the form of balance equations. Our aim is to formulate
these equations of transport within a kinetic theory approach,
as has been done by Marsh, Backx, and Ernst recently for the
case of the original DPD model in R¢R2]. A derivation of
the hydrodynamic equations with a projection operator tech-
nique for the original DPD algorithm was presented in Ref.
[21]. The projector used was the Mori projec{@4] and the
resulting equations were the linearized equations of hydro-
dynamics. By using dime-dependenprojector one can ob-
tain the nonlinear equations of hydrodynamics with the

The model is thus specified by providing the scalar functransport coefficients expressed in terms of Green-Kubo for-

tions V(r),A(r),B(r),C(r). We note that the casé(r)

mulas[35]. Although explicit calculations can be performed

=C(r)=0 corresponds to the original DPD algorithm of Of these Green-Kubo formulas under certain approximations
Hoogerbrugge and Koelm45,18. In this case, the random [36], we adopt in this paper the approach of kinetic theory,

force is given in terms of a single random numbge trace,

allowing for a straightforward comparison with the results of

the forces are central and the torques vanish, rendering trRef. [22].
spin variables unnecessary. Note that there is some freedom

in selecting the functioné\(r),B(r),C(r) and it might be
convenient to také(r) or C(r) equal to zero in order to

A. General rate of change equation

The starting point is the formulation of the general rate of

compute only four of seven random numbers in each step afhange equation for an arbitrary functi@{z) wherez is a

a simulation.

shorthand for the set of all positions, velocities, and angular
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velocities of theN particles of the fluid. By using the dp=—V-pu,
Fokker-Planck equatiof85), we can write (42)

6t<G>:f dz G(2)ap(z;t) dpu=—V:[puut1],
where the total stress tensbi=TI*+TI¢+1II° and the ki-

_ f dz GA2)[LS+ LT+ LR]p(zt) netic, conservative, and dissipative contributions to the stress

tensor are
=f dzp(z)[LCT+LT +LR*]G(2), (39 HK=<mZ [vi—u(r,t)][vi—u(r,t)]6(r—ri)>,
|
where an integration by parts is performed and the adjoint 1 1
operators are defined by H°:<§2 Fﬁrijj d)\ﬁ(r—ri—xrij)>, (43
Ve 0
FE o

d
LCY =D vy —+— —, 1 1
Ei Yo moav HD:_7m<§i%i rijTij.gijjod)\5(r—ri—>\rij)>.

LT+=1y E (‘—)”_ + V_Vij )Ty = (39) Here,g;j = vi; +1ij X[ o; + wj]/2_ is th_e relative velocity at the
iJ#i Vi “surface of contact” of two identical spheres separated a

distancer;; . We note that the kinetic and conservative parts

to the stress tensor are symmetric tensors but the dissipative

m r -
LRY=— T = XTi- (W + Wij)) part is not and therefore we must be careful with the ordering

7>
i,j#i

2 ey’ not \
of the indices. In Cartesian components we understand the
Here, the vector operators are given by momentum ba'lan_ce e_qqano(ﬁZ) as follows (summation

over repeated indices is impligd

i KeT| 0 9 apu=a,[puru’+1L,,] (44)

v| V|] ’
! m | av;  dv;
(40) and the dissipative stress tensor has the form
rij kBT rij J J
W =—| = X[o+e]|+— =X|—+— 1 o 1
g 2 o 112 [day  doy Hﬁyz—ym Z%i riThg; Od)\ S(r—ri—=\rjj) ).

to be compared with Eq37). (45)

Concerning the angular velocity field, by using again Eq.
B. Balance equations (38) on the definition(41) we obtain

The conserved density fields are expected to behave hy-
drodynamically. The conserved density fields are the mass gtngz_v.<2 Viwi'5(f—ri)>
densityp(r,t)=mn(r,t), wheren(r,t) is the number density [
field; the momentum density(r,t)u(r,t), whereu(r,t) is m
the velocity field; and the total angular momentum density + _7< 2
field J(r,t)=L(r,t)+ (r,t) whereL(r,t)=rX p(r,t)u(r,t) b\ iT=i
is the macroscopic angular momentum density &dt)
=In(r,t)Q(r,t) is the intrinsic angular momentum density
or spin density. HereQ(r,t) is the angular velocity field.
The number density and the velocity and angular veloci
fields are defined by

r..
%XTij 'gij> 5(r—ri)>- (46)
Note that the rate of change of the s@Br In€Q cannot be
expressed entirely as the gradient of a flux. This is a reflec-
t);ion of the fact that the intrinsic angular momentis not
a conserved quantity. In the same way, the macroscopic an-
gular momentuni =r X pu is not conserved either, as can
be appreciated by taking the cross product of the momentum
n(r,t)= < Z 5(r—ri)>, balance equatiof42) with the position vector, that is,

diL=—rXV-(puu+II)
n(r,t)u(r,t)=<2i vié‘(r—ri)>, (41) =—V-(Lu+rxII)+ 2", (47)

wherell” is the antisymmetric part of the stress tengox-
n(r,t)Q(r,t):<E o, 5(r—ri)>. pressed here as an axial vector, thatlE*= e II*",
wheree®*" is the Levi-Civita symbal If the stress tensor is
symmetric(i.e., its antisymmetric part is zexothe macro-
By applying Eq.(38) to the mass and momentum densitiesscopic angular momentum is conserved. In the fluid particle
(41) we obtain the set of balance equations model the noncentral nature of the forces implies that the
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antisymmetric part of the stress tensor is not zero. Actually, it is givefabyan axial vector

I 1
7J><Tij~gij)fod)\é(r—ri+)\rij)>. (48)

2HA=—7m<42
i,]#i

If we add the last term of Eq46) with the last term of Eq(47), which is (48), we obtain

> X Tij G

1
o(r—ry)— fo dA 6(r—ri+)\rij)}>

2I1A + ym<_2
i,]#i

%XTij'gij)ﬁ(r_ri)> =7m< >

S

i\ 2

=ymV< >

I 1 1
iXT”g”)l’”f d)\f d)\,é(r_r|+)\)\,r”)> (49)
0 0
Therefore, thdotal angular momentum density=L + S satisfies a balance equation
0 ==V -[Iv+rXII+®], (50
where

I 1 1
%XT”.gij)rijfod)\JOd)\’é(r—ri+)\)\’rij)>. (51

D= ym<
ij#i

C. Balance equations in terms of distribution functions

It is convenient to express the quantities appearing in the balance equations in terms of the single particle and pair
distribution functions, defined as
f(x,t)=f(r,v,w,t)=<2 5(X—Xi)>,
I
(52

fA(x,x’",t)= < > S(x—x)8(x’ —xj)> .

i,j#i

The number density, the velocity, and angular velocities in (Bdj) are the first moments of the single particle distribution
function,

n(r,t)=f dvdwf(r,v,w,t),
n(r,t)u(r,t)=f dvdevf(r,v,m,t), (53

n(r,t)ﬂ(r,t)=f dvdew of(r,v,m,t).
Next, by using that for an arbitrary functida

<E G(rj; ,vi,vj,wi,wj)a(r—ri+>\rij)>=fdvdv'dwdw'dRG(R,v,v’,w,w')f<2>(r+xR,v,w,r+(>\—1)R,v’,w'),
i#i
(54)

which, for A =0 becomes

< 2 G(rij,vi ,Vj,wi,wj)é(r—ri)>=j dvdv'dwdw’ dRG(R,v,V ,w,0' ) {2 (r,v,o,r—R,vV o) (55)

ES
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we can write the different contributiorig3) to the stress tensor in terms of the distribution functions

HK=J dvdem(v—u)(v—u)f(r,v,mt),
C_— 4 4 E C ) [N '
I dvdwdv'dw dR2F (R)Yf9rv,o,r' v',m'), (56)

HD=—ymf dvdwdv’dm’f ngT(R)'gWZ)(r,v,w,r’,v’,w’),
whereg=[v—V’' +R/2X[ o+ w']]. We have introduced in these expressions the spatially averaged pair distribution function
Fz)(r,v,w,r’,v',w’)=de)xf(z)(r+)\R,v,w,r+()\—1)R,v’,w’). (57)
In terms of the distribution functions the terms of the right-hand side of(#g).can be written as

<2 viwié(r—ri)>=J dvdevef(r,v,w,t)

i,j#i

=J dvdw(v—u)(m—ﬂ)f(r,v,w,t)—nQu+uJ dvdwwf(r,v,w,t)+QJ dvdwvf(r,v,m,t),

lii R
<i,j | (%Tij-g”)&(r—ri)>=f dvdwdv’dw’f dR(EXT(R)-g>f(z)(r,v,w,r—R,v’,w’). (58)
Finally,
R —
b= ymj dvdwdv'dw'f dR EXT(R)Q)R]‘ A(rv,o,r' Vo), (59
where
J— 1 1
f(z)(r,v,w,r’,v’,w’)=J d)\J AN TP+ ARV, 0,r + (AN 1RV, @'). (60)
0 0

D. Fokker-Planck-Boltzmann equation

The Fokker-Planck-Boltzmann equati¢RPBE is an approximate kinetic equation for the single particle distribution
function f(x,t). The FPBE is obtained by applying the general rate of change equa8pto f(x,t). After some algebra one
arrives at

atf+v-Vf=f dRdv'dw’d-[FE(R) + yT(R)-glf®(r,v,o,r — R,V ,e")

kgT
e )/J dRdv'dw'd-T(R)-af?(r,v,o,r—R,V @), (61)

where we have defined the operator

1= J dRdv'dw’' 6(r—R—r))8(V' —V)) §( @' — o).
d m(R ¢ ) (63

g=—+ :

v T2%% (62

Equation (61) is not a closed equation fdi(r,v,w,t) be-

In obtaining Eq.(61), we have inserted at some point the cause the pair functiof®(x,x’,t) appears. Nevertheless it
identity can be closed approximately by using the molecular chaos
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assumption. In what follows we will assume that the friction
v is so large to allow for a neglect of the conservative forces n(r,t)= f dvdwfo(r,v,m,t),
FC [22]. This simplifies considerably the calculations in the

next section. The molecular chaos assumption in the absence
of conservative forces becomes n(r,Hu(r,t)= f dvdwvfo(r,v,mt), (68)
f(z)(X,X’,t)%f(X,t)f(x’,t)_ (64) n(r,t)Q(r,t)=f ddewfo(r,V,w,t).

The final closed Fokker-Planck-Boltzmann equation forThis, in turn, implies that the first momentsfafare of order
the distribution function is, after using the molecular chaosO(V?).
assumption(64), The procedure is now a bit different from the Chapman-
Enskog method in Refl22], because the inclusion of the
spin variables produces new terms with different orders in

af+v-Vi=I[f]= yf dRdV'dw' f(r—R,V/,e') gradients. We write Eq:66) as follows:
dl
X(?T(R) + kBT(? f(r v w) (65) (m) fl_&tflzatfo‘i‘V'Vfo_I[fo], (69)
9+ V), f

where we have neglected terms that are quadratic in gradi-
which is an integrodifferential nonlinear equation. ents. We will check in the following that both sides of this
equation are explicitly of first order in gradients. This linear
equation(69) will be solved for f; and therefore we will
obtain the solution of the FPBEB5) asfy+f4, up to terms

Our aim is to solve the nonlinear FPBES) by using the  of order V2.

perturbative method of Chapman and Enskog. The method is We now consider each term of E(9) separately. The
valid for situations in which the macroscopic conservedtemporal and spatial derivatives 6f can be computed to
fields are slowly varying in typical molecular length scales.first order in gradients with the use of the balance equations
In these situations, the distribution function decays in a very42) and (46). Only terms of orderV are to be retained,
short kinetic time(short compared to typical times of evolu- which amounts to using the balance equations with the aver-
tion of the conserved fieJdtowards the so-calleshormal ages of the quantities appearing in them evaluated with the
solution where the distribution functiof(v,w|a(r,t)) de- local equilibrium ensemble. Therefore, we need to compute
pends on space and time only through the first few momentthe local equilibrium average of the stress tenEbin the
a(r,t) [22]. During this last hydrodynamic stage, the solu- momentum balance equation, and the local equilibrium aver-
tion can be obtained perturbatively as an expansion in gradiage of the two contributions in E¢58) to the equation for
ents, that is,f(v,e|u,Q)=f,+f,+0(V?) wheref, is of the angular velocity field. After using the molecular chaos
zeroth order in gradients arfd is of first order in gradients. assumption one easily obtains the following results:
By substitution of this expansion into the FPBE5) one Ko
obtains IL,,=nkgTé,,,

E. Chapman-Enskog solution of the FPBE

(91f0+(9tf1+V'VfO:|[f0]+ df
0 (70)

+B,[V-us,,+a,u“+3d,u"1]+0(V?),

di , _ .
af) Tt OV (66 IR0 =— ym* S [A 9,u" + Q7]
f

By analogy with the conventional kinetic theory and also _

with the kinetic theory for DPD in Ref22], we expect that Where we have defined

the lowest order contributiofiy is given by thelocal equi-

Iib(ium fprm for_ the distribution function. In the presence of A,= if dRR2A(R),
spin variables it takes the form D

(71)
m D/2 m 1
= - - (v=u)? -~ 2
fo(r,v,m,t) n(r,t)(zkaT) expl’ 2kBT(V u) ] B,= D(D+2)f dRR“B(R).
% | )D/Ze _ ' (0—Q)2 The first contributionII*® produces an isotropic pressure
27kgT 2kgT ' term. Consistently with our assumption that the conservative

67) forces are negligible this pressure is given by the ideal gas
expression. The second contributibP® contains terms of
first order in gradients. We arrange a bit this contribution by

This local equilibrium distribution provides the correct aver-introducing the velocity gradient tensovy),,=d,u* and
ages for the first moments é{r,v,w,t), that is, its traceless symmetric and antisymmetric parts
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the last term in Eq(59) is also given by— 2I1* in the local
equilibrium approximation to first order gradients.

(72) Substitution of the local equilibrium expressions for the
stress tensor into the balance equations produce, the Euler
equations,

o=t -1y,
Vu 2[Vu+Vu] DV ul,

1
Vuh= E[Vu—VuT].
dn=—-Vnu,
We have

keTl_ 1_ A
1 _ du=—(U-V)U— —— “Vn+ —VX y—n2Q, (75
%= — ymr? o} Ay(Vuh+ Q) + (Ay+2B,) Vu® mn - n 2

m 1
3 Q=—(u-V)Q+ yI—Azn EVX u—Qj.

. (73

1
+[As+(D+2)B,]5V-ul

The antisymmetric part of the total stress tensor in the locayVe have neglected a term of first order in gradients, which
equilibrium approximation to first order in gradients is given Produces a term of orda2 in the momentum balance equa-
by (as an axial vector tion. We note that the time derivative of the angular velocity
contains a term that is aferothorder in gradientgthe Q
term in the last equation

With the help of the Euler equations and the chain rule,
we can now compute the time and space derivatives of the
In a similar way one computes the quantities in Exf) that  local equilibrium distribution, to first order in gradient. The
appear in the balance equation for the g@i). In particular, result is

A
10— 2

1
EVX U—Q>. (74

m | m 1
difotVv-Vig=Tol —V-u+ —=(v—u)(v—u):Vu+ —=(w— Q)(v—u):VQ+ ynA, — =—(v—u) - VX n?Q
kgT kgT 2n

kgT
A m Q 1V Q 76
+vy znkB—T(w— )- E Xu— s (76)
where the double dot “:” denotes double contraction.
The next step is the calculation gffy]. To first order in gradients it is given by
I[fo]= ynAy o= f L VXxn2Q Q 1V Q 7
[fol=yn 2aT O %(V_U)' Xn“Q+(w—Q)- SV RuU— . (77)
Therefore, after some happy cancellations the right hand side af6Eghas the simple form
m I
difotv-Vig—I[fg]=fo = V- U+ —=(v—u)(Vv—U):Vu+ —=(ew— Q) (Vv—u):VQ/|, (78
kgT kgT
|
which contains only terms of first order in gradients. where we have assumed that the dependenck, an Q

Next, we consider the ter@\f, in Eq. (69). We note that appears in the combinatia@— €. This assumption will be
it is of first order in gradients due to the term of zeroth orderconfirmeda posteriori

in the Euler equation for the angular velocity, that is, The linearization of the functiond[ f] might be easier to
of perform by expandind[fy+f4] to first order in gradients.
3tf1=a—6'0tﬂ+ O(V?), The final result for the left hand side of E@9) is
=— I—yAznﬂ- E—FO(V ), I[fot+fi]—I[fo]l—dif1=yn|[Ao+BolL + T 35 fq
(79 +O(V?), (80)
m of, )
- T"Aznﬂ' a—w+O(V ). where the operators are given by



2942 PEP ESPAIDL 57
o AL fi=—fo| 5op = [JVUS+ IV ul
BETA A 1= 1o 2n(Ag By D VY IV UL
(81) 1
R:i, o Ot kB_T J ~ yn(Ag+ BOJr(m/I)AZ/Z)TVQ (88)
Jw |l o
and the constant8,,B, are given by as can be checked by substitution.
Now it remains to obtain a general solution of the homo-
AOEJ dRA(R) geneous equatiofif;=0. The solution of this homogeneous
’ equation is an arbitrary linear combination fgfa, wherea
(82)  are the collisional invarianta={1v—u,e— Q}. Neverthe-

Bo= %f dRB(R).

Equation(69) can be written in compact form as

m I
Lf=fg —V-u+ kB—TVV.VLH‘ kB—TOV.VQ , (83
where the operator has the form
m A,
L=yn|[Ag+Bo]LT+ T 7£R (84)

and the peculiar velocities aké=v—u,0=w— Q.

less, the combination of Eq&3) and (68) imposes that the
coefficients of the linear combination are zero.

F. Transport coefficients
The phenomenological theory of viscous flow of an iso-
tropic fluid [28] relates the tracel[tH ], the traceless symmet-

ric IS, and antisymmetridI* parts of the stress tensdF
with the linear velocity gradients and angular velocity in the
following way:

1
5tr[l]]= —{V-u+p,

Equation(83) is an inhomogeneous second order partial
differential equation. In order to obtain a special solution of

the inhomogeneous equatiof@3), we introduce the follow-

ing tensors:

m

TGt

1 2
ViV 5 V26,

= mv* 1 85
J—WBT— , (85

I
7,

’”:kB_TO V

mwVv:
With these quantities we write E¢83) in the form
Lf,=f[J:VUuS+ JV-ul+ TVQ]. (86)
The quantitied85) satisfy
LTd,,=—2f0d,,,
LRf4d,,=0,
LTfoJ=—2f,J,
(87
LRfoJ=0,

L7,,=107,

v

LRE0T,, =0T,

uv

and therefore, a special solution of E§3) is given by

5= —25VuS, (89)
Ao | Low
I1"=— 275 5VXU-Q|,

where the antisymmetric part is written as an axial vector.
Herep is the isotropic hydrostatic pressure. The coefficients
are the bulk viscosity, the shear viscosity;, and the rota-
tional viscosity 7y .

We now compute the stress ten$b6) using the molecu-
lar chaos assumptio(64) for the pair distribution function
and the approximate solutiofy+ f, for the single particle
distribution function. This will producdl=1I,+II; where
the local equilibrium contributiodl, has been already com-
puted in Eq.(70). Regarding the ternbl; computed withf
one observes that the only contribution that is of first order in
gradients isITY , which is computed along similar lines to
Ref.[22]. The final result is

keT —  kgT

MX=nkgT1— VusS— V.u
B Y[Ao+ Bo] Dy[Ap+Bg]

L
(90

The remaining contributionH? are of ordeV? and will be
neglected. The final expression of the stress tensor in linear
order of gradients is given by collecting Eqg3), (74), and

(90):
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1 2 A, (D+2) kgT which implies the following dynamic equation for the angu-
Btr[l]]—— yMr 55+ 55— B2 +m V-u  Jlar velocity:
d
+nkBT, ﬂlaQZ_ZHA (97)
°=—{ ymr? &JFB +———— VS (91)  Substitution offI* in Eq. (89) into this equation gives
2 2] M Ag+Bo] ' '
A1 Qo4 g toiul-—Ha-Ltvxu| (s
=~ ymre 2 “vxu-|. ST Ak I R A B

_ _ _ The final closed set of equations for the hydrodynamic fields
Comparison of Eqs(89) and(91) allows one to identify s given by Eqs(94) and (98), together with the continuity

the viscosities as equation
( 2A2+(D+2)B}+ kT d ,
=\ ymn| 5= , —p=—pV.
1" 20" 20 B2t D[A.+ Bl qiP=—rVv-u (99)
1[ 2 A, keT ©2 and the equation of state
= ymn?| 5+ B, |+ ,
T Y 2 TR T A+ By T
p=kgTn=——p=c?p, (100
m
o A2
7RT MM ==,

where we have introduced the speed of soand
Equation(98) shows that the spin relaxes towards the vor-
ity with a relaxation time scale given by=nl/4ng [28].

In the model of this paper, substitution gk in (92) gives
the following time scale

A(r)=0, [
(93 ™ 2ynmA,°

In order to compare these expressions with those obtained k%
Marshet al. [22], we should note that for the original DPD
algorithm we have

(101

B(r)=w(R).
H. Summary of kinetic theory
Simple substitution of Eq(93) into Eq. (92) shows that the

transport coefficien{92) coincides with those provided in In summary, it h_as been sh_own ir_1 this SeCti.On that the
Ref. [22]. macroscopic behavior of the fluid particle model is hydrody-

namical and the mass, momentum and angular momentum
transport equations have been deriyeds. (99), (94), and
(98)]. In doing this, explicit expressions for the transport
Substitution of the stress tensbi=tr[IT1]/D + IS+ 1A, ~ coefficients in terms of the original model parameters have
Eq. (89), into the momentum balance equati@®) produces —Peen obtainefEgs.(92) and(101)]. The equations cited here
the Navier-Stokes equations for a fluid with spizg] (D  are the main results of the kinetic theory of the fluid particle

G. Transport equations

=3), model.
d VIl. RESOLUTION ISSUES
I S _
PGtu= VPV (27VuN) +V({=27/3)V-u+V OF THE FLUID PARTICLE MODEL
X[27r(Q=3VXU)], (94) Within the picture of the Voronoi coarse-graining

sketched in Sec. Il, it is possible to consider different levels
where we have used the substantial derivatil/elt= g, of coarse graining in which the number of atomic particles
+u-V. The last term in Eq(94) is the gradient of the anti- Within a Voronoi cell is different. We expect that, provided
symmetric part of the stress tensor and describes the effect 81at the number of atomic particles within the cell is large

the spin on the momentum transport. enough, the description of the hydrodynamic behavior will
On the other hand by neglecting the tedrrin the angular  be more and more accurate as the number of Voronoi cells
momentum balance equati¢s0) [28] we obtain increases. In other words, we expect to reach a “continuum
limit” as the number density ofluid particles goes to infin-
8= —V[Iv+rxII], (95) ity. The discussion resembles that of the resolution in the

numerical solution of partial differential equations. Actually,
which in combination with Eq(47) produces the following the resemblance can be made more accurate by comparing
balance equation for the spin density: the structure of the equations of motion of the fluid particle
model with those of smoothed particle hydrodynamics.
9,S=—V[Su]— 211", (96) Smoothed particle hydrodynamics is a Lagrangian discreti-
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zation of the continuum equations of hydrodynamics thatrange of the weight function decreases with higher resolu-
allows one to interpret the nodes of the grid in terms oftion, its height increases and, in the limit of infinite resolu-
“smoothed particles.” tion it becomes a Dirac delta functidhi(r) — &(r). Because
For the case in which there is no coupling between thehe weight function is steeper when the resolution is higher,
Navier-Stokes equation and the energy equatibe pres- the time step used in the SPH model has to be reduced as the
sure does not depend on the temperature, for exampleresolution increases. This is also encountered in any finite
Takedaet al. [3] propose a discretization of the Navier- difference algorithm for solution of partial differential equa-
Stokes equations that produce equations of motion for th&ons in order to maintain stability.
smoothed particles that correspond exactly in structure with Let us investigate the effect of the resolution effects on
the postulated equations of motion of the fluid particle modethe macroscopic parameters defining the fluid on hydrody-
in this paper. The correspondence is namic scales and which have been computed by means of the
kinetic theory in the previous section. The parameters that
Po characterize the evolution of the velocity field are, as can be
V(r)=2FW(r), appreciated from Eq94), the speed of sound defined in Eq.
o (100 and thekinematicviscosities defined by = 7/p, v,
=/{lp, andv,= nr/p. From Eq.(92) they have the form

A= — { W) +| 27+ £+ 2 W,(r)}
YA(r) = — gW'(r 7 3 I
mng 3/ T ‘A2+(D+2)D }+ , 1
vp=| yni 5= c ,
(102 7”20 " 2D 2T yDn[Ag+ Bo]
B(r) ! i+ 7]) W’(r) Win) 1 A 1
r=— = ry— ,
7 mrg\ " 3 v= yn| 4By +cP—————{, (103
2 2 YN[Ao+ Bo]

where,pg,Nng are the equilibrium pressure and number den-
sity, respectively, andV(r) is the weight function used in B Aﬁ
the discretization of the Navier-Stokes equatitire assump- VR= YN
tion that the density of all particles is almost constant has
been taken We are assuming, for the sake of the argument, tizan,

In this respect, the fluid particle model postulated in thisthat is, the density field is constant. The conclusions, how-
paper is simply the smoothed particle hydrodynamics withever, are valid in the compressible case also.
two additional bonuseg1) thermal noise is introduced con- Let us focus first on the dimensionless functions
sistently (that is, the fluid particle model can be interpretedA(r),B(r) that determine the range of the dissipative and
as a Lagrangian discretization of the nonlinear fluctuatingandom forces. We expect that the clusters interact only with
hydrodynamic equatiofsand(2) the angular momentum is their neighbors, which are a typical distancepart. There-
conserved exactly in the fluid particle model, in contrast withfore, these functions will be of the form
the smoothed particle hydrodynamics model. The first bonus

allows one to apply smoothed particle hydrodynamics to mi- A(r)y=a(r/n),

crohydrodynamic problems as those appearing in complex (104)
fluids where Brownian fluctuations are due to the fluctuating

hydrodynamic environment. It can be also useful in studying B(r)=b(r/\),

the effect of thermal fluctuations near convective instabilities
and, in general, in the study of nonequilibrium thermal fluc-wherea,b are functions that do not depend explicitly &n
tuations in hydrodynamic systems. The actual relevance ofhis ensures that as the resolution is increased, the range of
the second bonus will be discussed later. the force decreases, and this has the computationally appeal-
The comparison of SPH with the fluid particle model ing feature that the interaction between fluid particles re-
points to an inconsistency that appears when using som@ains always local. By using these scaling functions and
particular selections for the weight function like the Lucy after a change to the dimensionless variatte/\, we have
weight function[5] or a Gaussian weight functiof8]. In

these cases, it is easily seen that the funcgn) can be- A :@
come negative for certain valuesrofThis is unacceptable in ny’
view of Eq.(34). From a physical point of view this means

that if two particles are at a distance such thAét) is nega- bg
tive, then the viscous forces will try tmcreaseits relative Bo=n—0,
velocities.

In the derivation of the SPH modg2,3] it becomes ap- (109
parent that the weight functiow/(r) must be normalized to a,
unity in order to have correct discretdlonte Carlg ap- A,=—2\2,

L . - : . Ny
proximations for integrals. 1#V(r) is normalized to unity,
then one expects that by increasing the number density of b,

smoothed particles one is increasing the numerical resolution B,=—\?,
of the simulation. The normalization implies that as the No



where the dimensionless coefficients are given by

a0=f a(x)dPx,

b0=% f b(x)dPx,
(106)

1
a2=5fx2a(x)d'3x,

1
b2= m J Xzb(X)dDX

and do not depend on the resolution. By using 885 in
Eqg. (103 we obtain

a, (D+2)
20 2D P2

V= ‘y)\z -I-Cz—1
° Dy(ag+bg))’

a
72+b2 +c? . (107

_ 1 2
ke Hao+by)

)\2
VR= ’}/7a2 .

We observe that all the dependence on the resolutioor(
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form «mx\? so 7 must tend to zero very fgstin the high
resolution limit the spin becomes equal to the vorticity in a
short time scale. The spin becomes a slaved variable and can
be dropped from the description. Note also that in this situ-
ation the last term in the Navier-Stokes equation with spin
(94) vanishes and one recovers the actual Navier-Stokes
equation. This explains why, in SPH, the violation of angular
momentum does not pose a serious probfemsufficiently
high resolutions[3]. If low resolutions are to be used in
problems where the correct transfer of angular momentum is
relevant(as in rotational diffusion of concentrated colloidal
suspensions, for examplethen the use of spin might sup-
pose a real advantage.

We have arrived at the conclusion that in order to have a
well-defined continuum limit the friction coefficient must
increase as the resolution increases. This can be understood
physically in the following way. The number of particles in
between two reference fluid particles at a given distance of
each other increases as the resolution increases. If we require
that the viscous interaction between these two reference par-
ticles must remain the same as the resolution increases, the
mediating particles must interact stronger in order to transmit
the same response between the two reference particles. From
a mathematical point of view, the? factor can be inter-
preted as the “lattice spacing” that is lacking in the original
equations and that would be present in a numerical discreti-
zation of asecondorder derivative term. Preliminary simu-

ng) has been made explicit. In the limit of high resolution lation results for the DPD modéA(r)=0) with energy con-
(A—0 or ng—=) the only contribution to the bulle, and  servation[30] shows that the correct continuum limit is
shearv viscosities comes from the kinetic contribution that obtained when the model parameter equivalent tocreases
depends linearly on the temperature. This means that at zewith A2 [37].

temperature the system would not display any viscosity in We would like to comment finally on an apparent incon-
the limit of high resolution. We find this behavior undesir- sistency between SPH and the fluid particle model, which is
able and we are led to the conclusion that the friction coefsummarized as follows: if one discretizes the hydrodynamic

ficient ¥ must depend on. In particular, if we definey
=y\? (which has dimensions of a kinematic viscosiand

assume thay remains constant as the resolution varies, w

will have

~la, (D+2) , N
Vb—[’yE'Fsz +cC D—,.:); ,
B S I 1 108
V_2 Y 2 2 c ; ’ ( )
VRZEaz,

where the normalizatioay=by=1 has been used as in the

original DPD algorithm15]. The relaxation timg102) will
take the form

I \?

T= 5= =—. (109
2M ya,

In this way, in the limit of high resolutionN—0) the vis-

cosities are given essentially by and the relaxation time
goes to zerg@note that the moment of inertlamust be of the

e

equations on a set of points and then constructs the kinetic
theory of these points, one would expect that the computed
transport coefficients would coincide with the input transport
coefficients of the hydrodynamic equations. If one naively
uses the result€l02) in the calculation of the transport co-
efficients in(92), one arrives at an inconsistent result. The
viscosities computed through the kinetic thed®g) do not
coincide with the input values. This could be traced back to
the fact that the kinetic theory for the fluid particle model has
been developed in the limit where no conservative forces are
present, whereas the pressure term in the hydrodynamic
equations(even for an ideal gasproduces a conservative
term given by the first equation in EG102 in SPH. The
kinetic theory with conservative forces is a bit more involved
but the modifications can be summarized simply. The mo-
lecular chaos assumptidi®4) now involves the pair distri-
bution function(which in the absence of conservative forces

is equal to 1. This means that the parametéts, B, appear-

ing in the transport coefficients will be modified by the pres-
ence of the pair distribution function within the integral de-
fining these parameters. Also a new contribution to the
transport coefficients arises due to the conservative forces. It
is an open question whether these modified transport coeffi-
cients due to conservative forces do coincide with the input
transport coefficients. The opposite case could also be pos-
sible simply due to the fact that the discretization procedure
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in SPH may induce *“artificial viscosities” in the language of orbiting in a circumference around the first one. This relative
numerical resolution of the hydrodynamic partial differential motion produces no force in DPD because the relative ap-
equations. proaching velocity is exactly zero. Nevertheless, on simple
The fluid particle model is a consistent model by itself, physical grounds one expects that the motion of the second
without having to resort to the smoothed particle model forparticle must drag in some way the first particle. This is
its validity. Actually, the fluid particle model, together with taken into account through the shear forces in the fluid par-
the kinetic theory developed in this paper, has its advantagdgle model presented in this paper. We note, however, that
with respect to SPH: precise predictions can be made frorthis relative motion might produce a drag even in the original
the initial model parameters about the transport properties dOPD algorithmif many DPD patrticles are involved simulta-
the fluid. In this way, to obtain a prescribed fluid of known neously The same is true for a purely conservative molecular
transport properties, one simply adjusts the model paramdynamics simulation. The point is, of course, that the effect
eters according to the formulas of kinetic thedsjight er- is already captured with a much smaller number of particles
rors stemming from the failure of the molecular chaos asin the fluid particle model.
sumption might play a minor rol¢22]). In SPH, on the
contrary, the only way to specify the fluid is through the
input transport coefficients in the original hydrodynamic ACKNOWLEDGMENTS
equations. The discretization procedure then produces a
“fluid” whose transport properties do not in general corre-
spond with those of the fluid intended to be modeled, an

there is no systematic control on the appearance of artificiaM Ernst and Wm. G. Hoover for the illuminating correspon-
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theory has been formulated previously in Rgf2]. One of
the main motivations for introducing shear forces between
dissipative particles into the original algorithm of DPD was APPENDIX
the identification of the following elementary motion be-
tween dissipative particles that produces no force in that al- The derivation of the FPE is best achieved by considering
gorithm. Let us focus on two neighboring dissipative par-the differential of an arbitrary functiori to second order

ticles, the first one at rest at the origin and the second ong32]:
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uring the elaboration of this work. | express my gratitude to

df=> d ARV ‘9f+1§}d d al +dv; deoj: il +day dy;: al

T G v Gyt den G T e dvidy oy v de o T e i G oy,
+dow; dw;: Al Al
A P (A1)

One then substitutes the SDE$9) and uses the Ito stochastic ruléky), keeping terms up to ordett (the cross terms
involving positions have been neglected in E41) on account of the fact thalr is already of ordedt). Then after averaging
with respect to the distribution functign(r,v,w;t), one performs a partial integration and uses the factfthstarbitrary, to
obtain the Fokker-Planck equation in the form

Ap(r,v,0t)=[LS+LT+LR]p(rv,w;t), (A2)

where we have defined the operators

9 1 .0
C—_ : I O
L= [Z Vi i+i,j2#i mF"&vI ;
d 1 19 -~ o~ 1 0 ma 1 - (rjr —~
T— T R 1]
= | = St+FE) = e iy i = T | —=——X it
CE | T m PR g & g Vi Vi T 3 G, |§ a2 dV“) ’ (A3)
m d |1 19 /rir  ~ ~ 1 90 ma 1~ Fir ~ ~
R__ 1] T R 1 1 1)
=—> — | = EAXFEHE) - — D | S xdv/ |dVi+ = ——> —| = xdvi; || 2 xdv;. ||
L= T2 G | m2 X FITFD— 3 v, = dt( 2 i )d"“ 2 do, |,2] dt( 2 Vi ) 2 <%V )

The operatoL© is the usual Liouville operator of a Hamiltonian system interacting with conservative fBfcad/e need to
arrange a bit the operatoks andLR by using the Ito rule$18)
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1
dt dVﬁ,dV [A(I’“ )A( i’ )+C(r|| )C(r“ )]5MVQ|"EJJ’+ [A(rn )A(I'“ ) C(rll )C(I’“ )] ”,

1 _ — ~ -
+5[B(riir)B(rJ‘jr)—A(riir)A(rjjr)]e:iL,e;}j, [5ij5i’j’+ 5ij'5ji’]

=g “ ” [ 8ij vy + 8ijr jir 1. (A4)

The second order tensdy;;;;, satisfies

TI]IIJ}_ iVjij leﬁ . (AS)

If we define

1 N2 2
Tiy=Tijij =5 [A%(rij) + C*(rij) 11+

11\, 1., 1
5~ p AT+ B — 5C(rij) | &;6; (A6)

then the following identities are obtained:
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By using these results into EGA3) the operators take the following compact form:
LT=2> — [L{+L]], LR i X[LT+L 11, (A8)
ij#i (7V| ' | iT%i (90’| 1
where we have introduced the vector operators
2 2
T d d 1 m o lii d d
Ll=—=—Fl+— - LR=— R+ — — 1. | x| —+ —1]. A9
Y m U2 Yy avj)’ " m' 1 2 Y12 Joy  Joj (A9)
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