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Fluid particle model

Pep Espan˜ol*
Departamento de Fı´sica Fundamental, UNED, Apartado 60141, 28080 Madrid, Spain

~Received 2 September 1997!

We present a mechanistic model for a Newtonian fluid called fluid particle hydrodynamics. By analyzing the
concept of ‘‘fluid particle’’ from the point of view of a Voronoi tessellation of a molecular fluid, we propose
a heuristic derivation of a dissipative particle dynamics algorithm that incorporates shear forces between
dissipative particles. The inclusion of these noncentral shear forces requires the consideration of angular
velocities of the dissipative particles in order to comply with the conservation of angular momentum. It is
shown that the equilibrium statistical mechanics requirement that the linear and angular velocity fields are
Gaussian is sufficient to construct the random thermal forces between dissipative particles. The proposed
algorithm is very similar in structure to the~isothermal! smoothed particle hydrodynamics algorithm. In this
way, this work represents a generalization of smoothed particle hydrodynamics that incorporates consistently
thermal fluctuations and exact angular momentum conservation. It contains also the dissipative particle dy-
namics algorithm as a special case. Finally, the kinetic theory of the dissipative particles is derived and explicit
expressions for the transport coefficients of the fluid in terms of model parameters are obtained. This allows us
to discuss resolution issues for the model.@S1063-651X~98!07803-9#

PACS number~s!: 03.40.Gc
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I. INTRODUCTION

Complex fluid systems such as colloidal or polymeric s
pensions, micelles, immiscible mixtures, etc., represen
challenge for conventional methods of simulation due to
presence of disparate time scales in their dynamics. The
presently a great effort in developing new techniques
simulation that overcome some of the difficulties of micr
scopic ~molecular dynamics! and macroscopic~numerical
solution of continuum equations! conventional techniques.

On one hand, molecular dynamics captures all the
tailed dynamics from times scales of the order of atom
collision times to macroscopic hydrodynamic times. Ho
ever, in order to explore these large macroscopic times
number of particles required is enormous. Although la
scale molecular dynamics simulations with millions of pa
ticles are currently performed one realizes that not all
information generated is actually required or even relevan
the time scales at which rheological processes in comp
fluids take place.

On the other hand, from a continuum point of view t
conventional solution of partial differential equations like t
Navier-Stokes equation encounters difficulties due to
cumbersome treatment of moving boundary conditions to
imposed in a system as, for example, a colloidal suspens
These problems can be alleviated by the use of Lagran
descriptions in which the discretizing grid moves accord
to the flow. A particularly exciting development has been
technique of smoothed particle hydrodynamics~SPH!, which
is essentially a discretization by weight functions that tra
forms the partial differential equations of continuum m
chanics into ordinary differential equations@1,2#. These
equations can be further interpreted as the equations of
tion for a set of particles interacting with prescribed laws
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force. The technique thus allows one to solve partial diff
ential equation~PDE’s! with molecular dynamics codes. An
other advantage of a Lagrangian description relies on the
that no expensive recalculations of the mesh are require
the dynamics takes care of it. Smoothed particle hydro
namics has been used for simulating astrophysical flows w
nonviscous terms~this was the original aim of the techniqu
at the early 1970’s@2#!, and very recently in the study o
viscous@3,4# and thermal flows@5,6# in simple geometries. It
has not been applied to the study of complex fluids and
may be due, in part, to the fact that there is no easy imp
mentation of Lagrangianfluctuatinghydrodynamics@7# with
SPH. Such implementation would be highly desirable in
der to study the Brownian realm in which many of the pr
cesses in complex fluids take place. It must be noted that
particulate nature of the algorithm in SPH produces fluct
tions that, from a computational point of view, are regard
as numerical noise. It is not clear that in the presence o
viscous terms this noise satisfies the appropriate fluctuat
dissipation theorem. A second problem with SPH is that
viscous problems the noncentral nature of the viscous s
force breaks the conservation of angular momentum, e
though the initial continuum equations are perfectly isotro
and conserve angular momentum.

In between microscopic and macroscopic descriptio
mesoscopic levels of description are gaining attention in
der to address flow problems in complex fluids and/or geo
etries@8#. Lattice gas automata@9,10#, lattice Boltzmann au-
tomata@11# or the direct simulation Monte Carlo method fo
dilute gases@12# have been useful tools in studying hydr
dynamic problems in complex geometries. For the case
colloidal suspensions, lattice Boltzmann techniques repre
a serious competitor to Brownian dynamics@13# or Stokesian
dynamics@14# in that the computational cost scales linea
with the number of colloidal particles whereas, as a con
quence of the long ranged hydrodynamic interactions, it
creases with the cube of the number of particles in the la
2930 © 1998 The American Physical Society
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57 2931FLUID PARTICLE MODEL
techniques@11#. A drawback of the lattice approaches is th
the dynamics is constrained by the lattice. This makes
consideration of boundary conditions on shaped bodies c
bersome.

In the same spirit of looking at mesoscopic descriptions
very appealing idea was introduced by Hoogerbrugge
Koelman@15,16# in which a coarse grained description of th
solvent fluid in terms of dissipative particles was devis
The technique was coined dissipative particle dynam
~DPD! and it is an off-lattice technique that does not suf
from the above mentioned drawbacks of lattice gas and
tice Boltzmann simulations. DPD consists essentially o
molecular dynamics simulation in which the force betwe
particles has, in addition to a conservative part, a dissipa
part represented as a Brownian dashpot. This Brown
dashpot damps out therelative approaching velocitybetween
particles and introduces a noise term that keeps the syste
thermal agitation. The dissipative particles are understoo
‘‘droplets’’ or cluster of molecules that interact with eac
other conserving the total momentum of the system@15,17#.
This global conservation law has its local counterpart in
form of a balance equation for the momentum density, a
the dissipative particles behave hydrodynamically in the l
wave number and frequency regime.

DPD has received substantial theoretical support. It
been shown that the original DPD algorithm of Ref.@15# has
associated, under a slight modification, a Fokker-Pla
equation with Gibbs equilibrium states@18#. The extension to
multicomponent systems has also been considered@19#. A
first principles derivation of DPD for a harmonic chain h
been presented in@20#. The macroscopic hydrodynami
equations have been obtained with projection operator te
niques@21#. A very important further step has been the fo
mulation of the kinetic theory for DPD by Marsh, Back
and Ernst@22#, which allows one to relate the transport c
efficients in the hydrodynamic equations with the DP
model parameters. Finally, the effect of finite time steps
the equilibrium state of the system has been considere
@23#. DPD has been since applied to the study of colloi
suspensions@16,24,25#, porous flow@15#, polymer suspen-
sions@26#, and multicomponent flows@27#.

In this work we provide a more precise meaning to t
concept of ‘‘droplet’’ or ‘‘fluid particle’’ from a Voronoi
tessellation of physical space. This conceptual framew
allows one to model the different processes that interven
the interaction between fluid particles or mesoscopic clus
of atoms of the fluid. The outcome is a generalization of
algorithm of DPD that includes shearing forces between
fluid particles. These forces are noncentral and do not c
serve total angular momentum. This enforces the inclusio
the model of a spin variable with a well-defined physic
meaning for the fluid particles. In this way angular mome
tum conservation is restored. We also investigate the st
ture of the random forces that must be included in orde
recover a Gaussian distribution of linear and angular velo
ties for the fluid particles~note that the equilibrium fluctua
tions of the hydrodynamic velocityfield are Gaussian!. The
structure of the random forces is postulated after anal
with the structure of the random stress tensor in terms of
Wiener process in the fluctuating hydrodynamics the
@29#.
t
e
-

a
d

.
s
r
t-
a
n
e
n

in
as

e
d

s

k

h-

n
in
l

rk
in
rs
e
e
n-
in
l
-
c-
o
i-

y
e
y

We show that the form of the equations of this fluid pa
ticle model at zero temperature~when fluctuations are ab
sent! and with no angular variables is identical to the form
the equations obtained in a simple version of smoothed
ticle hydrodynamics as applied to fluid systems. In th
sense, this work can be regarded as a generalization of
that includes fluctuations consistent with the principles
statistical mechanics and that conserves exactly the tota
gular momentum of the system. In other words, the obtai
fluid particle algorithm may be viewed as a Lagrangian d
cretization of the equations of~isothermal! fluctuating hydro-
dynamics.

The paper is structured as follows. Section II consid
the definition of a fluid particle in terms of the Voronoi te
sellation and this serves to motivate the type of forces
torques between fluid particles introduced in Sec. III. Sect
IV presents the equivalent Fokker-Planck equation to
equations of motion. This allows one to establish requi
ments on the model parameters in order to have a pro
equilibrium distribution. A summary of the model is pre
sented in Sec. V. Section VI contains the kinetic theory
the model in the simple case when conservative forces
absent. The transport coefficients are computed and this
mits us to discuss its dependence on the number densit
fluid particles in Sec. VII. A final discussion and conclusio
are presented in the last section.

II. FLUID PARTICLES
THROUGH VORONOI TESSELLATION

In an attempt to better understand the physical meanin
DPD, we have devised a coarse graining procedure fo
molecular dynamics simulation of point particles~atoms! in-
teracting through continuous potentials@17#. The coarsening
is performed through the Voronoi tessellation, which allo
one to divide physical space into a set of nonoverlapp
cells that cover all the space in a well-defined manner. Gi
a discrete set of points~that can be distributed at random! the
Voronoi tessellation assigns to each point~called ‘‘cell cen-
ter’’ ! that region of space that surrounds it and that is nea
to this point than to any other point of the set. With th
tessellation the atoms of the molecular dynamics simula
are distributed into clusters around the centers of the Voro
cells. The practical way to perform the Voronoi tessellati
in the simulation is by computing the distance of a giv
atom to all the center cells and assign that atom to the nea
center. Subsequently, the Voronoi cells are set in mot
according to the velocity and acceleration of the center
mass of the particles that are within the cell. In this way,
cells capture the motion of the fluid at mesoscopic scale

The Voronoi cells are a well defined realization of what
loosely regarded in fluid mechanics textbooks as ‘‘fluid p
ticles.’’ We would like to know how these fluid particle
move, that is, which explicit law of force between fluid pa
ticles would reproduce the actual motion of the Voronoi ce
observed in the simulations. It is apparent that the numbe
cells is much smaller than the number of atoms in the m
lecular dynamics simulation, and therefore if one knows h
the clusters move, one can try to simulate the clusters
capture the mesoscopic behavior of the underlying liq
with much less computational effort.
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2932 57PEP ESPAÑOL
For sufficiently large clusters, that is, when the typic
distancelmes between cell centers is much larger than t
typical distancelmic between atoms we expect that the clu
ters movehydrodynamically. More precisely, we conside
the conserved densities

r r5
M r

Vr
,

gr5
Pr

Vr
, ~1!

er5
Er

Vr
,

whereM r ,Pr ,Er are the instantaneous total mass, mom
tum, and energy, respectively, of the system of particles
happen to be within the Voronoi cell centered atr andVr is
the volume of the cell. One also introduces

vr[
gr

r r
, ~2!

which is the instantaneous velocity of the center of mass
the system of particles within the Voronoi cell atr .

If ~1! the cells are large enough for the system of partic
that are within it to be considered as a thermodynamic s
tem, and~2! the variations of the conserved quantities fro
neighbor cells are small, then the variables~1! obey the
equations of fluctuating hydrodynamics@7# ~see@29# for the
nonlinear case!. The conserved quantities~1! are subject to
fluctuations because the atoms can enter and go out from
Voronoi cells due to their thermal agitation. The size of flu
tuations, that is, the noise amplitude appearing in the eq
tions of fluctuating hydrodynamics is proportional to t
square root of the inverse of the volume of the cell, in a
cordance with the 1/AN dependence of fluctuations in equ
librium ensemble theory@29#. Therefore, depending on th
‘‘resolution’’ ~the number of Voronoi cells per unit volume!
used to describe the system, the amplitude of the noise
in the hydrodynamic equations that govern the instantane
values of the conserved variables will be different.

Now, one is faced with two possible routes in order
simulate the dynamics of clusters. The first route is to c
sider the conserved discrete variables~1! as the state vari-
ables and update them according to some discretized ve
of the equations of hydrodynamics. This poses some su
problems regarding the formulation offluctuatinghydrody-
namics in a moving mesh, in particular with the treatment
the 1/AVr singularity. The second route, which is the one
follow in this paper, is topostulatethe laws of force between
cells. Despite the strong assumptions made to model th
forces, the final expressions satisfy symmetry requireme
that ensure that the behavior of the clusters will be, on av
age, that of real clusters.

A final word on the angular momentum is in order. W
have not included in the above set of conserved variables~1!
the angular momentum density defined by

Jr5r3gr1
Sr

v r
, ~3!
l
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where we have decomposed the angular momentum of
system of particles in cellr as the sum of the angular mo
mentum of the center of mass with respect to the origin p
the intrinsic angular momentumSr of the particles of the cell
with respect to the center of mass of the cell. We could,
principle, compute the inertia tensorI r for the system of
particles in cellr and define the angular velocityvr through

vr5I r
21Sr . ~4!

The reason the angular momentum density is usually
considered in the derivation of Newtonian hydrodynamics
that the second contribution in Eq.~3! vanishes in the ‘‘con-
tinuum limit.’’ This can be seen by noting thatSr must scale
as a typical size of the cell. In the continuum limit this typ
cal distance goes to zero and there is no intrinsic ang
momentum contribution. The situation here is different fro
the case of molecular fluids with spin@28#, where the rota-
tion of the molecules themselves originates an angular
mentum that does not scale with the size of the cells
produces a finite value in the continuum limit.

III. MODELING THE FORCES AND TORQUES
BETWEEN FLUID PARTICLES

In this section we formulate the fluid particle model und
a set of simplifying hypotheses. In the real clusters, the m
is a fluctuating quantity as particles can enter and go
from the Voronoi cell. Also, the shape of the cells changes
the cells move. However, the first assumption is that all cl
ters are identical, having a fixed massm and fixed isotropic
inertia tensor of moment of inertiaI . We assume that the
state of the cluster system is completely characterized by
positionsr i , the velocities of the center of massvi and the
angular velocitiesvi . Note that we do not include any in
ternal energy variable and therefore the resulting algorit
will not capture appropriately the thermal effects that occ
in real fluids. This may be a minor problem when one
interested only in rheological properties. A generalization
the model including energy conservation has been rece
proposed independently in Refs.@30,31#.

The next step is to specify the forces and torques that
responsible for changing the values of the linear and ang
velocities of the clusters. We model the forces between
clusters by considering several heuristic arguments ab
how one expects that the actual Voronoi clusters inter
with each other. In this respect we make first a strong p
wise additivity assumption. In the real system one expe
that the force between two clusters~that is between all the
atoms of the first cluster that are interacting with the ato
of the second cluster! will depend in general not only on th
state variables of these two clusters but also on the confi
ration of other neighboring clusters. For the sake of simp
ity, though, we neglect this collective effect and assume t
the force between two clusters depends only on the posi
and velocities of these two clusters.
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57 2933FLUID PARTICLE MODEL
The equations of motion are therefore

ṙ i5vi ,

v̇i5
1

m(
j Þ i

Fi j , ~5!

v̇i5
1

I (j Þ i
Ni j ,

whereFi j ,Ni j are the force and torque that clusterj exerts on
cluster i . We require that the forces satisfy Newton’s thi
law, Fi j 52Fj i , in such a way that the total linear mome
tum P5( imvi is a dynamical invariant,Ṗ50. In addition,
we assume that the torques in Eq.~5! are given by

Ni j 52 1
2 r i j 3Fi j ~6!

and one checks immediately that the total angular mom
tum

J5(
i

r i3pi1I vi ~7!

is exactly conserved,J̇50.
We will model the force between clusters according to

Fi j 5Fi j
C1Fi j

T 1Fi j
R1F̃i j . ~8!

The first three contributions are deterministic forces wher
the last one is random. We discuss them separately.

A. Deterministic forces

The first contributionFi j
C to the force is assumed to aris

from a conservative potentialV(r ) that depends on the sep
ration distance between clusters. In Ref.@17# we have argued
that a plausible definition of this potential is through t
logarithm of the radial distribution function of cluster ce
ters. The resulting soft potential has a bell-shaped form
has the virtue that when used as the potential between c
ters in a molecular dynamics~MD! simulation, it reproduces
consistently the radial distribution function of the real clu
ters~as has been checked through an actual MD simulati!.
It therefore captures the static or equilibrium properties
the system of clusters. The physical interpretation of t
force is that it provides the excluded volume effect of ea
cluster. The center of the cluster~and its center of mass! is
usually located ‘‘in the middle’’ of the cell and therefore it
not very probable that two cluster centers are closer to e
other than the typical size of the cell.

It is clear, though, that this conservative contribution ca
not be the only contribution to the force because it does
capture friction effects between clusters. These friction
fects will depend on the velocities between clusters and
give rise to dissipative processes. The second contributio
~8! is a friction force that depends on the relative trans
tional velocities of the clustersi , j with positionsr i ,r j and
velocitiesvi ,vj in the following way:

Fi j
T 52gmMT~r i j !•vi j , ~9!
n-

s

d
s-

-

f
s
h

ch

-
ot
f-
ll
in
-

wherevi j 5vi2vj is the relative velocity and the dimension
less matrixMT(r i j ) is the most general matrix that can b
constructed out of the vectorr i j 5r i2r j , this is

MT~r i j ![A~r i j !11B~r i j !ei j ei j , ~10!

where 1 is the unit matrix,ei j 5r i j /r i j is the unit vector
joining the particles,r i j 5ur i j u and the dimensionless func
tions A(r ) and B(r ) provide the range of the force. Th
friction coefficientg has been introduced as an overall fac
for convenience and has dimensions of inverse of time. T
first contribution to the dissipative force~9! is in the direc-
tion of the relative velocities and tends to damp out the d
ference between the velocities.It is a shearing force, which
is noncentral. The second contribution is directed along t
joining line of the particles and damps out the relative a
proaching motion of the particles. The dissipative force
the original algorithm of Hoogerbrugge and Koelman is o
tained withA(r )50 @15#. Note that the form of the forceFi j

T

is the more general expression for a vector that depend
r i j and is linear in the relative velocities.

We now discuss the effects of rotation in the dissipat
force. Let us assume for a moment that the clustersi and j
were spheres of radiusr i j /2 in contact and spinning with
angular velocitiesvi ,vj with no translational velocities. We
would have a relative velocity at the ‘‘surface’’ of th
spheres equal to12 r i j 3(vi1vj ) and it is plausible to asso
ciate a friction force between the spheres proportional~in
matrix sense! to this relative velocity. Therefore, the rota
tional contribution to the dissipative force is of the form

Fi j
R52gmMR~r i j !•S r i j

2
3@vi1vj # D . ~11!

Again, the dimensionless matrixMR depends only on the
vector r i j and therefore it must have the form

MR~r i j !5C~r i j !11D~r i j !ei j ei j , ~12!

whereC(r ),D(r ) are scalar functions. The first part of th
matrix gives rise to a friction force proportional to the rel
tive velocity at the ‘‘surface’’ of the spheres. The effect
this force is twofold. On one hand, the spinning of a parti
causes translational motion onto the neighboring partic
On the other, it also causes rotational motion in such a w
that two neighboring particles prefer to be with opposite a
gular velocities~in a sort of ‘‘engaging’’ effect!. The pres-
ence of a third particle frustrates the spinning of both p
ticles and, therefore, the global effect of this force is to da
out to zero the angular velocities of the particles. The sec
contribution to the force~12! is actually zero because th
cross product is perpendicular toei j . We retain this term just
to maintain the analogy between both matricesMR in Eq. ~9!
andMT in Eq. ~11!. Finally, we use the same value forg in
Eq. ~9! and in Eq.~12! because any difference can be tak
into account through the functionsA(r ),B(r ),C(r ),D(r ).

If we use, instead of the polar vector representation
the angular velocity, the antisymmetric tensor representa
Ãxy52Ãyx5vz ~cyclic!, we can write the force in the form

Fi j
R52gmMR~r i j !•~Ãi1Ãj !•

r i j

2
~13!
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which shows explicitly the vectorial nature of the force~that
is, Fi j

R transforms under rotations as a vector!.

B. Random forces

The first three contributionsFi j
C ,Fi j

T ,Fi j
R to the force be-

tween clusters in Eq.~8! are deterministic while the last on
is stochastic. The reason we introduce a random force is
it is well known that whenever a coarse graining procedur
performed, dissipation and noise arise and both are rel
through a fluctuation-dissipation theorem. After discuss
the form of the dissipative forces we will now consider t
form that the random force should have.

Inspired by the tensorial structure of the random forc
that appear in the fluctuating hydrodynamics theory@29#, we
expect that the dissipation due to shear has associat
traceless symmetric random matrix and that the dissipa
due to compressions has associated a diagonal trace m
By symmetry reasons, we expect that the noise associate
rotational dissipation will involve an antisymmetric matri
Therefore, wepostulatethe following velocity independen
random force:

F̃i j dt5smS Ã~r i j !dW̄ i j
S1B̃~r i j !

1

D
tr@dW i j #1

1C̃~r i j !dW i j
A D •ei j , ~14!

whereÃ(r ),B̃(r ),C̃(r ) are scalar functions,s is a parameter
governing the overall noise amplitude, and we introduce
following symmetric, antisymmetric and traceless symme
random matrices

dW i j
Smn5

1

2
@dW i j

mn1dW i j
nm#,

dW i j
Amn5

1

2
@dW i j

mn2dW i j
nm#, ~15!

dW̄ i j
S5dW i j

S2
1

D
tr@dW i j

S#1.

The overline in a matrix denotes its traceless part. Here,D is
the physical dimension of space anddW i j

mn is a matrix of
independent Wiener increments, which is assumed to
symmetric under particle interchange

dW i j
mn5dW j i

mn . ~16!

This symmetry will ensure momentum conservation beca
F̃i j 52F̃j i . The matrix dW i j

mn is an infinitesimal of order
1/2, and this is summarized in the Ito mnemotechnical ru

dW i i 8
mm8dW j j 8

nn85@d i j d i 8 j 81d i j 8d j i 8#dmndm8n8dt. ~17!
at
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ed
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From this stochastic property, one derives straightforwar
the following rules from the different parts in Eq.~14!:

tr@dW i i 8#tr@dW j j 8#5@d i j d i 8 j 81d i j 8d j i 8#D dt,

dW̄ i i 8
Smm8dW̄ j j 8

Snn8

5@d i j d i 8 j 81d i j 8d j i 8#F1

2
~dmndm8n81dmn8dm8n!

2
1

D
dmm8dnn8Gdt,

dW i i 8
Amm8dW j j 8

Ann85@d i j d i 8 j 81d i j 8d j i 8#

3
1

2
~dmndm8n82dmn8dm8n!dt,

~18!

tr@dW i i 8#dW̄ j j 8
S

50,

tr@dW i i 8#dW j j 8
A

50,

dW̄ i i 8
Smm8dW j j 8

Ann850.

These expressions show that the traceless symmetric,
trace, and the antisymmetric parts are independent stoch
processes. The apparently complex structure of the ran
force~14! is required in order to be consistent with the tens
structure of the dissipative friction forces~9! and ~11!. This
will become apparent when considering the associa
Fokker-Planck equation in the next section and requiring t
it has a proper equilibrium ensemble.

Despite the heuristic arguments and strong assumpt
made in order to model the forceFi j between clusters, we
note that this force is the most general force that can
constructed out of the vectorsr i ,r j ,vi ,vj ,vi ,vj and that
satisfies the following properties:~1! It is invariant under
translational and Galilean transformations and transform
a vector under rotations.~2! It is linear in the linear and
angular velocities. This linearity is required in order to
consistent with the Gaussian distribution of velocities
equilibrium, as we will show later.~3! It satisfies Newton’s
third law Fi j 52Fj i and, therefore, the total linear mome
tum will be a conserved quantity of the system.

IV. FOKKER-PLANCK EQUATION
AND EQUILIBRIUM STATE

The equations of motion~5! are Langevin equations
which in the form of proper stochastic differential equatio
~SDE! become

dr i5vidt,

dvi5
1

m(
i 8

@Fi i 8
C

1Fi i 8
T

1Fi i 8
R

#dt1(
i 8

dṽi i 8, ~19!

dvi52
1

I (i 8
r i i 8
2

3@Fi i 8
T

1Fi i 8
R

#dt2
m

I (i 8
r i i 8
2

3dṽi i 8,
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57 2935FLUID PARTICLE MODEL
where we have introduced

dṽi i 8[
1

m
F̃i i 8dt5sS Ã~r ii 8!dW̄ i i 8

S
1B̃~r ii 8!

3
1

D
tr@dW i i 8#11C̃~r ii 8!dW i i 8

A D •ei i 8. ~20!

In principle, one should specify which stochastic interpre
tion ~Itô or Stratonovich! must be used in these equatio
@32#. Nevertheless, both interpretations produce the same
swers because the random forces are velocity independ

Associated to the SDE~19! there exists a mathematicall
equivalent Fokker-Planck equation~FPE!. The FPE governs
the distribution functionr(r ,v,v;t) that gives the probabil-
ity density that theN clusters of the system have specifi
values for the positions, velocities, and angular velociti
We show in the Appendix that the FPE is given by

] tr~r ,v,v;t !5@LC1LT1LR#r~r ,v,v;t !. ~21!

The operatorLC is the usual Liouville operator of a Hamil
tonian system interacting with conservative forcesFC, this is,

LC52F(
i

vi

]

]r i
1 (

i , j Þ i

1

m
Fi j

C ]

]vi
G . ~22!

The operatorsLT,LR are given by

LT5 (
i , j Þ i

]

]vi
•@L i j

T 1L i j
R#,

~23!

LR52
m

I (
i , j Þ i

]

]vi
•S r i j

2
3@L i j

T 1L i j
R# D ,

with

L i j
T [2

1

m
Fi j

T 1
s2

2
T i j •F ]

]vi
2

]

]vj
G ,

~24!

L i j
R[2

1

m
Fi j

R1
m

I

s2

2
T i j •S r i j

2
3F ]

]vi
1

]

]vj
G D .

Here, the matrixT i j is given by

T i j 5
1

2
@Ã2~r i j !1C̃2~r i j !#11F S 1

2
2

1

D D Ã2~r i j !1
1

D
B̃2~r i j !

2
1

2
C̃2~r i j !Gei j ei j . ~25!
-

n-
t.

.

The steady state solution of Eq.~21!, ] tr50, gives the
equilibrium distributionreq. We now consider the condition
under which the steady state solution is the Gibbs canon
ensemble:

req~r ,v,v!5
1

Z
exp$2H~r ,v,v!/kBT%

5
1

Z
expH 2S (

i

m

2
v i

21
I

2
v i

21V~r ! D Y kBTJ ,

~26!

whereH is the Hamiltonian of the system,V is the potential
function that gives rise to the conservative forcesFC, kB is
Boltzmann’s constant,T is the equilibrium temperature, an
Z is the normalizing partition function. We note that th
velocity and angular velocityfieldsare Gaussian variables a
equilibrium and, therefore, one expects that the distribut
function of the discrete values of these fields is also Gau
ian.

The canonical ensemble is the equilibrium solution for t
conservative system, i.e.,LCreq50. If in addition the follow-
ing equations are satisfied

L i j
T req50,

~27!

L i j
Rreq50,

then we will haveLreq50 and the Gibbs equilibrium en
semble will be the unique stationary solution of the dyna
ics. Equations~27! will be satisfied if

g5
s2m

2kBT
, ~28!

which is a detailed balance condition, and also

MR~r i j !5MT~r i j !5T i j . ~29!

This is the fluctuation-dissipation theorem for the fluid pa
ticle model. We observe, therefore, that the initial hypothe
for the tensorial structure of the dissipative~9!, ~13!, and
random~14! forces was correct and consistent with equili
rium statistical mechanics.

A final word about an H-theorem is in order. It has be
shown in Ref.@22# that the original DPD algorithm has a
H-theorem that ensures that the equilibrium ensemble is
final solution for whatever initial condition selected. In th
model presented in this paper there is also a functiona
r(z) that is a Lyapunov functional. It is not necessary
prove again that an H-theorem exists for the fluid parti
model, because ageneralH-theorem exists forany Fokker-
Planck equation@33#. The only condition is that the diffusion
matrix accompanying the second derivative terms of the F
is positive~semi! definite. However, in the model presente
in this paper the diffusion matrix is positive semidefinite
construction, because the FPE has been obtained fro
SDE. The diffusion matrix is obtained from the product
two identical matrices. Therefore, its eigenvalues are
square of the eigenvalues of these matrices and are nece
ily positive ~or zero!.
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V. SUMMARY OF THE FLUID PARTICLE MODEL

In this section and for the sake of clarity we collect t
results presented so far. The fluid particle model is defi
by N identical particles of massm and moment of inertiaI .
The state of the system is characterized by the positionsr i ,
velocitiesvi , and angular velocitiesvi of each particle. The
forces and torques on the particles are given by

Fi5(
j

Fi j ,

~30!

Ni52(
j

r i j

2
3Fi j ,

where the force that particlej exerts on particlei is given by

Fi j 5Fi j
C1Fi j

T 1Fi j
R1F̃i j . ~31!

The conservative (C), translational (T), rotational (R), and
random~tildes! contributions are given by

Fi j
C52V8~r i j !ei j ,

Fi j
T 52gmT i j •vi j ,

~32!

Fi j
R52gmT i j •S r i j

2
3~vi1vj ! D ,

F̃i j dt5~2kBTgm!1/2S Ã~r i j !dW̄ i j
S1B̃~r i j !

1

D
tr@dW i j #1

1C̃~r i j !dW i j
A D •ei j .

The random bits are defined in Eq.~15! and its stochastic
properties are given in Eq.~18!. Here, the matrixT is given
by

T i j 5A~r i j !11B~r i j !ei j ei j , ~33!

where

A~r !5
1

2
@Ã2~r !1C̃2~r !#,

~34!

B~r !5
1

2
@Ã2~r !2C̃2~r !#1

1

D
@B̃2~r !2Ã2~r !#.

The model is thus specified by providing the scalar fu
tions V(r ),Ã(r ),B̃(r ),C̃(r ). We note that the caseÃ(r )
5C̃(r )50 corresponds to the original DPD algorithm
Hoogerbrugge and Koelman@15,18#. In this case, the random
force is given in terms of a single random number~the trace!,
the forces are central and the torques vanish, rendering
spin variables unnecessary. Note that there is some free
in selecting the functionsÃ(r ),B̃(r ),C̃(r ) and it might be
convenient to takeÃ(r ) or C̃(r ) equal to zero in order to
compute only four of seven random numbers in each ste
a simulation.
d

-

he
om

of

The model presented in the language of SDE is m
appropriate for its direct use in simulations. For theoreti
analysis it is more convenient to use the corresponding F
which is given by

] tr~r ,v,v;t !5@LC1LT1LR#r~r ,v,v;t !, ~35!

where

LC52(
i

vi•
]

]r i
1

Fi
C

m
•

]

]vi
,

LT5 (
i , j Þ i

]

]vi
•@L i j

T 1L i j
R#, ~36!

LR52
m

I (
i , j Þ i

]

]vi
•S r i j

2
3@L i j

T 1L i j
R# D .

Here, the vector operators are given by

L i j
T [gT i j •H vi j 1

kBT

m F ]

]vi
2

]

]vj
G J [gT i j •Vi j ,

L i j
R[gT i j •H S r i j

2
3@vi1vj # D1

kBT

I S r i j

2
3F ]

]vi
1

]

]vj
G D J

[gT i j •Wi j
~37!

where the last equality defines the two vector operat
Vi j ,Wi j .

VI. KINETIC THEORY

One would like to predict the macroscopic behavior of t
fluid particle model and, in particular, check that this beha
ior conforms to the laws of hydrodynamics~as expected
from symmetry considerations! and predict the value of the
transport coefficients in terms of model parameters. The g
bal conservation laws of mass and linear and angular
mentum in the fluid particle model have a local counterp
in the form of balance equations. Our aim is to formula
these equations of transport within a kinetic theory approa
as has been done by Marsh, Backx, and Ernst recently for
case of the original DPD model in Ref.@22#. A derivation of
the hydrodynamic equations with a projection operator te
nique for the original DPD algorithm was presented in R
@21#. The projector used was the Mori projector@34# and the
resulting equations were the linearized equations of hyd
dynamics. By using atime-dependentprojector one can ob-
tain the nonlinear equations of hydrodynamics with th
transport coefficients expressed in terms of Green-Kubo
mulas@35#. Although explicit calculations can be performe
of these Green-Kubo formulas under certain approximati
@36#, we adopt in this paper the approach of kinetic theo
allowing for a straightforward comparison with the results
Ref. @22#.

A. General rate of change equation

The starting point is the formulation of the general rate
change equation for an arbitrary functionG(z) wherez is a
shorthand for the set of all positions, velocities, and angu
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57 2937FLUID PARTICLE MODEL
velocities of the N particles of the fluid. By using the
Fokker-Planck equation~35!, we can write

] t^G&5E dz G~z!] tr~z;t !

5E dz G~z!@LC1LT1LR#r~z;t !

5E dzr~z;t !@LC11LT11LR1#G~z!, ~38!

where an integration by parts is performed and the adj
operators are defined by

LC15(
i

vi•
]

]r i
1

Fi
C

m
•

]

]vi
,

LT15g (
i , j Þ i

~V̄i j 1W̄i j !•T i j •
]

]vi
, ~39!

LR152
m

I
g (

i , j Þ i
S r i j

2
3T i j •~V̄i j 1W̄i j ! D •

]

]vi
.

Here, the vector operators are given by

Vi j
1[2vi j 1

kBT

m F ]

]vi
2

]

]vj
G ,

~40!

Wi j
1[2S r i j

2
3@vi1vj # D1

kBT

I S r i j

2
3F ]

]vi
1

]

]vj
G D

to be compared with Eq.~37!.

B. Balance equations

The conserved density fields are expected to behave
drodynamically. The conserved density fields are the m
densityr(r ,t)5mn(r ,t), wheren(r ,t) is the number density
field; the momentum densityr(r ,t)u(r ,t), whereu(r ,t) is
the velocity field; and the total angular momentum dens
field J(r ,t)5L (r ,t)1S(r ,t) whereL (r ,t)5r3r(r ,t)u(r ,t)
is the macroscopic angular momentum density andS(r ,t)
5In(r ,t)V(r ,t) is the intrinsic angular momentum densi
or spin density. HereV(r ,t) is the angular velocity field.
The number density and the velocity and angular veloc
fields are defined by

n~r ,t !5K (
i

d~r2r i !L ,

n~r ,t !u~r ,t !5K (
i

vid~r2r i !L , ~41!

n~r ,t !V~r ,t !5K (
i

vid~r2r i !L .

By applying Eq.~38! to the mass and momentum densiti
~41! we obtain the set of balance equations
t

y-
ss

y

y

] tr52¹•ru,
~42!

] tru52¹•@ruu1P#,

where the total stress tensorP5PK1PC1PD and the ki-
netic, conservative, and dissipative contributions to the st
tensor are

PK5K m(
i

@vi2u~r ,t !#@vi2u~r ,t !# d~r2r i !L ,

PC5K 1

2 (
i , j Þ i

Fi j
Cr i j E

0

1

dld~r2r i2lr i j !L , ~43!

PD52gmK 1

2 (
i , j Þ i

r i j T i j •gi j E
0

1

dl d~r2r i2lr i j !L .

Here,gi j 5vi j 1r i j 3@vi1vj #/2 is the relative velocity at the
‘‘surface of contact’’ of two identical spheres separated
distancer i j . We note that the kinetic and conservative pa
to the stress tensor are symmetric tensors but the dissip
part is not and therefore we must be careful with the order
of the indices. In Cartesian components we understand
momentum balance equation~42! as follows ~summation
over repeated indices is implied!:

] trun5]m@rumun1Pmn# ~44!

and the dissipative stress tensor has the form

Pmn
D 52gmK 1

2 (
i , j Þ i

r i j
mT i j

nagi j
a E

0

1

dl d~r2r i2lr i j !L .

~45!

Concerning the angular velocity field, by using again E
~38! on the definition~41! we obtain

] tnV52¹•K (
i

vivi•d~r2r i !L
1

m

I
gK (

i , j Þ i
S r i j

2
3T i j •gi j D d~r2r i !L . ~46!

Note that the rate of change of the spinS5InV cannot be
expressed entirely as the gradient of a flux. This is a refl
tion of the fact that the intrinsic angular momentumS is not
a conserved quantity. In the same way, the macroscopic
gular momentumL5r3ru is not conserved either, as ca
be appreciated by taking the cross product of the momen
balance equation~42! with the position vectorr , that is,

] tL52r3¹•~ruu1P!

52¹•~Lu1r3P!12PA, ~47!

wherePA is the antisymmetric part of the stress tensor~ex-
pressed here as an axial vector, that is,PAa5 1

2 eamnPmn ,
whereeamn is the Levi-Civita symbol!. If the stress tensor is
symmetric~i.e., its antisymmetric part is zero!, the macro-
scopic angular momentum is conserved. In the fluid part
model the noncentral nature of the forces implies that
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antisymmetric part of the stress tensor is not zero. Actually, it is given by~as an axial vector!

2PA52gmK (
i , j Þ i

S r i j

2
3T i j •gi j D E

0

1

dl d~r2r i1lr i j !L . ~48!

If we add the last term of Eq.~46! with the last term of Eq.~47!, which is ~48!, we obtain

2PA1gmK (
i , j Þ i

S r i j

2
3T i j •gi j D d~r2r i !L 5gmK (

i , j Þ i
S r i j

2
3T i j •gi j D Fd~r2r i !2E

0

1

dl d~r2r i1lr i j !G L
5gm¹K (

i , j Þ i
S r i j

2
3T i j •gi j D r i j E

0

1

dlE
0

1

dl8d~r2r i1ll8r i j !L . ~49!

Therefore, thetotal angular momentum densityJ5L1S satisfies a balance equation

] tJ52¹•@Jv1r3P1F#, ~50!

where

F5gmK (
i , j Þ i

S r i j

2
3T i j •gi j D r i j E

0

1

dlE
0

1

dl8d~r2r i1ll8r i j !L . ~51!

C. Balance equations in terms of distribution functions

It is convenient to express the quantities appearing in the balance equations in terms of the single particle
distribution functions, defined as

f ~x,t !5 f ~r ,v,v,t !5K (
i

d~x2xi !L ,

~52!

f ~2!~x,x8,t !5K (
i , j Þ i

d~x2xi !d~x82xj !L .

The number density, the velocity, and angular velocities in Eq.~41! are the first moments of the single particle distributi
function,

n~r ,t !5E dv dv f ~r ,v,v,t !,

n~r ,t !u~r ,t !5E dv dv vf ~r ,v,v,t !, ~53!

n~r ,t !V~r ,t !5E dv dv vf ~r ,v,v,t !.

Next, by using that for an arbitrary functionG

K (
i , j Þ i

G~r i j ,vi ,vj ,vi ,vj !d~r2r i1lr i j !L 5E dv dv8dv dv8dR G~R,v,v8,v,v8! f ~2!
„r1lR,v,v,r1~l21!R,v8,v8…,

~54!

which, for l50 becomes

K (
i , j Þ i

G~r i j ,vi ,vj ,vi ,vj !d~r2r i !L 5E dv dv8dv dv8dR G~R,v,v8,v,v8! f ~2!~r ,v,v,r2R,v8,v8! ~55!
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we can write the different contributions~43! to the stress tensor in terms of the distribution functions

PK5E dv dv m~v2u!~v2u! f ~r ,v,v,t !,

PC5E dv dv dv8dv8E dR
R

2
FC~R! f̄ ~2!~r ,v,v,r 8,v8,v8!, ~56!

PD52gmE dv dv dv8dv8E dR
R

2
T~R!•g f̄ ~2!~r ,v,v,r 8,v8,v8!,

whereg[†v2v81R/23@v1v8#‡. We have introduced in these expressions the spatially averaged pair distribution fu

f̄ ~2!~r ,v,v,r 8,v8,v8!5E
0

1

dl f ~2!
„r1lR,v,v,r1~l21!R,v8,v8…. ~57!

In terms of the distribution functions the terms of the right-hand side of Eq.~46! can be written as

K (
i , j Þ i

vivid~r2r i !L 5E dv dv vvf ~r ,v,v,t !

5E dv dv~v2u!~v2V! f ~r ,v,v,t !2nVu1uE dv dv vf ~r ,v,v,t !1VE dv dv vf ~r ,v,v,t !,

K (
i , j Þ i

S r i j

2
T i j •gi j D d~r2r i !L 5E dv dv dv8dv8E dRS R

2
3T~R!•gD f ~2!~r ,v,v,r2R,v8,v8!. ~58!

Finally,

F5gmE dv dv dv8dv8E dRS R

2
3T~R!•gDR f̄̄ ~2!~r ,v,v,r 8,v8,v8!, ~59!

where

f̄̄ ~2!~r ,v,v,r 8,v8,v8!5E
0

1

dlE
0

1

dl8 f ~2!
„r1ll8R,v,v,r1~ll821!R,v8,v8…. ~60!

D. Fokker-Planck-Boltzmann equation

The Fokker-Planck-Boltzmann equation~FPBE! is an approximate kinetic equation for the single particle distribut
function f (x,t). The FPBE is obtained by applying the general rate of change equation~38! to f (x,t). After some algebra one
arrives at

] t f 1v•¹f 5E dR dv8dv8]•@FC~R!1gT~R!•g# f ~2!~r ,v,v,r2R,v8,v8!

1
kBT

m
gE dR dv8dv8]•T~R!•] f ~2!~r ,v,v,r2R,v8,v8! , ~61!
e it
aos
where we have defined the operator

][
]

]v
1

m

I S R

2
3

]

]vD . ~62!

In obtaining Eq.~61!, we have inserted at some point th
identity
15E dR dv8dv8d~r2R2r j !d~v82vj !d~v82vj !.

~63!

Equation ~61! is not a closed equation forf (r ,v,v,t) be-
cause the pair functionf (2)(x,x8,t) appears. Nevertheless
can be closed approximately by using the molecular ch
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assumption. In what follows we will assume that the fricti
g is so large to allow for a neglect of the conservative forc
FC @22#. This simplifies considerably the calculations in t
next section. The molecular chaos assumption in the abs
of conservative forces becomes

f ~2!~x,x8,t !' f ~x,t ! f ~x8,t !. ~64!

The final closed Fokker-Planck-Boltzmann equation
the distribution function is, after using the molecular cha
assumption~64!,

] t f 1v•¹f 5I @ f #5gE dR dv8dv8 f ~r2R,v8,v8!

3]•T~R!•Fg1
kBT

m
]G f ~r ,v,v!, ~65!

which is an integrodifferential nonlinear equation.

E. Chapman-Enskog solution of the FPBE

Our aim is to solve the nonlinear FPBE~65! by using the
perturbative method of Chapman and Enskog. The metho
valid for situations in which the macroscopic conserv
fields are slowly varying in typical molecular length scale
In these situations, the distribution function decays in a v
short kinetic time~short compared to typical times of evolu
tion of the conserved field! towards the so-callednormal
solution where the distribution functionf „v,vua(r ,t)… de-
pends on space and time only through the first few mome
a(r ,t) @22#. During this last hydrodynamic stage, the so
tion can be obtained perturbatively as an expansion in gr
ents, that is,f (v,vuu,V)5 f 01 f 11O(¹2) where f 0 is of
zeroth order in gradients andf 1 is of first order in gradients
By substitution of this expansion into the FPBE~65! one
obtains

] t f 01] t f 11v•¹f 05I @ f 0#1S dI

d f D
f 0

f 11O~¹2!. ~66!

By analogy with the conventional kinetic theory and al
with the kinetic theory for DPD in Ref.@22#, we expect that
the lowest order contributionf 0 is given by thelocal equi-
librium form for the distribution function. In the presence
spin variables it takes the form

f 0~r ,v,v,t !5n~r ,t !S m

2pkBTD D/2

expH 2
m

2kBT
~v2u!2J

3S I

2pkBTD D/2

expH 2
I

2kBT
~v2V!2J .

~67!

This local equilibrium distribution provides the correct ave
ages for the first moments off (r ,v,v,t), that is,
s

ce

r
s

is

.
y

ts

i-

n~r ,t !5E dv dv f 0~r ,v,v,t !,

n~r ,t !u~r ,t !5E dv dv vf 0~r ,v,v,t !, ~68!

n~r ,t !V~r ,t !5E dv dv vf 0~r ,v,v,t !.

This, in turn, implies that the first moments off 1 are of order
O(¹2).

The procedure is now a bit different from the Chapma
Enskog method in Ref.@22#, because the inclusion of th
spin variables produces new terms with different orders
gradients. We write Eq.~66! as follows:

S dI

d f D
f 0

f 12] t f 15] t f 01v•¹f 02I @ f 0#, ~69!

where we have neglected terms that are quadratic in gr
ents. We will check in the following that both sides of th
equation are explicitly of first order in gradients. This line
equation~69! will be solved for f 1 and therefore we will
obtain the solution of the FPBE~65! as f 01 f 1, up to terms
of order¹2.

We now consider each term of Eq.~69! separately. The
temporal and spatial derivatives off 0 can be computed to
first order in gradients with the use of the balance equati
~42! and ~46!. Only terms of order¹ are to be retained
which amounts to using the balance equations with the a
ages of the quantities appearing in them evaluated with
local equilibrium ensemble. Therefore, we need to comp
the local equilibrium average of the stress tensorP in the
momentum balance equation, and the local equilibrium av
age of the two contributions in Eq.~58! to the equation for
the angular velocity field. After using the molecular cha
assumption one easily obtains the following results:

Pmn
K05nkBTdmn ,

Pmn
D052gmn2

1

2
†A2@]num1emnsVs#

~70!

1B2@¹•udmn1]num1]mun#‡1O~¹2!,

where we have defined

A2[
1

DE dR R2A~R!,

~71!

B2[
1

D~D12!
E dR R2B~R!.

The first contributionPK0 produces an isotropic pressu
term. Consistently with our assumption that the conserva
forces are negligible this pressure is given by the ideal
expression. The second contributionPD0 contains terms of
first order in gradients. We arrange a bit this contribution
introducing the velocity gradient tensor (¹u)nm5]num and
its traceless symmetric and antisymmetric parts
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¹ūS[
1

2
@¹u1¹uT#2

1

D
¹•u1,

~72!

¹uA[
1

2
@¹u2¹uT#.

We have

PD052gmn2
1

2FA2~¹uA1V!1~A212B2!¹ūS

1@A21~D12!B2#
1

D
¹•u1G . ~73!

The antisymmetric part of the total stress tensor in the lo
equilibrium approximation to first order in gradients is giv
by ~as an axial vector!

PA05gmn2
A2

2 S 1

2
¹3u2VD . ~74!

In a similar way one computes the quantities in Eq.~58! that
appear in the balance equation for the spin~46!. In particular,
e

al

the last term in Eq.~58! is also given by22PA in the local
equilibrium approximation to first order gradients.

Substitution of the local equilibrium expressions for t
stress tensor into the balance equations produce, the E
equations,

] tn52¹nu,

] tu52~u•¹!u2
kBT

m

1

n
¹n1

1

n
¹3g

A2

2
n2V, ~75!

] tV52~u•¹!V1g
m

I
A2nF1

2
¹3u2VG .

We have neglected a term of first order in gradients, wh
produces a term of order¹2 in the momentum balance equa
tion. We note that the time derivative of the angular veloc
contains a term that is ofzerothorder in gradients~the V
term in the last equation!.

With the help of the Euler equations and the chain ru
we can now compute the time and space derivatives of
local equilibrium distribution, to first order in gradient. Th
result is
] t f 01v•¹f 05 f 0S 2¹•u1
m

kBT
~v2u!~v2u!:¹u1

I

kBT
~v2V!~v2u!:¹V1gnA2

m

kBT

1

2n
~v2u!•¹3n2V

1gA2n
m

kBT
~v2V!•F1

2
¹3u2VG D , ~76!

where the double dot ‘‘: ’’ denotes double contraction.
The next step is the calculation ofI @ f 0#. To first order in gradients it is given by

I @ f 0#5gnA2

m

kBT
f 0S 1

2n
~v2u!•¹3n2V1~v2V!•F1

2
¹3u2VG D . ~77!

Therefore, after some happy cancellations the right hand side of Eq.~69! has the simple form

] t f 01v•¹f 02I @ f 0#5 f 0F2¹•u1
m

kBT
~v2u!~v2u!:¹u1

I

kBT
~v2V!~v2u!:¹VG , ~78!
which contains only terms of first order in gradients.
Next, we consider the term] t f 1 in Eq. ~69!. We note that

it is of first order in gradients due to the term of zeroth ord
in the Euler equation for the angular velocity, that is,

] t f 15
] f 1

]V
•] tV1O~¹2!,

52
m

I
gA2nV•

] f 1

]V
1O~¹2!,

~79!

5
m

I
gA2nV•

] f 1

]v
1O~¹2!,
r

where we have assumed that the dependence off 1 on V
appears in the combinationv2V. This assumption will be
confirmeda posteriori.

The linearization of the functionalI @ f # might be easier to
perform by expandingI @ f 01 f 1# to first order in gradients.
The final result for the left hand side of Eq.~69! is

I @ f 01 f 1#2I @ f 0#2] t f 15gnF @A01B0#LT1
m

I

A2

2
LRG f 1

1O~¹2!, ~80!

where the operators are given by
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LT5
]

]v
•Fv2u1

kBT

m

]

]vG ,
~81!

LR5
]

]v
•Fv2V1

kBT

I

]

]vG
and the constantsA0 ,B0 are given by

A0[E dR A~R!,

~82!

B0[
1

DE dR B~R!.

Equation~69! can be written in compact form as

Lf 15 f 0F2¹•u1
m

kBT
VV :¹u1

I

kBT
OV:¹VG , ~83!

where the operator has the form

L5gnF @A01B0#LT1
m

I

A2

2
LRG ~84!

and the peculiar velocities areV5v2u,O5v2V.
Equation~83! is an inhomogeneous second order par

differential equation. In order to obtain a special solution
the inhomogeneous equations~83!, we introduce the follow-
ing tensors:

Jmn5
m

kBTH VmVn2
1

D
V2dmnJ ,

J5
mV2

DkBT
21, ~85!

Tmn5
I

kBT
OmVn .

With these quantities we write Eq.~83! in the form

Lf 15 f 0@J:¹ūS1J¹•u11T:¹V#. ~86!

The quantities~85! satisfy

LTf 0Jmn522 f 0Jmn ,

LRf 0Jmn50,

LTf 0J522 f 0J,

~87!

LRf 0J50,

LTf 0Tmn5 f 0Tmn ,

LRf 0Tmn5 f 0Tmn ,

and therefore, a special solution of Eq.~83! is given by
l
f

f 152 f 0F 1

2gn~A01B0!
@J:¹ūS1J¹•u1#

2
1

gn~A01B01~m/I !A2/2!
T:¹VG ~88!

as can be checked by substitution.
Now it remains to obtain a general solution of the hom

geneous equationLf 150. The solution of this homogeneou
equation is an arbitrary linear combination off 0a, wherea
are the collisional invariantsa5$1,v2u,v2V%. Neverthe-
less, the combination of Eqs.~53! and ~68! imposes that the
coefficients of the linear combination are zero.

F. Transport coefficients

The phenomenological theory of viscous flow of an is
tropic fluid @28# relates the trace tr@P#, the traceless symmet

ric P̄S, and antisymmetricPA parts of the stress tensorP
with the linear velocity gradients and angular velocity in t
following way:

1

D
tr@P#52z¹•u1p,

P̄S522h¹ūS, ~89!

PA522hRF1

2
¹3u2VG ,

where the antisymmetric part is written as an axial vect
Herep is the isotropic hydrostatic pressure. The coefficie
are the bulk viscosityz, the shear viscosityh, and the rota-
tional viscosityhR .

We now compute the stress tensor~56! using the molecu-
lar chaos assumption~64! for the pair distribution function
and the approximate solutionf 01 f 1 for the single particle
distribution function. This will produceP5P01P1 where
the local equilibrium contributionP0 has been already com
puted in Eq.~70!. Regarding the termP1 computed withf 1
one observes that the only contribution that is of first orde
gradients isP1

K , which is computed along similar lines t
Ref. @22#. The final result is

PK5nkBT12
kBT

g@A01B0#
¹ūS2

kBT

Dg@A01B0#
¹•u1.

~90!

The remaining contributionsP1
D are of order¹2 and will be

neglected. The final expression of the stress tensor in lin
order of gradients is given by collecting Eqs.~73!, ~74!, and
~90!:
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1

D
tr@P#52H gmn2F A2

2D
1

~D12!

2D
B2G1

kBT

gD@A01B0#J ¹•u

1nkBT,

P̄S52H gmn2FA2

2
1B2G1

kBT

g@A01B0#J ¹ūS, ~91!

PA52gmn2
A2

2 F1

2
¹3u2VG .

Comparison of Eqs.~89! and ~91! allows one to identify
the viscosities as

z5H gmn2F A2

2D
1

~D12!

2D
B2G1

kBT

gD@A01B0#J ,

h5
1

2H gmn2FA2

2
1B2G1

kBT

g@A01B0#J , ~92!

hR5gmn2
A2

2
.

In order to compare these expressions with those obtaine
Marshet al. @22#, we should note that for the original DPD
algorithm we have

A~r !50,

~93!

B~r !5v~R!.

Simple substitution of Eq.~93! into Eq. ~92! shows that the
transport coefficient~92! coincides with those provided in
Ref. @22#.

G. Transport equations

Substitution of the stress tensorP5tr@P#1/D1P̄S1PA,
Eq. ~89!, into the momentum balance equation~42! produces
the Navier-Stokes equations for a fluid with spin@28# (D
53),

r
d

dt
u52¹p1¹•~2h¹uS!1¹~z22h/3!¹•u1¹

3@2hR~V2 1
2 ¹3u!#, ~94!

where we have used the substantial derivatived/dt5] t
1u•¹. The last term in Eq.~94! is the gradient of the anti
symmetric part of the stress tensor and describes the effe
the spin on the momentum transport.

On the other hand by neglecting the termF in the angular
momentum balance equation~50! @28# we obtain

] tJ52¹@Jv1r3P#, ~95!

which in combination with Eq.~47! produces the following
balance equation for the spin density:

] tS52¹@Su#22PA, ~96!
by

of

which implies the following dynamic equation for the ang
lar velocity:

nI
d

dt
V522PA. ~97!

Substitution ofPA in Eq. ~89! into this equation gives

d

dt
V52

4hR

nI FV2
1

2
¹3uG52

1

t FV2
1

2
¹3uG . ~98!

The final closed set of equations for the hydrodynamic fie
is given by Eqs.~94! and ~98!, together with the continuity
equation

d

dt
r52r¹•u ~99!

and the equation of state

p5kBTn5
kBT

m
r[c2r, ~100!

where we have introduced the speed of soundc.
Equation~98! shows that the spin relaxes towards the v

ticity with a relaxation time scale given byt5nI/4hR @28#.
In the model of this paper, substitution ofhR in ~92! gives
the following time scale

t5
I

2gnmA2
. ~101!

H. Summary of kinetic theory

In summary, it has been shown in this section that
macroscopic behavior of the fluid particle model is hydrod
namical and the mass, momentum and angular momen
transport equations have been derived@Eqs. ~99!, ~94!, and
~98!#. In doing this, explicit expressions for the transpo
coefficients in terms of the original model parameters ha
been obtained@Eqs.~92! and~101!#. The equations cited her
are the main results of the kinetic theory of the fluid partic
model.

VII. RESOLUTION ISSUES
OF THE FLUID PARTICLE MODEL

Within the picture of the Voronoi coarse-grainin
sketched in Sec. II, it is possible to consider different lev
of coarse graining in which the number of atomic partic
within a Voronoi cell is different. We expect that, provide
that the number of atomic particles within the cell is lar
enough, the description of the hydrodynamic behavior w
be more and more accurate as the number of Voronoi c
increases. In other words, we expect to reach a ‘‘continu
limit’’ as the number density offluid particles goes to infin-
ity. The discussion resembles that of the resolution in
numerical solution of partial differential equations. Actuall
the resemblance can be made more accurate by comp
the structure of the equations of motion of the fluid partic
model with those of smoothed particle hydrodynami
Smoothed particle hydrodynamics is a Lagrangian discr
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zation of the continuum equations of hydrodynamics t
allows one to interpret the nodes of the grid in terms
‘‘smoothed particles.’’

For the case in which there is no coupling between
Navier-Stokes equation and the energy equation~the pres-
sure does not depend on the temperature, for exam!,
Takeda et al. @3# propose a discretization of the Navie
Stokes equations that produce equations of motion for
smoothed particles that correspond exactly in structure w
the postulated equations of motion of the fluid particle mo
in this paper. The correspondence is

V~r !52
p0

mn0
2

W~r !,

gA~r !5
1

mn0
2FhW9~r !1F2h1S z1

h

3 D GW8~r !

r G ,
~102!

gB~r !5
1

mn0
2S z1

h

3 D FW9~r !2
W8~r !

r G ,
where,p0 ,n0 are the equilibrium pressure and number de
sity, respectively, andW(r ) is the weight function used in
the discretization of the Navier-Stokes equation~the assump-
tion that the density of all particles is almost constant h
been taken!.

In this respect, the fluid particle model postulated in t
paper is simply the smoothed particle hydrodynamics w
two additional bonuses:~1! thermal noise is introduced con
sistently~that is, the fluid particle model can be interpret
as a Lagrangian discretization of the nonlinear fluctuat
hydrodynamic equations!, and~2! the angular momentum i
conserved exactly in the fluid particle model, in contrast w
the smoothed particle hydrodynamics model. The first bo
allows one to apply smoothed particle hydrodynamics to
crohydrodynamic problems as those appearing in comp
fluids where Brownian fluctuations are due to the fluctuat
hydrodynamic environment. It can be also useful in study
the effect of thermal fluctuations near convective instabilit
and, in general, in the study of nonequilibrium thermal flu
tuations in hydrodynamic systems. The actual relevance
the second bonus will be discussed later.

The comparison of SPH with the fluid particle mod
points to an inconsistency that appears when using s
particular selections for the weight function like the Lu
weight function @5# or a Gaussian weight function@3#. In
these cases, it is easily seen that the functionA(r ) can be-
come negative for certain values ofr . This is unacceptable in
view of Eq. ~34!. From a physical point of view this mean
that if two particles are at a distance such thatA(r ) is nega-
tive, then the viscous forces will try toincreaseits relative
velocities.

In the derivation of the SPH model@2,3# it becomes ap-
parent that the weight functionW(r ) must be normalized to
unity in order to have correct discrete~Monte Carlo! ap-
proximations for integrals. IfW(r ) is normalized to unity,
then one expects that by increasing the number densit
smoothed particles one is increasing the numerical resolu
of the simulation. The normalization implies that as t
t
f

e

e

e
th
l

-

s

s
h

g

s
i-
x

g
g
s
-
of

e

of
n

range of the weight function decreases with higher reso
tion, its height increases and, in the limit of infinite resol
tion it becomes a Dirac delta functionW(r )→d(r ). Because
the weight function is steeper when the resolution is high
the time step used in the SPH model has to be reduced a
resolution increases. This is also encountered in any fi
difference algorithm for solution of partial differential equ
tions in order to maintain stability.

Let us investigate the effect of the resolution effects
the macroscopic parameters defining the fluid on hydro
namic scales and which have been computed by means o
kinetic theory in the previous section. The parameters t
characterize the evolution of the velocity field are, as can
appreciated from Eq.~94!, the speed of sound defined in E
~100! and thekinematicviscosities defined byn5h/r, nb
5z/r, andn r5hR /r. From Eq.~92! they have the form

nb5FgnH A2

2D
1

~D12!

2D
B2G1c2

1

gDn@A01B0#
J ,

n5
1

2H gnFA2

2
1B2G1c2

1

gn@A01B0#
J , ~103!

nR5gn
A2

2
.

We are assuming, for the sake of the argument, thatn5n0,
that is, the density field is constant. The conclusions, ho
ever, are valid in the compressible case also.

Let us focus first on the dimensionless functio
A(r ),B(r ) that determine the range of the dissipative a
random forces. We expect that the clusters interact only w
their neighbors, which are a typical distancel apart. There-
fore, these functions will be of the form

A~r !5a~r /l!,

~104!

B~r !5b~r /l!,

wherea,b are functions that do not depend explicitly onl.
This ensures that as the resolution is increased, the rang
the force decreases, and this has the computationally app
ing feature that the interaction between fluid particles
mains always local. By using these scaling functions a
after a change to the dimensionless variablex[r /l, we have

A05
a0

n0
,

B05
b0

n0
,

~105!

A25
a2

n0
l2,

B25
b2

n0
l2,
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where the dimensionless coefficients are given by

a05E a~x!dDx,

b05
1

D E b~x!dDx,

~106!

a25
1

D E x2a~x!dDx,

b25
1

D~D12!
E x2b~x!dDx

and do not depend on the resolution. By using Eq.~105! in
Eq. ~103! we obtain

nb5H gl2F a2

2D
1

~D12!

2D
b2G1c2

1

Dg~a01b0!J ,

n5
1

2H gl2Fa2

2
1b2G1c2

1

g~a01b0!J , ~107!

nR5g
l2

2
a2 .

We observe that all the dependence on the resolution (l or
n0) has been made explicit. In the limit of high resolutio
(l→0 or n0→`) the only contribution to the bulknb and
shearn viscosities comes from the kinetic contribution th
depends linearly on the temperature. This means that at
temperature the system would not display any viscosity
the limit of high resolution. We find this behavior undes
able and we are led to the conclusion that the friction co
ficient g must depend onl. In particular, if we defineg̃
[gl2 ~which has dimensions of a kinematic viscosity! and
assume thatg̃ remains constant as the resolution varies,
will have

nb5H g̃ F a2

2D
1

~D12!

2D
b2G1c2

l2

D g̃
J ,

n5
1

2H g̃ Fa2

2
1b2G1c2

l2

g̃
J , ~108!

nR5
g̃

2
a2 ,

where the normalizationa05b051 has been used as in th
original DPD algorithm@15#. The relaxation time~101! will
take the form

t5
I

2m

l2

g̃a2

. ~109!

In this way, in the limit of high resolution (l→0) the vis-
cosities are given essentially byg̃ and the relaxation time
goes to zero~note that the moment of inertiaI must be of the
ro
n

f-

e

form }m3l2 so t must tend to zero very fast!. In the high
resolution limit the spin becomes equal to the vorticity in
short time scale. The spin becomes a slaved variable and
be dropped from the description. Note also that in this s
ation the last term in the Navier-Stokes equation with s
~94! vanishes and one recovers the actual Navier-Sto
equation. This explains why, in SPH, the violation of angu
momentum does not pose a serious problemfor sufficiently
high resolutions@3#. If low resolutions are to be used i
problems where the correct transfer of angular momentum
relevant~as in rotational diffusion of concentrated colloid
suspensions, for example!, then the use of spin might sup
pose a real advantage.

We have arrived at the conclusion that in order to hav
well-defined continuum limit the friction coefficientg must
increase as the resolution increases. This can be unders
physically in the following way. The number of particles
between two reference fluid particles at a given distance
each other increases as the resolution increases. If we re
that the viscous interaction between these two reference
ticles must remain the same as the resolution increases
mediating particles must interact stronger in order to trans
the same response between the two reference particles. F
a mathematical point of view, thel2 factor can be inter-
preted as the ‘‘lattice spacing’’ that is lacking in the origin
equations and that would be present in a numerical disc
zation of asecondorder derivative term. Preliminary simu
lation results for the DPD model„A(r )50… with energy con-
servation @30# shows that the correct continuum limit i
obtained when the model parameter equivalent tog increases
with l2 @37#.

We would like to comment finally on an apparent inco
sistency between SPH and the fluid particle model, which
summarized as follows: if one discretizes the hydrodynam
equations on a set of points and then constructs the kin
theory of these points, one would expect that the compu
transport coefficients would coincide with the input transp
coefficients of the hydrodynamic equations. If one naive
uses the results~102! in the calculation of the transport co
efficients in ~92!, one arrives at an inconsistent result. T
viscosities computed through the kinetic theory~92! do not
coincide with the input values. This could be traced back
the fact that the kinetic theory for the fluid particle model h
been developed in the limit where no conservative forces
present, whereas the pressure term in the hydrodyna
equations~even for an ideal gas! produces a conservativ
term given by the first equation in Eq.~102! in SPH. The
kinetic theory with conservative forces is a bit more involv
but the modifications can be summarized simply. The m
lecular chaos assumption~64! now involves the pair distri-
bution function~which in the absence of conservative forc
is equal to 1!. This means that the parametersĀ2 ,B̄2 appear-
ing in the transport coefficients will be modified by the pre
ence of the pair distribution function within the integral d
fining these parameters. Also a new contribution to
transport coefficients arises due to the conservative force
is an open question whether these modified transport co
cients due to conservative forces do coincide with the in
transport coefficients. The opposite case could also be
sible simply due to the fact that the discretization proced
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in SPH may induce ‘‘artificial viscosities’’ in the language
numerical resolution of the hydrodynamic partial different
equations.

The fluid particle model is a consistent model by itse
without having to resort to the smoothed particle model
its validity. Actually, the fluid particle model, together wit
the kinetic theory developed in this paper, has its advanta
with respect to SPH: precise predictions can be made f
the initial model parameters about the transport propertie
the fluid. In this way, to obtain a prescribed fluid of know
transport properties, one simply adjusts the model par
eters according to the formulas of kinetic theory~slight er-
rors stemming from the failure of the molecular chaos
sumption might play a minor role@22#!. In SPH, on the
contrary, the only way to specify the fluid is through th
input transport coefficients in the original hydrodynam
equations. The discretization procedure then produce
‘‘fluid’’ whose transport properties do not in general corr
spond with those of the fluid intended to be modeled, a
there is no systematic control on the appearance of artifi
viscosities.

It is apparent that this whole discussion about resolut
issues can be applied to the DPD model, which is a partic
case of the fluid particle model, and for which a kine
theory has been formulated previously in Ref.@22#. One of
the main motivations for introducing shear forces betwe
dissipative particles into the original algorithm of DPD w
the identification of the following elementary motion b
tween dissipative particles that produces no force in that
gorithm. Let us focus on two neighboring dissipative p
ticles, the first one at rest at the origin and the second
l

,
r

es
m
of

-

-

a

d
al

n
ar

n

l-
-
e

orbiting in a circumference around the first one. This relat
motion produces no force in DPD because the relative
proaching velocity is exactly zero. Nevertheless, on sim
physical grounds one expects that the motion of the sec
particle must drag in some way the first particle. This
taken into account through the shear forces in the fluid p
ticle model presented in this paper. We note, however,
this relative motion might produce a drag even in the origi
DPD algorithmif many DPD particles are involved simulta
neously. The same is true for a purely conservative molecu
dynamics simulation. The point is, of course, that the eff
is already captured with a much smaller number of partic
in the fluid particle model.
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APPENDIX

The derivation of the FPE is best achieved by consider
the differential of an arbitrary functionf to second order
@32#:
d f5(
i

dr i•
] f

]r i
1dvi•

] f

]vi
1dvi•

] f

]vi
1

1

2(i j dvi dvj

]2f

]vi ]vj
1dvi dvj :

]2f

]vi ]vj
1dvi dvj :

]2f

]vi•]vj

1dvi dvj :
]2f

]vi•]vj
. ~A1!

One then substitutes the SDE’s~19! and uses the Ito stochastic rules~17!, keeping terms up to orderdt ~the cross terms
involving positions have been neglected in Eq.~A1! on account of the fact thatdr is already of orderdt). Then after averaging
with respect to the distribution functionr(r ,v,v;t), one performs a partial integration and uses the fact thatf is arbitrary, to
obtain the Fokker-Planck equation in the form

] tr~r ,v,v;t !5@LC1LT1LR#r~r ,v,v;t !, ~A2!

where we have defined the operators

LC[2F(
i

vi

]

]r i
1 (

i , j Þ i

1

m
Fi j

C ]

]vi
G ,

LT[ (
i , j Þ i

]

]vi
•F2

1

m
~Fi j

T 1Fi j
R!1

1

2

]

]vj
•(

i 8 j 8

1

dt
dṽi i 8dṽ j j 82

1

2

]

]vj
•

m

I (i 8 j 8

1

dt
dṽi i 8S r j j 8

2
3dṽ j j 8D G , ~A3!

LR[
m

I (
i , j Þ i

]

]vi
•F 1

m

r i j

2
3~Fi j

T 1Fi j
R!2

1

2

]

]vj
•(

i 8 j 8

1

dtS r i i 8
2

3dṽi i 8Ddṽ j j 81
1

2

]

]vj
•

m

I (i 8 j 8

1

dtS r i i 8
2

3dṽi i 8D S r j j 8
2

3dṽ j j 8D G .

The operatorLC is the usual Liouville operator of a Hamiltonian system interacting with conservative forcesFC. We need to
arrange a bit the operatorsLT andLR by using the Ito rules~18!
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1

dt
dṽi i 8

m dṽ j j 8
n

5s2F1

2
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n ej j 8
m

1
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D
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m ej j 8
n G@d i j d i 8 j 81d i j 8d j i 8#

[s2T i i 8 j j 8
mn

@d i j d i 8 j 81d i j 8d j i 8#. ~A4!

The second order tensorT i i 8 j j 8
mn satisfies

T i j i j
mn 5T i j i j

nm 52T i j j i
mn . ~A5!

If we define

T i j [T i j i j 5
1

2
@Ã2~r i j !1C̃2~r i j !#11F S 1

2
2

1

D D Ã2~r i j !1
1

D
B̃2~r i j !2

1

2
C̃2~r i j !Gei j ei j ~A6!

then the following identities are obtained:
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2 (
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]
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]
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i 8 j 8

1
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2 (
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]
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3F ]
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]
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G D

~A7!
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]
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2 (
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]

]vi
•S r i j

2
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2
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G D

1

2(i j
]
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By using these results into Eq.~A3! the operators take the following compact form:

LT5 (
i , j Þ i

]

]vi
•@L i j

T 1L i j
R#, LR52

m

I (
i , j Þ i

]

]vi
•S r i j

2
3@L i j

T 1L i j
R# D , ~A8!

where we have introduced the vector operators

L i j
T [2

1

m
Fi j

T 1
s2

2
T i j •F ]

]vi
2

]
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G , L i j

R[2
1

m
Fi j

R1
m

I

s2

2
T i j •S r i j

2
3F ]

]vi
1

]

]vj
G D . ~A9!
ys

de
x-

ys.
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