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Structure of the three-point correlation function of a passive scalar
in the presence of a mean gradient
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The three-point correlation function of a passive scalar advected by a random, incompressible velocity field
in the presence of a mean gradient is investigated by means of phenomenological Hopf equations. Numerical
solutions are provided in the case where the velocity is Gaussian, white in time, and with a power law in space,
([v(F)—v(0)]?~r2"¢, and in the model introduced by Shraiman and Sid@laR. Acad. Sci.321, 279
(1995]. Anomalous scaling exponents are found in both models. The numerics agrees with all the available
analytic, perturbative results. In addition, the angular dependence of the correlation function is explicitly
determined. In the Batchelor limit of random advection by a smooth velocity field, the exponent is found to
remain very close to 1, as found experimentally. In this limit, the three-point correlation function is found to be
very well represented, away from collinearity, by an explicit integral representg86063-651X98)05103-4

PACS numbep): 47.10+g, 47.27—i

[. INTRODUCTION The gradient introduces a forcing term, allowing one to
maintain a steady state for the fluctuating scalar. We empha-
Mixing is one of the most important properties of a tur- size that in this problem, the symmetries impose that the
bulent flow. The problem can be simply formulated by con-three-point correlation function isddin space.
sidering a passive scal&, which evolves according to the Interestingly, the effect does not seem to depend on the

advection-diffusion equation precise statistical properties of the flow: A Gaussian random
velocity field with an inertial range scaling[v(F)
40 +(G-V)O=xV20, (1)  —v(0)]?)~F??is enough to obtain a scalar derivative skew-

ness independent of the' ®@et number[11]. This remark
where G is the turbulent velocity field. The passive scalarsuggests that much can be learned about these issues with the
therefore probes the velocity field, so its statistical propertiedielp of simplified models. We focus here on two simplified
have a number of similarities to those of the turbulent velocmodels.
ity field itself [1]. In particular, the Kolmogorov theofy2,3] The problem of mixing by a random Gaussian, white in
can be extended to the scaldr5]. Although the spectrum of time velocity field with a scaling exponent—=2,
scalar fluctuations shows a convincikg®® range[6], the ~ o ) L,
higher-order correlation function do not follow the predic- (va(MDup(F,1))=8(t—t") Cap(F— "), (33
tions of the Kolmogorov theor{/1,7]. Significant departures L R
are observed already at the level of the three-point correla- ~ Dab(7)=[Can(0) = Cap(M)]

tion function. In heated boundary layers, for example, the rarb

scalar derivative skewness=((d,0)%)/((9,0)2)%? (x is the =Do| (d+1—€)8yp—(2—¢€) T |F|%~,
coordinate in the downstream directja®mains of order 1, '

essentially independent of the Reynolds nunilief]. In this (3b)

flow, the shear induced near the wall breaksxhe—x sym- ) i
metry, allowing a nonzero three-point correlation function. 1t"a@s been introduced long ago by Kraichngt8], who
was also found that the structure functid® (x) — 0 (0)]° showed that the N-point correlation  function
behaves linearly withx [9], whereas arguments based on(@("1) "+ 6(F'v)) obeys a closed equation of the foft]
Kolmogorov's phenomenology would rather suggest®s 2N W —
dependence. These results imply that the anisotropy present L(d,e)(0(Fy)-- 6(T)) = RHS, (43
at large scales has a strong influence all the way down there the operatdr(d,e) is defined in the inertial range by
small scales.

The scalar derivative skewness was also observed to re- N
main of order 1 in the simpler problem of mixing of a pas- L(d,e)EZ Dab(Fi—Fj)afian (4b)
sive scalar by a homogeneous isotropic turbulent flow, in the 17
presence of an imposed scalar gradigt@-12. We focusf and the right-hand sidéRHS) of Eq. (4a involves only
here on the latter problem and denote®yhe scalar gradl- lower-order correlation functions. Anomalous scaling expo-
ent (G|=1) and by# the scalar fluctuatio® = 6+G-r, SO nents may be obtained as zero modes of the opelgthre),

Eq. (1) becomes homogeneous in space. The existence of such an eigenfunc-
) R tion has been established analytically in the case of an iso-
3,0+ (G-V)0=«kV20—G-0. 2 tropic forcing and in the case of an even-order correlation
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function in various limits[15,1€]. In this model and in the tions of the white-noise model ard model for the three-

limit where |, — 5| is much smaller than the other distancespoint correlation function, in the presence of a mean

in the problem, theN-point correlation function behaves as gradient.

|F1—r5|¢. In order to ensure that the correlation function Section Il is devoted to a review of the necessary theoret-

behaves likdr, —F,|?°, as expected, one has to choose theical background, in particular, of the available information

value e=2/3. from perturbation theory. The numerical methods are ex-
A different class of models has been introduced byplained in Sec. Ill. Section IV is devoted the numerical re-

Shraiman and Siggil 7,18 in order to take into account the sults: We discuss the scaling exponents in the Kraichnan

finite correlation time as a function of scatg~ e °*R?3 model(Sec. IV A) and in theK model(Sec. IV B and then

wheree is the rate of dissipation of turbulent energy. A set of various results concerning the structure of the correlation

points (1,f,,...,/y) separated from each other by a distancefunction. We briefly discuss our results in Sec. V.

~R is mapped under the action of the turbulent velocity

field, during a time 7z, onto a new set of positions Il. THEORETICAL BACKGROUND

(r1,f5,...,Fy). The main idea consists in decomposing the _ _ _ . _

velocity field as a sum ofi) an essentially constant piece, N thls section we define our notation and mtrc_;duce the

due to scales much greater tHanplus(ii) a coherent strain, theoretical results necessary to analyze our numerical results.

at scale~R, plus (iii) an incoherent part, due to the small

scale jittering. The large-scale uniform pieGg affects the A. Notation

N-point correlation function through the forcing terfmo-

tion in the gradient The coherent straifii) corresponds to

advection by a smooth, random field=0) [19], whose > (7 > (P A F._OF

effect can be modeled by the Batchelor-Kraichnan operator PRIV p=(Mt T 2r3)/\/§. @

Lo=L(d,e=0) [Eq. (4b) with e=0]. The small-scale mo-

tion (iii ) is the source of the eddy diffusivity and is modeled

phenomenologically by a perturbation to the Batchelor-

We begin by introducing the vectors

With these variables, the operatofd, €) reads

Kraichnan operatorLp , whereLp is chosen here to be L(d,e)E; |1l [(d+1—€) (6202 — 3 9503)
3
2.2 .2\23
L= o 122 a1 o - — (2= e)pipR( A3k —§3335)), ®
D 2 o] Rg ’

the summation extending over the cyclic permutations of
(F1,F»,F3) (groupSs), which are equivalent to the transfor-

wherer;; =|f, — |, R?=r?,+r2,+r2, andea is formally a _
ij | J| g= 12723731 y mations

small parameter. The problem then reduces to
p1_ V3

£(d,@){(0(F1) 6(F5) 6(F3))=RHS, (63 L

NP
ol 3

p1— > - €)
with . o L
The Laplacian operator insimply becomes the Laplacian in

_ p-
L(d, @)= Lo+ aLp, (6b) It is convenient to express the two vectos, (3,) as
_ o PA=3,Ri(x)& 75 . The 2x2 matrixR(y) is the rotation
I |
so the existence of anomalous exponents in this model iShatrix of angley in “pseudospace.” The two orthogonal
determined by the zero modes of the operal¢d,«). The vectors?,, 7, span the plane defined by{,5,). It is

perturbation operator is dominant when two points Comeenough to consider the variablgs,é, such that 8<|&]

cleoie (tgoget;ef, sg n th? |2|/f3’ﬂilr?]—r2f|<|l’l— r3|,d|r2.—r3|,h <&, to parametrize all the possible configurations. The area
(0(r1) 6(1'2) 6(F3)) =1 —15|*, therefore reproducing the ("o triangle| 5, X p,| is simply equal tol=|¢£;&,|. We

behavior expected from the Kolmogorov analysis. For th|saISO introduce the dimensioniess varia I—2§1§2/(§§
reason, we refer to this model as the pseudo-Kolmogorov

2 . .
model, or in short th& model. The validity of this phenom- + &) (occasionally, we also introdugg= 1w). The change

enological model has to be established by direct Confronta(-)f variables w.{)—(£1.£>) is one to one for-1<ws=1

tions with experimental results. For the sake of the analysis"fmd O=sgnfw){=e, with
we also considered the simpler model where the dissipation

1/2 1/2
is simply the Laplacianc),=a(d/6)R2V2, which will be §1=<_) (1 JIowAe 52:( ¢ ) (1— JI-wWo)i2

referred to as thé& model. w w

The theoretical analysis of the Kraichnan model in the (10)
limit e—0 [20], appropriate to understand qualitatively the
case e=2/3, and of theK model for small values ofx The variablesv and { provide a convenient parametriza-

[17,21) rests on singular perturbation theory. It is also pos-tion of the vicinity of |p,|=0, i.e., of the region wher§’;
sible to reduce the full problem to an elliptic operator in a—F2|<|F1—F3|,|F,—3|. In this region,w and y are small,
rectangle in two-dimensions, which can be treated numerigy~&(W71/2+ x7,), and po~&7,, SO |py|?~&5(W2/4
cally [22]. The purpose of this work is to analyze the solu- + x?).
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The dilation operato\ = p; a,,a reduces in our variables by
to A=2{J,. We denote byx the scaling exponent of the $106w=0)= 70 (x,w=0)=0, (143
solution.
B. Expression of the differential operators B1(x=0W)= ’;;6\12 (x=0w)=0, (14b)

The operators considered hergd,e) and £(d,«) are
invariant under rotation, so they commute with the angular
momentum operatorsLab—iE-(pf‘& b— pJ pa) and L2 ¢1

=33, blaplap. Thus one may look for zero modes with a Pa(x=mlow)= 7~ (X m/6w)=0, (149

given angular momentum[L2?y=1(1+d—2)¢]. Since the

symmetries of the problem impose that the solution is odd irand

space,l must be odd. We restrict tb=1 and look for a

solution of the form d1(x,W=1)=y(x,w=1)=0. (149

W=(0(")0(F5)6(F3)) The problem thus reduces to an elliptic eigenvalue prob-
- ~ ~ lem [22]. The scaling exponent appears as a nonlinear

=ZMG [ @1 (X, W) 71+ @2( X, W) 2] (1) “eigenvalue,” which has to be found as a functionafind

The limit where the three points are aligneg/é,—0 or, ¢ ore.

equivalently,w—0, {—0, requires some care. The correla-

tion function reduces to a homogeneous functiorégf of C. Properties of the Batchelor-Kraichnan operator

degree\. This suggests that when—0, ¢ ,¢,~|w| M2 An important property is that the problem can be solved
For this reason, we introduag=|w|*?¢; , so exactly whena=0 or e=0. This is a consequence of the
F\N2 SL(2) symmetry of the problerfﬂ7,12§|; see als_o Ref.23]in
\p:(w) G- (i 71+ bao) (12)  the case of the four-point correlation function. Indeed, the
Batchelor-Kraichnan operator expresses the condition of sta-

tionarity of the correlation function when the flow reduces to
a random, large-scale strain, implying that the operator is
invariant when p4,p,) is replaced byA(p1,p,), whereA is
a real matrix of determinant 1. This can be formally checked
by introducing the generators of the group (3L Gj;
L=AwwfﬁﬁAXXaXerAXWaX&W+AXaX+AWaW+A, =p? o2 3A, whereA is the dilation operator, already de-
(13 fined. The operatoG?=33G;;G;; commutes with all the
generators of the grouCasimir operators of SR)]. Also,
the operators\, G?, andL? commute with each other. It
turns out that the Batchelor-Kraichnan operatty can be
expressed as

with the additional constraint that, and ¢, remain finite
whenw— 0.

The operatord_(d,e) and £(d,a) reduce in the stripe
—1=<w=1 to the form

where theA’s are 2x2 matrices. They were computed with
the help of the symbolic softwareAapLE and the explicit
expressions in two dimensions are given in Appendix A.
The boundary conditions in they(w) plane result from
the various symmetries of the problem. Whern=0 (the
points are alignedy; andp, are parallel toz,), the correla-
tion function must depend ony, only, implying that
¢1(x,w=0)=0. Also, when the points are close to perfect
alignment (v<1), the function¢, is invariant undew— Interestingly, one may construct an explicit integral rep-
—W, S0dy,d,(x,w=0)=0. TheS; symmetry already men- resentation of the solutions. In two dimensions, one notes
tioned implies that the functiong, and ¢, are periodic iny,  that the operator&?, G?, A, and G,=i(G,—G,;) com-
with a period equal to 2/3. The|w|=1 (or, equivalently, mute with each other. The function
&,=|¢&,|) case corresponds to an isosceles triafgje- |
=|F,—F3|=|F3—F4|. In this case, theS; permutation

Lo(d)=—(d+1)L?+2dG?*+ d— A(A+2d). (15

implies that the function¥ is invariant when the lr/,’;qugWZ)*VJ'% d_d)
vectors 7, and 7, are rotated by /3. As a result, o 2m
i(x,w=%1) = —3¢(x,Ww=%1) +(‘f/2)<2'>2()( w= 2r do
* 1) and ¢2(X,W: =+ 1)— — -¢2(X W= +1) XJ _ eim0+q¢[ﬁi(¢)p_aéa( 0)]211 (16@
+(V312)p1(x, w=%£1), S0 ¢i(x,w==1)=¢s(x,W= o 2m '
+1)=0.
B?ecause the function is odd whei,,——p;, IS an eigenstate ol¢,G*G,,A) with the quantum numbers

b1 Ax+mW)=— ¢, Ax,w). Finally, the function is invari- [1,»(»+1),q,\]. In EqQ. (168, m=*=1 andn(y) ande(6)

ant when €;,F,)—(f,,f,), that is, wheng;— — 5, andj,  are two unit vectors in two dimensions, in the direction given
—p,, Which amounts to ¥,w)—(—x,—w). Combining by the angles and ¢, respectively.

these symmetries, one concludes that it is enough to restrict With the parametrization of the vectorsp,(p,)

to the rectangle &w=1, 0<y</6, with the boundary and with the definition 771—(005(7) sin(y)) and 7,
conditions = (—sin(y),cos()), the funcnom/;qu reduces to
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Ynmq= (£282) N2 O™
v,m,

20
ﬂ(x)(a”+a)+3 sa=0, (18)

2
X . dep[ £, cod p)—i ¢, sin(¢p)]

with 6=lim,_,o(N—1)/a (for the K model in three dimen-
siong. The boundary conditions impose thaty = 7/6)=0.

X[ cog ¢)?+ & sin(¢)?]" Y2 (16b) Near =0, the solution of Eq(18) behaves as

The spectrum of the operatdt, can be determined by  a(x)=ag|x|Z3(1+|x|?>+ ) +ay|x|(1+|x|?*+--).
using the boundary conditiond4) [17,21. They lead to 199
A=1 and v=1/2, but leave an infinite degeneracy in

g. g=3(2p+1), wherep is an integer. As there exists a unique solution of E@{.8) with a(w/6)

The technical details are more involved in three dimen-=0 anda’(w/6)=—2, say, the coefficienta, anda, are
sions(one needs six quantum numbers to completely specifgompletely determined by. To actually obtain a solution of
the problem. A very similar integral representation of the the problem, one has to make sure that the solution away
eigenmodes of the Batchelor-Kraichnan operator can b&om x=0 matches with the solution of the full problem.

found, with the same degeneracygrand the same value of This is a nontrivial task, as one has to solve a fully two-

the scaling exponent=1.

D. Perturbation theory

dimensional elliptic problem in the neighborhood of the
point (y,w)=(0,0), with unspecified boundary conditions.
A local expansion, valid in a region of size@®?, can be
relatively easily generateee Appendix B However, this

The large degeneracy is lifted by the perturbation termexpansion doesot help to match the solution further away

whene or a#0 [18,20,2]. A very important feature of the
perturbation theory is that close to the lime=0 (i.e., when
the three points are almost alignethe operatorZ is for-
mally much smaller than the perturbation operator. Near
=0, Ly in three dimensions reduces to

% £0< z;) = {wzawz—zxwawwzaxﬁ ZW((; _Olﬂ
¢>1)
><(¢2 , (173
whereasl reduces to
1 () ~ 2 0 -1\]/¢
2d ‘D( ¢i) =B\ %t &W”X”ZW( 1 0 ”( ¢i>
~ —4¢yIwW?
where B(x)=([1—cos(2){1—cog2(y+2m/3)]H1

—cog2(y—273)]})?2. A comparison Eqs(173 and(17b)
shows that the perturbation term is formally dominant for

|w|< a2 Similar considerations lead to the conclusion that,

for —Injw|<e %, the Batchelor operator is small compared to ¥
the perturbation term. Because of this property, one needs to
use matched asymptotic expansions. Technically, in the case

(for x<1), as there is no overlap between the two
asymptotic domains.

For the white-noise problem, the functi@{y) satisfies
the ordinary differential equatiofi.8), with f(x)=[co(x)
—1][4 cog(x)—1]In[1—cos()]+--- , where the ellipsis de-
notes the terms obtained by replacipdy x*=27/3 in the
previous expression. The behavior near=0 is therefore
given by

a(x)=ao|In(x)| ~2(1+--+)+ayx|(1+---). (19D
The inner problem, close tox(w)=(0,0), has been ana-
lyzed, leading to the conclusion that the solutiondis O
[20], a prediction confirmed by the numerical resyRg].

E. Integral representation of the correlation function

The solutions of th& model and of the white-noise prob-
lem near the Batchelor limit can be parametrized by an inte-
gral representation, valid away from collinearitw£0).
Namely, forws a'? the operator(d,«) reduces to the
Batchelor-Kraichnan operator, up to a small correction, so its
solution is a combination of zero modes of this operator.
Summing the modespﬁ’m’q [see Eq.(163], one obtains the
representation

~ (27 & cod )t sin(d) 7
¢ fo [& i:os(¢)2+lg§ Sizm¢)2](1—zx)/2 f(x+¢)de.

(20

of the K model in three dimensions, one defines a scaled

variablez=w/+/a and one expands the differential operator
in powers ofa¥?. Away from the pointsy=0,*2x/3, the
dependence oy is slow (9, <d,). The problem therefore
reduces to a single differential equation pnwhich can be
solved with the conditiong,(x,w=0)=a(yx). Imposing
that forz— o butw— 0 (in the matching regionthe solution
consists of a superposition gf modes, one obtains that the
functiona(y) must satisfy the ordinary differential equation

Imposing that this function tends & y) whenw— 0 allows
one to relatef(x) to a(x). When|&;|< &, and in the limit
A~1, one finds thag(x)= f3"sin(¢)|sin(@)]* *f(¢p+ x)de.
The functiona() is even and is expected to be represented
by a sum of singularities of the forry|# singularity [the
two dominant exponents ae=2/3 and 1; see Eq193].
The functionf(y) is therefore odd and has singularities of
the form f(x)~ x|x|* 2~* when y—0. This suggests to



2018 ALAIN PUMIR 57

approximate the three-point correlation function by Ef), ample a function of the formg,(6)=u,60+(1—u,)6?
with a functionf that contains the two dominant singularities which maps (0,1) onto itself (O<u,<1). As u, gets

compatible with Eq(19): smaller, more points get pushed in tive= 0 region, leading
3 N N to an enhanced resolution in this area.
FO0) =1+ (fat fo x| Y3/1x| We checked thoroughly the calculation of the matrix by
+ (f oyt Fo| 13— x| Y3/ | 7013 — x| Y3+ applying the discretized differential operator to a number of

known functions. Examples include tltge modes[see Eq.
for 0<y<m/3, (21) (16, which are zero modes of the Batchelor operator when
NA=1. They can be explicitly computed and expressed with
wheref,,; andf, are two parameters. This parametrization iselementary functions. We checked that when the number of
expected to work for small values eof and away fromw  points in each direction increases, both the maximum and the
=0. L, norm 0f||L(d,e=O)($;)|| decrease to zero.
An important consequence of the integral representation The Laplacian term was checked bv applving it to the
(20) is that it suggests that the overall shape of the three“coordinatg functions” y applying
point correlation function depends mostly on the global scal-
ing exponenh and the exponent of the singularity describing & sin(y) & cogy)
the limit where two points merge. p1=< co ) /32=< — &, Si )
In the white-noise problem and for finite values efthe £ co%x) &2 sin(x)
fact that5=0 [20,22) implies that the dominant singularity ang making sure that when=1, V25,=V25,=0 (except
of f is f(X)~X/|X_|2, so that away fromw=0 and for small  near the boundarigsin the same spirit, we also checked that
values of ¢, the integral representatio(0) with f,,;=0 (p2+ pD VY (p2+ pd) p1 o= A(d+ 1) (p2+ p2) 1) (when
should provide a good parametrization of the solution. At)\:3)_ ' ’
!arger values of, the_solution neap,;=0 can be exp.anded To check the operatdz(d,e) (white-noise problef we
in powers of|p,| . This suggests that(x) will have SingU-  etyrned to the definitiondb) and checked individually each
larities of the form| x|"¢, and for not too small values & (o1 in the sum. The polynomialsi ()25, and (@,)%3;
one may also try to compare the solution with the integralare eigenvectors  of di+ 1— €)p2(d202—15353) — (2
representation with the appropriate singularities. In particu- ) ptpP(323P— L33%) with the eigén\}alluesa sz(i 1)(d
lar, for e=2/3, one may expect that the representation useqr4_pg))lanld 12@3—21)2(d+2—e) (\=3). This relation was

for theK model will also represent the solution qualitatively. checked directly on the discretized version of the differential
operator. We also checked that the polynonfdls,,p,)
=(p1—p3)p2t2(p1-p2)p1 is @ zero mode ol (d,e=2)

The strategy to determine the zero modes of the operatdi\ = 3).
consists in discretizing the operatotgd,e) or £(d,a), In order to compute the eigenvaluk, we proceed by
which therefore become matrices, and to compute numeridichotomy, a straightforward operation once two values of
cally their determinant as a function af the scaling expo- are known, such that the determinants of the matrix are of
nent. opposite signs. A crude search was made at low resolution,

We have chosen here to use centered finite differencedhich then provides a good starting point at higher resolu-
We work with a rectangular, separable mesh. The solution i§on where the calculations are more expensive. The accu-
stored as a sequence of consecutive linesconst, so the racy of the computed eigenvalue was set to better than five
differential operator is reduced to a banded matrix. The designificant figures, which was reached in less than 15 itera-
terminant can be found by LU decomposition, a standardlons.
method[26], using public domain routines. M discretiza- The ultimate test that convinced that our algorithm is
tion points in each direction are used, then both the amourfiroperly working was obtained by studying thenodel[ob-
of memory space and CPU time needed are of ored®.  tained by replacingrG,r 343, by R® in Eq. (5)]. The eigen-
Our calculation were performed on a workstaticd(70)  functions are of the forme,=fJ(w)cosgy) and ¢,
and on a Cray Supercomputer C98<160). =f3(w)sin(y). The functionsf{ (w) satisfy some ordinary

The differential operators(d,e) and£(d,«) are singular  differential equations, which define a boundary-value prob-
nearw=0 andy =0, as some of the coefficients go to zero.lem, and can be solved by the shooting method. The eigen-
For this reason, the points=0 and y=0 were not explic- values obtained from the full partial differential equation
itly included in the calculation. Also, neav= 1, the coeffi- agree with the eigenvalues obtained by solving the system of
cient of 92, diverges, leading to a/1—w? behavior of the differential equations and the agreement gets better when the
solution nearw=1. To make the solution smooth near mesh is refinedN increases
=1, we redefined a variable by 1—u=+/1—w. The unfor-
tunate feature of this change of variable is that it tends to IV. NUMERICAL RESULTS
refine the solution in the region near=1 instead of the
region neaw =0, where they are much needed.

In order to properly resolve the solution in the singular  The lowest branch of eigenvalues, computed as explained
region|p,|—0 as well as in the vicinity ofv=0, we imple- in the preceding section, are shown in Fig. 1 for the white-
mented nonuniform meshes in both theandw directions. noise problem in ZFig. 1(a)] and three-dimensionfFig.
This was achieved by takingin the w direction, for ex- 1(b)]. The convergence of our numerical results is very good

Ill. NUMERICAL METHODS

A. Scaling exponents in the white-noise problem
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FIG. 1. Scaling exponent of the three-point correlation function ) - ) .
anomalous scaling of the three-point correlation function for

in (a) two and(b) three space dimensions for the white-noise model
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FIG. 2. Convergence of the numerical results neal0 of the
exponent in the white-noise modeldBwhen the number of grid
points increases. The full line is the result of the extrapolation
N—o using Eq.(23). We used a refined mesh negr0, w=0:
uX=O.3, u,=0.1.

number of grid pointN increases, the value ofV(e) de-
creases. The full line was obtained by fitting the eigenvalues

by

N N(e)=N"(€e)+AN(€)/N. (23
The quality of the fit, measured by|[AN(e)
—\"N(€)1/[AN(€) — 1]] was found to be better than 18for
all the values ofN considered, down t@=0.031 25. Our
results give clear evidence that the slope of the curve
[A(e)—1]/e goes to O whene—0. This generally agrees
with the prediction of perturbation theoy~1+ de, with
6=0.

We emphasize that the branch we found implies an

The results were obtained with 160 grid points in each direction@ny value ofe. Indeed, the naive scaling exponent resulting

The dashed lines correspond to the perturbative resal8—(d
+4)/(d+2)(2—€) neare=2. The exponents are less thar &,
implying anomalous scaling in this model.

neare=2: The results obtained witN=40 and 160 evenly

from dimensional analysis of the differential equation\is
=1+e€. The exponents determined here is smaller than 1
+ €, establishing the existence of anomalous scaling in this
model.

The branch of solutions we have described seems to be

spaced mesh points agree with four significant figures. In thi§he lowest branch of a presumably infinite sequence of solu-

range of parameters, the perturbation analysis e 2ore-
dicts that[22,24,25

d+
Ae)=3—

2
m)(z—f). (22)

This prediction works extremely well, as shown in Fig. 1,
where the straight lines corresponding to E2p) are plotted.
The convergence near= 0 is a more delicate matter due

tions. The next branch of solutions starts frare5 neare
=2 [A\=5-2(2—¢)] in three dimensions and goes down
towardsh =1 neare=0; see Fig. 3. In view of the conver-
gence problem of our numerical algorithm neat O, it is
difficult to determine precisely the behavior near 0.

B. Scaling exponent in theK model

The result for the lowest branch of solutions of tKe
model are shown in Fig. 4, in twidFig. 4a)] and three di-

to the very singular nature of the limit. Figure 2 shows themensiongFig. 4(b)]. The convergence problem alluded to in
values of\N(€) of the calculated exponent for a set of valuesthe preceding subsection are also present in this problem. In
of the numbemN of grid points(these values were obtained fact, the problem appears much more severe in two dimen-
with refined meshes, withu,=0.3 andu,,=0.1). As the sions, where a strong refinement of the mesh @& was
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FIG. 3. Scaling exponent for the higher branch of solutions for RO ]
the white-noise problem in three dimensions. ]
needed in order to obtain sensible resuli® had to take 1.8

u,=0.1 andu,=0.095. In comparison, the results in three
dimensions converged much better. Another unexpected dif-
ficulty has to do with the small size of the asymptotic region. 1.6
Figure 5 shows the value af(a)=[A(a)—1]/«a, after ex-
trapolating the values of the exponents determined for a se-
qguence of values dfl with a fit of the form(23). The dashed 1.4
line shows a fit of8(@) in three dimensions by a function of
the form &(a)~a;a*?+a,a+aza®? with a;~2, a,
~—2.5, andaz~1. 1.2
In addition to the lowest “fundamental” branch of solu-
tions, there exists a seemingly infinite number of higher
branches. We have investigated the two next higher branches Lol T T
of solutions, shown in Fig. 6. The numerics suggests that the 0.0 0.5 10 15 2.0
behavior of\ is of the form A =1+ &, sa+ O(*?), with ® « (3d K—model)
8,~4.5 andd;~12.
The resu_lts regardlng the lowest branch of S_olutﬂErg. . FIG. 4. Scaling exponent of the three-point correlation function
4) agree with the predictions of the perturbation analysisy, () two and (b) three space dimensions for the model. The

[2,1]' The numericgl results pr.ese.nted here is also ConSiSteF@sults were obtained with 160 grid points in each direction, with a
with the perturbative calculation in the sense that the funciefined mesh neary(w)=(0,0) (u,=0.1, u,=0.05 in two dimen-
,0) (u,=0.1, :

tion a(y) determined numerically seems to converge tO-sions andi,=0.3,u,=0.1 in three dimensions
wards the solution of Eq(18) with §=0, which reduces
simply toa(x) =2 sin(@/6— x) (see Fig. J. This shows that
the leading singularity neay=0 isa(x)~|x|, as it was the

Ca?Bee!:naths(z Véh':eanfr:fe?.gsrqglin;tnﬁ%e enouah to capt rthe three-point correlation function at a fixed value @f
u ur NUMErics 1 preci ug ptu (3=§/) and as a function of;. At a fixed value of the norm

accurately the higher branches of solution ngat0, it is % .

it . . . of p, (denotedp), the wave function depends only on the
difficult to make detailed comparisons between the predic- _ . .
tions of Eq.(18) and the functiond,(y,w=0) determined angle = arctan(v/2y) and a straightforward decomposition

numerically. Still, the solutions corresponding to higher—In Fourier seriess An(p)cosd) allows one to extract the

order branches have an increasing number of nodes, as r\éqrious waves, to be compared with E¢83) and (B4).
9 ' P Figure 8 shows the dependence of the modes=0 (s

dicted from Eq.(18), which is of Sturm-Liouville type. wave andm=2 for @=0.006 25, 0.025, 0.1, and 0.4. The
dependence at the two largest valuese@lre consistent with
the predictions of Appendix B: Them=0 mode behaves as

As already explained, the structure of the wave function— 1+ p?3, whereas then=2 mode behaves a£/°. For the
near (y,w)=(0,0), that is, when two points merge, is a very smallest values of («=0.006 25 and 0.025the two com-
important aspect of the solution. We discuss here our nuponents seem to behave linearly all the way down to very
merical results in this limit. small values ofp.

A(e)

Illlllllllllllllllllilll

||||l|l|||||||||||l|

In order to compare with the expansion né¢ay|=0 in
the innermost regiofsee Appendix Bwe have investigated

C. Structure of the correlation function when two points merge
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FIG. 5. Local sloped(a)=[N(a)—1]/a neara=0 for theK FIG. 7. Functiona(x)= ¢,(x,w=0) in three dimensions, de-
model. The dashed line corresponds to a fit by a functional formtermined numerically forr=0.025 in theK model in three dimen-
8(a)~2a'?—2.5a+ o sions. The normalization is chosen so tad{y= w/6)= —2. The

function is very close to 2 sim{6— x), which is the solution of Eq.

Our results are completely consistent with the numericaf18 With 9=0: the agreement improves whendiminishes.

results concerning the dependencehos a function ofa

and with the expansion of the solution nga+ 0, described shown in Fig. 8. The linear dependencemaf them=0 and

in Appendix B. Neara=0, (A\—1)/a—0, so the expansion 2 wave can be understood with the help of the integral rep-
in powers Ofp2/3 presented in Appendix B is multiplied by resentation(19) and(20), as we now discuss.

an overall factor that goes to zero whan-0. On top of it,
the expansion is formally valid only in a very small neigh-
borhood of §¢,w)=(0,0). This explains why the?* behav- . . .
ior cannot be seen for small values @f(a=0.006 25 and We restrict the discussion here to tdkemodel, although
0.025. For the larger values of, the dependence near ~Many of the results presented apply as well to the white-
=0 is consistent with the predictions of Appendix B. In noise problem. The results of Sec. IV B imply that the domi-
particular, the leading-order coefficients of thandd waves ~ nant singularity ofa(x) is ~|x|, so the coefficient 3 in

in the p?3 expansion of Appendix B agree with the results EQ. (19) must be zero. The calculation of the integral repre-
sentation turned out to be fairly insensitive to the precise
value of f,, provided it is not too small. We have chosen
heref,=10.

Figure 9 shows the isocontour patterns of the components
¢, and ¢, in the rectangle (6:/6)x(0,1) in the (y,w)
plane, obtained numerically fer=0.006 25. The tick marks
along the perimeters in Fig. 9 show the mesh points used in
the calculation. The isocontour lines obtained from the inte-
gral representatio20) and (21) with A=1.000 92,f,,;=0,
and f;=10 are very close to Fig. 9. A more quantitative
comparison can be obtained by computing the difference be-
tween the numerical solution and the integral representation.
Figure 10 shows the isocontour lines of this difference. As

D. Structure of the correlation function when a—0

3.0 T T T T T T T
| T | T T T

o
o

n
o

|||||||||||

Aa); 2™ and 3 branches

FIG. 6. Scaling exponent for the next two higher branches ofdifference goes to zero when—0 like o~
solutions of theK model in three dimensions. Near=0, \,(«)

1.5

| LI R S| | T T T 7T | T 1T 1 1

L 1 1 I 1 ] Il

0.2 0.4
a (3d K model)

~1+4.5¢ and\3(a)~1+12a.

e
o

expected, the difference is largest near the \ine0. To be
more precise, one may compute the norm of the differ-
ence between two solutions and ¢ as the minimum of| ¢
—cyl| on c. The L, norm of the difference fora
=0.006 25 is less than 2% of the, norm of the solution.
The difference between the solution and the integral repre-
sentation(20) and (21) computed from Eqgs(20) and (21)
(fo3=0, f;=10) is shown in Fig. 11 as e;lgunction of. The

The structure of the integral representation near the point
(x,w)=(0,0) can be determined analytically:
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FIG. 8. Thes-wave component of the solution of tl&e model in three dimensions as a function(ef p and (b) p2/3 and thed-wave
component of the solution as a function (@f p and(d) p4’3. The values ofx are 0.006 25, 0.025, 0.1, and 0.4. At the largest value, of
the s wave behaves as 1+ const<p?® and thed wave asp*®,

d1=W(0—7[2), ¢,=const-2x(6—m/2), (24) the integral representatidifrig. 12. As in theK model, the
difference between the two solutions goes to zero when

e—0.
with 6=arctan(w/2y) (see Appendix € It implies that both
the m=0 and 2 modes behave linearly with|, as found
numerically. We emphasize that the very good agreemen
found with the integral representation crucially depends on Figure 13 (Fig. 14 shows the isocontour lines in the
the fact that they|2° singularity is not present in the integral (x,w) plane of the function ¢, , ¢,) for theK model for the
representatiofif ,5=0 in Eq. (21)]. valuea= 0.7 (for the white-noise problem far=2/3). In the

Our results show that very near=0, the wave function latter case, the correlation function is expected to behave as
can be precisely fit by the integral representati@f) and  |F,— % when|i,—F,|<|Fy— 3| ~|F,— 3|, like in the K
(21). It is remarkable that the solution of this nontrivial prob- model. The scaling exponents al«=0.7)=1.375 and
lem can be expressed by a simple integral, involving only\ (e=2/3)=1.381, so the two solutions have very close
elementary functions. overall scaling exponents, as well as the same limit when
Very similar results can be obtained for the white-noisetwo points get close.
problem since it was also found in this limit that the domi-  Figures 13 and 14 show that the overall structures of the
nant singularity of the functiorm(y) is ~|x|. We merely functions are very similar. The difference between the solu-
show here the difference between the numerical solution antions corresponding te=2/3 anda=0.7 («=0.1) is found

F. Structure of the correlation function for larger values of «
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FIG. 9. Isocontour line pattern in the¢(w) plane of the func-
tion (a) ¢, and(b) ¢, determined numerically for thK model in

three dimensions forr=0.006 25. The tick marks show the grid for =0.006 2§(F|g. 8 .and trle integral representation. Th?
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FIG. 10. Differences between the numerical solutions obtained

to be ~3% (~13%) of the norm of either wave function. F. Test of the SL(2) symmetry
This similarity may be understood to some extent as result-
ing from the parametrizatio(20) of the solution, which de-
pends essentially on the overall exponent of the solukion
and the exponent of the singularity of the wave function nea

The existence of the §R) symmetry of the Batchelor
Kraichnan operator has very important consequences in this
problem. An interesting question is how much of the sym-
|p2|=0. From this point of view, since the solutions corre- metry remains when the perturbation is turned on. The goal
sponding toa=0.7 ande=2/3 have very close scaling ex- here is to understand whether the(3Lsymmetry could be

ponentsk =1.375 and 1.381 and the same power law wherPPServed in experiments.

two points get very close, the integral representatiad) _In order to test t2he SI2) symmetry in this problem, we
predicts that the two wave functions are very close in theSimply apply theG* operator to the wave function deter-
regions where Eq(20) is valid (away fromw~0). mined numerically. It the symmetry holds, the eigenfunction

As the values of the parametessand e compared here should remain an eigenvalue &2. In the following, we
are not so small, one has to take the integral representatigiudy how close the solution remains to an eigenvalugof
with some care. Higher-order terms in the perturbation exso as to understand whether the(3Lsymmetry holds.
pansion presumably become large and may introduce signifi- Technically, the operatoG? can be simply written by
cant corrections away from th@=0 axis. For this reason, separating them=*1, q=*(6p+3)p=0 components,
the integral representation is not expected to give a veryherem is the azimuthal quantum number ampds the quan-
precise representation of the solution. Still, it is remarkabldum number associated with, in two dimensions; see Sec.
that the two solutions are so close. II D. This leads us to expand the numerical wave function



2924

0.2 T

0.1

0.05

0.02

Comparison with integral representation

0.1

0.01

0.01

0.001 1

o

FIG. 11. ThelL, norm of the difference of the solution of tte
model and of the integral representation, obtained Wjik=0, f,
=10, and\ determined numerically. The difference goes to zero

like a?®,

¢ = b1(x,W)cos b+ ¢,(x,w)sin 6 as a Fourier series ip and
0:

¢E§ $$ cog O)sin(qx) + ¢ sin(6)cogqy). (25

By rearranging the terms in this series, one concludes that

the functions a;(w)=[¢J(w)+¢3(w)] and a,(w)
=[ pJ(w)— ¢p3(w)] are the m=1,g) and (m=—1,) com-
ponents of the solution. The operat®f, acting on the func-
tion ¢ transforms(aq(w),bg(w)) into (5q+(w) ,'éq_(w)), de-
fined by
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FIG. 12. TheL, norm of the difference of the solution of the

white-noise problem in three dimensions and of the integral repretion of

sentation, obtained with,;=0, f;=10, and\ determined numeri-
cally. The difference goes to zero lik&, x~0.6.
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X

FIG. 13. Isocontour patterns in thg,(v) plane of the functions
(@) ¢4 and(b) ¢, solutions of thek model in three dimensions with
a=0.7 (\=1.375). The contour intervals arex2.0 2 (a) and
1071 ().

2

=+ 2 2 + Q°+1
aq (W)EW aW[(l_w )awa-q (W)]_ T 1_W2 aq (W)
w(Q .
T 21—wd ag (W), (263
-, o w2 g?+1
By (W)=w2o,l (1-W) 38 (W)] =~ = a (w)
wg
+m a—q(w). (26b)

Finally, perturbation theorj21] suggests that at leading or-
der, only the producinX q matters, so it seems appropriate
to investigate the ratiod, (w)/ag (w). In the case of the
Batchelor-Kraichnan operator, these two ratios are equal to
3/4. If the correlation function were to remain an eigenfunc-
G?2, there ratios would remain constant.

Figure 15 shows the ratic,” (w)/a, (w) (full line) and
a, (w)/ag (w) (dashed lingfor g=3 as a function ofv for
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(G?—3/4)yn,= —Lpg, which implies thafas™(w)/az (w)
—3l4a(Lpig) “/ag (W) +O(a?), consistent with the nu-
merical results.

The ratios@, (w)/a, (w) for higher values ofq (q
=9,15,...) show a qualitatively similar behavior. As the
value of g becomes larger, however, the ratios determined
numerically are further away from the value 3/4, correspond-
ing to the Batchelor-Kraichnan operator.

It results from Fig. 15 that the $2) symmetry, as mea-
sured by the ratio®, (w)/ag (w), is significantly affected
by the perturbation term, even for very small valuesaof
The same conclusion is true for the white-noise problem. In
particular, the S[2) symmetry is completely lost whea
=2/3 in this sense.

The conclusion of this subsection is that the(Lsym-
metry is presumably very difficult to check directly, at least
by using directly theG? operator. This can be understood
sinceG? is a second-order operator, which tends to amplify
the differences greatly. The results presented here are much
less favorable that the direct comparison with the integral
representation, presented in Sec. lll E. As a consequence, it
seems very unlikely that one will be able to check directly
the SL(2) symmetry directly from experimental data. A com-
parison with the integral representation appears to be more
appropriate.

V. CONCLUDING REMARKS

We have presented a detailed numerical investigation of
two classes of approximate models, introduced to describe
turbulent advection. Mathematically the study of the three-
point correlation function, in the presence of an external gra-
dient and for these models, can be formulated as an elliptic
(nonlineay eigenvalue problem. This problem can be treated
numerically using standard routines and both the exponent

X and the full correlation function can be determined.
One important conclusion is that our numerical results

FIG. 14. Isocontour patterns in thg v) plane of the functions generally confirm all the available theoretical predictions. In
(@ ¢, and (b) ¢, solutions of the white-noise problem in three particular, the fairly sophisticated asymptotic calculation
dimensions withe=3 (A =1.380). Observe the very close similar- near the Batchelor limit captures well the features of the
ity to Fig. 13. The contour intervals are10™? (&) and 10°* (b).  numerical solution. In particular, close ®@=0 in the K

] model, the exponent remains close tod&lim,_,o(A—1)/
the solution of thek model for@=0.025, 0.1, and 0.4. For ,—0_The same behavior has been found in the white-noise
a=0.025 and 0.1, these functions show a sharp variatiopyoplem.
nearw=0 and a more gentle variation away fram=0. The As expected from perturbation theory, several important
variation is sharper as gets smaller, in agreement with the properties of the correlation function can be deduced from
perturbation theory, which predicts a boundary layer widththe value ofs. The Batchelor-Kraichnan operator is infinitely
of size % Whena=0.4, the “boundary layer” is so thick gegenerate and the perturbation term lifts the degeneracy and
that it extends very far away from=0. As a decreases, the  effectively determines the solution by selecting the combina-
ratiosag (w)/az (w) are very close to 3/4, as expected for tion of modes(selection of the correlation functianThis
the zero modes of the Batchelor-Kraichnan operator. property is expressed by the integral representd@ and

Away from the boundary layer neav=0, the values of (21). We have found that the solution is indeed very well
53i(w)/a§(w)—3/4 grow roughly linearly witha. To un-  represented by the integral representation, a nontrivial result
derstand this phenomenon, we begin by recalling that awagince it expresses the solution of the elliptic problem as an
from w=0, the solution is close to a solution of the elementary integral. Once again, the results are very similar
Batchelor-Kraichnan operator. Tlge= =3 component of the  for the K model and for the white-noise problem. In a way
solution is therefore close to the eigenmode given by Egwe do not understand at the moment, these results suggest a
(16), with v=1/2,\=1, m==*1, andq= £ 3, and referred universality of the solution of the problem near the Batchelor
to here for simplicity as),. A formal perturbation theory in  limit.
the formy= o+ a gy, + O(a?), valid away fromw=0, may This study was intended to investigate the persistence of a
be constructed. Standard perturbation theory then leads twmall-scale anisotropy in the mixing of a passive scalar in
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FIG. 15. Ratiosa,(w)/aq(w) (full line) and bq(w)/bg(w) (q
=3) as functions ofw for the solution of theK model of «
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the presence of an external gradient. The fact that the expo-
nent observed experimentally is approximately equal to 1
suggests that a small value @Pr € has to be chosen in order

to compare experiments with the predictions of the model.
The value of the exponent for the white-noise problem with
€=2/3 is \~1.38, much larger than what is found experi-
mentally. This suggests that the predictions of the white-
noise model cannot precisely describe the experimental re-
sults. The complete determination of the three-point
correlation function allows one to compare the results of the
model with direct experimental measurements and thus to
gauge the validity of th& model.
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APPENDIX A

In this appendix we give the explicit form of the differ-
ential operators studied numerically in our variablgsw(),
in two dimensions. In the following, is the identity matrix
and o, and o, the Pauli matricesr,=(33) ando,=(}_%).
The functionB(y) is defined by

B(X)=(1—y1-w?* cog2x)]
xX{1- J1—w? cod 2(x+2m/3)]}
x{1—y1—-w? cog§2(x—2m/3) 1?3 (A1)

1. K-model in two dimensions

A= (1= wWA)[W?+aB()1X1,  (A2)
AXX=[w2+aﬁ<x)]/<1—w2)><L'—1, (A3)
Aw=0, (Ad)

Ay=WI(1= W[ 1+ aB(x)]02, (A5)
Au={[(\=2)W? - NJw—2aB()W} X1, (A6)

A=[(2N—N?)W2+ (A — l)()\+3)+a/3()()(2)\+)\2)]><2—f.
(A7)
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2. White-noise problem in two dimensions

A= (3= eW(1-wH{[1—1-w? cog2y)]/w}' =
— 32— e)W?(1—wW?)[1+2 cog4x) {[1— V1—w? cog2x)]/w} 2+ )xI, (A8)

AXX=( (8- ) [1+2x/ w? cog2x) {[1— V1—w? cog2x)J/w}'~ <

6(1—

12(21—W[W —2cog4y)+2V1—w? cog2x) [{[1— V1—w? cog2y)]/w} 2+ -+ | X1, (A9)

A= | Y 21— VT W2 cos2x) T 24— (40— 1)~ AW T W2 sin(2x)+ 21~ A+ (1
S PN v cog2x){[ cog2x)]/w} 61— Wz) {[4N—1)—aw]y1 sin(2x) +2[ (

+M)W2sin(4x) } X {[1— V1—w? cog2x)/w} =2+ | X |+ _3((1;)“’{[1 V1—w? cog2y)]/w}t <2
+é(21_ V)vz) {[1—V1-w? cog2x))/w} = — y1-w? cog2x) +2 cogdx—1)]+- - | Xy, (A10)
2O 1w o
Aw=— ({[1-V1-w” coq2x)]/w}~ T2 siN2)) — y1—w* sin(4x)]+ ), (A11)

A, =G (3— eW[1— V1— w2 cog 2x) W~ 2x[— 14 (A —2) V1— w2 cog2))]
—w(2—e)/3{[1—V1—w? cog2x)]/w}~?x{2(2—\)(1—w?)cog4y) + V1—w?(3N—4)cog 2))

—[2=MWPHA}+ )X T+ (—3(3— e)w1—wW?{[1— V1—w? cog2y)]/w}t™ <2 sin(2y)

+2(2—e)W?{[1— Vy1—w? cog2y)/w} 2 sin(4x)+ )X oy, (A12)
_ (3—ew 1-el2
A= T e1=w) {{1-V1 zcos(Z)( ) 1/w} [1-2cog2y)V1— z]

(3 e)W

{[1—V1—w? cog2)) )W}t 2N + N2+ 21— w?(2A —A?)cog2)) ]

(2 e)W

12(1 [1—\/ —w? cog2y)]/w}f1—2 cog4dx)]—(2—€)/12{[1— V1 —w? cog 2x)]/w} <

X[2(1—w?)(N2=2\)cog4x) + V1—W? cog2x) (BN —6A2) +WH(2N— A2 +4(N2=\)]+---

2(3— €)W\ g (27€) T=w? .
X1 — 3— WZSIn(ZX){[l_\/ - COS(ZX)]/W}:L f2— 6(1—W2_){[1 CO&ZX)]/W} ?

X{[2N(1—w?) —4]sin(4x) +V1—w? (4—3N\)sin(2x)}+ - | X oy. (A13)
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APPENDIX B APPENDIX C

In this appendix we give the expression of the solution We estimate here thg integral representation near th_e point
near the points;=0. Without loss of generality, we take (x.W)=(0,0). We restrict ourselves to the case considered

P )
coordinate of3, along the axis parallel tg,, whereasv is ~ X/|x|” singularity. . . .

the distance to the origin in the plane perpendiculafo Our starting point is the integral representation, which can
[the norm of, is denoted ap, with pz%(u2+w2)1’2]. This be expressed in the forfwheny andw are small, and in the

interpretation suggests the use of also spherical coordinaté'gmt A—1-0)
u=p cosf andw=p sin 6.

For theK model, in three dimensions, the equations re-
duce in the limit|p;|—0 to

1 1 (1 0\]/¢s
**aﬁﬂ‘v‘*w‘m(o 0”(¢)

~ 21

V=G . [W/271+ (x— ¢) 1]

XIn[w?/4+(x— $)*1(¢)d¢.

(we have takerg,=1). This integral is to be understood as a
principal value neag=0.

The integral(C1) can be rewritten in complex notation.
Introducing the variable=iw/2+ y (with z* its complex

(CD

2/3
(g) a(u2+W2)2/3

0 1) 5
-1 03u+§()\_1)

= —{Wz(&fﬁ— aﬁ)—waWJr(
¢1)
X(d’z '

When\=1, (¢1,¢5)=(0,—1) is a solution(zeroth order.

(B1)

A systematic expansion can thus be generated by simpl
plugging in the 6—1)th order on the right-hand side of Eqg.
(A1) and solving the inhomogeneous equation to determin

the nth order. The expansion is formally valid provided
+w?<a®. The first orders determined in this way are

0 f1(p. 0
(s (22,
with 8(a)=(3)?%(\—1)/a andp=p/a®?, and
f1(p,6) =+ 2% 8(a)(2p)?" sin @ cos 6+0(p™),
(B3)

f2(p,0)=+ 3~ {[8 8@ a—F5]+ 3 Sir? 0}p?>+0(p™).
(B4)

These results suggest that the solution is made chaave

piece (independent of) that behaves asA0(p??), pro-

vided 6#0, plus ad-wave piece(with an angular depen-
dence approximately equal to sifd Br cos @) that depends
onp like p*3
in p?° since terms such ag ("¢ ¢S
Laplacian operator on the left-hand side of Eg1).

. An unpleasant feature of our model is that it is
not possible to determine unambiguously higher-order terms

% are zero modes of the

conjugate, the real and imaginary parts of
2
\I":if (z* = ¢)Inz— ¢|?d¢ (C2)
0

re, respectively, thes; and ¢, components of the solution.
ifferentiating Eq.(C2) with respect taz and then with re-

gpect toz*, one obtains

2m f(¢)de
3,0 *\If’=J —_—, C3
¥z 0 (Z_ ¢) ( )
which can be evaluated by elementary methods
Im(z)
Dy W' =7 — (C3a
Similarly, one obtains
. Im(z)
T W' == — (C3b)
and
Im(z)
ﬁZ\If’=wT(z*—z). (C30
Integrating Eqs(C1)—(C3), one obtains
z
V' =7 Im(z)| z* In(z—* +z*F—1z|. (Co

Defining 6=arctan(v/2y), one obtains Eq(24).
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