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Pattern formation in drying water films
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A film of a volatile medium in contact with unsaturated vapor is bound to a plane substrate by both van der
Waals and polar forces. We present a thermodynamic description of this system, including exchange of
material between the fluid and the vapor under nonequilibrium conditions. For a range of values of the vapor
pressure, a two-phase system develops, involving the coexistence of molecularly thin and macroscopically
thick layers whose dynamics are controlled by the vapor pressure. The theory is used to explain the origin of
experimentally observed spatial patterns in water films evaporating from clean mica substrates, where scale and
other features are a function of the vapor pressure. An analogy is developed between the initial stages of the
pattern formation and the diffusion-controlled solidification problem in two dimensions and typical features
such as “doublons” or parity-broken dendrites are observed. At later stages in the pattern formation hydro-
dynamics becomes importafi1063-651X98)05003-X

PACS numbds): 47.54+r, 68.45.Gd, 68.76:w

I. INTRODUCTION Jameel[9-11], de Genneg12] and Israelachvili13] and
experiments on similar systems have been reported by Reiter
In recent years there has been a growing interest in thg14] and Brochard-Wyart and co-workef45]. However,
dynamics of spontaneous pattern formation in simple systhese works are limited to nonvolatile films, within which
tems[1,2]. A particular challenge in this field is to find ex- mass is conserved. In the situation that is the subject of this

perimental systems that are sufficiently simple and well unyaher the film is in contact with vapor and the transfer of
derstood to allow a quantitative theoretical analysis tha&aSS between the two has to be taken into account.

enables a (tjlrectdct%mpansog bteté/vger:hthe pagern? opt_ser\]/(ed "MWhen a uniform layer of a fluid on a substrate evaporates,
experiments and those predicted by theory. Une imiting 1tz 05| scenarios are possible. The first takes place when the

tor is that much theoretical work and particularly numerical, . .
calculations have been limited to two-dimensional systemsf.Iuld o_loes not _vvethe su_bstrate. In this case a Iarge enough
uantity of fluid on a fixed area of substrate will form a

Recently[3,4] we have been studying the patterns that formdY: i ;
when initially thick water films are allowed to evaporate UNform pool because of gravity. When this pool evaporates,

from mica substrates under varying degrees of subsaturatiofit S0me critical thickness an instability occurs and the film
In trying to understand the physics underlying this proces®r€aks up into drops with dry substrate between them. A
we have come to the conclusion that they represent a partic§&cond scenario occurs if the filmetsthe substrate. Then
larly simple example of a two-dimensional isotropic nonlin- the layer formed under the same circumstances will remain
ear system that can eas”y be Compared with theoretical WorﬁontinUOUS with uniform thickness that decreases monotoni-
and computer simulations. Indeed, one of the features th&w@lly until the film has completely evaporated.
led us in this direction was a remarkable similarity between In a third scenario, which is the subject of the present
some of the patterns observed and those appearing in simpaper, a layer of water with nonzero thickness remains on the
lations of diffusion-controlled growth of a two-dimensional substrate at all times, but for some range of mean thickness a
solid from a supercooled me[5,6]. These features have uniform layer is unstable and the film breaks up into a two-
been called “doublons” or parity-broken dendrites. phase system. Then evaporation of the film is a more com-
In this paper we present a thermodynamic description oOplicated process and pattern formation may occur.
the dewetting process that can occur when a volatile film The experiments carried out by Reifé#] and Brochard-
evaporates from a substrate to which it is bound by both vajyyart and co-worker§15] correspond to the first scenario,
der Waals and polar forces and show that the initial stages Qfjthough in these cases the instability was not induced by
the pattern formation can be described in a manner anal@hinning through evaporation. In the second case of wetting
gous to the diffusion-controlled solidification problem in two fjims, the thickness of equilibrium films of various fluids on
dimensions. Later stages of the pattern formation are corsypstrates has been determined experimen{fdl}. The
trolled by hydrodynamics and constitute a different type ofthird scenario has been discussed theoretically for a nonvola-
problem([7]. Although most of this paper is concerned with tjle |iquid by Sharma and Jamef9—11], but little experi-
the thermodynamics of the process, reference will be made tgental investigation has been carried da#]. To our
some of the experimental results in order to demonstratRnhowledge, a theory for a volatile fluid has not been re-
quantitative relevance. The experimental results will be deported.
scribed fully elsewherg8]. In our experiment$3,4] water is deposited on a cleaved
mica substrate from a saturated vapor ph@sgor pressure
ps) at a given temperature. The film is observed optically by
The statics and dynamics of a thin film on a sub-interference microscopy. It initially forms a thick wetting
strate have been discussed extensively by Sharma arayer, typically 1um thick or more. If the substrate tempera-

Wetting and nonwetting films on a substrate
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57 PATTERN FORMATION IN DRYING WATER FILMS 2907
ture is now raised slightly so that the vapor becomes unsat-
urated with respect to it, the layer starts to evaporate. The
layer is observed to thin uniformly until it reaches a few tens
of nanometers thickness, at which point an instability occurs,
in which very thin circular patches nucleate and spread over
the film. Water from a patch accumulates in a rim around its
periphery and this rim undergoes an instability as the patch
grows, finally producing a complicated pattern of water
drops. The scale of the pattern formed during the evaporation
is a function of the rate of evaporation and the temperature of R
the substrate and contains several specific features, which 0 |
will be discussed elsewhef8]. It therefore seems that water

fiIm; go- thr.OUQh a region of thiCkn.esses in which uniform_ FIG. 1. Interfacial Gibbs free energy , as a function of film
Wet“”Q IS d'scour?ge_d' Such bghawor ,CannOt be,EXplamed ﬂﬂcknessh, for the van der Waals interaction with a negative Ha-
the thickness derivative of the interaction potential between,aier constant withoutcurve a) and with (curveb) the polar in-
the water and the substrate depends monotonically on thickeraction term. The significance bf to h, is explained in the text.
ness.(In an earlier papefl7] we claimed to have found an

explanation of this phenomenon in the framework of a Lo vy [ oh
simple van der Waals type of interaction between the water Gy=(ysLtyv— ?’sv)Lo+f — (—
and the substrate, but this paper has been shown to be incor- o 2 X
rect and should be ignoredeaglehole and Christenspig] ) )
found experimentally that under subsaturated conditigns (Where ij is the surface energy per unit area between bulk

<0.97%,) the equilibrium state of water on mica at 18 °C is phgsehs ‘f’mdj (Tubstrate, |I|C]UI?, andhvacluum or Inert gfash
a very thin (<2 nm) uniform film. The present paper is con- and the Integral term results from the sloping parts of the

cerned with the nonequilibrium process by which this state ié'lm ltlhat increase its area. We have assurfi#ddx| to be
attained. Similar types of pattern to those observed in watggmal. o . :
during evaporation have been observed during rupture of ! th€ film is thin an additional energg;(h) arises from

nonwetting filmg 14]. (One should remark that the true equi—t € finite thiCKnESfSh of the f_iIm; it is an addition 0 the
librium state for a nonvolatile liquid on a nonwetted sub-SUrface energies in Eql). This g;(h) represents the inter-

strate is a single drop, but once patterns of isolated dropgction per unit area between the interfaces when the distance
have formed there is no way, in the absence of either evapfetween them is finite. Clearly;(h)—0 ash—o. When

ration or an underlying film, by which this equilibrium state 9i() is positive and monotoni¢Fig. 1, curvea) the film -
can be achievey. tends to thicken and we have the classical wetting situation.

The general expression f@,, is therefore

g

h

2
dx, (1)

II. THEORY FOR ZERO VAPOR PRESSURE Lo yyy [ oh 2
In order to establish a common language with earlier Go=[¥sLt yLv = vsvllo™t fo > (5 +gi(h) |dx,
work (in particular that of Sharmgg]) we first consider the )
thermodynamics of a nonvolatile film. The Gibbs free energy
of the film is a sum of its bulk energy and surface energy; ¢ = the surface energy per unit area of the substrate is
G=G;+G,. For a film with zero vapor pressure the vol-

ume is constant; sind8, depends only on the volume and is y 2
therefore constant, we can take its value as Zse® also 9,()=vs.=Y.v— Ysv+t % X +gi(h). (3
Sec. Il A).
The first terms of Eqs2) and(3) are independent of the
A. Equilibrium of a thin film of given length shapeh(x) so in order to minimizés,; we have to minimize
Even though the film is two dimensional it will be clearer . oh\2 Lo oh
at first to regard it as being one dimensional, i.e., of unit f v (_ +gi(h)—\h(x) dx:f I x,h, —)dx,
width with properties independent gf Quantities are de- Jo | 2 19X 0 X

fined per unit substrate area unless stated otherwise. The ex- (4)
tension to two dimensions, which will be required for dis-

cussing pattern formation, is trivial and will be introduced in Where

Sec. Il D. The one-dimensional case has already been stud-

ied in detail by Sharma and Jamé¢#&0] and Mitlin [18], but |— YLv (ﬂ 2
ax

we will briefly summarize their work. 2
A film of length Ly has heighth(x) and volume

ftoh(x)dx. The equilibrium shape of the film is found by and the term\h(x) comes from the constraint of constant

minimizing the free energ®,,. We assume for the moment volume. The functiorh(x) that minimizesG,, obeys the dif-
that the film is thick; then ferential equation

+gi(h)—Ah(x) ©)
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h1I |l13 haI hz| (a)
_____________________ ~ Maxwell construction
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FIG. 2. Same as Fig. 1 showintp; /dh. b
W (b)
a | al T N M —> O
o o] = (6) o
dh x|\ dhy '
giving for a film in equilibrium
dgi azh
an_ YW 2 =M (7
The expressiong; /dh is the function¢ defined by Sharma h

[9]. In Eq.(7), \ can be interpreted as a pressure jump at the

upper surface since the first term is the force on this surface FiG. 3. (a) Interfacial Gibbs free energy; and (b) dg; /dh for
connected withg;(h) and the second term is the Gibbs- an autophobic system for whidi,— .

Thomson pressure of a curved surface.

For a uniform film the chemical potential per particle is loys. It is possible tha,—co, as in Fig. 3, in which case the
mam=(1/p)dg;/dh, in agreement with the general definition equilibrium situation consists of macroscopically thick drops
ME&G/&N|M=(1/L0)¢9G/¢9n|p,T, where we have taken sitting on a continuous thin film. This is called autophobicity
again the bulk free energg; as zero. Here is the density [13].

(particles per unit volumeand n=hp the number of par- When we have the two thicknesses andh, in equilib-
ticles per unit area. It is therefore reasonable to defifer  rium, a certain transition profile(x) is created, which is the
a nonuniform film in equilibrium by solution of Eq.(8) and represents the minimum in total en-
) ergy. In the transition regiodg; /dh— pu is balanced by the
N 1(dg d°h Gibbs-Thomson pressure
Biim=—= =~ | g W 52 - (8)
p P 2 >
In Figs. 1, curvea, and 2, curvea we show the simplest dh~ PH= YV 520 ©

case in whichg;(h) and dg;/dh both approach zero dt
—o, from above and below, respectively. To illustrate thewhich can be integrated frotm; (wheredgh/dx=0) to give
manner in which the breakup of the film can occur as its

thickness is reduced we consider a more complicated func- v (@)22 fh (ﬂ_ )dh’

tion g;(h) (shown in Fig. 1, curve bin whichdg; /dh is not 2 \ox h, \ dh’ PH

monotonic, as suggested by Derjaguin, Churaev, and Muller

[19]. The brief description in the next paragraph summarizes =[gi(h)—puh]—[gi(hy) —puhy]. (10)

the work of Sharm49] and Mitlin [18] and emphasizes the
analogy with phase separation in a two-component allo
[20,21).

We identify two phases, “thick” and “thin” films, and
refer to Fig. 2, curve b, which showdyg;(h)/dh. When the

Using this relationship, we can derive an effective contact
)éngle[ll] along the edge separating the thick and thin films.

It can be defined as the largest angle in the transition region
and is found at the point whemg (h) —pwh is maximum.

This is not a true contact angle as for a drop on a dry surface

w\ﬁ dp-h(?ns)(/ejhca?nedxlcshteitrhtﬁ}ilckzaevses d;qg%hc hzrn‘;'fglatzztim'alBecause the gradiedth/dx is actually continuous between
p a0 2 Y the two regions, but in practice it looks very similar. The

a Maxyvell construction; a proof for the present case V\."" becontact angle will be important when we discuss the pattern-
given in Sec. lll B. Thefa) whenh>h, or h;>h the film is formation aspects of this problem

stable,(b) whenh,>h>, or hy>h>h; the film is meta-
stable and can decompose by a nucleated transition into a
two-phase arrangement of thick4) and thin ,) layers in

coexistence, angt) whenh;>h>h, the film is unstable and The equilibrium configuration of the film can also be ob-
spontaneously decomposes into such a two-phase arrangeined by writing an equation to describe its time evolution
ment, which is equivalent to spinodal decomposition in al-and, starting with a surface perturbation to a uniform film,

B. Film evolution equation
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integrating until a steady state is obtained. This was done btwo interfaces repel each other to make the film thicker. We
Sharma and JameEl0] for the one-dimensional nonvolatile find this terminology confusing.Thus equilibrium is ob-
case. From Eq(8) it follows that for a film not in equilib- tained when

rium the gradient ofu is

d dg(h) a°h
dx dh Vo

1 dg, 1 3
kgT In(p/pg)=pu=———= ; Al6mh>, (18

. (11) p dh

Sincedg; /dh increases monotonically to zero, H48) has
The length of the film is implicitly taken as constant. Assum-only one solution foh at each value ofx and no unstable
ing laminar flow with no slip at the substrate and a free upperegions exist. Equilibrium thicknesses of subsaturated films
surface, it can then be shoyhO] that of various volatile liquids on wetted substrates have been
measured by Beaglehole and Christengbfl.

(9,u,_1
&X_p

oh 1 9 ( o du) 1 9| .9 (dg °h Now suppose that the interaction between the substrate
gt 37pdx Pox |~ 37 dx ax \dn "WV o2 and the film is more complicated, as shown in Fig. 1, curve
) 3 b. In this example, the free energy(h) represents a long-
I @%_ ﬂ 12 range LW interaction with negativé and a shorter-range
- 3y 0x gx dn?Z YWV ol | (12 polar (double-layey interaction of opposite sign, which has

an exponential decay expf/lyg). In Sharma’q9] classifica-
wherey is the viscosity. Clearly, a stationary state is reachedion this is region 4, and for consistency we use his notation
[cf. Eq. (7)] when
LW do P do—h
dgi (92h gI:S F—’—S exp [ ’ (19)

—_— — = O
dh Yv (9X2 P const. (13)

whereS*Wd2=— A/127, d, is a molecular radiugbout 0.2
nm), andl, is a screening distand¢about 0.6 nm Both SHW
andS" have dimensions of surface energy &ids negative

A. Thermodynamic functions of the system when two of the medigwater and mica in this caséave
We shall now assume that the film has a nonzero Vapopolar properties. There is evidence from the experiments that

X . P . . .
pressure and constant extent and given density. We also d&€ value ofS™ is dependent on absorption of ions from the

sume that it is in contact with vapor f, ... defined by the mica into the water, particulgrly in experiments at higher
external conditions. When the vapor and film are in equilib-temperatures. In this case typical formsgpfh) anddg; /dh
rium, then by definition are shown in Figs. 1, curve b, and 2, curve b, respectively. If

we write p; for the vapor pressure at whighkgT In[p;/ps]

lll. THEORY FOR FINITE VAPOR PRESSURE

Miilm = Mvapor= M- (14 =dg/dh|hj we should expect there to be stable films of the

_ _ ) liquid in equilibrium with vapor betweepg and p; and be-
The chemical potential of the vapor is low p,, with the possibility of a two-phase region between
ps; and p,; we shall study this region below. In the case

Fvapo=KeT IN(Pyap/ Po) (19 represented by Fig. 3, stable thin films occur beloyy but

there may not be a stable thick film region, exceptpat
=ps. Experimentally, we have found that the mica-water
system can demonstrate the situations shown in Figs. 1,
curve b, 2, curve b, and 3.

and we choose the reference presquy@sps, the pressure
of saturated vapor over a thick filnm{ ). The equilibrium
defined by Eq(14) is then

im=KgT In /Ps), 16
Hfim =8 (pvap P (16) B. Equilibrium in terms of a thermodynamic function
where, for a uniform layer, We can conveniently describe the behavior of the film in
terms of a thermodynamic functiol = g;(n) — syapo- Be-
dg 1 dg cause it is a nonequilibrium function, defined by an external

17

Him = onor pdhyt’ constraint fu,ap0), ¥ might be called a surface availability.
(It resembles the grand potentifl9] of the film, Q=F
Hereg is the sum of the surface energyand the bulk free  — uqmn, but is not the sameThen
energy, both per unit area of the film. However, the bulk free
energy is zero since we have taken a thick film as our refer- ﬂ_ %_ _} &_ (20)
ence state. Therefog=g; . dn  dn Hvaeo, dhy T Fvapor-

We can now reinvestigate some of the scenariogfin)
described by Sharmgd], but for volatile liquids. Consider Since
first the case of a nonpolar liquid that interacts with the sub-
strate via Lifshitz—van der Waald. W) interactions only dgi
(Fig. 1, curvea). Then g;(h)=—A/127h? in the nonre- dnp 1
tarded regime, wherd is the Hamaker constarthegative
for wetting). (This is called a repulsive interaction since the Eq. (20) can be written as

= Mfilm » (21)



2910 N. SAMID-MERZEL, S. G. LIPSON, AND D. S. TANNHAUSER 57

Suppose thaj, e is reduced in small steps downward
f from zero. The thick film adjusts its to each newu,,p, but
stays uniform untilu,apo= teq at h=h,. After that, in the
absence of a nucleation event, it can continue to thin uni-
formly, as a metastable film, unti=h,. At this point there

c are no longer two minima and mon-nucleated spinoda)
transition occurs. In fact, the nucleation barrier has been
steadily falling towards zero dt, and a nucleated transition

b — will always occur before that. Such nucleated transitions
from h<h, andh>h; can give rise to a hysteresis effect in

0 - — the dependence &f on wyapr-

If the film could bepreparedat a thickness betweeh,
andhs, spinodal decomposition th; and h, would occur;
however, evaporation and condensation compete with the

"pinodal decomposition. Thus, e apof Preparation> weq
the film will go via condensation tdv>h,, while in the
opposite case it will go tth<<h,. Decomposition td, and
h, will only be significant if evaporation is very slow.
When a thin film is nucleated in a film thinner thhp, a
small region of the new phase is formed. The excess water
av._1dv oy  does not immediately evaporate but is ejected into the sur-
dn  pdh,r ~ Hilm ™ Kvapor- (22 rounding film and thickens it locally. It is the ejection pro-
cess and the consequent redistribution of the ejected water
In equilibrium g gm= fyapor SO We havelW/dh=0, i.e,, an that cause the patterns to form.
extremum of¥ (h). ¥ is shown in Fig. 4, for the case of Fig.
1, curveb and several values @f,,,(i.€., p). There are two
minima in curvesc—e, which represent equilibrium thick- We can now express the effective contact angle for equi-
nesses. For curve (Sma||est| Mvaporl or p closest top) the librium beMeen th.e thick and_ the thin film throygh the ther-
minimum at largeh is deepest, suggesting that the thin film modynamic potentia’. Equation(10) can be written
is metastable and the thick film stable. For cuevelargest

FIG. 4. Thermodynamic potential' for different values of
Mvapor- CUrvea represents the saturated vapor pressure at the te
perature of the substraie,,po—=0 [cf. Fig. 1, curve(b)], curves
b—f represent increasing values ofu a5, cUrve d represents
phase equilibrium and curvésandf represent the situations where
only the thick and thin layers, respectively, exist.

C. Contact angles

: L oh\?
| vapol Of these three, i.e., loweph the minimum at smalh Y (_) =[gi(h)— preech]1—[i(h1) — preds]
is deepest, suggesting that the thin film is metastable and the 2 \ox ' e n e
thick film stable. For curve (largest|uyqp0) Of these three, =w(h)—W¥(h,), (24)

i.e., lowestp) the minimum at smalh is deepest, suggesting
that the thin film is stable and the thick film metastable. Fori.e., the largest gradient of the film occurs at the point at
curved one sees the situation in which equilibrium is estab-which ¥ (h) is a maximum.
lished between the vapor and films of both thicknesses. The It is of interest to substitute some numbers in the formulas
two minima are now at the same height; therefore in order to show that the results are reasonable in comparison
to experimental values. We have used the relationgh®p
h, hy, W ho( dg; introdyqed in Sec. Il A. Usingl this formula, therg is only a
0=J dv= — dh:J (——p,u,eq dh, (23)  very limited range ofs” for which phase separation occurs
hy h, dh hy \ dh during evaporation. We shall express this in terms of the
ratioR=— SP/S"W. R has an upper bound at which autopho-
which is the Maxwell construction on a diagramad;/dh  bicity sets in at the saturated vapor pressure; i.e., the Max-
vsh. Herepeqis the value ofiufim = wyapor for which the two  well construction givesuyqpo=0. It has a lower bound at
thicknesses are in equilibrium. This is shown in Fig. 2, curvewhich dgI /dh becomes monotonic and therefore comp|ete
b. For the case shown in Fig. 3, whe® is larger, the wetting occurs at all pressures. This range is given by 0.10
equilibrium value ueq is equal to zero. In this autophobic <R<0.147. Evaluation off’(h) at phase equilibriuntFig.
case a thin film is in equilibrium with macroscopic drops and4, curved) then allows the contact angle to be calculated.
saturated vapor. Since all this is completely analogous to thgigure 5 shows for this range & the results of calculations
situation in any other two-phase system, we can immediatelygf h,, h,, equilibrium chemical potentigleq, and contact
make the following statement about nonequilibrium situa-angle ¢ for the valuesS-W= 15 mJ/nf, typical for water on
tions, following curveb in Fig. 2. mica, andy =80 mJ/ni. It will be seen that the contact
When two minima exist as in Fig. 4, curves-e, the  angle lies in the range<©6<0.04 rad, which can be com-
driving force towards a global equilibrium situation in one or pared with experimentally determined values for static con-
the other(i.e., where the whole film is either &4 or ath,)  tact angles in the range 0.6®.01 rad. Experimentallyy, is
is proportional to the difference i¥ between their depths, ysuyally around 25 nm, which corresponds Ro=0.146.
but a transition from one to the other must be nucleateqqowever, when a freshly cleaved surface is wet repeatedly at
because of the barrier between them. Figure 4, cuavés  room temperature it is possible to observe the complete
and f show W(h) for more extreme valuesuyapor range from wetting R<0.10) to autophobicity R
>dg;/dh[,, and wyape<dgi/dhl,, for which only one  >0.147), presumably because of absorption of ions, which
minimum exists and no phase separation occurs. leads to a gradual increase ofS’.
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J J h(x,y)dx dy. (26)
mf Consider the two-dimensional analog to E#j2):
€ e
- *2 o _g b [dahy o ,
23 ot~ 3y | dh TV @7

We add to this a term that represents the evaporation. The
. . rate of evaporation depends linearly on the difference be-
P (mJ m?2) tween the chemical potential of the vapor and that of the
film, with a constant of proportionalitya that is a
FIG. 5. Calculations oh,,h,, equilibrium chemical potential ~t€mperature-dependent parameter whose value can be esti-
Jeq, @nd contact anglé as a function ofs”, for the valuess"W mated from kinetic theory of gases or determined experimen-

=15 mJ/n? and y, =80 mJ/n?, typical for water on mica. tally. Then we have, from Eq27),
3
D. Evolution of a two-dimensional film % -Vv. 3h_ V{d%i(hh)— 7,Vzh}
We now continue by studying the dynamic aspects of total n
volatile film evolution. The dynamics of nonvolatile films a [dg(h)
have already been investigated by Sharma and Jabek! —— dlh — YV =P fhyapor| - (28)
Reiter [14], Brochard-Wyart and co-workerisl5], and de p

Gegzg;[gi that a thick film is formed and then the vaporThi.S equation contains both second-order arjd higher differ-
pressure is reduced to below saturation, so that it slowl ntials. When _the second-order terms _domlnate, it has the
evaporates. We expect that the film will thin uniformly until orm of a diffusion equation, and on this is based the analogy
the thickness is reached at Whiglm= apor. If this value with diffusion-controlled growth. When the higher-order
is aboveueqa stable uniform film remains. &, ap0ris SOMe- terms dominate, the evolution is comparable to that in hydro-
what lower thanuq, the thick film stabilizes a<h, but is dynamlc. systemé.g., VISCOUS f_lngerlr‘)gTo emphasize Fh's
now metastable and a nucleation event can cause a Ioc]:a "’?‘.J'a.“"”[?z] we shql_l linearize Eq(28) about the thick
. . . . librium film by writing sh=(h—h,) and concentrate
phase change in which a minute patch is created where th?()aglr“attention on the thick regiofi.e., outside the rim of the
thickness is less than or equalitp. We call this a dry patch. ch. In the li glof. t ndg: /dh=dg; /dh|
The probability of such an event increaseshash, because pag ' n2 € flinear approximationdg; 9 h,
of the falling height of the nucleation barrier # (Fig. 4,  +d°gi/dh?|p,8h. Then Eq.(28) becomes

curvesd and e). On an isotropic substrate, the patch will

initially be circular since this shape minimizes edge energy ash 3 hg d?g; 5 4

[3]. Provided its diameter is above some critical value, the ot 37y |dh? X Voh—yVish

patch will grow, since by doing so it reduces the total free 2

energy of water film plus vapor, and in doing so water is a [dg,

gjected into its rim. Eventually enough water has been ——[% — P Mvapor™ yV26h|. (29
ejected for the rim height to reach thickndss and local P hy

equilibrium is established around the edge; the rest of the

evolution is determined by the transfer of the water from theThis equation contains three types of teri:a linear term

rim into the thinner wet surrounding mediuih5]. We shall ~ proportional todg; /dh|n,— tyapor, Which leads to evapora-
show below that under some conditions this process can b#on or condensation depending on the deviation of the mean
described in an analogous manner to solidification from anhickness from equilibrium with the vapof) second-order
undercooled melt and therefore expect similar instabilities tespatial differentials of the profile, leading to an effective dif-
occur. In the case of a nonvolatile fluid, this evolution by fusion coefficientD oz=0d?g; /dh2|h2h§/377+ aylp [the latter

hydrodynamics can be very slow. In our case, since the filmg (D,) is always positive and the formeD() is also
is evaporating the process is accelerated b_y. trqnsport thmu%sitive outside the spinodal regiprand (c) fourth-order
the vapor phase, which prevents the equilibrium helght  gpatial differentials, giving hydrodynamic effects.
being achieved at the rim. To appreciate the relative importance of the second- and
We shall now formulate this part of the process math-torth-order differential terms we must estimate typical or-
ematically. The field variable ifi(x,y). The h-dependent gers of magnitude. It is interesting that for the model sub-
part of the free energy of the film is, by analogy with €2),  girate interaction discussed above and using a valuexfor
derived from our experiments. The two contributions to the
sz f gi(h(x,y))= % |Vh|2dx dy. (25)  effective diffusion constant are found to be similar in mag-
nitude. It is difficult to estimatex from kinetic theory be-
cause the calculation involves a ‘sticking coefficient,”
The volume of the film ish per unit area so that the total whose value is not well established, for vapor molecules hit-
volume is ting the water surface.
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Typically, for the parameters used in the estimates of Sec.
Il C (with S=—2.15 mJ/m and »=0.001 kg/m § we find
dg;/dhlp,~—6x10° J/n? andd®g; /dh?[, ~2x 10 J/nf"

From these values one can estimate the two contributions tc
the effective diffusion constant a@8,~10 °m?s for the
substrate interaction term and,<8x10° m?%s for the
evaporation termdepending on the value of the sticking
coefficieny.

A comparison between the “diffusionlike” and hydrody-
namic terms can only be made at a given length scale. Foi
example, if we choose to look at height structures on the 3 -. 3"
scale(in x-y) of A=10 um, for which we can writeV =ik Y
~2mi/N, we have, in the linear limit§h—0),

doéh b4 hg 200 . -, —reflecting
—_— — 2 P — 4 > periodic
G~ ~DKeah—tkioh, (30) \ I
SO c
For the given value ok, the first term is about 1@ and e o -oo/;"}j 01
the second aboush, so that it is reasonable as a first ap- §°,% o o /A S
proximation to consider the diffusion approximation only, IR 0

4 Gt *

although for thicker films the hydrodynamic term becomes

important since the second term is proportionahfo FIG. 6. Comparison of water film evaporation patterns at large

subsaturation with simulations of two-dimensional crystal growth
under similar conditions(a) Fully developed pattern around a dry

. . . patch atA=0.9 [3], (b) simulation of two-dimensional isotropic
One purpose _Of this paper Is tq establish an a”a'ogy _bes'olid growth atA=0.7[5], (c) meeting of two drying fronts moving
tween the evolution of the film as it evaporates and existingnig a wet region ah=0.9[8], and(d) isotropic growth simulation

growth models. Under the conditions where the second-ordefhowing the doublon structure At=0.7[6].
differentials dominate there is a rather complete analogy
with the models developed for growth of a solid from its
melt in two dimension$1,2]. However, the correspondence
to the solid-liquid problem is not straightforward because th
surface profile is continuous between adjoining thin and
thick films. With this reservation, the expanding dry patch
corresponds to the solid and the thick film to the liquid
phase. During the expansion, water is ejected into the sur- | )
rounding medium at a rate ohg—hy)v, wherev is the  Which can be written
normal velocity of the interface between the two regions, and
local equilibrium is established at the interface. THus
—h; corresponds to the latent heat in the solidification
model. Growth of the patch continues because the surround-
ing thick film, which evaporates continuously, has thickness
h(x,y) less thanh, so that water diffuses into it following So it follows thatdg;/dh[,,+ yh,/r replacesdg;/dhl,
Eq. (29). The boundary conditions driving this diffusion are when the interface is curved. On the edyér=< 6 (contact
the rim of the dry patcht{=h,) and the conditions at infin- angle. For estimation, we replace by=and then have &
ity (the rim being the source and infinity the sipwhere the  the boundary condition fodg;/dh—yh,, that u(R)= ueq
dimensionless supersaturatio =[ ueq— tfim(©)/iteq OY ~ + y6K/p, whereK=1/R. Thusdy= y6/p|wsm| . This ex-
analogy with the expression appearing in the solidificatiorpression has a value, for the typical conditions quoted above,
problem. ThisA is the parameter that we can control by the of about 4um. SinceA is of order unity in our experiments,
evaporation rate through the vapor pressure above the filmthis value agrees with observations of the dimensions of
When the interface is curved the supersaturation at theucleated patches. We could also calculate an effective dif-
interface is modified by the Gibbs-Thomson curvature cor{fusion constant in the dry phase, but this is generally not
rection, which in the solidification modefg] gives interface included in the solidification models since the solid phase
supersaturatiod —doK, whered, is the capillary length and has uniform temperature and does not evolve.
K is the interface curvature. It is of interest to establish the Indeed, the form of the instability observed in these ex-
equivalent todg in the present situation since it is an impor- periments corresponds in some respects very well with typi-
tant parameter in growth models and the critical nucleus focal features of solidification simulatiori§,5]. We point out
growth has radiusly/A [21]. in particular the formation of features called doublons or

E. Analogy with diffusion-controlled growth models

cular patch of thicknest; and radiusR, whereR is the
é)osition of largesh, . For axial symmetry we write

dg;
an (D= Y00 =ppagi, (31)

IO SO | A
dh Y0 = P Mfiim T Yy _dhh ya/r.
2

In one dimension we hadEq. (13)] dg;/dh— yh,,
=punm N equilibrium. Now we havedg;/dh(x,y)

parity-broken dendrites, which appear in the simulations of
isotropic materials in two dimensions at large supercoang

— y(huxthyy) = pusim . Consider the configuration of a cir- and therefore have rarely been observed in crystal growth
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experiments. Two examples of comparable features arence of a fixed contact angle along the boundary. The quan-
shown in Fig. 6, but further quantitative details will be pre- titative comparison between this instability and the

sented elsewheld]. experiments will also be discussed in detail elsewh&le
Neither the full development in the hydrodynamic regime
F. Hydrodynamic instability region nor that in the intermediate region, where the two terms on

the right-hand side of Eq27) have comparable magnitude,
has yet been treated, but we encourage computer simulations
of the problem in the future.

When the amplitude of the instability grows, eventually
the thick film realizes conditions where the approximation
we made by neglecting the fourth-order term in ER9)
becomes invalid. For thick enough films we can neglect the

second-order term instead and obtain ACKNOWLEDGMENTS
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