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Pattern formation in drying water films

N. Samid-Merzel, S. G. Lipson, and D. S. Tannhauser
Department of Physics, Technion–Israel Institute of Technology, 32000 Haifa, Israel

~Received 19 September 1997!

A film of a volatile medium in contact with unsaturated vapor is bound to a plane substrate by both van der
Waals and polar forces. We present a thermodynamic description of this system, including exchange of
material between the fluid and the vapor under nonequilibrium conditions. For a range of values of the vapor
pressure, a two-phase system develops, involving the coexistence of molecularly thin and macroscopically
thick layers whose dynamics are controlled by the vapor pressure. The theory is used to explain the origin of
experimentally observed spatial patterns in water films evaporating from clean mica substrates, where scale and
other features are a function of the vapor pressure. An analogy is developed between the initial stages of the
pattern formation and the diffusion-controlled solidification problem in two dimensions and typical features
such as ‘‘doublons’’ or parity-broken dendrites are observed. At later stages in the pattern formation hydro-
dynamics becomes important.@S1063-651X~98!05003-X#

PACS number~s!: 47.54.1r, 68.45.Gd, 68.70.1w
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I. INTRODUCTION

In recent years there has been a growing interest in
dynamics of spontaneous pattern formation in simple s
tems@1,2#. A particular challenge in this field is to find ex
perimental systems that are sufficiently simple and well
derstood to allow a quantitative theoretical analysis t
enables a direct comparison between the patterns observ
experiments and those predicted by theory. One limiting f
tor is that much theoretical work and particularly numeric
calculations have been limited to two-dimensional syste
Recently@3,4# we have been studying the patterns that fo
when initially thick water films are allowed to evapora
from mica substrates under varying degrees of subsatura
In trying to understand the physics underlying this proc
we have come to the conclusion that they represent a par
larly simple example of a two-dimensional isotropic nonli
ear system that can easily be compared with theoretical w
and computer simulations. Indeed, one of the features
led us in this direction was a remarkable similarity betwe
some of the patterns observed and those appearing in s
lations of diffusion-controlled growth of a two-dimension
solid from a supercooled melt@5,6#. These features hav
been called ‘‘doublons’’ or parity-broken dendrites.

In this paper we present a thermodynamic description
the dewetting process that can occur when a volatile fi
evaporates from a substrate to which it is bound by both
der Waals and polar forces and show that the initial stage
the pattern formation can be described in a manner an
gous to the diffusion-controlled solidification problem in tw
dimensions. Later stages of the pattern formation are c
trolled by hydrodynamics and constitute a different type
problem@7#. Although most of this paper is concerned wi
the thermodynamics of the process, reference will be mad
some of the experimental results in order to demonst
quantitative relevance. The experimental results will be
scribed fully elsewhere@8#.

Wetting and nonwetting films on a substrate

The statics and dynamics of a thin film on a su
strate have been discussed extensively by Sharma
571063-651X/98/57~3!/2906~8!/$15.00
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Jameel@9–11#, de Gennes@12# and Israelachvili@13# and
experiments on similar systems have been reported by R
@14# and Brochard-Wyart and co-workers@15#. However,
these works are limited to nonvolatile films, within whic
mass is conserved. In the situation that is the subject of
paper the film is in contact with vapor and the transfer
mass between the two has to be taken into account.

When a uniform layer of a fluid on a substrate evapora
several scenarios are possible. The first takes place whe
fluid does not wetthe substrate. In this case a large enou
quantity of fluid on a fixed area of substrate will form
uniform pool because of gravity. When this pool evaporat
at some critical thickness an instability occurs and the fi
breaks up into drops with dry substrate between them
second scenario occurs if the filmwets the substrate. Then
the layer formed under the same circumstances will rem
continuous with uniform thickness that decreases monot
cally until the film has completely evaporated.

In a third scenario, which is the subject of the prese
paper, a layer of water with nonzero thickness remains on
substrate at all times, but for some range of mean thickne
uniform layer is unstable and the film breaks up into a tw
phase system. Then evaporation of the film is a more co
plicated process and pattern formation may occur.

The experiments carried out by Reiter@14# and Brochard-
Wyart and co-workers@15# correspond to the first scenario
although in these cases the instability was not induced
thinning through evaporation. In the second case of wett
films, the thickness of equilibrium films of various fluids o
substrates has been determined experimentally@16#. The
third scenario has been discussed theoretically for a nonv
tile liquid by Sharma and Jameel@9–11#, but little experi-
mental investigation has been carried out@14#. To our
knowledge, a theory for a volatile fluid has not been
ported.

In our experiments@3,4# water is deposited on a cleave
mica substrate from a saturated vapor phase~vapor pressure
ps! at a given temperature. The film is observed optically
interference microscopy. It initially forms a thick wettin
layer, typically 1mm thick or more. If the substrate temper
2906 © 1998 The American Physical Society
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57 2907PATTERN FORMATION IN DRYING WATER FILMS
ture is now raised slightly so that the vapor becomes un
urated with respect to it, the layer starts to evaporate.
layer is observed to thin uniformly until it reaches a few te
of nanometers thickness, at which point an instability occu
in which very thin circular patches nucleate and spread o
the film. Water from a patch accumulates in a rim around
periphery and this rim undergoes an instability as the pa
grows, finally producing a complicated pattern of wa
drops. The scale of the pattern formed during the evapora
is a function of the rate of evaporation and the temperatur
the substrate and contains several specific features, w
will be discussed elsewhere@8#. It therefore seems that wate
films go through a region of thicknesses in which unifo
wetting is discouraged. Such behavior cannot be explaine
the thickness derivative of the interaction potential betwe
the water and the substrate depends monotonically on th
ness.~In an earlier paper@17# we claimed to have found a
explanation of this phenomenon in the framework of
simple van der Waals type of interaction between the wa
and the substrate, but this paper has been shown to be in
rect and should be ignored.! Beaglehole and Christenson@16#
found experimentally that under subsaturated conditionsp
,0.97ps) the equilibrium state of water on mica at 18 °C
a very thin (,2 nm) uniform film. The present paper is co
cerned with the nonequilibrium process by which this stat
attained. Similar types of pattern to those observed in w
during evaporation have been observed during rupture
nonwetting films@14#. ~One should remark that the true equ
librium state for a nonvolatile liquid on a nonwetted su
strate is a single drop, but once patterns of isolated dr
have formed there is no way, in the absence of either eva
ration or an underlying film, by which this equilibrium sta
can be achieved.!

II. THEORY FOR ZERO VAPOR PRESSURE

In order to establish a common language with ear
work ~in particular that of Sharma@9#! we first consider the
thermodynamics of a nonvolatile film. The Gibbs free ene
of the film is a sum of its bulk energy and surface ene
G5G11Gs . For a film with zero vapor pressure the vo
ume is constant; sinceG1 depends only on the volume and
therefore constant, we can take its value as zero~see also
Sec. III A!.

A. Equilibrium of a thin film of given length

Even though the film is two dimensional it will be clear
at first to regard it as being one dimensional, i.e., of u
width with properties independent ofy. Quantities are de-
fined per unit substrate area unless stated otherwise. Th
tension to two dimensions, which will be required for di
cussing pattern formation, is trivial and will be introduced
Sec. III D. The one-dimensional case has already been s
ied in detail by Sharma and Jameel@10# and Mitlin @18#, but
we will briefly summarize their work.

A film of length L0 has height h(x) and volume
*0

L0h(x)dx. The equilibrium shape of the film is found b
minimizing the free energyGs . We assume for the momen
that the film is thick; then
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Gs5~gSL1gLV2gSV!L01E
0

L0 gLV

2 S ]h

]xD 2

dx, ~1!

whereg i j is the surface energy per unit area between b
phasesi and j ~substrate, liquid, and vacuum or inert ga!
and the integral term results from the sloping parts of
film that increase its area. We have assumedu]h/]xu to be
small.

If the film is thin an additional energygi(h) arises from
the finite thicknessh of the film; it is an addition to the
surface energies in Eq.~1!. This gi(h) represents the inter
action per unit area between the interfaces when the dista
between them is finite. Clearly,gi(h)→0 ash→`. When
gi(h) is positive and monotonic~Fig. 1, curvea! the film
tends to thicken and we have the classical wetting situat
The general expression forGs is therefore

Gs5@gSL1gLV2gSV#L01E
0

L0FgLV

2 S ]h

]xD 2

1gi~h!Gdx,

~2!

i.e., the surface energy per unit area of the substrate is

gs~h!5gSL5gLV2gSV1
gLV

2 S ]h

]xD 2

1gi~h!. ~3!

The first terms of Eqs.~2! and~3! are independent of the
shapeh(x) so in order to minimizeGs we have to minimize

E
0

L0FgLV

2 S ]h

]xD 2

1gi~h!2lh~x!Gdx5E
0

L0
I S x,h,

]h

]xDdx,

~4!

where

I 5
gLV

2 S ]h

]xD 2

1gi~h!2lh~x! ~5!

and the termlh(x) comes from the constraint of consta
volume. The functionh(x) that minimizesGs obeys the dif-
ferential equation

FIG. 1. Interfacial Gibbs free energygi , as a function of film
thicknessh, for the van der Waals interaction with a negative H
maker constant without~curvea! and with ~curveb! the polar in-
teraction term. The significance ofh1 to h4 is explained in the text.
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2908 57N. SAMID-MERZEL, S. G. LIPSON, AND D. S. TANNHAUSER
]I

]h
2

]

]x S ]I

]hx
D50, ~6!

giving for a film in equilibrium

dgi

dh
2gLV

]2h

]x2 5l. ~7!

The expressiondgi /dh is the functionf defined by Sharma
@9#. In Eq. ~7!, l can be interpreted as a pressure jump at
upper surface since the first term is the force on this surf
connected withgi(h) and the second term is the Gibb
Thomson pressure of a curved surface.

For a uniform film the chemical potential per particle
mfilm5(1/r)dgi /dh, in agreement with the general definitio
m[]G/]Nup,T5(1/L0)]G/]nup,T , where we have taken
again the bulk free energyG1 as zero. Herer is the density
~particles per unit volume! and n5hr the number of par-
ticles per unit area. It is therefore reasonable to definem for
a nonuniform film in equilibrium by

mfilm5
l

r
5

1

r S dgi

dh
2gLV

]2h

]x2D . ~8!

In Figs. 1, curvea, and 2, curvea we show the simples
case in whichgi(h) and dgi /dh both approach zero ath
→`, from above and below, respectively. To illustrate t
manner in which the breakup of the film can occur as
thickness is reduced we consider a more complicated fu
tion gi(h) ~shown in Fig. 1, curve b! in which dgi /dh is not
monotonic, as suggested by Derjaguin, Churaev, and Mu
@19#. The brief description in the next paragraph summari
the work of Sharma@9# and Mitlin @18# and emphasizes th
analogy with phase separation in a two-component a
@20,21#.

We identify two phases, ‘‘thick’’ and ‘‘thin’’ films, and
refer to Fig. 2, curve b, which showsdgi(h)/dh. When the
two phases coexist they have equal chemical poten
r21dgi(h)/dh and their thicknessesh1 andh2 are related by
a Maxwell construction; a proof for the present case will
given in Sec. III B. Then~a! whenh.h2 or h1.h the film is
stable,~b! when h4.h.2 or h1.h.h3 the film is meta-
stable and can decompose by a nucleated transition in
two-phase arrangement of thick (h2) and thin (h1) layers in
coexistence, and~c! whenh3.h.h4 the film is unstable and
spontaneously decomposes into such a two-phase arra
ment, which is equivalent to spinodal decomposition in

FIG. 2. Same as Fig. 1 showingdgi /dh.
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loys. It is possible thath2→`, as in Fig. 3, in which case the
equilibrium situation consists of macroscopically thick dro
sitting on a continuous thin film. This is called autophobic
@13#.

When we have the two thicknessesh1 andh2 in equilib-
rium, a certain transition profileh(x) is created, which is the
solution of Eq.~8! and represents the minimum in total e
ergy. In the transition regiondgi /dh2rm is balanced by the
Gibbs-Thomson pressure

dgi

dh
2rm5gLV

]2h

]x2 , ~9!

which can be integrated fromh1 ~where]h/]x50! to give

gLV

2 S ]h

]xD 2

5E
h1

h S dgi

dh8
2rm Ddh8

5@gi~h!2rmh#2@gi~h1!2rmh1#. ~10!

Using this relationship, we can derive an effective cont
angle@11# along the edge separating the thick and thin film
It can be defined as the largest angle in the transition reg
and is found at the point wheregi(h)2rmh is maximum.
This is not a true contact angle as for a drop on a dry surf
because the gradientdh/dx is actually continuous betwee
the two regions, but in practice it looks very similar. Th
contact angle will be important when we discuss the patte
formation aspects of this problem.

B. Film evolution equation

The equilibrium configuration of the film can also be o
tained by writing an equation to describe its time evoluti
and, starting with a surface perturbation to a uniform fil

FIG. 3. ~a! Interfacial Gibbs free energygi and ~b! dgi /dh for
an autophobic system for whichh2→`.
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57 2909PATTERN FORMATION IN DRYING WATER FILMS
integrating until a steady state is obtained. This was done
Sharma and Jameel@10# for the one-dimensional nonvolatil
case. From Eq.~8! it follows that for a film not in equilib-
rium the gradient ofm is

]m

]x
5

1

r F d

dx

dgi~h!

dh
2gLV

]3h

]x3G . ~11!

The length of the film is implicitly taken as constant. Assu
ing laminar flow with no slip at the substrate and a free up
surface, it can then be shown@10# that

]h

]t
5

1

3h

]

]x S h3r
]m

]x D5
1

3h

]

]x Fh3
]

]x S dgi

dh
2gLV

]2h

]x2D G
5

1

3h

]

]x Fh3S ]h

]x

d2gi

dh2 2gLV

]3h

]x3D G , ~12!

whereh is the viscosity. Clearly, a stationary state is reach
@cf. Eq. ~7!# when

dgi

dh
2gLV

]2h

]x2 5rm5const. ~13!

III. THEORY FOR FINITE VAPOR PRESSURE

A. Thermodynamic functions of the system

We shall now assume that the film has a nonzero va
pressure and constant extent and given density. We also
sume that it is in contact with vapor ofmvapor defined by the
external conditions. When the vapor and film are in equil
rium, then by definition

mfilm5mvapor5m. ~14!

The chemical potential of the vapor is

mvapor5kBT ln~pvap/p0! ~15!

and we choose the reference pressurep0 asps , the pressure
of saturated vapor over a thick film (h→`). The equilibrium
defined by Eq.~14! is then

mfilm5kBT ln~pvap/ps!, ~16!

where, for a uniform layer,

mfilm5
]g

]np,T
5

1

r

dg

dhp,T
. ~17!

Hereg is the sum of the surface energygi and the bulk free
energy, both per unit area of the film. However, the bulk fr
energy is zero since we have taken a thick film as our re
ence state. Thereforeg5gi .

We can now reinvestigate some of the scenarios forgi(h)
described by Sharma@9#, but for volatile liquids. Consider
first the case of a nonpolar liquid that interacts with the s
strate via Lifshitz–van der Waals~LW! interactions only
~Fig. 1, curvea!. Then gi(h)52A/12ph2 in the nonre-
tarded regime, whereA is the Hamaker constant~negative
for wetting!. ~This is called a repulsive interaction since t
y

-
r

d

or
as-

-
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two interfaces repel each other to make the film thicker. W
find this terminology confusing.! Thus equilibrium is ob-
tained when

kBT ln~p/ps!5m5
1

r

dgi

dh
5

1

r
A/6ph3. ~18!

Sincedgi /dh increases monotonically to zero, Eq.~18! has
only one solution forh at each value ofm and no unstable
regions exist. Equilibrium thicknesses of subsaturated fi
of various volatile liquids on wetted substrates have be
measured by Beaglehole and Christenson@16#.

Now suppose that the interaction between the subst
and the film is more complicated, as shown in Fig. 1, cu
b. In this example, the free energygi(h) represents a long
range LW interaction with negativeA and a shorter-range
polar ~double-layer! interaction of opposite sign, which ha
an exponential decay exp(2h/l0). In Sharma’s@9# classifica-
tion this is region 4, and for consistency we use his notat

gi5SLW
d0

2

h2 1SP exp
d02h

l 0
, ~19!

whereSLWd0
2[2A/12p, d0 is a molecular radius~about 0.2

nm!, andl 0 is a screening distance~about 0.6 nm!. BothSLW

andSP have dimensions of surface energy andSP is negative
when two of the media~water and mica in this case! have
polar properties. There is evidence from the experiments
the value ofSP is dependent on absorption of ions from th
mica into the water, particularly in experiments at high
temperatures. In this case typical forms ofgi(h) anddgi /dh
are shown in Figs. 1, curve b, and 2, curve b, respectively
we write pj for the vapor pressure at whichrkBT ln@pj /ps#
5dgi /dhuhj

we should expect there to be stable films of t

liquid in equilibrium with vapor betweenps andp3 and be-
low p4 , with the possibility of a two-phase region betwee
p3 and p4 ; we shall study this region below. In the cas
represented by Fig. 3, stable thin films occur belowp4 , but
there may not be a stable thick film region, except atp
5ps . Experimentally, we have found that the mica-wa
system can demonstrate the situations shown in Figs
curve b, 2, curve b, and 3.

B. Equilibrium in terms of a thermodynamic function

We can conveniently describe the behavior of the film
terms of a thermodynamic functionC5gi(n)2mvaporn. Be-
cause it is a nonequilibrium function, defined by an exter
constraint (mvapor), C might be called a surface availability
~It resembles the grand potential@19# of the film, V[F
2mfilmn, but is not the same.! Then

dC

dn
5

dgi

dn
2mvapor5

1

r

dgi

dhp,T
2mvapor. ~20!

Since

dgi

dnp,T
5mfilm , ~21!

Eq. ~20! can be written as
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dC

dn
5

1

r

dC

dhp,T
5mfilm2mvapor. ~22!

In equilibriummfilm5mvapor, so we havedC/dh50, i.e., an
extremum ofC(h). C is shown in Fig. 4, for the case of Fig
1, curveb and several values ofmvapor~i.e.,p!. There are two
minima in curvesc–e, which represent equilibrium thick
nesses. For curvec ~smallestumvaporu or p closest tops! the
minimum at largeh is deepest, suggesting that the thin fil
is metastable and the thick film stable. For curvee, ~largest
umvaporu of these three, i.e., lowestp! the minimum at smallh
is deepest, suggesting that the thin film is metastable and
thick film stable. For curvee ~largestumvaporu of these three,
i.e., lowestp! the minimum at smallh is deepest, suggestin
that the thin film is stable and the thick film metastable. F
curved one sees the situation in which equilibrium is esta
lished between the vapor and films of both thicknesses.
two minima are now at the same height; therefore

05E
h1

h2
dC5E

h1

h2 dC

dh
dh5E

h1

h2S dgi

dh
2rmeqDdh, ~23!

which is the Maxwell construction on a diagram ofdgi /dh
vs h. Heremeq is the value ofmfilm5mvapor for which the two
thicknesses are in equilibrium. This is shown in Fig. 2, cu
b. For the case shown in Fig. 3, whereSP is larger, the
equilibrium valuemeq is equal to zero. In this autophobi
case a thin film is in equilibrium with macroscopic drops a
saturated vapor. Since all this is completely analogous to
situation in any other two-phase system, we can immedia
make the following statement about nonequilibrium situ
tions, following curveb in Fig. 2.

When two minima exist as in Fig. 4, curvesc–e, the
driving force towards a global equilibrium situation in one
the other~i.e., where the whole film is either ath1 or at h2!
is proportional to the difference inC between their depths
but a transition from one to the other must be nuclea
because of the barrier between them. Figure 4, curvesa, b,
and f show C(h) for more extreme valuesmvapor
.dgi /dhuh3

and mvapor,dgi /dhuh4
for which only one

minimum exists and no phase separation occurs.

FIG. 4. Thermodynamic potentialC for different values of
mvapor. Curvea represents the saturated vapor pressure at the
perature of the substratemvapor50 @cf. Fig. 1, curve~b!#, curves
b– f represent increasing values of2mvapor, curve d represents
phase equilibrium and curvesb and f represent the situations wher
only the thick and thin layers, respectively, exist.
he

r
-
e

e

e
ly
-

d

Suppose thatmvapor is reduced in small steps downwar
from zero. The thick film adjusts itsh to each newmvapor but
stays uniform untilmvapor5meq at h5h2 . After that, in the
absence of a nucleation event, it can continue to thin u
formly, as a metastable film, untilh5h4 . At this point there
are no longer two minima and anon-nucleated~spinodal!
transition occurs. In fact, the nucleation barrier has be
steadily falling towards zero ath4 and a nucleated transitio
will always occur before that. Such nucleated transitio
from h,h2 andh.h1 can give rise to a hysteresis effect
the dependence ofh on mvapor.

If the film could bepreparedat a thickness betweenh4
andh3 , spinodal decomposition toh1 andh2 would occur;
however, evaporation and condensation compete with
spinodal decomposition. Thus, ifmvapor~preparation!.meq
the film will go via condensation toh.h2 , while in the
opposite case it will go toh,h1 . Decomposition toh1 and
h2 will only be significant if evaporation is very slow.

When a thin film is nucleated in a film thinner thanh2 , a
small region of the new phase is formed. The excess w
does not immediately evaporate but is ejected into the
rounding film and thickens it locally. It is the ejection pro
cess and the consequent redistribution of the ejected w
that cause the patterns to form.

C. Contact angles

We can now express the effective contact angle for eq
librium between the thick and the thin film through the the
modynamic potentialC. Equation~10! can be written

gLV

2 S ]h

]xD 2

5@gi~h!2rmeqh#2@gi~h1!2rmeqh1#

5C~h!2C~h1!, ~24!

i.e., the largest gradient of the film occurs at the point
which C(h) is a maximum.

It is of interest to substitute some numbers in the formu
in order to show that the results are reasonable in compar
to experimental values. We have used the relationship~19!
introduced in Sec. III A. Using this formula, there is only
very limited range ofSP for which phase separation occu
during evaporation. We shall express this in terms of
ratio R[2SP/SLW. R has an upper bound at which autoph
bicity sets in at the saturated vapor pressure; i.e., the M
well construction givesmvapor50. It has a lower bound a
which dgi /dh becomes monotonic and therefore comple
wetting occurs at all pressures. This range is given by 0
,R,0.147. Evaluation ofC(h) at phase equilibrium~Fig.
4, curved! then allows the contact angle to be calculate
Figure 5 shows for this range ofR the results of calculations
of h1 , h2 , equilibrium chemical potentialmeq, and contact
angleu for the valuesSLW515 mJ/m2, typical for water on
mica, andgLW580 mJ/m2. It will be seen that the contac
angle lies in the range 0,u,0.04 rad, which can be com
pared with experimentally determined values for static c
tact angles in the range 0.0360.01 rad. Experimentally,h2 is
usually around 25 nm, which corresponds toR50.146.
However, when a freshly cleaved surface is wet repeated
room temperature it is possible to observe the comp
range from wetting (R,0.10) to autophobicity (R
.0.147), presumably because of absorption of ions, wh
leads to a gradual increase of2SP.

m-
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57 2911PATTERN FORMATION IN DRYING WATER FILMS
D. Evolution of a two-dimensional film

We now continue by studying the dynamic aspects
volatile film evolution. The dynamics of nonvolatile film
have already been investigated by Sharma and Jameel@10#,
Reiter @14#, Brochard-Wyart and co-workers@15#, and de
Gennes@12#.

Suppose that a thick film is formed and then the va
pressure is reduced to below saturation, so that it slo
evaporates. We expect that the film will thin uniformly un
the thickness is reached at whichmfilm5mvapor. If this value
is abovemeq a stable uniform film remains. Ifmvapor is some-
what lower thanmeq, the thick film stabilizes ath,h2 but is
now metastable and a nucleation event can cause a
phase change in which a minute patch is created where
thickness is less than or equal toh1 . We call this a dry patch
The probability of such an event increases ash→h4 because
of the falling height of the nucleation barrier inC ~Fig. 4,
curvesd and e!. On an isotropic substrate, the patch w
initially be circular since this shape minimizes edge ene
@3#. Provided its diameter is above some critical value,
patch will grow, since by doing so it reduces the total fr
energy of water film plus vapor, and in doing so water
ejected into its rim. Eventually enough water has be
ejected for the rim height to reach thicknessh2 and local
equilibrium is established around the edge; the rest of
evolution is determined by the transfer of the water from
rim into the thinner wet surrounding medium@15#. We shall
show below that under some conditions this process can
described in an analogous manner to solidification from
undercooled melt and therefore expect similar instabilities
occur. In the case of a nonvolatile fluid, this evolution
hydrodynamics can be very slow. In our case, since the
is evaporating the process is accelerated by transport thro
the vapor phase, which prevents the equilibrium heighth2
being achieved at the rim.

We shall now formulate this part of the process ma
ematically. The field variable ish(x,y). The h-dependent
part of the free energy of the film is, by analogy with Eq.~2!,

G5E E gi„h~x,y!…5
gLV

2
u“hu2dx dy. ~25!

The volume of the film ish per unit area so that the tota
volume is

FIG. 5. Calculations ofh1 ,h2 , equilibrium chemical potentia
meq, and contact angleu as a function ofSP, for the valuesSLW

515 mJ/m2 andgLW580 mJ/m2, typical for water on mica.
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E E h~x,y!dx dy. ~26!

Consider the two-dimensional analog to Eq.~12!:

]h

]t U
flow

5“•

h3

3h
“Fdgi~h!

dh
2g¹2hG . ~27!

We add to this a term that represents the evaporation.
rate of evaporation depends linearly on the difference
tween the chemical potential of the vapor and that of
film, with a constant of proportionalitya that is a
temperature-dependent parameter whose value can be
mated from kinetic theory of gases or determined experim
tally. Then we have, from Eq.~27!,

]h

]t U
total

5“•

h3

3h
“Fdgi~h!

dh
2g¹2hG

2
a

r Fdgi~h!

dh
2g¹2h2rmvaporG . ~28!

This equation contains both second-order and higher dif
entials. When the second-order terms dominate, it has
form of a diffusion equation, and on this is based the analo
with diffusion-controlled growth. When the higher-orde
terms dominate, the evolution is comparable to that in hyd
dynamic systems~e.g., viscous fingering!. To emphasize this
formulation @22# we shall linearize Eq.~28! about the thick
equilibrium film by writing dh[(h2h2) and concentrate
our attention on the thick region~i.e., outside the rim of the
patch!. In the linear approximationdgi /dh5dgi /dhuh2

1d2gi /dh2uh2
dh. Then Eq.~28! becomes

]dh

]t
5

h2
3

3h Fd2gi

dh2U
h2

¹2dh2g¹4dhG
2

a

r Fdgi

dhU
h2

2rmvapor2g¹2dhG . ~29!

This equation contains three types of terms:~a! a linear term
proportional todgi /dhuh2

2mvapor, which leads to evapora
tion or condensation depending on the deviation of the m
thickness from equilibrium with the vapor;~b! second-order
spatial differentials of the profile, leading to an effective d
fusion coefficientDeff5d2gi /dh2uh2

h2
3/3h1ag/r @the latter

term (De) is always positive and the former (Ds) is also
positive outside the spinodal region#; and ~c! fourth-order
spatial differentials, giving hydrodynamic effects.

To appreciate the relative importance of the second-
fourth-order differential terms we must estimate typical o
ders of magnitude. It is interesting that for the model su
strate interaction discussed above and using a value foa
derived from our experiments. The two contributions to t
effective diffusion constant are found to be similar in ma
nitude. It is difficult to estimatea from kinetic theory be-
cause the calculation involves a ‘‘sticking coefficient
whose value is not well established, for vapor molecules
ting the water surface.
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Typically, for the parameters used in the estimates of S
III C ~with SP522.15 mJ/m2 andh50.001 kg/m s!, we find
dgi /dhuh2

;263102 J/m3 andd2gi /dh2uh2
;231011 J/m4.

From these values one can estimate the two contribution
the effective diffusion constant asDs;10210 m2/s for the
substrate interaction term andDe,831029 m2/s for the
evaporation term~depending on the value of the stickin
coefficient!.

A comparison between the ‘‘diffusionlike’’ and hydrody
namic terms can only be made at a given length scale.
example, if we choose to look at height structures on
scale~in x-y! of l510mm, for which we can write“[ ik
;2p i /l, we have, in the linear limit (dh→0),

]dh

]t
'2Dk2dh2

gh2
3

3h
k4dh. ~30!

For the given value ofk, the first term is about 100dh and
the second aboutdh, so that it is reasonable as a first a
proximation to consider the diffusion approximation on
although for thicker films the hydrodynamic term becom
important since the second term is proportional toh2

3.

E. Analogy with diffusion-controlled growth models

One purpose of this paper is to establish an analogy
tween the evolution of the film as it evaporates and exist
growth models. Under the conditions where the second-o
differentials dominate there is a rather complete anal
with the models developed for growth of a solid from
melt in two dimensions@1,2#. However, the correspondenc
to the solid-liquid problem is not straightforward because
surface profile is continuous between adjoining thin a
thick films. With this reservation, the expanding dry pat
corresponds to the solid and the thick film to the liqu
phase. During the expansion, water is ejected into the
rounding medium at a rate of (h22h1)v, where v is the
normal velocity of the interface between the two regions, a
local equilibrium is established at the interface. Thush2
2h1 corresponds to the latent heat in the solidificati
model. Growth of the patch continues because the surrou
ing thick film, which evaporates continuously, has thickne
h(x,y) less thanh2 so that water diffuses into it following
Eq. ~29!. The boundary conditions driving this diffusion a
the rim of the dry patch (h>h2) and the conditions at infin
ity ~the rim being the source and infinity the sink!, where the
dimensionless supersaturationD5@meq2mfilm~`!#/meq, by
analogy with the expression appearing in the solidificat
problem. ThisD is the parameter that we can control by t
evaporation rate through the vapor pressure above the fi

When the interface is curved the supersaturation at
interface is modified by the Gibbs-Thomson curvature c
rection, which in the solidification models@2# gives interface
supersaturationD2d0K, whered0 is the capillary length and
K is the interface curvature. It is of interest to establish
equivalent tod0 in the present situation since it is an impo
tant parameter in growth models and the critical nucleus
growth has radiusd0 /D @21#.

In one dimension we had@Eq. ~13!# dgi /dh2ghxx
5rmfilm in equilibrium. Now we have dgi /dh(x,y)
2g(hxx1hyy)5rmfilm . Consider the configuration of a cir
c.
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cular patch of thicknessh1 and radiusR, where R is the
position of largesthr . For axial symmetry we write

dgi

dh
~r !2g~hrr 1hr /r !5rmfilm , ~31!

which can be written

dgi

dh
~r !2ghrr 5rmfilm1ghr /r 5

dgi

dhU
h2

1ghr /r . ~32!

So it follows that dgi /dhuh2
1ghr /r replacesdgi /dhuh2

when the interface is curved. On the edgehr uR<u ~contact
angle!. For estimation, we replace< by5and then have atR
the boundary condition fordgi /dh2ghrr that m(R)5meq
1guK/r, whereK51/R. Thus d05gu/rumfilmu . This ex-
pression has a value, for the typical conditions quoted abo
of about 4mm. SinceD is of order unity in our experiments
this value agrees with observations of the dimensions
nucleated patches. We could also calculate an effective
fusion constant in the dry phase, but this is generally
included in the solidification models since the solid pha
has uniform temperature and does not evolve.

Indeed, the form of the instability observed in these e
periments corresponds in some respects very well with ty
cal features of solidification simulations@6,5#. We point out
in particular the formation of features called doublons
parity-broken dendrites, which appear in the simulations
isotropic materials in two dimensions at large supercoolingD
and therefore have rarely been observed in crystal gro

FIG. 6. Comparison of water film evaporation patterns at la
subsaturation with simulations of two-dimensional crystal grow
under similar conditions.~a! Fully developed pattern around a dr
patch atD50.9 @3#, ~b! simulation of two-dimensional isotropic
solid growth atD50.7 @5#, ~c! meeting of two drying fronts moving
into a wet region atD50.9 @8#, and~d! isotropic growth simulation
showing the doublon structure atD50.7 @6#.
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experiments. Two examples of comparable features
shown in Fig. 6, but further quantitative details will be pr
sented elsewhere@8#.

F. Hydrodynamic instability region

When the amplitude of the instability grows, eventua
the thick film realizes conditions where the approximati
we made by neglecting the fourth-order term in Eq.~29!
becomes invalid. For thick enough films we can neglect
second-order term instead and obtain

]h

]t
52“•

h3

3h
“@g¹2h# ~33!

for the late-stage evolution of the film. This problem, whi
leads to a Rayleigh-type instability and eventually to form
tion of a periodic array of drops, has already been discus
in elementary form@7# and can also be seen in the expe
mental examples of Fig. 6. The evolution occurs in the pr
e
y

v.
re

e

-
ed

-

ence of a fixed contact angle along the boundary. The qu
titative comparison between this instability and t
experiments will also be discussed in detail elsewhere@8#.
Neither the full development in the hydrodynamic regim
nor that in the intermediate region, where the two terms
the right-hand side of Eq.~27! have comparable magnitude
has yet been treated, but we encourage computer simula
of the problem in the future.
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