PHYSICAL REVIEW E VOLUME 57, NUMBER 3 MARCH 1998

Statistical mechanics of vortex lines
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Statistical mechanics of three-dimensional flows of an ideal incompressible fluid is considered. An ideal
fluid differs from the usual Hamiltonian systems of statistical mechanics by possessing an infinite number of
integrals of motion that are circulations of velocity over closed fluid contours. To reduce the problem to a
standard one, the governing equations should be written in a Hamiltonian form in which all integrals of motion
other than energy are eliminated. This is achieved by a generalization of the variational principle, which solves
this problem in a two-dimensional case. The formulated variational principle can be interpreted as a variational
principle for the dynamics of vortex lines. An invariant measure in the space of vortex lines is derived. For
effectively two-dimensional flows this measure is reduced to the invariant measure obtained previously. As an
example of application to effectively three-dimensional flows, the equation for averaged stream function for
turbulent flow in pipes is derivedS1063-651X98)03803-3

PACS numbd(s): 05.20.Dd

[. INTRODUCTION number of degrees of freedom, and it is not clear what
should be an analogy of such notions as ergodicity, phase
Turbulent motion of fluids remains a unique mechanicalvolume, etc. A natural approach would be to truncate the
phenomenon that is still not understood from the first prin-Euler equations and obtain a finite-dimensional system, most
ciples. A conceptual basis for turbulent theory has been laidlesirably a Hamiltonian one. Then, assuming ergodicity of
down recently by the general theory of dynamical systemsthe finite-dimensional system, one can find its thermody-
From the perspective of the theory of dynamical systems, tmamical and probabilistic characteristics and consider the
develop a theory of turbulence means to find the probabilistitimit N—oo. We will use this approach.
measure of the attractor of Navier-Stokes equations. The There is an important decision to make at the very begin-
term “probabilistic measure” means the same as that in staning of the study: Truncations eliminate some properties of
tistical mechanics: the probability of the event is the fractionthe Euler equations, and different truncations eliminate dif-
of time during which this event is observed. The complexityferent properties. These differences may persist in the limit
of geometrical structure of attractors does not leave muctN—oo and yield different limit results. We have to decide
hope for any possibility of theoretical prediction if the attrac- which properties can be sacrificed without detriment to ap-
tor is low dimensional. However, high dimensionality of proximation of the attractor measure. The degree of under-
fluid flows may result in developing an invariant measurestanding of fluid dynamics that is necessary for such a deci-
that admits a simple theoretical description. In order to findsion, does not exist at present. In addition, the situation is
this measure, it is natural to try to explore the presence of aonsiderably complicated by the existence of an infinite
small parameter, viscosityor inverse Reynolds number number of integrals of motion, besides the energy. They are
Neglecting viscosity, one obtains the ideal fluid flow, which circulations of velocity over closed fluid contours. In
is a Hamiltonian system. Then, assuming ergodicity, the stainfinite-dimensional phase space motion occurs on the cross
tistical properties of the flow can be found. Viscosity shouldsection of the energy surface by an infinite number of sur-
deform these properties. It can be taken into accaupbs- faces, which are the images of all other integrals. The cross
teriori, by imposing on the ideal fluid flow some constraints, sections are some infinite-dimensional sheets on the energy
like smoothness, short wave cutoff, boundary constraintssurface. A truncation made without necessary precautions
etc. It might happen that this approach leads nowhere, and ngolates the extra integrals of motion. It is not clear how
modification of the ergodic Hamiltonian measure can apimportant it is to respect the extra integrals of motion since
proach the measure of the attractor. Such a conclusion, howiscosity destroys these integrals. If the extra integrals are
ever, cannot be made before this course is followed, and thehanging on time scales that are much larger than the char-
ergodic Hamiltonian measures are found and checked againatteristic time of mixing, then these integrals cannot be ne-
experimental data. In any case, determination of the ergodiglected. We consider the truncations in which all extra inte-
measure of an ideal fluid is an interesting task in its owngrals of fluid motion are taken into account automatically.
right. A certain amount of progress has been made, in som@ne of the key points in the consideration is a note that the
respects only partially, for the case of two-dimensional flowsdynamics of an ideal incompressible fluid can be split into
in closed domaingsee Refs[1-9] and references thergint two parts: the dynamics of the vortex lines and the dynamics
is not a very interesting case in terms of applications, but it iof the fluid particles on the vortex lines. The vortex line is a
the simplest one. In this paper, a probabilistic measure focurve in three-dimensional space the tangent vector of which
three-dimensional flow is proposed. is proportional to the vorticity vector at each point. The
The concepts of statistical mechanics cannot be appliedhoice of parameter on the curve is not important: the curves
directly to fluid motion because fluid possesses an infiniteavith different parametrizations are identified. It turns out that
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the motion of the fluid particles along the vortex lines doesunbounded space if the major contribution to the energy of
not affect the dynamics of the vortex lines. Therefore, thethe flow is the energy of the vortex line under consideration.
dynamics of the vortex lines can be considered indepenMeasurg1.1), as will be seen from the derivation, represents
dently and has an intrinsic meaning. The dynamics of fluidanother physical situation. It describes the statistics of the
particles on the vortex lines is determined uniquely by thevortex lines when contribution of any single vortex line to
motion of the vortex lines from the incompressibility condi- energy is assumed to be negligible in comparison with the
tion. energy of the whole ensemble: the intensity of each vortex
The dynamics of the vortex lines possesses a remarkablie tends to zero when the number of vortex lines tends to
feature: it is Hamiltonian. The corresponding variationalinfinity and only the energy of the ensembles matters.
principle is offered in this paper. This is a generalization of Other issues addressed in this paper are an explanation of
the variational principle of Ref[9] for two-dimensional why statistical theory based on dynamics of ideal fluid may
flows. The variational principle presents the equations oflescribe the turbulent flows of viscous fluids in wall-
fluid dynamics in the form where the extra integrals, circu-bounded domaingAppendix Q and the determination of
lation of velocity over fluid contours, are eliminated. symmetries of the action functional and the corresponding
For two-dimensional flows the statistical independence ofntegrals of motion of the vortex line dynamiéAppendix
positions of point vortices yields the so-called mean-fieldB).
theory. Accepting that, for three-dimensional flows, positions The paper is organized as follows. In the next section the
of vortex lines are statistically independent, we obtain thebasic equations of an ideal fluid flow are recalled. Then a
following probability measure: probability of a vortex loop  variational principle for two-dimensional flows is formu-
carrying the vorticityo to be within a small tube surround- lated. The expression for the kinetic energy of three-
ing contoury is dimensional3D) flows is derived in Sec. V. The variational
L principle for vortex lines is formulated and discussed in Sec.
P=constx e~ Aol yidx (1.1) V. In Sec. VI, it is shown how to find the motion of the
particles on the vortex lines if the motion of the vortex lines
Here zp, are the components of the average stream functiois known. In Sec. VII, the probability measure for two-
vector (Latin indices run values 1,2,3, summation over re-dimensional flows derived in Ref9] from the ergodic hy-
peated indices is impligdand B8 plays the role of inverse pothesis is obtained by means of the principle of maximum
temperature. Formulél.1) indicates that the motion of vari- entropy. The approach of Sec. VI is generalized to three-
ous pieces of the vortex line is also “almost” statistically dimensional flows in Sec. VIII. After derivation of some
independent: if contouty is composed of two contourg;  auxiliary relations in Sec. IX, the two-dimensional measure
andy,, the corresponding probabilities are multiplied. (1.2) is obtained from(1.1) in Sec. X. The averaged equation
It is shown(Sec. X)) that the probabilistic measufé¢.1)  for the stream function of pipe flow is developed in Sec. XII.
yields the probabilistic measure for two-dimensional flows:This is followed by Appendix A, containing the derivation of
the probability density function for positiomsof the particle  the action functional variation, and the above-mentioned Ap-
carrying vorticity » is pendixes B and C.
— Some of these issues will be discussed alsdLBj.
f(r)=constx e~ ¥, (1.2
—. i Il. EQUATIONS OF FLUID DYNAMICS
where ¢ is the averaged stream function of the two-
dimensional flow. This fact may be considered as a partial There are many different forms of the system of equations
explanation of why two-dimensional theory of point vortices governing the dynamics of an ideal incompressible fluid
predicts[10] turbulent velocity profiles in Couette and Poi- flow. In Cartesian Eulerian coordinates, (i=1,2,3), an
seuille flows in spite of the essential three dimensionality ofinertial observer’s frame, the system consists of momentum

these flows. equationgthe Euler equations
Measure(1.1) is used to obtain the equation for the aver-
aged stream function of pipe flow. Previously, the statistical dvi(t,x) avl ap
mechanics of vortex lines has been considered by Chorin in P( at v &J’) T (2.3)
a series of papergl1-149 and monograph8]. Chorin as-
sumed the Gibbs measure, and the incompressibility condition,
P=constxe A", (1.3 ol
) ) —=0. (2.2
whereH is the energy of the vortex line, (2
dndn Herev' andp are velocity components and pressure, corre-
=37 ii |x( x(7")]| 1.4 spondingly, and the mass density of fluigljs assumed to be

a constant.
(the signf means that some regularization is done to elimi- Equations(2.1) and(2.2) form a set of four equations for
nate the divergence of the integralleasure(1.3),(1.4) was  four unknown functions' andp.
used to obtain the energy spectrum in the inertial range. Equations(2.1) and (2.2) admit a continuum set of inte-
Measures(1.1) and (1.3),(1.4) are different. Measure grals. To find these integrals it is convenient to rewrite Egs.
(1.3),(1.4) describes the statistics of a single vortex line in(2.1) and (2.2) in terms of Lagrangian coordinates, (a
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=1,2,3). In Lagrangian coordinates, the key required funcContracting Eq.(2.5 with dx'/9¢* and differentiating by
tions are the particle trajectories, parts we obtain

X =x\(t,£), dva(t,§) 9

[ — ——a—ga(p—%pvz)- (2.8

while the velocity components', by definition, are
_ Here the squared absolute value of velocity is denotegpy
X8

o= 2.3 vzzaxi(t,g) axi(t,&)
at a

We use a convention, that, for any functign derivative
de(t,€)/9t means the time derivative for fixed Lagrangian The system of equations admits the reduction of the order.
coordinates whilede(t,x)/dt means the time derivative for Indeed, let us define the functigp(t, &) by the equation
fixed Eulerian coordinates. The sets of coordinatesnd £2
are denoted by and ¢, correspondingly, if it cannot create de(t,€) _
misinterpretation. at

If the velocity were known as a function of Eulerian co-
ordinates and time then E(R.3) becomes a system of ordi- For a given motiorx(t,§) this equation establishes the one-
nary differential equations to find particle trajectories: to-one correspondence betwegrand ¢ if initial data for ¢
are provided. Let for definiteness be zero initially. Then,
from Eqgs.(2.8) and(2.9),

P —p+zpv’. (2.9

(g
=v!(t,X(t,8)). (2.9
at
o dp(t,&)
. . . . . va(t,§)=v,(8)+ a s
Equations of fluid dynamics can be written as equations 23
for functionsx'(t,£) andp(t,£). Indeed, since

(2.10

where v,(£) are the initial values of velocity. From Egs.

awi(t,x) . dv; (1,8 (2.7) and (2.10 we obtain the equations fo(t,§),
tol —=—0m—, _
A w A X ax(tE) . de(tE)
_ s et (211
the Euler Egs(2.1) can be written as € 3
Px;(t,€) ap(t,&) 9& where functione should be chosen in such a way that the

(2.55  incompressibility conditior{2.6) holds.

After the system of Eq92.11) and (2.6) is solved, pres-
~ sure can be found from E@2.9).
Here one should understand undgf/dx' the components — The time-dependent potential part of veloci.10 can
of the matrix that is inverse to the matrjpox'/9¢%|. For e aliminated by differentiation of EG2.10 with respect to
?c;\r/er(\tp,g)Eqs.(Z.S) form a system equations of second ordery, o4 alternatinga andb. We have

x(t,£).

The incompressibility condition can be formulated in 9
terms of functionx(t,£) as the conservation of the determi- — U[ap)(t,6)=0, (212

A

nant of matrix||dx/d&|| at each particle, at
where
d &_x =+ 2.6
€ (96 - g(g)r ( ) _1 [?va avb
V=3 |7 g

where g(¢) is the determinant of the metric tensor in La-
grangian coordinates. The equivalence of EA<2) and(2.6)  Antisymmetric tensopy, 1) is in one-to-one correspondence

can be derived from the identity with the vector,
d d 4 x| _ ‘{ x| v’ 1 1
at el ozl 9N el o 0°=— €% 01, UVjap=—= €apcw® (2.1
Ry cons 1€ 9E| Ix N () Vlab)= = Cabe (213

Equations(2.5) and(2.6) form a system of four equations ~ Heree?*°=e¢,, ., are the components of the Levi-Civita
for four required functionsx'(t,£) andp(t,&). symbol.

Another remarkable form of the Euler equatiais5) is The vector with contravariant componeat8 is called the
obtained if these equations are written for the covariant comyorticity vector. In accordance with E¢2.12), at each fluid
ponents of velocity in Lagrangian coordinates, particle, w?(£) do not depend on time and are equal to their

i initial values, which are denoted y?(¢).
v =<9_X IXi 2.7) In Eulerian coordinates the vorticity vector has the com-
& o9& ot ' ponents
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L OV of the equation. Unfortunately, there is an unpleasant feature
w'=e' K (219  of Egs.(2.19: in contrast to the Euler equatiorid.1), they

are not Hamiltonian. It turns out, however, that this system

and, due to the law of transformation of vector components¢an be split into two parts: one subsystem is closed and
. Hamiltonian and describes the dynamics of the vortex lines

X' while another one determines the motion of particles on the

i °a
MR (219 yortex lines by a known solution of the first subsystem. We
consider first the 2D case when the motion of particles along
Inversely, the vortex lines is absent, and the syst&rl9 is Hamil-
tonian.
.. 08
Wi =— o' (2.1
X lll. 2D MOTION
Note that the covariant components of vorticity, A. Equations of 2D motion of an ideal incompressible fluid
axi For 2D motion one of the Eulerian coordinates, sdy,is
- - 3 . o
Wa=—15 O, identically equal to&®, while two othersx“,(a=1,2), are
23 functions oft and é&“(u=1,2) only:
in general, are time dependent. X¥=x(t, &%), x3=¢&. (3.1

Conservation of vorticity is often formulated in another
form: for any closed fluid contour circulation of velocity  Here and in What follows Greek indices run values 1,2. For
vi, Jrvidx', does not depend on time. This statement is2D motion v3=0 while v® components obey the incom-

equivalent to conservation a?. pressibility condition,
A form of Eqg. (2.15 that does not refer to Lagrangian
coordinates can be obtained by differentiati@l5 with v B
respect to time for fixed Lagrangian coordinates: IXE
do'(t,§) do'(tx) | do' ' The latter means that a functiaf(t,x) exists such that
= Tt k= w
at at X< g€
w aap OP(LX)
Eliminating »? in the last relation by means of E(.16) v=¢e IxP
we have
i i i Heree®? are the components of the 2D Levi-Chivita symbol,
Jdw'(t,X) o v ell=e2-( el2— _g2l_1
—tv = w". (217) I '
at x> X The vorticity vector has the only nonzero component,

=w(t,x), and
This equation can also be obtained by applying the Rot op-

erator to the Euler equatiori2.1). As follows from the deri- —Ay=w. (3.2

vation, this equation is equivalent to conservation of the con-

travariant components of vorticity in Lagrangian coordinates At the boundary the “no-penetration-detachment” condition

. is acceptedy “n,= 0. Assuming also, for simplicity, that re-
A certain difficulty in solution of the Euler equations in gionV is S|mply connected, we have without loss of gener-

the form(2.11) relates to necessity to satisfy the incompress-ality

ibility condition. Fortunately, there is a way to get around

this difficulty. The point is that any incompressible velocity ¥l v=0. (3.3
field is completely determined by the vorticity field, and . .
there is the integral relation, Equations(3.2) and(3.3) have the solution
v'(t,x)=J Ri(x,x")wl(t,x")d3X’. (2.18 w(t,x)=fVG(x,x’)w(t,x’)dzx’, 3.4
\%

The kernelR! i(x,x"), depends on the geometry of regign ~ where G(r,r ") is the Green’s function of regioW deter-
This relat|on is discussed in more detail in Sec. IV. Frommined by the boundary-value problef, is the Laplace
Egs.(2.18, (2.19, and(2.6) one obtains a system of inte- operator inr variableg:

grodifferential equations for fluid particle trajectories ) _
AG(rr)y==68(r—=r') inV, G(r,r')=0 if redV.

X! (t,%) ﬁXj(t,g’) . A
ot J' R! (X(t &), x(t,&")) W wa(gr)d?,g/. |
(2.19 The components of velocity are
Vorticty become thé bultin properties o the right hand side vi(t,X)= 7 G(X,X’)w(t,x’)dzx’, (3.6

vorticity become the built-in properties of the right-hand side Xz
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9 ) total kinetic energy of the fluid. This justifies the term “ac-
vz(t-X)=—(97 G(x,x")w(t,x")dx". tion functional” for the functional(3.10. Second, in dy-
LIV namical equations in the fornB.9) the integrals of fluid

Equations(3.6) form a 2D version of the general equations Metion additional to energy are eliminatesee Appendix B
(qug)_ 3.6 g g for more detail. Third, the number of degrees of freedom is

In accordance with Eq$3.1) and (2.16 conservation of c_le_creased sign_ificantly: _only p_articles parrying nonzero vor-
vorticity means that ticity are taken into consideration. Particles with zero vortic-
ity influence the dynamics through the Green’s function,

w(t,X(t, %)= &( &) (3.7 which is determined completely by geometry of the region
V. Fourth, in contrast to the usual Hamiltonian variational
or principle in fluid dynamics(see, for exampld,17]) the ad-
i missible functiong (t,£) are arbitrary and should not satisfy
o(t,X") = o(&"(t,x*)). (3.8 the incompressibility condition, dgt/dg=1: each station-
. ary point of the functiona(3.10 obeys this condition auto-
Hence, Eqs(2.19 in the 2D case take the form matically.
dx(t, &) IG(r,r(t,&")) .o )
dt :jv ay i (€ )dzf ) C. Point vortex truncation
e Action functional(3.10 determines a Hamiltonian system
dy(t, &) aG(r,r(t,£") o) of an infinite number of particles. _ _
T v a— w(&)d°¢'. A natural finite-dimensional truncation of the continuum
v r=r(t,&) would be to keep only a finite numbed of particles,

(3.9  ¢,,....& . Then motion of continuum is characterized Ky
functionsrq(t)=r(t,&,),....,rn(t) =r(t,én)-

From now on we have to use indices of three various
natures: indices corresponding to the projections on Eulerian
and Lagrangian coordinates, and indices numbering the se-

Herex;=X, X,=Y, and couple X,y) is denoted by .
Equations(3.9) determine the dynamics of an ideal in-
compressible fluid in a bounded simply connected domain

The flow is specified by the prescribed initial vorticity. The lected particles(point vortices or vortex lines. In 3D for

'k?c\?mgre‘;s'b'“% ic;ondlrt]lotr: at?dn c?nEs(er\é;a\tlc;]r:j ?fm\gomcny these purposes we use three groups of Latin indices,
?o eert;ei thu;[ecan bcoejsilucreos eoctedei-n trincatci)ons Iteturr\%’j kmn), (a,b,c), and p,q,s,t) correspondingly; in 2D,
propertie ! € lly resp M ' ulerian and Lagrangian indices are denoted by Greek letters
out that dynamical equations are Hamiltonian and follow

L 1 . (a,B,7) and (u,v,\), respectively.
from the variational principle to which we proceed. Approximating (&) by & functions:

B. Variational principle N
Consider the following functional of the position vector “’(5)2521 Ys8(E- &), (312
r(t,€):
4y dx(t, &) one obtains the action functional of the point vortex approxi-
|(r)=f dt f o(&Y(t,&) : d2§—K}, mation,
to v dt
(3.10

ty )
! I(ri)=ft {Es Ysysxs—H(r)}dt, (3.13
K:_J J G(r(t1g),r(t,g’))a)(g)a)(g’)dzgd2§r 0
2 Jvlv

3.1 1
(310 H(r)ZEZ G(rs.r) ¥s- (3.19
Hered?¢=d&ld &2 st

It can be checked by inspection that the stationary points
of functional (3.10 are solutions of the equations of fluid  In the expression foG(r,rg) the leading(infinite) term
dynamics(3.9). To eliminate extra terms in variation of the can be dropped since it is independent of motion. Then the
functional (3.10 appeared at=t,,t; after integration by functional (3.13 is the action functional in the theory of
parts, one can assume that theoordinates of all particles point vortices.
are prescribed at=tg,t; .

Some features of this variational principle are worth not-
ing. First, the first term in Eq:3.10 has the form of standard
“shortened” action functional in classical mechanics
fpq dtif x andy coordinates of particles are identified with  In order to extend the variational principle discussed to
generalized coordinate and momentum while summatiothree-dimensional flows, one has to obtain, first of all, the
over degrees of freedom corresponds to summation ovexpression for kinetic energy similar to E¢B.11). Let us
fluid particles with the measuré(£)d?é. The second term  show that the total kinetic enerd¢ can be presented in the
in Eq. (3.10 is the Hamiltonian of the system, which is the form

IV. KINETIC ENERGY
OF THREE-DIMENSIONAL FLOWS
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1 , , To write down Eq(4.8) in terms of velocity we introduce

K=3 JVLG”—(x,x’)w'(t,x)wJ(t,x’)d3xd3x’, (4.1 surface curvilinear coordinate$ on 4V and denote projec-
tions on these coordinates by Greek indices; they run on

values 1,2. In accordance with the first equat{di), Eq.

where G;;(x,x") is some two-point tensor field determined (4.8) takes the form

by the geometry of the container only.

Consider the well-known kinematical problem: find the o

velocity field generated by a given vorticity. The vorticity B 5=0. 4.9
field obeys the constraint 24
Jw'(X) Equation(4.9) means that the tangent components of veloc-
v 4.2 ity are some potential functions av,
For any vorticity field satisfying Eq(4.2) the velocity Ua:’?_Xa, (4.10
field v;(x) is determined from the system of equations 74
L du(X) . v . wherey is an arbitrary function of surface coordinates.
ek ——=wi(x), —=0, v'ni=0 at oVv. As soon as we constrained the admissible vorticity fields

ax! X'

by the boundary conditiori4.8), the kernelR;;(x,x’) gets
the property

Heren; are the components of the unit outward normal vec-

tor atdV. Itis easy to see that the probldh3) has a unique f f [Ri:(x,x)—Rii(x',X) o' (X) o (X" )d3xd3x' =0
solution. This solution can be written in the form vivi ! 1 2
(4.11

i _ i ' i v’ \A3v/ . .
v'(x)= fVR}(X’X )l (x")d>x". (44 for any two divergence-free vector fields and o'
1 2
To prove Eq.(4.11), denote byv' andv' the velocity
1 2

4.3

The kerneIRij(x,x’) is not unique due to the condition
(4.2: one can changeR; by adding the tensor fields determined byw' ande' from Eq.(4.3), and consider

aR'(x,x")/ox'], whereR!(x,x") is an arbitrary vector field 1 2
vanishing ifx’ e V. the integral

Let us introduce the stream function vecif(x) by the
system of equations similar to E@t.3): B:J viwid3X=J J Ry (X ) el (x ) (x) & dx.

%) () e oM 2
ijk 2R R in = (4.12
e o] v'(X), . 0, ¢'ni=0 at dv.
(4.5 Integrating by parts we have

The stream function vector determined by H4.5) is vy

unique. Similarly to Eq(4.4) one can write B:f 0 il —lr d3x=j 016N,
N2 1
l,/)(x):f Rj(x,x")o'(x")d3’. (4.6
\% &Ui
. : —J' viel* — d3x.

The difference between the problert®3) and (4.5 is V1 ox!
that velocity field is constrained by the ‘“no-penetration-
detachment” condition Since, in accordance with E¢4.10),

v'nj=0 at 4V. (4.7 )
f vie”knjvdeX:—J vaeaﬁvﬁdzg

To make kinematical problen{g.3) and (4.5 completely N2 1 2 1

identical, we assume that vorticity satisfies the similar con- P P
g\ P '

w'n=0 atdV. (4.9 _
we obtain

This condition helps to simplify some further relations.
Phys'ically, t_his condition is sensiblg: sincg the ideal fluid B:f viwid3X=f f Rij(x,x’)wi(x’)w‘(x)d3xd3x’.
flow is considered as an approximation of viscous flow, and Vi 2 viv 1 2
for viscous flows with no-slip boundary conditions equation (4.13
(4.9) holds, it is natural to accept that an ideal fluid flow
inherits the boundary conditio.8). Equation(4.11) follows from Eqgs.(4.12 and(4.13.
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Composition of formulag4.4) and(4.6) yields the expres-
sion of stream function vectat' in terms of vorticity,

n00= | Gyexeione, @14
\
where
Gij(x,x')=f Rik(X,X)RI(X,x")d%X. (4.15
\%

Let us show that tensd;; is the kernel in the expression
for kinetic energy(4.1). We have

) o0 .
2K=f viv'd3x=f v;elk Wi d3x=f vie*njyd?¢
v v X! Y

v

B Y% ‘9_XJ = - va “eaﬁl/fﬁdzg

+ f Jio'd3x. (4.16
\%

In accordance with Eqg4.7) and (4.8), v, and ¢, are
some potential vectors &atV, and the first integral in Eq.
(4.16 vanishes. Thus

1 .
K== f Yiw'd3x (4.1
2 Jv

and Eq.(4.1) follows from Eqgs.(4.14 and(4.17).

Note that an additional contribution in EGL.17) appears
if o,=0'n;#0 atoV. If yis the surface potential fog,
=x g (recall that the condition'n;=0 is accepted then
this contribution is

f xwnd?x.
Y

It vanishes forw,=0.
In general, tensoG;;(x,x’) is not symmetric. One can
introduce symmetric tensd@g;; (x,x") by the relation

aij(x,x’)=fVRmi('i(',x)Rmi(?(’,x’)dgi. (4.18

The kinetic energy can be written in termséfj(x,x’):

1 . 1 ~ ) .
K== f viv'd3X=—J f Gii(x,x) o' (X) o (x")d3xd®x".
2 Jv 2 Jvlv !

(4.19
Expressions(4.19 and (4.1) coincide due to identity
(4.1Y) (this identity should be applied to the vectors

w=w and wisz}(x,x’)wj(x’)dsx’,
1 2

which are both divergence free

V. VARIATIONAL PRINCIPLE FOR VORTEX LINES
A. Vortex lines

The vorticity vector field determines a family of vortex
lines. Since vorticity component&? are constant in La-
grangian coordinates, it is worthwhile to consider the fluid
lines, £&2=¢3(o), for which the tangent vectodé?/do is
proportional tow?. The Lagrangian coordinate system with
one of coordinate lines, say®, directed along the vortex
lines plays a distinct role. We shall call it the vortex line
coordinate system. In this coordinate system only one con-
travariant component of vorticityy?, is not zero. In fact, the
existence of the vortex line coordinate system is an assump-
tion that puts some constraints on the initial vorticity field.
This assumption, however, does not seem physically restrict-
ing.
In accordance with Eq2.13), the vorticity vector is di-
vergence free:

17
T Jgec=o. (5.0
Therefore the quantityb=/g&° does not depend og°.
Functioné (£, £2) plays the role of the intensity of the vor-
tex lines and is similar to functio® of two-dimensional
flows. The only difference is that for two-dimensional flow
the coordinateg!, £% can always be chosen to be Cartesian
while for three-dimensional flows Lagrangian coordinates
are, in general, curvilinear.

In the vortex line coordinates, a parameter along the vor-
tex lines is denoted by;. The formula for vortex intensity,
&=+/0®°, has the same form for all choices of the param-
eter 7 for any other parameten’ = 7’ (7,£,&2), the third

vorticity component gets the factordn/dn’, &%
=&39n' 197, while the determinant of the metric tensor gets
the factor ¢#'/dn)?, 9'=0(dnldn')?; these factors are
canceled in the expression fér.&=&'3\g" = &°0.

In the following, we denote by a couple €*,£2), so that
£ is a mark of the vortex line, while the whole set of La-
grangian coordinatestt, £2,£%) is denoted byé.

B. Kinetic energy as a functional of positions of vortex lines

We presented kinetic energy as a bilinear form of the
vorticity vector in Eulerian coordinates. In fact, we need it in
Lagrangian coordinates. To perform the transformation, de-
note byr (t, &) the position of fluid particl& at instant. The
integrals over Eulerian coordinates can be transformed to the
integrals over Lagrangian coordinates by means of the fol-
lowing relation: for any functione(t,x),

d3¢,

| ettxan= [ etrie)s

v v 0

or, taking into account the incompressibility conditi¢h6),
f@(t,X)d3X=f (.1 (1,€)Vd3E. (5.2
\ \%

From Egs.(4.1), (5.2, and(2.15 we obtain the kinetic en-
ergy as a functional of position vector,
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1 It Y PN 3
K=3 JvaGu(r(t,f),r(tf)) Fra 5I—ft0 fve”kar (F=Vi(r))o*d3dt, (5.7)
. arl(t, &) | oA : . "
X &3(&) _;gbg_ OP(E)VH(EAEVGE)dPE . ygcet;er:velocnyv is determined as a functional of position

(5.3

Vj(r) :ejImJ’ ﬁle(r ,rrgt'g ))
In the vortex line coordinate system the expresgiag) v or r=r(t.8)
takes the form K
or (t’gl) °ar e\ A3 &
g 0(E)% (58

1 o ,
K=3 foVG(V(té),y(t,& No(€)aw(E)d?Ed%E,

Sincesr' are arbitrary, the Euler equations of the variational

5.4 problem are
wherey(t,£) is the position of the vortex liné at the instant arit o
t: xf=rk(t,»,£), andG(y,v’') is the functional of vortex eijk(_ : _Vj(r))wkz(), (5.9
line positionsy and y’, at
G(v,y") wherew* should be expressed in terms of position vector by

Eqg. (2.19 [18]. Symmetry of the action functional with re-
spect to the particle motion along the vortex lines causes the

i ri ’
Ef f Gij(r(m).r"M(%")) &r_(n)ar_(?)dndn,. Euler equationg5.9) to be dependent: contraction of Eq.
an an (5.9 with the vorticity vector yields identity.
(5.9 Equation(5.9) can be rewritten also as
In Eq. (5.5 r(») andr'¥(#') are the curvesy andy’; in altéd i
Eq. (5.4 d?¢=d&tdé?. =VI(N+\(t, o', (5.10

Formula (5.4) is an exact 3D analogue of the 2D Eg. o

(3.12): if the vortex liney(t, &) is determined by one point in
the planery(t,£), andG(y,y') is replaced by Green’s func-

tion G(r,r’), Eq' (5.4) is transformed to Eq(.3:1]).. velocity along the vortex lines and does not affect the motion
The expressione5.4) and (5.5 show that kinetic energy ¢ yhe yortex lines themselves. Projection of the velocity to

Is invariant with respect to the motion of fluid particles along ¢ girections that are normal to the vortex lines coincides
the vortex Imes._ Therefore, any vanaupnal principle thatwith that for ideal fluid flow. Thus, the dynamics of the
uses the expressioKS.4) and(5.5) for kinetic energy cannot ,oriey jines is determined correctly by the variational prin-
determine the dynamics of fluid particles on the vortex "nesciple formulated.

In the classical Hamilton variational principle the kinetic en- 41,4 uncertainty of positions of particles on the vortex

ergy does not have such a symmetry, and the motion of fluig,oq 5, ggests the interpretation of the variational principle
particles is determined uniquely. The action functional of the, ,nctional (5.6) as a variational principle for the dynam-
Hamilton variational principle possesses, however, anoth%S of vortex lines.

rich group of symmetry, the relabeling group. This group e \ariational principle has the same advantages as that

generates cons_ervaﬂon of vorticity C|rculat|o_ns_. Writing thementioned with regard to the variational principle for func-

energy expression in the fori®.4),(5.5 we eliminated the tional (3.10.

relabeling group and the corresponding integrals. Note that functional5.6) cannot be reduced to the func-
tional (3.10 for two-dimensional motion: it is enough to

where\ is an arbitrary function of and &.
It is clear that the choice ok determines the particle

C. Variational principle for vortex lines notice the factor 1/3 in the expression ®{Eq. (5.6)]. The
Consider the following functional of particle positions "€ason is that the condition'n;=0 at JV was used: this
r(t,é): condition is violated for two-dimensional flows. Neverthe-

less, conceptually function&.6) may be viewed as a three-
ty dimensional analogue of the function@.10.

I= . [A—K]dt, The variational principle suggests a natural way to trun-
0 cate fluid dynamics equations. First, the continuum set of

1 a8 a8 vortex lines is_ repla_ced by a f_inite set of vortex lines,

AEJ ~ e ri(t, ) ——= 2 H3(HA3E, &1,....én. Thatis similar to the point vortex truncation. Sec-
v3 ™ ot 9& ond, the dynamics of each vortex line is sought within an

(5.60  m-parameter family of closed 3D curves,

whereK is the functional(5.4). We are going to show that x'=ri(s,al,...,a™). (5.11
stationary points of this functional correspond to the motion
of an ideal incompressible fluid. Heres is the arc length along the curve, and the parameters

Variation of the functional5.6) is (see Appendix A at,...,a™ specify the member of the family. The dependence
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at=al(t),...,a™=a™(t) determines the dynamics of the dynamics of the vortex lines iR coordinates. Inx coordi-

line. The functions(5.1) may depend also oré. x  nates, the basic relations of classical statistical mechanics

=r(s,a,f). should be slightly modifiedse€e[16]). Fortunately, the state-
So, the dynamics of fluid is described by a finite set ofments that follow will not be affected.

generalized poordinates=(a'A), i=1,...m, A=1,...N; the

parametersyy, with index A correspond to thé\th vortex VI. MOTION OF PARTICLES ON VORTEX LINE

line. Plugging the admissible functios.11) into the action

functional (5.6) and integrating oveg ands, one obtains A remarkable property of vortex lines is that the dynamics

of the vortex lines determines the dynamics of the fluid com-
pletely. More precisely, let

x“=rk(t,n,é) (6.1)

be a parametric form of equations of vortex ligelf the

- i tion of all vortex lines is known then the motion of par-
arl(s,a,&n) arl(s,a, mo X o . .

( CTSA) (S, 6n) ds ticles still has some arbitrariness due to possible motion
dap Js along the vortex lines. To describe the arbitrariness let us
refer each vortex line at instahto the arc lengtfs along the
vortex line at this instant,

A=§ PAa)al, K=K(a), (5.12)

where

PA= -
i~ YA 3em]kr (s,a,€ép)

and vy, is the intensity of theAth vortex line, y,
=w(&a)A, andA is the 2D blob sizeor area of the vortex
tube cross sectignSo, the truncated system is Hamiltonian xk=rK(t,s,&). (6.2
and has the Lagrange function,
The functionsrX(t,s,&) are determined by the positions of
LZE PA(a)ah— K (a). (5.13 the vortex lines. The length of the vortex ligel (t,£), de-
A A pends, in general, oh, and the arc lengtls in Eq. (6.2

. L . ] changes within the limits
Assuming that the motion is ergodic in the variables

one can study the statistical properties of the systerm3). oss=<I(t,$).

We emphasize that one needs the ergodicity of the motion of

vortex lines only: one may not expect ergodicity if the mo- Any motion of particles along the vortex ling is de-
tion of the fluid particles along the vortex lines is taken intoscribed by the function

account.(The latter depends on the value of the velocity

circulation over the vortex lines. If it is zero, as one may s=s(t,7,§).

assume for the Couette and Poiseuille flows, then the motiolilhe functionsr(t, 7, £) relate to the positions of the vortex
il 7]1

of particles is not ergodic. For nonzero circulations it may be . o )
ergpodic) g y linesrX(t,s, &) by the equations

Note that the Lagrange function of the point vortex dy- (Kt 7, 8) = PX(t,S(L 7, £), £)

namics also has the fori(®.13.
: H _ 1
Denote temporarily all coordinates by x=(x",...X"), |t turns out that motion along vortex lines(t, 7,£), is de-

n=mN. The Lagrange function has the form termined by the motion of vortex lines due to the incom-
n pressibility condition. To show that let us denote the deter-
L= P(x)X—H(x). (5.14  Minant of the matrix with the rowsr /o9&, ar} a2, or¥l os
= by
This Lagrange function does not have the standard form of ar or
Hamiltonian mechanics, € 9E" 98|
L=, pig—H(p,q). The similar notation is used for the determinant of the matrix
with the rowsar /o, ark19£2,or¥ o7
The standard form corresponds to even2m, and func- o or
tions P;(x) of the form etl—, —|.
I’ dn
Pl(x):Xm+11"'1 Pm(x):X2m1 .
Since

P :0,..., P :0. o o o o
m+1 2m ok ark gtk gs  ark ark ark gs

In this case we identifyx’,...x™ with g%,....g" and 0E 9B T s a2 a8 s o
XML x2M with pl,...,p™, respectively. In the general

case, for evem=2m, the form=!"_,P;(x)dx' can be trans- ark  ark gs

formed to = ,p; dg' by a coordinate transformatiofat 9n s an

least, locally. However, to find such a transformation is not
an easy task, and we are obliged to consider the truncategle have
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g { ar or| s d { ar or closes the equation faf. One obtaing9]
efl—, —[=—-—det|—, —|. o
98" dml| om0k’ s _ o BoOUD) .

Therefore, from the incompressibility condition, we obtain _A‘ﬂ(r):fvw(f) - d<¢. (7.6

an equation for the functios(t, 7,£): fvefﬁ‘”@“’“ Jd?r’
s ar or _— . .
= \/E/ de{ —, —. (6.3 Derivation of the basic relatio(v.4) becomes elementary
an 9&’ s if one accepts the statistical independence of vortex positions

(7.3 and the equivalence of microcanonical and canonical
distribution. The latter means that the microcanonical distri-
bution of positionsr,...ry of the vorticesé,,...&y can be
substituted by the Gibbs distribution,

This equation determines the functiasft, »,£), and, thus,
the motion of fluid particles on the vortex lines.

VII. STATISTICAL MECHANICS OF POINT VORTICES

. . . . . 1
Proceeding to the statistical mechanics of ideal fluid flows f(ryye fNG €L b)) == € AR NG EL i)
we start from the 2D case. The phase space of fluid motion is Z
the space of mappings=r(§), £V, xeV. Conservation

of energy extracts a surface in phase space: Z:f o BHG2N, 77
1
H(r)=§f J G(r(&),r(&)a(é)w(¢)d?ed?s'=E Of course, the equivalence takes place only in the limit
viv N o0
— const. (7.1) To derive Eq.(7.4) from Egs.(7.2), (7.3, and(7.7) we

note that canonical distribution maximizes the entropy con-

Dynamical equations of ideal fluitB.9) possess also a con- sidered as a functional of probability density functions,
tinuum set of integrals owing to the incompressibility condi-

tion: for eaché, Sz—f f(ro,...rni €1, 6N)
ikl 'y (7.2 XIN F(ry, ... rniép,. . én)d2Nr. (7.9

de{ 7t
) o ) The set of admissible probability density functions is ex-
For point vortex approximation the energy integfdll)  tracted by the constraints

should apparently be kept, while the incompressibility con-

ditions (7.2) do not seem to be putting constraints on the _ _ oN. =

vortex pOSitiOﬂS. f(rl,...,I‘N,§1,...,§N)H(I’1,...,rN,§1,...,§N)d r:E
Ergodicity of point vortex motion yieldg9] statistical in-

or

dependence of positions of any two-point vortices. In the
continuum limit any two particlegcarrying nonzero vortic- J f(re,rniér. o én)d®Nr=1. (7.9
ity) move independently: for the two-point probability den-
sity function one can write Now we modify the variational principl€7.8),(7.9 ad-
mitting the additional constraint, the statistical independence
f(r,&r',&)=1(r,&)f(r',&). (7.3 of vortex positions:
Of course, property(7.3) is an idealization that can be  f(r,,...ry:&5,....&0)=F(r,E)F(ry, &) f(ry,én).
valid only in the limit on an infinite time of observation. For (7.10

very close particles and/or finite time of observation an in-

corporation of the correlations might be necessary. HoweverThen the entropy functiona is transformed to a functional

for such rough characteristics of turbulent motion as the avof one-point probability density functions of the form

eraged velocity profile an approximatigi.3) may be ac-

ceptable; this is supported by the results of R&€]. s=-> f f(r,&,)In f(r,&,)dr. (7.19)
The probability density function of positions of a particle p Jv P P

& carrying vorticity w(£€) has been found to b@]
Suppose that regio¥ is covered by a squared grid with cell

o iy sizee and wheret,, are the nodes of the grid; the number of
— @ Bo(&)y(r) —Bo(&)yY(r')q2, p
fr.o)=e / fve ' (74 yortices is equal tdV|/e?>+O(y|V|/e). Multiplying Eq.
L (7.12) by £? and assuming thaft(r,£;,) are the values of a
where ¢(r) is the stream function of averaged flow, agd Smooth functionf(r,£) at the points{,, we obtain in the
plays the role of inverse temperature. Averaging of the kineleft-hand side of Eq(7.11) an integral sum that converges
matical relation for N— o to

_ 1 1 -
—At//(t,x)zw(t,x)zf S(x—r(t,€)w(&)d%¢ (7.5 NSZ_M fv f(r,&)In f(r,6)drd%¢.  (7.12
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The constraint$7.9) take the form Maximizing the functional8.2) with respect tof (y, &) sub-
ject to the constraint€3.3) and(8.4) we obtain

1
_ G , ! f , f /’ r\ ° o !
5 ijv (r,r OO (r',. &) w(§w(¢’) f(y,§)=C0nSt><exp{—,8&)(§)

X d2rd?r’d?¢d?ed?¢' =E, (7.13
XfG(%7’)f(7’,§’)&>(§')d2§’D7’

2 =
fv f(r,&)dr=1. (7.19 8.5

Here B is Lagrange’s multiplier for the constrai8.3). In
accordance with Eq5.5) the expression in the exponent can
be written as

Maximization of entropy(7.12 with respect to functions
f(r,&) constrained by Eqg7.13 and (7.14) yields the for-
mula (7.4), whereg is the Lagrange multiplier for the con-
straint(7.13. R

This means of derivatiori7.4) is quite straightforward. f G(y,y) (Y, &)w(&)d?*¢ dy’
The price paid is a number of unjustified hypotheses: statis- , ,
tical independence, equivalence of microcanonical and mac- K dx'(n) ar'(n'.¢')
rocanonical distributions, and a possibility to change the en- =M J Gij(x(7).r(n".€")) an an'
tropy functional(7.8) by the functional7.12. The feasibility
of such an approach is confirmed by the derivation of Eq.
(7.4) from the ergodic hypothesis. In what follows we accept
this simple way of constructing the probability measure,

leaving the justification for further study. where x=x(7) is the parametric equation of the curge
and M stands for mathematical expectation.

Using Eq.(4.14) the last expression can be put in the form

Xﬁ)(é’)dndn'dzf’},

VIIl. PROBABILITY MEASURE FOR 3D FLOWS

Conceptually, the derivation of probability measure for M [j (fl) &3 &3¢ dy
3D flows is the same as for 2D ones. A technical complica- ) '

tion is that the points representing point vortices should be
replaced by curves, vortex lines. Denote the “probability ZJIdXi

density function” of positionsy of the vortex line¢ by !

f(v,£€). The joint probability density function o vortex

lines isf(y1,é1; - yn,€n). We assume the statistical inde- wherew, is the averaged stream function vector.
pendence of positions of vortex lines: Finally,

f(y1,.€1572:620  YnoéN) f(,£)=cons g B X (8.6)

=f(y1,60f(v2,€2)-f(w.é). (8.1) Note that additional assumptions specifying integration in

the space of the vortex lines should be made in order to

In the same way as in Sec. VI, this yields the expression fofylfill Eq. (8.6) with a mathematical sense. However, a cer-

entropy, tain observation can be made right away: comparing prob-
ability measurd8.6) with the well-studied Wiener measure,

S= consix f Dyf f(y,6)In f(y,&)d2E. 8.2 which has “probability density function’[19,20]

f()=constx e~ Y2/ {(d¥dn)’dn, 8.7)
The integration in the space of vortex lines is denoted by
JDy. This integration should be understood as a limit ofWe see that a typical vortex line is less smooth then a typical

some finite dimensional truncation of the vortex line dynam-Wiener curve.

ics. The assumption on statistical independence of the motion
In accordance with Eq(5.4), averaged kinetic energy of Of vortex lines puts some severe constraints on the topology
the flow is given by of the initial vorticity field. In particular, knotting of the

vortex lines is not allowed. The influence of topological in-

1 . . variants of the vorticity field on the probability measure is an
E=35 f Gy, y) (7. o(Hf (v, )w(E) interesting open problem.

The topology of the vortex lines seems to be trivial for

X d2£d%¢' DyDy' . (8.3 effectively two-dimensional flows, like Couette’s and Poi-

seuille’s flows, and for pipe flows. Therefore, the assump-
The probability density function is normalized by the condi-tions made in the derivation of E¢8.6) may be meaningful.
tion We consider how to deal with the measyBe6) for these

two cases. Before proceeding to these topics a specification

_ of the relations between the velocity and vorticity for cylin-
f f(y.6)Dy=1. 8.4 drical regions is needed.



2896

IX. SOME KINEMATICAL RELATIONS
FOR CYLINDRICAL REGIONS

General relations of Sec. IV between vorticity, velocity

and stream functions can be considerably simplified for cy-

lindrical regions.

Let region V be a cylinder: V={x!x2x3:(x!,x?)
€ Q,0=x3<l}. The third coordinate plays a distinct role,
and we usually drop the index 3, in particula®=x, ¢

=y,v3=v,0°=w. Greek indices run values 1,2 and corre-

spond to projections on coordinate x?. The set of coor-
dinates x,x* is denoted byx; similarly, v=(v*v),®
=(0% w).
It is assumed that at the cylinder surfag@ X[0]] the
no-detachment-penetration condition holds:
v*n,=0 at JQX[0]]. 9.9
At the cross sectionx=[0,|] periodicity of velocity is

posed.
Vorticity is a divergence-free vector field:

Jw”

oxX“ -

Jw
—+
X

0. 9.2

Thusw component of vorticity is determined hy* com-
ponents and the distribution @ over the cross sectior
=0:

X

O(X,X¥)=wo(X) + —3 | o%dx (9.3
X 0
Velocity and vorticity are linked by the relations
e“ﬁﬁavﬁ=w, e“ﬁ(ﬁﬁv—&xv5)=w“. (9.9

It follows from Egs.(9.4) and(9.1) that thev component of
velocity is determined byw® components of vorticity:

Jv

—A3v=eaﬁﬁawﬁ, %EHB&BUZw“eaﬂnB,

dv Jv
v(0xY)=v(l,x%), E(O,X“)Z&(O,x“). (9.5

HereA; is 3D Laplace operator.

To write down the solution of the boundary value prob-

lem (9.5 in terms of the Green'’s function it is convenient to
put Eq.(9.5 in a weak form: for any smooth periodic in
function ¢,

J v
20 x[0]]

de

3
o ax/”d X.

(9.9

vAzed3x= f e*Pw
\%

Equation(9.6) suggests a feasibility to consider the Green’s

function H(x,x") of the boundary-value problem,

AsH(X,x")=—8(x—x")+

VI

in V,

V. BERDICHEVSKY

H
W n“=0 at §QX[0,|],

JH JH
H(0x*)=H(I,x%), 5(0,X“)=§(I,X"‘). 9.7

Putting »=H in Eq. (9.6) one obtains

IH(X',X) 3,
Wd X

(9.9

v(X x”‘)—i vd3x= | e*Pw, (x)
’ VI Jv v

Other components of velocity can be found from the second
equation(9.4),

X

X
vﬁ(x,x“)zvﬁ(o,xa)+(9ﬁjovdx— J;) €.p0dX. (9.9

Herev is assumed to be expressed in termwdf by means
of Eg. (9.8). The 2D vectow 4(0x*) satisfies equations

e*P9,v 5(0X%) = wo(X?),

Ju
30 *(0xP)=— X (0x%)

FPPH(X' ,x,xP)
= — ap L 3y
J'V € wa(x ) &X,B&X _ d X,
v“(O,xﬁ)nazo (9.10

The solution of EQgs.(9.10 can be written in terms of
Green’s functions of Dirichlet and Neuman problems for
cross section).

The o component of vorticity is a periodic function af
as follows from the first equatio®.4). Thus, the admissible
values ofw® components obey the constraint

g [l

m w*dx= 0,
0

(9.11

which follows from Eq.(9.2).
Note that periodicity condition 5(0.x*) =v g(I,x“) is sat-
isfied. Indeed,

[ ] o0 P20
dg OU X= o X Ve wa(X)W

F?h(x'? xP)

T d?x’dx’,

— f eaﬁwa(x/)
\
(9.12

where
[
h(x“,x’“)=J H(x%,x;x"%,x")dx’
0

is the solution of boundary-value problgm,—2D Laplace
operatoy,



57 STATISTICAL MECHANICS OF VORTEX LINES 2897

— o ra 1 &h_
Agh=—6(x"“=X")+ 1, 5.=0  atan. <j\/\—\/\© O@ O
(9.13
a. b.

and does not depend on
Since, due to Eq(9.11),

FIG. 1. Typical vortex lines fofa) effectively two dimensional

|
fow (x")dx"=e,zdpx, flow (b) pipe flow.

wherey is some function ok<, and is also zero becaus€'n,=0 at JQ and v3d v*=
—v3dqv3. Therefore,
J» o ’ azh(x/o"xﬁ) d2 i U303V
W @oX') g T gp - dX X (re,r34+c)=1(rer3).
ax Fh(x*7,xP) Thus,
= 1o lo 9y B d=x’
0 IX IX=7IX
ol=0 (10.2
ro 1o  Byd2y! (QX(XB)
== P X(X")Ah(x"7,xF)d"x" = P for any éc. On the other hand,
I 8 5= —| s - f o’ e3¢ ¥ (10.3
- =—|6C5 | et * =z @ .
TP foeaﬁwa(x,x )dx. (9.149 3 B e .
Periodicity of v, follows from Egs.(9.10, (9.12, and  for any t,,t;. Conservation of the second integrdl0.1)
(9.14. follows from Egs.(10.2 and(10.3.
Additional integrals of motion appear if the cylinder is
X. PROBABILISTIC MEASURE circular, but we consider here only the general case assuming
FOR CYLINDRICAL REGIONS that even circular cylinders are circular only approximately,
Consider the motion of ideal incompressible fluid in aand there are small disturbances eliminating rotational sym-

metry.

Without loss of generality we may use the reference
frame in which the total discharge of the flow is equal to
zero, and also

cylindrical region. This motion is assumed to be periodic in

the axial direction. An ideal fluid has two additional integrals

of motion due to translational symmetry along the axis.
These integrals are

f aL3(§t)dB§=00nSt frg(t,§)d3§:0- (10.9
v ot 7 ' v

ok Condition (10.4 eliminates the shifts in axial direction.
f eaﬂra(‘fat)a_ga (&) @3(d3E=const.  (10.D) The second integrdlL0.1) should be taken into account in
v maximization of entropy in the form of the constraint

Conservation of the second integfaD.1) can be derived

from the invariance of the function&R.1) with respect to f D),f eaﬁradrﬁf(%g)(’b(f)dzfz const. (10.5
shifts in the axis direction. Kinetic energy in EQ.D is Y

obviously invariant under such transformation. The func- ) )
tional A is also invariant. Indeed, It is easy to check that the resulting measure is

f(y,&)=const
A(r“,r3+c)—A(r“,r3)=%cf e,z “wPd3x 7é
\

Xexr{—&(é)(ﬂj%dxiﬂ\j eaﬁx“dx3>
Y Y

= %Cfveaﬁv “eﬁy(ﬁyvg,— 53V.y)d3X

(10.9
=%Cf (0030 4 — 07,03 dX. where\ is the Lagrange multiplier for the constraifit0.5.
\%
. . . . Xl. EFFECTIVELY 2D FLOWS
The first term is zero due to periodicity of velocity. The
second term can be transformed to Consider the case when vortex lines are directed at aver-
| age along the cylinder. This means that each vortex line
f 0 v3d3X=f dxsf 0N ds—f V30,0 “d3x crosses the planes=const[Fig. 1(a)]. We assume for sim-
“ 0 o v o plicity that the projections of each point of a vortex line on
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the x axis is unique, anck can be chosen as a parameter —
along the vortex lines. f(ry,....,rp, &) =cons GXF{ —Zb(f)(,BE Pe(rs)

Let the average flow be two dimensional, i.e., the aver- s
aged components of velocity, are functions ofx® while
v3=0. In_terms of the stream function vector this corre- H\z ea3r§r§+1>
sponds toy;= (x%), ¥,=0.

A natural finite-dimensional model of the vortex line Positionsr are no longer statistically independent.
would be a set of points at which the vortex line crosses the Parametei is determined by the condition
planesx=0, x=¢, Xx=2¢,..., X=neg=1|. Denoting the pro-
jections of these points on the cross sectief0 byrg,...r, B i
we describe the vortex line by the sequemnge...r, (rg J’ Eqpl “dr=given. (115
=r, due to periodicity.

Let first the parametex in Eq. (10.6) be zero. Then prob- Note that the averaged valu@l.5 is equal to zero ifA
ability density function of positions, ,...ry is =0:

. (11.9

f(ry,...rp, &) =constxe @@F2Us - (11.]) feagr“drﬁ=2 €apl o (18,1~ 15 1)=0,

We normalize “coldness’8 assuming thaBe tends to some
constant fore —0. We keep the notatiops for the limit con-
stant. Finally,

since allr are statistically independent far=0. If one as-
sumes that there is one-to-one correspondence between the
constant(11.5 and parametek, the zero value of the con-
stant(11.5 correspond to zero value af Thus, prescribing

the zero value of the constaitl.5 we get the measure

(11.3.

Positions of the points are statistically independent and
have the probability function

f(Fyyen.lp &) =cCONS @~ AEBZSUTS) (11.2

XIl. PIPE FLOW

Consider the flows with one nonzero averaged component
of velocity v(x*,x%), v®=0. For such flowsy=0, *+0.
(11.3 Probability measur¢l0.6) takes the form

Let us find the equations for the averaged flow. First, we _ e f — f 2
establish that the averaged transversal vortiaityis zero. f(7,£)=cons ex;{ w(g)(,B vad X+2\ de X

Indeed, a natural finite-dimensional representatiom®fat (12.1)
the planex=x; is

1 ., — =
f(r,6)=5 e oO8Un, Z:J e DOBUN G2y

where() , is the two-dimensional region bounded by the pro-

dre(x,£) jection of vortex liney on the pipe cross sectidi. Denoting
m(xﬁ,xs)=f S(XP—rP(xg,&)) d—’ o(§)d?¢ the sumv +2\/8 by v,
1 T=vt 2 (122
o v= —, .
oo | S0 - paedE E
we have
Sincerg_,, rg, and rg,, are statistically independent, e T
TE=TE, @%=0. f(y,&)=constxe™ Qv (12.3

In the same way the averaged axial component of vortic=|.

ity is obtained- he probability depends only on projectigfi=r “(#) while

all positions of vortex line points along theaxis x=r(7)
are statistically independent and have equal probability.
@y a_ra o 2 Formula(12.3 suggests a natural way to define a finite-
wlx 'XS)_f =% ) w(£)d7E dimensional probability measure. Let us cover redibhy a
1 o lattice with the cell centerss, s=1,...n (Fig. 2. Each vor-
:f S(X¥—r?) = e"z’@)ﬁ*”(”&)dzrdg tex line projection on(} is a closed path on the lattice. All
z projections can be characterized by the set of paipthat
belong to( . Doing that we identify all pathy andy’ for

o= @(£)BYT)

=f w(€) d2¢. which the region(),,— .’ has zero aregéFig. 3).
f e—&(g)ﬁ%qdr, Each cellrg either belongs or does not belong &b, .
Therefore, there are™2possible projections. They all are

L o statistically independent. The probability thrgie () is
Sincew=—Ay, we arrive at the equation fay [Eq. (7.6)]. O3 e?
If A#0 the situation is more complex because a natural consixe S
finite-dimensional model for Eq10.6) is
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— T T Here do(x)/dx=48(x), and statistical independence of
T r%(») andr (%) is used.
To find the equation for consider averaging of E¢9.8).
We have(bear in mind that we use the frame with zero
) dischargg

)

— “(775)0 IH(r,x)
e*h
dz

o F d’¢d7n. (12.9

c
[
i

Sincer () is statistically independent arf, averaging with

respect tar (%) is reduced to integratioll over x:
~/ Q
N 1 LA, ()
i Y v=r| € a7 w(§) P d<&dn,

(12.9

whereh is determined by Eq9.13. The right-hand side of
Eg. (12.6 can be written as

FIG. 2. Vortex line projection.

wheres?=|Q|/N. “Coldness” is normalized in such a way

that Be2—const if e—0. Notation 8 is kept for the limit 1

constant. So, v—=|— f d?&a(€) %e“ﬁdr“
Y

ah(r,x)
ark

= —Ba(§)S0_0(r9)ms 1
f(y,£)=constxe 1 , (12.49 -7 J’ 3)(§)d2§J’ (—Ah)d?r
Q,/

where ns=1 if rge (), and »,=0 otherwise. 1 1

The major difference from the case of effectively two- = f Eo(g)dzgf ( S(XY— @) — _)dz
dimensional flow is that, for a typical vortex line(#) is | Q]
periodic[Fig. 1(b)]. Therefore the averagesd component of

the vorticity is zero: The average value of the functional of the form
J G(x¥)d?x
K(X)=J 5(x—r) — wdzédn Q,

with respect to measur@2.4 can be easily found:

dr |
=f "= ()oK r(m) - o

- n n
f 7(X)G(x)d%x= D, 7G(xs)e?= >, G(x9)eZ7;
j ) dG(X—I‘) . QO s=1 s=1
_f B(x“ 1) ——— dyod?=0. ) g

7 =S Gxge? ——
& OV e B9

g~ BO(HT(X) ,
= — - LLG(X) 1+ e o 4%
Finally,
IR 1 , | erPaeTe
1T VT f @(§)d*¢| T —goere
a.
e BT ()
d?x (12.7
) _ |Q| 1te oo ' '
gy — i In Eq. (12.7 v should be expressed in termswofirom Eq.
— Hijd 12 (12.2. The condition of zero discharge determined param-
L | A 1|F i eter \, while the prescribed value of kinetic energy deter-
| mines parameteg. Equation(12.7) is an integral equation
BEER | for averaged axial velocity. The solution of this equation
g Y q
b. will be considered elsewhere. One observation, however, can

be made right away: it is not seen from the comparison of the
FIG. 3. Examples of identical paths. equation for pipe flow(12.7) and the equation for effectively
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two-dimensional flow(7.6) that they are particular cases of 9 (x,x") _ _

some general equations. It might reflect the fact that there are J’ J — L skt x) o' (1, X) @l (t,x" ) d3xdBx!
no universal equations of turbulence except that these equa- X

tions follow from the averaging with respect to an invariant IR (X, X)

measure that might be universal. If this is the case, the aver- f f J’ ik— Rm(“ X,x")Sr¥(t,x) @' (t,X)
aged equations should be developed for each class of flow

geometry. ij(t,xl)d3xd3xld3;("
. ale(X ) m k i 3y A3Y
APPENDIX A: VARIATION OF FUNCTIONAL (5.9 = —ﬂk_ v™M(t, X) Or(t,X) w'(t,x)d>xd>x.
\%

Let position vectorr (t,£) get an infinitesimal variation
or. Variations 6r are assumed kinematically consistent at

the boundary, i.e., By the same reasonings, the second term in(B§) can be
transformed to

(Ad)

or'nj=0 at 4V. (A1) N

ffGij(x,x’)5ri,k(t,x)wk(t,x)wj(t,x’)d3xd3x’
VvJV

Variation of the first term in Eq(5.6) is

= (X My w’ i Kk
- fvajv Rni(XX)RT(XX) 81 i (£,x) 0'(, X)

ty ty 1 L A
5f Adt=f f — e [oritiok—risriok—risrirk om .
to to Jv 3 ikl m X ol (t,x")d3xd®x’ d3X

ty

+HriT(Sr¥e™) ]d3¢+ =ff Rini(X,X)0™(8,%) 8r' (t,%) (8, x)d*xd
VJV

1 o
fv 5 eijkr'5r1wkd3§}

to

ORmi .
_ ftlf & ST o f f —(k— o™(t,%) Or'(£,%) w(t,x)d*x K.
tg JV
1 . ty (A5)
+ fv 3 eijkr'arj‘”kdsf} : (A2)  Combining(A3)—(A5) we get
to
. . 56,
5K=f (6rkw'— 6r'w®) —¢ d3x, (AB)
For variation of kinetic energys.3) we have v 2
_ where
_ dGj[r.r(t,&)] LD
x=] ], e e 0130 [ RuEx00m a0
X&r;(gt &) . g’)+G,J[r(t &,r(t,&)] ([Zeg)ote the differenc@,— ¢; by u;. In accordance with Eq.
a&r ari(t,&
XGgw 0D T(fr) °b<§’>}d3gd3g wi=0— = f [Rmi(X,X) = Rim(%, %) 10 ™(£.3)d%%.

Identity (4.11) yields
Changing integration over Lagrangian coordinates to integra-
tion over Eulerian coordinates we get J' eidx=0
: =

aG.J(X x") for any divergence-free vector fiekd.

Substituting 6; = ¢; + u; into Eq. (A6), we see that the

K(t,x) o' (t,X) @l (t,X")

term containingu; vanishes, because, in accordance with

= i i Egs. (5. 4.
£Gij(xx) O (£, WKt X) @) (£, X') | d¥xx. gs-(5.6) and(4.9)

(A3) f (orw'—or'w ) i d3x

i - : d o
In acqordance with Eq4.18 the first term in Eq(A3) can _ _f ) (8r€ei — 8t ) d3x,
be written as
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and vector ¢rko' — or'w) | is divergence free. Condition(B3) is obviously satisfied. To satisfy EB4) we
Finally set
K i ik 3 K i 3 an
K= | (6rfe'—or'w )dli,kd X=2| orw l,/l[i’k]d X 0_'—5 =1. (86)
\% \%

The new motionB5) does not obey EqB2), but this is not
necessary for our purposes.

The action functional has the same values for both mo-
Here i g=1/2(s; x— ¢;) and we used the relatiofty; ,;  tions,x=x(t,£) andx=x’(t,£). Indeed,
=1/2eikjw1. )i ,

Assume that the positions of particles are prescribet at L (1,6)) = ftlf 1 ax'(t,§) axi(L,€) de
=tg,t;. Thendr'=0 att=ty,t; and the last term in Eq. ' to Jv 2 P ot at
(A2) vanishes(in fact, to vanish this term, a weaker con-

:f 5rkwieikjl}jd3X. (A?)
\Y

straints may be setCombining Eqs(A2) and (A7) we ar- (a2 X (t, (&) axi(t, n(&)) e
rive at the expression for variation of functioddlEq. (5.7)]. - o Jv 2 p ot ot §
APPENDIX B: SYMMETRIES OF THE ACTION _ ftlf 1 ax(tg) oxi(t,y) |9 e
FUNCTIONAL AND INTEGRALS OF THE MOTION to Jv 2 Pt at angl- T
In this appendix the groups of symmetries of the action (B7)

functional are found. They cause the extra integrals of mo- ) )

tion of vortex dynamics to exist. We determine the corre-Taking into account Eq(B6) and changing the notation for
sponding integrals of motion in the dynamics of the vortexthe integration variables from to £ we see that the integral
lines. We begin our consideration with the discussion of thdB7) coincide with the integra{B1). Therefore,

well-known fact that the conservation of the velocity circu-

lations stems from the invariance of kinetic energy with re- ol =1(x"(t,£))—1(x(t,£))=0. (B8)

spect to the relabeling group of transformations. _ . _
Let relabeling be infinitesimal, i.ep= ¢+ 6¢. Then

1. Relabeling group i

) ) . X
Consider the Hamilton variational principle: true motion oX'=x"(t,6) —=X(t,)= &2 og". (B9)
of an ideal incompressible fluid is a stationary point of the
action functional, The variation of functiona(B1) is
1 axX(t,€) Ix(t,€) 3 ty 96X 4 t
I(X(t,g))_fto fv 2P~ e 9¢ B 5|=fto JV PV 7d3§=“\/ pvi5X'd3§}
)
on the set of all function(t,&) such that their initial and . J
final values are prescribed, —f lJ {E pui(t, &) | oxId3e. (B10)

X(tO!g):XO(g)v X(tlag)le(é:)v (Bz)
Assume that the motiom(t,&) obeys the Euler equations.
fluid does not detach from or penetrate through the wall, Then the last integral in EB10) vanishes because

4 t p
5x'd3§=flf ~ P xi|d
to Jvi X
ty

=—f pdx'n;d®x=0.
to J oV

3x

x(t,&) eV if eV, (B3) jtlf
to JV

J
- Pri(té)
and the motion is incompressible,

oX

7L (B4)

(B11)

In this section, we do not need to mark the vortex lines, thus ) )
here ¢ denotes the set of all three Lagrangian coordinatesiere we used the Euler equatiof®1) and integrated by
Let us rename the particlesz— 5(&), and, for a given mo-  Parts taking into account that

tion, .
aﬁx'_o
x=x(t,&), ax

consider another motion, due to Eq.(B4), and that

x=x'(t,&)=x(t, n(§)). (B5) ox'n;=0,
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due to Eq(B3) and the way in which the motiox/ (t,£) was  and the relabeling— (&) conserves the vorticity:
defined. Note that Eq¢B11) and (B8) hold for anytg,t;.
Thus, in accordance witkB8), (B10), and (B11), for any

to tl, ’ ’ ' @(€)=a(n(£)) ag‘ (B14)
f pv. SXId3%E :f pv SXId3¢ Equation(B14) can be written also in the form
' g =t b(&)d%=a(n)d?y,
or emphasizing the vorticity conservation as a measure. Incom-

pressibility of the motion follows from this symmetry group.
Indeed, the kinetic energy is an invariant under such trans-
formation:

X!

:f pPUi —3a 5§ad3§
3

=t, t=t,

(B12)

a3
J'Pvlaga‘sfdf

' _E ’ RN o TIN2+47 7
Functions 52 are not arbitrary. Due to EqB6) they K(r'(t.6)= 2 fvaG(r (L. (LO)e(ae(@)d7ed’s

obey the equation 1
poE* =§fVJVG(r(t.n(f)),r(t.ﬂ(é)))w(f)w(@
o —~
¢ xd?¢&d?¢
This equation is satisfied #£2 is a vector field concentrated

at any closed fluid lines and having a constant projection on - 1 f J G(r(t,n),r(t, 7))oE(7)o(E(7))
this line (the situation is similar to that for vorticity in Sec. 2 Jvlv

V). Denoting a parameter along the line lyone obtains

from Eq. (B12) X |—= 9|1 ¢ d2 nd?7
_ _ an||d
f ox' q f X! q f dx 1
Ui Vi = v;dx, _ e o o~ —
e I R ik R W =5 [ [ ettt imswomend
0 1 vJV
e., the conservation of the velocity circulation along any =K(r(t,%)).

closed fluid contour.
Here we used the fact that E@14) can be written also as

2. Isovorticity group in 2D P
The variational principles for the functionai8.10 and w(&( 77))‘3— =G
(5.6) differ from the Hamilton variational principle by elimi-
nation of many symmetries and, consequently, many inteThe first integral in Eq(B13) is also the invariant:
grals of motion(the velocity circulations Nevertheless, cer-
tain symmetrieg§and integrals of motionstill remain. For ’(t &) .
example, 2D dynamical equatiori3.9) yield the conserva- f y'(t,é)
tion of the particle volume(at each material point,
|ax/ 9€| = cons). We arrive at the following questions: What
is the underlying group of symmetry for these integrals in ZJ y(t, 7(£))
2D? What are the symmetry group and the corresponding
integrals in 3D? Here we show that, for the two-dimensional ( 7,
case, this is the group relabeling the particles with the same =f y(t,7) —— @(&( ))
vorticity. We call it the isovorticity group. More precisely, v
consider the action functional for two-dimensional flows: f ) ax(t, n)

y(t, 7

I(r)=J:1dt

w(&)d*¢

IX(t, 77(5)) o(6)d%

o(7)d?7.

Ix(1,€) .
[yvtn 22 ok |
\%

In the same way as for the Hamilton variational principle we

1 obtain that
2 JVLGU(L&),r(t,§’))c"o(§)a>(g')d2gd2gf_
(B13) fv y(t,€)ox(t,6) w(§)d*¢
Let us show that the action functional has the same value for aX(t,£)
o motens (e abert f f Y8 g agr 5o (£)d*E=const.

r'(t,&)=r(t, n(é)), (B15)
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The functionssé* in Eg. (B15) obey the constraint that fol- ary we obtain thaj is constant on the boundary, and, with-

lows from Eq.(B14), out loss of generality, can be set equal to zero. It also follows
from Eg.(B18) that vectorsdy/d&° and w® are orthogonal:

o o &+ 68)
o(§)=b(E+08) ‘ ox
a)c e =0. (Blg)
& %
(w(§)+ 9EH 55#) 5§u ) In the same way as in the previous two cases, from the in-
variance of the action functional we obtain:
Keeping only the leading terms we obtain LE)
oo S f e (LN (8 T S @(6)\Gd=const.
" =0.
Here
Thus, )
oxl= o 5¢P
d T 9gP 9%
bogH=e jf) (B16) %
Hence,

where y is an arbitrary function. The functiog should be oxl axk
equal to zero at the boundary of simply connected regions if f € X —= —5 5e2&2\[gd3¢
&+#0 at the boundarythat is assumed for simplicity T ogt o¢

Plugging Eq.(B16) into Eq. (B15) and integrating by

, coxhaxk .
parts we obtain :j eijkX &_ga@ﬂwagg — &P8¢?)\Jgd3¢
ay(t,8) ax(t,6) o
er d2¢=const. ; ox! ox ax
fv G :j €X' 5 g0 & 5 E

Since x(¢) is an arbitrary function|ox/9&|=const at each

particle, as was claimed Integrating by parts, we obtain the following expression for

this integral:
3. Isovorticity group in 3D f ax axl axk abe f ‘ax
e d3¢=-3!| | x(&d3¢
The symmetry group of the functiond.6) is a relabeling Bilk 5 583 5¢b x(Ode= 2 x(Ode

group that conserves vorticity in the following sense:

17
(DG %a _°b(7i(§))\/96(71(§))(9—z

In the vortex line coordinate systeis constant along the
vortex lines. Functiory is arbitrary as a function of the vor-
tex line. Thus, for for each vortex line, the integral

This can be checked by inspection. For infinitesimal trans- f ‘a_x‘d,?:const (B20)
formation, the admissible variation$?= 72— £2 obey the 2
equation

remains unchanged in the course of motion.
The existence of this invariant of motion can be derived
[VO(&028E°— &P6E%)1=0 directly from Eq.(5.10. Indeed, differentiating this equation
with respect tox' and taking into account that, due to Eq.
(5.10, 9V'/ox'=0, we obtain

aga

The general solution of this equation is

ot I,k f) _ a0 X! Xy, ING?
cace¢b_°oboga 1 abcaX(g) i i A |)_a+)\a’a_?__a
0?6’ — w o =—e o (B17) X X ax' g€ ox' €
oy X 08
Equation(B17) can be resolved with respect &/ & Ao —Eaga Y X
J o Since
72 = V0Canc 8" (B18)

9EP 1 9|oxlog|
If 5&2is proportional tow?, i.e., one relabels the particles EVa |oxI0&] a(axi1a&P)”
on the same vortex lines, thety/9é°=0. We consider the
symmetries with respect to the relabeling of the neighboringve have
vortex lines, i.e. 062+ A ? at all points. ) b b
Both vectors®? and 62 are tangent to the boundary. IX g X 1 gloxlag]
Projecting Eq(B18) on the tangent directions to the bound- IERIED axT — 9ERIER |axIaE] a(axT1aEP)
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1 dloxiag| APPENDIX C: VISCOSITY AND INTEGRALS
= m o"—ga OF MOTION
Successful prediction of turbulent velocity profiles in
So, Couette and Poiseuille flows by statistical mechanics of point
vortices[10] raises two questiongi) Why can essentially
three-dimensional dynamics be described by a theory of
ol aNe?) 1 gloxlag| point vortices that is two-dimensional®) Why does the
= ° a . .
. P loxiog o8 theory of ideal fluid work for flows bounded by the walls

(B21)

aax)
&_g .

aga ar'
X aga

19 N
" [oxlog] ag* |7
On the other hand,
o'

0_XI— .
(B22)

17
ot

X
&

ox
o0&

_d|oxlog| o X!
X at aga

ox
&

£=cons

Combining Egs(B21) and (B22), we find

d ( oaax)
(9§a Aw (9—5 .

Equation(B23) can be also written as

d
ot

ax
&

(B23)

&=cons

d
ot

| ox/ €|

=

=\g&? ) . (B29)

£=consl

Here we used Eg5.1). In the vortex line coordinate system

Eq. (B24) takes the form

while it is well known that viscosity contributes essentially
in fluid dynamics near the walls? The answer to the first
question is given by the consideration in Sec. XI: point vor-
tices can be considered as “averaged images” of curvilinear
three-dimensional vortex lines, and the laws of statistical me-
chanics of point vortices stay valid for these “averaged im-
ages.” In this appendix the second question is discussed.
Consider, for definiteness, the Couette flow of viscous
incompressible fluid between two parallel walls. Walls move
in opposite directions with velocities and —u. The wall
velocity is assumed to be large, so some steady turbulent
regime is developed. One may think that in phase space the
phase trajectory moves along the attractor of viscous fluid.
Experiments show that fluctuations of total energy of the
flow are small, of order percent. This means that the attractor
lies in a small vicinity of the surface of constant energy. It
seems natural to try to approximate the motion on the attrac-
tor by the motion of an ideal fluid flow over the energy
surface. The motion of ideal fluid is not ergodic on the en-
ergy surface: each trajectory belongs to a sheet on energy
surface extracted by the values of initial vorticity. Assuming
that motion on the sheet is ergodic, one can try to approxi-
mate the invariant measure of the attractor by the invariant
measure of some sheet. To determine a sheet corresponding
to the attractor one has to give a recipe to establish the values
of initial vorticity and energy for this sheet. A way to do that
has been proposed in R¢L0]. Let a snapshot of some tur-
bulent vorticity field be made. Consider the dynamics of an
ideal fluid with the initial vorticity field obtained from the
snapshot. The question is: Will the trajectory of ideal fluid be

statistically close to the trajectory of a viscous fluid? Or, in
d ax |ax/ o€ ) . . o
— =& — |\ . (B25)  other words: If at some instant viscosity is set equal to zero,
N o const 96 an NG will the motion of an ideal fluid and viscous fluid be statis-

The vortex intensitys does not depend on. Integrating Eq.
(B25) over a closed vorticity line we obtain the integral of

motion,

d

aXx

dn=0.
§ n=

tically close? At first glance, the answer is no because ideal
fluid motion does not satisfy no-slip boundary conditions.
Fortunately enough, however, this does not seem to be a real
obstacle: integrals of motion help to maintain no-slip bound-
ary conditions in the average. For example, for Couette’s
flow total vorticity f @ dxdyis conserved. The total vorticity
can be written in the form

| |
f ® dxdy=—f0u+dx+ fou_dx,

(CD

The invariance of the action functional with respect to
relabeling the particles on the same vortex line produces a
“degeneracy” of Eq.(5.10: contracting of(5.10 with the  where they coordinate is orthogonal to the walls, andu_
vorticity vector gives an identity. are the values of thg& component of velocity at the walls,
The integrals(B20) mean a kind of “two-dimensional and the periodicity condition is imposed in thedirection.
incompressibility” for the vortex line dynamics. These inte- Therefore, conservation of vorticity makes the flow of ideal
grals do not constrain the motion of a finite set of vortexfluid to keep the initial difference between wall velocities in
lines, and, thus, does not affect the probability meagurg. average.
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For Poiseuille’s flow the role similar to total vorticity locity profiles for Couette’s and Poiseuille’s flows. If the
(C1) is played by the integral of motion wall geometry is more complex the contribution of viscosity
in the averaged equations may be important.

dxdy. C2
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