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A. R. Zeni! T. Braun! R. R. B. Correid, P. Alcantara, Ji? L. Guidoni®" and E. Arimondd
linstituto de Fsica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre,
Rio Grande do Sul, Brazil
’Departamento de Bica, Universidade Federal do Paralicleo Universitaio do Guania 66075-900 Bélm,
Para, Brazil
3Unita INFM, Dipartimento di Fisica, Universitalegli Studi di Pisa, Piazza Torricelli 2, 1-56126 Pisa, Italy
(Received 6 August 1997

For a laser with a saturable absorlie6A) and for a subnormal glow dischard&D), both displaying
homoclinic chaos, it is shown that double-valued curves in the return time maps, reconstructed from the time
evolution of appropriate variables, are related to different time scales associated with the two mechanisms
present in the respective chaotic attractors: the escape from an unstable saddle cycle and the reinjection
process. For the LSA the investigation is performed numerically on a 3-2 molecular level model and the results
are compared with experimental ones obtained from a-080, LSA system having the laser frequency
detuning as the control parameter. The analysis is complemented with experimental results from the GD. For
both systems we show how to obtain single-valued multibranched return time maps starting from double-
valued return time maps, enabling the characterization of homoclinic cfBb863-651X97)10712-7

PACS numbgs): 05.45:+hb, 42.65.Sf, 52.80.Hc

I. INTRODUCTION analysis as applied to the LSA in Ref40,11 and for the
GD in Ref.[12], with the horseshoe templdt&3] underlying
In the investigation of nonlinear dynamical systems, thethe dynamics of both the LSA and GD.
homoclinic orbits have assumed a great importance because Time return maps have been used often as a very suitable
their presence is associated with a chaotic behavior. Thimethod to characterize chaotic dynamics in experimental
presence has been examined in several different systeng@ta series because they may be obtained directly from the
such ag(i) the thermokinetics of hydrocarbon oxidatiph, measured variable without the need of reconstructing the
(i) lasers with electronic feedbadR2,3], (ii) lasers with phase space. Homoclinic chaos consists of a reinjection
saturable absorberd SA’s) [4], and (iv) glow discharge mechanism connected to an unstable looping behavior. Con-
(GD) [5]. All these systems display a dynamical configura-sidering this dynamical configuration, those maps may be
tion determined by a homoclinic orbit to a periodic motion. classified in two distinct classes: time-of-flight return maps
The connection between homoclinic orbits to a periodic mo{TFRM’s) [8] and return time return mag®TRM’s) [14].
tion and the chaotic behavior has been well established thede former are constructed uniquely from the time duration
retically [6]. A widely employed technique to characterize of the reinjection oscillations, whereas the latter use the time
homoclinic chaos consists in deriving from the chaotic flowduration of all oscillations. In general, TFRM’s present
in the phase space an associated map. This derivation may bigle-valued curves, as expected for highly dissipative sys-
accomplished in several ways and we will denote genericallyems, but depending on how the reinjection phase is identi-
the resulting map as a Poincamap or return map displaying fied, double-valued curves may appear. In turn, several re-
the features that enables the identification of homocliniacent investigations in the LSA dynamics have shown
chaos. This technique is not always straightforward, particuRTRM’s with double-valued structures in different ap-
larly in experimental situations, due to the difficulties of re- proaches. Theoretical RTRM’s with double-valued curves
constructing a phase space from the variable measured in thave been constructed from the numerical analysis of the rate
experiment. Moreover, some noise is always superimposegquations for the LSA[14]. Experiments using high-
on the experimental signal, so that the phase-space recoresonance absorption in a LSA allowed one to construct
struction process may be blown out and the derivation of th&RTRM'’s with double-valued curves directly from the tempo-
dynamical informations from this reconstructed space beral evolution of the laser intensitjl5]. These results have
comes troublesome. led us to associate a homoclinic chaos identification with
A secure identification of the presence of homoclinicthose double-valued return time maps.
chaos is obtained when a multibranched return map is de- It has been stated in Rg¢B] that in the LSA, as well as in
rived from the dynamical behavid7]; the search for that other systems showing homoclinic tangency to a saddle
multibranched return map has been performed for the LSAycle, a TFRM may vyield the same information as the Poin-
analyses in Refd8,9]. An alternative approach to establish caremaps. In this paper the equivalence between a RTRM
the presence of homoclinic chaos is based on the symboliand a Poincarenap will also be analyzed, but the main pur-
pose of this work is to analyze in more detail the structure of
) RTRM'’s with double-valued curves for the dynamics of two
*Present address: Laboratoire Kastler-Brossalpl& Normale  nonlinear systems: the LSA and GD. The common feature
Supeieure, 24 rue Lhomond, Paris Cedex 6, France. between these physically different systems is the presence of
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a homoclinic orbit to a saddle cycle, which determines their -

dynamical evolutions. Our goal is to examine how the se- FT —(—AD+AD+1)I,

guence of iterations on the maps evolves and which is the
mechanism responsible for the double-valued structures. Our
analysis starts from the numerical integration of the differen-
tial equations for the LSA. We derive RTRM'’s from the time
evolution of the laser intensity for different values of a LSA

dD
Ezy(l—D—Dl)—,B(D-FS),

ds

control parame_ter qnd then investigate thoroughly the se- T —y1(D+S), 1)
guence of the iterations on these maps. The study of these

sequences enables us to develop a map model that accounts .

for the iteration sequences observed in both the LSA and dD — —

GD. Furthermore, this model suggests that the double-valued Gt~ v(b-1+abl,

maps are obtained when the dynamics of the analyzed sys-

tems is an interplay of two separate processes: reinjectiowherel, D, andD represent the laser intensity, the popula-
and the looping around the saddle cycle, which represent thgon of the laser gain medium, and the population of the
phase-space evolution associated with the homoclinic orb#bsorber medium, respectively;is an auxiliary variable as-
to a saddle cycle. As a major result of our work, we havesociated with the pumping mechanism in the amplifier. The

found that exactly the interplay between these two phasegarametersA and A represent the normalized unsaturable
leads to the double-valued shape of the maps. The phasgser gain and absorption, respectively, whilis the relative
space of the LSA and the GD supports our statement that t'"@aturability of the two media. The constangs y;, and y

double-valued curves in the RTRM'’s are related to how therepresent the decay rates of the laser variableS andD.

reinjection and the looping are connected. For both the LSAl’es : N ;

: pectively, whileB is a coupling constant. The system of
and GD the shape of the RTRM depends on the choice of thg ationg1) is dimensionless and the tiniés normalized to
cross section used in the phase space to obtain the map. Af|e cavity decay rate.

cross sections lead to a double-valued structure except one Homaclinic chaos is a short term for the complex dynam-
specific cross section, where reinjection and looping argcs that may arise when a system in its phase-space descrip-
clearly separated and which supports single-valued strugjon is near a homoclinic orbif17]. The LSA homoclinic
tures. All the results derived from the numerical analysis forhehavior is evidenced by oscillations on the laser interisity
the LSA are confirmed experimentally for both the LSA anddisplaying an alternating periodic-chaotiaPC) sequence,
GD. Between these systems only a small difference exists,e., an alternation between periodic and chaotic patterns both
related to the appearance of the double-valued structure, amtharacterized by large- and small-amplitude oscillations. We
this difference is also analyzed within the map model. Fi-have simulated this behavior by fixing the LSA parameters to
nally, we show how to obtain single-valued multibrancheda=1.0,a=0.259 48,y=8.0x 10", =0.099,y,=0.0998,
RTRM's starting from double-valued RTRM's. From a prac- 5 7=0.0769 with the initial conditionsl (0)=42.0,

tical point of view, it is desirable to derive the single-valued D(0)=1.0/43.0,S(0)= — 1.0/43.0, and(0) =1.0/9.5 and
maps directly from the “measured” signal because then w arying '.[he c.0|,1trol pararﬁete‘l\: An example O'f th.e time
may overcome the noise-associated problem of reconstruck;

: L X volution for the laser intensity in the chaotic regime at
ing the phase space. The procedure for obtaining singléx _ 44 is shown in Fig. @a). Using the notation introduced

valued multibranched RTRM’s demonstrates how to deriveelsewhere{4], we will denote the regime of periodic oscilla-

the properties of homoclinic chaos encoded in the doubleﬂOnS by PM, where n indicates the number of small-
valued maps.

. . mplitude oscillations following a large-amplitude one. The
Section Il describes the LSA model and the appearance Qi ;e signals are denoted BY". The transition fromP(™
chaos in this system. To characterize homoclinic chaos w

(n) iod- i ifur-
employ the RTRM'’s, whose derivation will be analyzed in o C™ occurs through a sequence of period-doubling bifur

i ec(m (n+1) iti -
Sec. Il for the simulation and the experimental data on thecatlons_. Th - 1o P transition occurs through a tan-
ent bifurcation. The accumulation point of the successive

LSA and for the experimental results for the GD. Becaus‘%ifurcations corresponds to the homoclinic orbit. The pres-
the structure in the RTRM’s is related to the sequence of the b : P

iterations in the flow dynamics, we have developed an origi-enCe of this orbit in the phase space is the key requirement

nal model that reproduces the observed double-valuel" the occurrence of homoclinic chaos. A homoclinic orbit

RTRM'’s, as presented in Sec. IV. An analysis of the phase'—s an orbit biasymptotic to an invariant set in the phase space

space dynamics and the related RTRM dynamics is pref_or t— =+, as a saddle focus or a saddle cycle. In the LSA

sented in Sec. V for the LSA and the GD. Section VI con-2 saddle cycle is involved. It is not necessary to r'ea}ch thg
cludes our work. control parameter values corresponding to a homoclinic orbit

in order to observe chaos, and chaotic behavior is expected
for parameters close to those of the homoclinic o]t

In the phase-space description of the system of equations
(1), there are two fixed points: a saddle nodg=

We use the 3-2 molecular level model coupling both the(ly,Dq,Sy,Dp) and a saddle focuk, =(I,,D.,S,,D,).
gain and absorber media for the LSA, introduced by Zambomifferent dynamical configurations are established according
[16] and analyzed in Refl4]: to the presence of orbits coupling or not coupling these two

Il. LSA MODEL AND HOMOCLINIC CHAOS
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FIG. 1. (a) Temporal evolution of the LSA intensity, derived with the surface of constant intensity that cuts all oscilla-
from the numerical analysis, for tr@®® window atA=44.0. The tions, with | =1.4n¢; @and d1/dt<0 [19], as shown in Fig.
straight line represents the surfacel .,,s- (b) Return time map 1(a), and then determining the timesbetween successive
for the same parameter values with few iterations marked on théytersections. All the derived RTRM's. i.e.. the plt vs
map.R andL refer to the symbolic coding used in the text. t,.,, present a double-valued structure. The return map for

points[9]. For the situation in which the LSA approaches thethe chaoticC®) window atA=44 is shown in Fig. (b). Due
homoclinic orbit to the saddle cycle, the two fixed points areto the crossing of the branches in the top of the double-
not coupled and, does not interfere in the dynamics. The valued maps(clearly visible in the figurg these double-
LSA parameter values reported previously correspond tyalued maps are not a proper embedding of the dynamics
these conditions. In Fig. 2 the chaotic orbit corresponding td20]; still we will show how to use them for the character-
A=44.0 is projected onto the spack,S). We observe ization of homoclinic chaos. In Fig.(h) we have identified
that the orbit performs some loops departing with a spiralfour branches labeled 1, 2, 3, and 4. We consider as the first
type motion from a hole within the phase-space portrait, theritération the one indicated by an arrow on branch 1 of the
moves far from the hole, and finally is reinjected back neamap[Fig. 1(b)] and the corresponding return timgsandt,

it. Therefore, the phase-space dynamics consists of an inte@re identified in Fig. (). Branch 1 is related to the first and
play of an unstable behavi¢the spiraling around the hole in second loops around the saddle cycle. The iterations associ-
the phase-space diagramnd a stable onéhe reinjection ated with the subsequent loops around the cycle fall on
loop). Both are connected to the phase-space hole, inside dranch 2. Therefore, branches 1 and 2 are related to the small
which the saddle cycle is supposed to be present. We hawscillations; the first iteration on branch 2 will depend on the
confirmed this presence by locating the cycle with the aid ofosition of the previous iteration on branch 1. In other
the procedure developed by Sparr¢®8]. Notice that the Wwords, branch 2 approaches the bisectrix as much as the
phase-space hole contains the fixed poinand that all the iteration on branch 1 allows. Following the iterations associ-
trajectories remain very far from the fixed polgt thel =1, ated with the loopings around the saddle cycle, there comes a
plane being an invariant surface from which the orbits arg€injection loop iteration that always falls on branch 3. The
repelled[4]. With the change of the control parameferthe ~ Next iteration can fall either on branch 4 or on branch 1. If
phase-space orbit approaches the orbit homoclinic to thighe orbit makes only one reinjection loop, then the iteration
saddle cycle. The dynamical transformations induced by thi§lls on branch 1. Otherwise, after the occurrence of one

process are manifested through the APC sequence. more reinjection loop, the iteration goes to branch 4. Figure
1(a), betweent=600 and 800, shows three successive rein-
Ill. RETURN TIME RETURN MAPS jection loops that correspond to a sequence of three iterations

on branch 4 before the iteration returning to branch 1. As
usual, there is only one loop of reinjection between each set

RTRM’'s may be derived starting from the temporal evo-of loops around the saddle cycle; branch 4 is visited much
lution of the laser intensity by considering the intersection less frequently than the others. The iterations falling on

A. Numerical analysis for the LSA
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FIG. 3. Return time maps for experimental LSA data at a discharge current of 9.0amA= — 13.4 MHz, corresponding to the(®
regime;(b) A=—14.5 MHz, corresponding to th@® regime. Times are measuredis. Also shown is the evolution of the m#p) for
c¢=0.2 varying the parameter: (c) A=1.9 and(d) A=2.05.

branches 1 and 2 have as abscisgasorresponding to a output laser field of a waveguide GQaser stabilized upon

looping around the saddle cycle, while the iterations ofthe Lamb dip of the 4.3sm fluorescence of the COmol-

branches 3 and 4 have abscissas corresponding to reinjectiesule. A more detailed description of the experimental setup

times. has been reported elsewh¢i®]. At fixed discharge current,
Looking to the abscissas of the iterations in Fip)lwe by changing only the laser frequency tuning, the time evolu-

may introduce the following symbolic coding. We associatetion of the laser intensity evolved from the steady statéo

the labell. with the two ascending branchésand 3 of the  the c(™ chaotic regimes. This dynamics has been understood

return map where the phase-space trajectory loops around thg 5 homoclinic tangency to a saddle cycle originated from a
saddle cycle. We associate the laBelith the iterations on Hopf bifurcation ofl . [9]. The maps of Fig. 3 correspond to

the descend'mg. branqhtés gnd 4. where the system per- different chaotic regimes observed at decreasing values of
forms a reinjection. With this coding we can restate the pre-

vious description of the iteration sequence. The iterations faﬁhe laser frsquency detuning. The map of Fm@@gg
on branch 1 or 4 when the former iteration hasRatabeled sponds tOA__ —13.4 MHz, when the LSA operates i .
abscissa; otherwise the iterations fall on branch 2 or SW'(Q)dO‘_N' while atA=-14.5 MHz the laser operates in a
Therefore, branches 1 and 4 are linked together, as atg window [Fig. 3(b)], the discharge current being fixed at

branches 2 and 3. .0 mA. The spreading of the points in the transverse direc-
tion is associated with the noisy fluctuations intrinsic to the
B. Experimental results for the LSA experiment. For both the chaot®™ windows, the RTRM’s

h s f . | q h ._derived from the experimental record for the laser intensity
The RTRM's for experimental LSA data sets shown ingy, ., qouble-valued structures. The branches on the left part

Figs. 3a) and :.1b) are obtained fpllowing the prescriptipn of the map maximum approach the bisectrix of the axes by
presented previously. The dynamical variable analyzed is the

. ) ! ; . Ihcreasing then value, i.e., as the system approaches the
time evolution of the output intensity of a single-mode £0 h linic orbit. This behavior is similar to that observed in
LSA operating on the 1®(12) line and containing 225 homLOé:A N | simulati h in Figb

mTorr of OsQ, as the molecular gas absorber. As the Iase;[ € numerical simulations, shown in Figb].

control parameter we used the laser frequency detuning (
modified by piezoelectric ceramics within a range of 90
MHz, which corresponds to one longitudinal mode of the The GD is a nonlinear dynamical system presenting a
LSA cavity. The laser frequency tuning was measured fromdynamics quite similar to that of the LSA; indeed, for both
the beat note between the output LSA laser field and theystems the dynamics is modeled by a horseshoe template.

C. Experimental results for the GD
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FIG. 4. Return time maps for the GD experimental data correspondirig) tine C'Y) window and(b) the C® window. Times are
measured irus. Also shown are maps obtained with the model of @y for c=—0.2, at(c) A=1.8 and(d) A =2.0.

The GD, operating in the subnormal regifi], is fed by a  and 3 byf(x—y). The jumping from one curve to the other
dc voltage source, whose voltayes the control parameter, depends on the absciszaof the iterations. More precisely,
while the discharge curremtis monitored. Further details of let x; be the abscissa of a generic iteration of the map. If the
the GD setup have been reported elsewHéde The ho-  previous iteration has an abscissa ; labeledR, then the
moclinic behavior of the GO22] is demonstrated by self- ordinate associated tq will be given by f(x;); if x;_, is
induced oscillations on the discharge’s current displaying théabeled L, then the ordinate ok; will be f(x;—y). This
typical APC sequence. Also the sequence of symbols, intromechanism is described by the model

duced as in Fig. (b), resulting from the iteration of the re-
turn map supports the presence of homoclinic chaos. We
have constructed GD RTRM'’s for two chaotic time evolu-
tions corresponding to th€™) and C® windows, respec-
tively, as shown in Figs. @ and 4b). A double-valued

structure is evident in both maps. However, the lengths o . . .
the two branches at the left of the map maximum are inter-ContrOI parameter is change@\(z) is the Heaveside step

changed with respect to the LSA results, as it appears from &nction, which equals 1 whez>0 and 0 ifz<0. The shape
direct comparison between FiggaBand 3b) and Figs. 4) of f(x) is not relevant to account for the doulgle structure in
and 4b). This indicates that the GD sequence of iterations id"€ Mmap, and we have chosefx) = Axexp(1-x’), wherex

different from the LSA one, concerning the order in which FéPresents the control parameter. In E2).x, is the point of
the map branches are visited. maximum value for the functiori(x) and the value ofy;

controls the jumping from one curve to another. To illustrate
the properties of our model, the iterations fqf) for two
different control parametex atc=0.2 are presented in Figs.

In order to explore how the sequence of iterations deter3(c) and 3d). Regarding the double curve structure, they
mines the double-valued structure of the RTRM'’s, we havecorrespond, respectively, to the results of Figs) and 3b).
developed a map model that accounts for the iteration§he outcome is that the above model accounts for the same
mechanism in both the LSA and GD. We notice that in Fig.sequence of iterations as observed in both the numerical
1(b) either branch 1 plus branch 4 or branch 2 plus branch 3imulation and the experimental results for the LSA.
has a bell-shaped appearance that can be described by a par-A closer inspection of the successive iterations shows that
ticular functionf(x), wherex represents a return time. Thus the GD iteration scheme is similar to the LSA one, except
the return map seems to be the superposition of two slightlyhat in order to model the GD iterations, we need to replace,
dislocated curves, say, for instancg(x) and f(x—y). in the map of Eq.(2), f(x;—y;) by f(x;+y;). With this
Branches 1 and 4 are described t{), while branches 2 replacement, for different values of the control paramgter

Xi+1=F(Xi—VYi),  Yir1=CO(Xo—Xj), 2

wheref(x) is a “one-humped” function, the form of which
fletermines the bifurcation structure of the map when the

IV. MODEL MAP
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Following the notation introduced in Refl12], we
marked three points in cross sectianT andB are located
on the attractor borders wherelslsis in the middle. PoinB
is on the border nearest the saddle cycle, and when the index
n of C(" increases, poirB approaches the cycle. After one
revolution of the flow, the interva T is stretched and folded
by the flow, resulting in a line segment with a horseshoe
shape. This is made clear by comparing the position of points
B, M, andT in sectionsa andg. The associated topological
transformation of the attractor’s surface is characteristic of
homoclinic chaos induced by the creation of a homoclinic
tangency of the stable and unstable manifolds of a saddle
cycle[12]. The intersection points on the cross sections may
be classified according to their position. When they fall
within the BM interval, the orbit is looping around the
saddle cycle. On the contrary, when the intersections fall
within the MT interval, the orbit is in the reinjection phase.

FIG. 5. Projection of the LSA phase space on th®] plane  According to these two distinct processes of looping and
for the temporal evolution of th€® window reported in Fig. 1. reinjection, we may again codify the dynamics with the sym-
The linesa—h represent different positions for the section segmentpo|s L andR: the criterion is whether the flow crosses the
The corresponding intersection points with the flow are shown ifptervalsBM ,Or MT.
the boxes. The letter§ and B indicate the attractor’s borders and
M is the point in the center of the attractor.

B. Map dynamics

Rather than analyzing the phase-space dynamics in its
whole complexity, an associated map provides a simpler
L . . h X method to capture the essential features of the dynamics.
We finish this section with a word of caution about the - * "o Giterant ways to obtain a map for a given dynami-

dimensionality of the mag2). This map is two dimensional . )
in the sense that it cannot be represented by only one funé:-aI system[22], we adopt the standard technique of con

tion. However, this map dimension is not the dimension ofStrUCtmg a map from the intersections of the phase-space

the dynamical system. In effect the dynamical dimension of

the maps of Figs. @) and 4d) are obtained in close corre-
spondence with those of Figs(ad and 4b), respectively.

3004

the LSA and GD systems we have examined is one dimen-
sional because the points on the double-valued return maps 250 8.)
scatter along lines.
200+
~ 150
V. ANALYSIS ~ 400
A. Phase-space dynamics 504
The homoclinic chaotic behavior gives rise to a character- 0 .
istic structure in the dynamical evolution viewed in the as- 0 50 100 150 200 250 300
sociated phase space. This structure is evidenced by the con- r;
formation of the strange attractor and, in order to reveal it,
we dissect the phase-space dynamics of the LSA in a way
similar to that applied for the GD in Reff12]. Our topologi- %1 b)
cal analysis is implemented in Fig. 5, showing at the center PN
the ID projection onto thd D plane of the attractor corre- 804 H :
sponding to theC®® window. The flow is oriented in the !
clockwise sense. The saddle cycle in the phase-space de- - 701 ,'
scription originates the hole observed inside the attractor. We =l ; .
consider now the intersections between the LSA flow and a 601 s
Poincaresection plane rotating clockwise byn2in the ID 50/ ‘\\
plane about the poinD inside the hole. When this section .
plane is fully rotated through the attractor, the successive 50 60 70 80 90
intersections of the flow with the section plane evidence the L

stretching and folding mechanisms of the attractor and how

the flow is reinjected into itself. The lines in Fig. 5 labeled  FiG. 6. () Poincaremapr,.; vs r; for the LSA simulation
a-h represent different positions for the cross-section planegonstructed from the intersections of the phase-space flow with the
The corresponding intersection points with the flow aresection plane of Fig. 5. (b) Return time mag;,; vst; computed
shown in the boxes surrounding the projection of the attracin the phase-space description of the LSA, starting from segtion
tor. of Fig. 5.
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FIG. 7. Return times$; against the respective starting positign
on the cross section that yields a single-valued return timegor FIG. 8. Return time maps computed in the phase-space descrip-
the LSA and(b) the GD. Time is measured ins. tion of the GD. The return times were measui@u us) from a

flow with a section plane. Because of dissipation, the inter-section equivalent téa) sectiona of Fig. 5 and(b) sectiong of

sections of the flow with the section plane accumulate almost'd >

on a one-dimensional manifold, as in Fig. 5. From the vari- we now elaborate on the meaning of the cross section
ous cross sections there, the analysis is straightforward fatom which we obtain a single-valued return time map. For
section a, where the intersection points scatter along athis purpose, for both LSA and GD, we plot the return times
straight line. Parametrizing the position of the intersectiont starting from cross sectiom against the respective starting
points with a distance along this line (=0 corresponds to positionsr. The relation betweenandr, shown in Figs. 7a)

I.), we construct from the successivg intersections the and 7b), respectively, for the LSA and the GD is monotonic
Poincaremapr, vsr . of Fig. 6@). This map presents no and composed of two straight segments with different slopes
double-valued structure. Passing to the map derived from thend very similar in shape for both the LSA and GD. Con-
return time and computing the return times on the basis oerning that particular cross section, the monotonic increase
the same sectioa of Fig. 5, we arrive at a double-valued of t with r indicates that an orbit evolving on the attractor’s
RTRM very similar to that of Fig. (b). For other sections, outer border has a larger return time than a trajectory moving
we also obtain double-valued return time maps. Howeverinside the attractor. This behavior arises because the trajec-
initiating clockwise from sectioa, we have noticed that the toy loop has a larger extension when it departs from a larger-
two branches composing the double-branched structure be-position on the cross section. We verified that trajectories
gin to approach. In terms of the model map of Sec. IV, thedeparting from the section with coordinates contained
curves f(x) and f(x—y) tend to overlap. Thus we have within the low-slope segment perform a looping around the
found a special cross section, that denotedgbiyn Fig. 5,  saddle, while trajectories departing from the high-slope seg-
where the return times yields the single-valued map disment execute a reinjection. Therefore, due to the two slopes,
played in Fig. €b). Such a single-valued map is obtained we may conclude that the two processes, looping around the
only for sectiong. The single-valued one-dimensional mapssaddle and reinjection, have different time scales associated
of Figs. @a) and Gb) are dynamically equivalent because with them. For other cross sections a nonmonotonic and gen-
their respective coordinatesandt are related by a mono- erally double-valued relation betwe¢randr indicates that
tonic function. In other words, there is a homeomorphismthe times for reinjection and looping are not clearly sepa-
connecting those maps and therefore they yield the sameated.

dynamical information. For instance, coding the iterates that We may apply the previous procedure to the GD, as
fall on the left-hand side of the maps withand those falling shown in Fig. 8. The GD return time map corresponding to
on the right-hand side witR, iterating both maps we obtain sectiona of Fig. 1 in Ref.[12] is shown in Fig. &), while

the same sequence of symbalsandR. In this sense, both Fig. 8b) shows the GD map for a section of the phase space
maps give an adequate description of the dynamics of theorresponding to that for the LSA map of Figbh The
system. cross section associated with this GD map is located between
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the return times of the next loopings this difference is not so
evident and it may be seen from Fiq.a}athattayL;tg,Lz.

For the GD a similar result is shown in Figi9, with, at the
top, the return times computed from sectiarof Fig. 1 in
Ref.[12] and, at the bottom the correct return times obtained
from a section located between sectienandf of Fig. 1 in
Ref.[12]. The only difference with respect to the LSA case
is that for the GDt, g<tetr andta,L1>tef’Ll. However, for

t both the LSA and GD, whenever the flow performs a rein-
jection, the next return time is modified, and it does not
matter whether that return time corresponds to another rein-
jection or to the first looping around the saddle cycle. In any
case, the next return time will be “shorter” for the LSA and
“longer” for the GD. This confirms the choice of the math-
ematical sign in the map model of E®): f(x;—y;) for the
LSA and f(x;+Y;) for the GD. This analysis confirms that
for all cross sections, for instanca, where we obtain
double-valued time return maps, the computation of the re-
: : : turn times corresponding to each reinjection and to the next
trn tenL’ tef',_z turn (generally a_sr_nall_ Io_oping around the saddle, bu; some-
times another reinjectigris strongly affected by the mixing
between the two different time scales.

) . . We may restate the result above by computing the return
FIG. 9. Temporal evolution ofa) LSA intensity and(b) GD time TSS [8] to any cross section of Fig. 5, considered ge-

current showing the return times for reinjection and looping com-nericall asS. as the closed line intearal of the reciorocal of
puted from two cross sections in the flow. The meaning of the y ! 9 p

subscripts in the time variables is defined in the text. the velocityG along the orbitX departing fromx; on'S back
to S

sectionse andf of Fig. 1 in Ref.[12]. The map of Fig. &)

is not exactly single valued, but certainly it does not have the cs .~ GX(x)

double-valued structure of the map from Figa)8 It is not ™= jg dX(Xl)m- (©))

exactly single valued probably because of the strong influ- (X1)

ence of noise in the phase-space region where the cross sec- .
tion is applied. In effect, that region is reconstructed mainlyDepending on the choice af, X(x;) corresponds either to a
from a low-intensity part of the measured signal, thereforgeinjection loop or to a small looping around the saddle
with a large noise and a low signal-to-noise ratio. The prescycle. The different time scales for reinjection and small
ence of noise can be detected by the thickness of the md@opings are responsible for a different behavior of the ve-
branches. locity G(X): Ggr(X) along the reinjection orbit an, (X)

In order to obtain single-value time return maps it is re-for the loopings around the cycle. We verified that
quired to use the proper cross sections of the phase spagg (X)>G, (X) for both the LSA and GD.
where the reinjection process begins or where it ends. For the  considering now the example of the LS4 similar result
LSA data this happens for sectignof Fig. 5. To clarify this || hold for the GD) we may express the return times cor-
point, Fig. 9a) shows, for the time evolution of the LSA responding to a reinjection and to the following first small

intensity, the return times computed from sectpiion the looping, when computed from sectiay) respectively, as
bottom of the figurg and the return times computed from

sectiona (on the top of the figune with the subscriptg and Gr(X)

a identifying the respective cross sectiofs.refers to the tgr=TR%= § AX— 4
reinjection and_ to the looping around the saddle cycle. Due ' |GR(X)|?

to the key role played by sectiap ty r expresses the “cor-

rect” duration of the reinjection process, whilg  repre- and

sents the correct time associated with the first turn around the o
saddle cycle. For sectioa the corresponding return times - G (X)
.. L . . . . t :Tg,g: . (5)

for reinjection and first looping are defined in the top part of gL~ 'L |é ()?)|2
Fig. 9@). From the figure it may be verified thaf g>tg & L

n < . This differen ri f the mixin . .
? dta'L_l fary sd _e ence arses be;gusg ofthe gFor the return times computed from secti@mwe have
in sectiona of the two time scales for reinjection and loop-
ing. Such a mixing is visible in the evaluationtqul, which G (%) Ga(X)
begins before the end of the reinjection. The reinjection time tar=Tg%= f d)*(f—e + f d *aR—*
tar is larger than the correct valugy(z) at the expense of ' IGL(X)|? |GR(X)?
the time measured for the first looping after reinjection
(ta,Ll), which is then smaller than the correct vatggl. For and

(6)
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FIG. 10. Multibranched return maps obtained for the LSA from inal lued ltib hed fi b
the branch with negative slope in the respective map&ofig. _ Flf'f 11 Sr']ng e-value mutld_ranc € o tl(ms)e r_et(;Jrn mfap;]s ob-
6(a), (b) Fig. 1(b), and(c) Fig. &(h). tained for (a) the LSA corresponding to th€™ window of the

numerical analysis of Fig. Xb) the experimental LSA data of the
o o C® window of Fig. 3b), and(c) the GD experimental data of Fig.
an . Ggr(X) . GL(X) 4(b) corresponding to the® regime. Times are measureds in
t =T/%= | dX—=—=—=+ | dX——=—. (7) b d
al; Ly > (b) and(c).
| | [GL(X)|

obtained for all cross sections excapts explained by this
The integrals of Eq(6) are not equivalent to those of E@) ! I Xeepis explal y

behavior.
because the paths considered in the integration are distinct in

In Ref. [8] the equivalence between the return maps for
each case. Indeed, in addition to the dependence of the retUfla variabler and the time of flightt was based on the
time on the velocity Gr(X) or G_(X), it is important to  existence of a continuous and invertible functional relation
notice that the computation of the return time in E@8.and  t=F(r) linking these variables. In our case the equivalence
(7) is mainly determined by the path extension. Thereforepetween the particular RTRM of sectigr{Fig. 6(b)] and the

the previously mentioned discrepancy in the inequalitiesstandard Poincarmap of sectiora [Fig. 6a)] [23] is guar-
(i.e. tyr>1g g for the LSA andt, r<terr for the GD now  anteed by a monotonic function relating their respective co-
may be explained in terms of differences in the path extenprdinatest andr. This monotonic functional relation exists
sion for the reinjection and the loopings in the LSA and thepecause there are no foldings in the flow between sectjons

GD. ] o anda.
For any cross section other thgra result similar to that

for a [Egs. (6) and (7)] will be obtained. Therefore, in the iib hed

computation of the return times associated with such section €. Multibranched map

plane, there is a mixing between the reinjection process and Because multibranched return maps represent a secure
the small looping behavior that is not present in the returridentification of the presence of homoclinic chaos in a sys-
times computed from sectiog [Egs. (4) and (5)]. To sum tem([8,9], we have examined how to derive those maps from
up, the origin of the double-valued return time return mapghe data presented above. For the LSA numerical analysis, a
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multibranched return map is obtained from the map of FigRTRM'’s represents an artifact generated by an inadequate
6(a) by retaining only the; (the abscissas of the graphat  choice of the cross section. Owing to such inadequate choice,
lie on the branch with negative slope. From them we con-€ach return time measured following a reinjection process is
struct the map; vsr;,, displayed in Fig. 1(). Adopting  improperly sampled and we construct a map on the basis of
the same or any similar procedure for the RTRM of Fig.return times with modified values. We have verified that the
1(b), we obtain the map of Fig. 10). It is obvious that the inadequate cross section in the phase space gives rise to a
double-valued structure of the time return map is also preserffouble-valued structure in the return maps derived from both
in this multibranched RTRM because each branch is doublf'€ LSA and GD. We have also verified that there is one
valued. On the contrary, starting from the single-valuedSpeC'f'C cross section that, on the contrary, yields a single-
RTRM of Fig. 6b) and adopting the same procedure wevalued return time map. Within the phase-space evolution,

obtain the single-valued multibranched RTRM shown in Fig-f;r}'?eci?gitf)icgﬂ“sensﬂ.;mhf :Jnor;jeﬁ/llz)eigNereer::E; m?r::igan::qs
10(c). However, in order to obtain this last map, it is again J hings. P Y P

. : ticular cross section better identifies the end of a small loop-
necessary to deal with the phase-space representation.

L . ! _ ing and the beginning of a reinjection. The dependence of the
In the derivation of the mult|t_)ranched RTRM_S of FigS. time return map on the choice of the cross section permits us
10(b) and 1Qc) only the retum times corresponding 10 the ;, egtaplish where in the phase-space flow the reinjection

reinjections have been considered. Therefore, these maps Hfocess begins and where it ends.

equivalent to the TFRM'’s derived in RéB]. The reinjection Both the double-valued RTRM'’s derived from the tempo-
return times are the abscissas of the negative slope branchgg oy olution of a dynamical variable and the phase-space
of the double-valued return time maps. However, becausﬁnalysis for the LSA and GD systems have evidenced that

homoclinic chaos properties are encoded not only in the glofo; the measured return time each time a reinjection takes
bal aspects of the flowreinjection but also in local aspects pjace the following return time will be modified. This con-

(loopings around the saddle cygliomoclinic chaos should ection between measured consecutive return times is oppo-
be characterized not only from the reinjection times but alsgjie for the LSA to that for the GD: After a reinjection, the
from the return times following each reinjection. By sam- neyt return time will be shorter for the LSA and longer for
pling only the return times following each reinjection we yhe Gp. This connection between the successive return times
have the advantage that all of them are affected by the MiXxzyses the double-valued structure in the RTRM’s. In turn,

ing process discussed above. Therefore, a map constructggnsigering the TFRM, an improper determination of the re-
from these return times should not present a double-valueghjaction time gives rise also to a double-valued structure.

structure. This indeed happens, as may be seen in Fig. 11 for tpq recipe of obtaining single-valued RTRM's and the

the LSA, (a) in the numerical resultsb) in the experimental  rg|ated multibranched maps directly from the temporal evo-
results, andc) for the GD. The multibranched RTRM'S of |4ion of a dynamical variable requires one to measure the

Fig. 11 are slightly different from those of Figs. @and e times starting from a very specific cross section in the
10(c). Now the varlous.branches a}ccumulate at the bottom.othalse space. For the LSA and GD experimental data files
the left corner, but this has no influence on the symboliGyestigated in this work and in most experimental investi-
coding necessary for the characterization of homoclinigyations, the signal-to noise ratio is not large enough to re-
chaos. The recipe developed above of obtaining singlezgnstryct the phase space with the required precision. To
valued multibranched maps works for retumn time maps obgyercome this problem, we achieved the major contribution
tained either from the phase—space description or directls o,r work: The single-valued multibranched RTRM’s have
from the temporal evolution. been derived directly from the temporal evolution of the sys-
tem without dealing with the phase space. The recipe is very
VI. CONCLUSION simple and easy to implement: It consists in considering only
Homoclinic chaos for the LSA and GD manifests itself as"€tUM times following reinjections. These return times are all
the connection of two different dynamical mechanisms: the?iected in the same way by the mechanism presented above,

o : .~and from them a different kind of single-valued multi-
reinjection and the looping around the sadde cycle. The in anched map is constructed. The identification of the multi-

terplay of these two processes determines the properties Of -
hor%o)élinic chaos Tﬁese properties may be cﬁargcterize%amhed structure, the hallmark of homoclinic chaos, start-
: ng from the double-valued map is then possible, even in

through maps obtained from the dynamical systems and!

lyzed. We characterized homoclinic chaos from RTRM’s Ob_n_cns:er slystgms(eT?ba ef%”g?_gs:, oe In bcondclu_smcr;,d_
tained directly from the temporal evolution of a dynamical single-valued muftibranche S may be derived di-

variable intensity for the LSA, current for the GDwithout rectly from the temporal evolution of the system without the

the need of reconstructing the phase space. Because of tnged to deal with the phas? space. Thefe“"_rez RTRM's are
inherent problems associated with the reconstruction of th&veII suited for the characterization of homoclinic chaos.
phase space, return time magsther RTRM’'s or TFRM'$
could represent the preferable choice to characterize the ho-
moclinic chaos dynamics in experimental data series. These A.R.Z., T.B., and P.A. acknowledge support from the
maps often present a double-valued structure, as shown Brazilian agencies CNPq, CAPES, and FAPERGS. AR.Z
this paper for the LSA and the GD. and P.A. thank M. W. Beims and P. Glorieux for useful
Examining the return times associated with different crossliscussions. Part of this investigation was performed by
sections in the phase-space flow description of the systemB, A. while visiting the Dipartimento di Fisica, Universiti
we have concluded that the double-valued structure of th@isa.
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