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Characterization of homoclinic chaos through double-valued return time maps
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3Unitá INFM, Dipartimento di Fisica, Universita` degli Studi di Pisa, Piazza Torricelli 2, I-56126 Pisa, Italy

~Received 6 August 1997!

For a laser with a saturable absorber~LSA! and for a subnormal glow discharge~GD!, both displaying
homoclinic chaos, it is shown that double-valued curves in the return time maps, reconstructed from the time
evolution of appropriate variables, are related to different time scales associated with the two mechanisms
present in the respective chaotic attractors: the escape from an unstable saddle cycle and the reinjection
process. For the LSA the investigation is performed numerically on a 3-2 molecular level model and the results
are compared with experimental ones obtained from a CO2-OsO4 LSA system having the laser frequency
detuning as the control parameter. The analysis is complemented with experimental results from the GD. For
both systems we show how to obtain single-valued multibranched return time maps starting from double-
valued return time maps, enabling the characterization of homoclinic chaos.@S1063-651X~97!10712-7#

PACS number~s!: 05.45.1b, 42.65.Sf, 52.80.Hc
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I. INTRODUCTION

In the investigation of nonlinear dynamical systems,
homoclinic orbits have assumed a great importance bec
their presence is associated with a chaotic behavior. T
presence has been examined in several different sys
such as~i! the thermokinetics of hydrocarbon oxidation@1#,
~ii ! lasers with electronic feedback@2,3#, ~iii ! lasers with
saturable absorbers~LSA’s! @4#, and ~iv! glow discharge
~GD! @5#. All these systems display a dynamical configu
tion determined by a homoclinic orbit to a periodic motio
The connection between homoclinic orbits to a periodic m
tion and the chaotic behavior has been well established t
retically @6#. A widely employed technique to characteriz
homoclinic chaos consists in deriving from the chaotic flo
in the phase space an associated map. This derivation ma
accomplished in several ways and we will denote generic
the resulting map as a Poincare´ map or return map displaying
the features that enables the identification of homocli
chaos. This technique is not always straightforward, part
larly in experimental situations, due to the difficulties of r
constructing a phase space from the variable measured i
experiment. Moreover, some noise is always superimpo
on the experimental signal, so that the phase-space re
struction process may be blown out and the derivation of
dynamical informations from this reconstructed space
comes troublesome.

A secure identification of the presence of homoclin
chaos is obtained when a multibranched return map is
rived from the dynamical behavior@7#; the search for tha
multibranched return map has been performed for the L
analyses in Refs.@8,9#. An alternative approach to establis
the presence of homoclinic chaos is based on the symb
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analysis as applied to the LSA in Refs.@10,11# and for the
GD in Ref.@12#, with the horseshoe template@13# underlying
the dynamics of both the LSA and GD.

Time return maps have been used often as a very suit
method to characterize chaotic dynamics in experime
data series because they may be obtained directly from
measured variable without the need of reconstructing
phase space. Homoclinic chaos consists of a reinjec
mechanism connected to an unstable looping behavior. C
sidering this dynamical configuration, those maps may
classified in two distinct classes: time-of-flight return ma
~TFRM’s! @8# and return time return maps~RTRM’s! @14#.
The former are constructed uniquely from the time durat
of the reinjection oscillations, whereas the latter use the t
duration of all oscillations. In general, TFRM’s prese
single-valued curves, as expected for highly dissipative s
tems, but depending on how the reinjection phase is ide
fied, double-valued curves may appear. In turn, several
cent investigations in the LSA dynamics have sho
RTRM’s with double-valued structures in different a
proaches. Theoretical RTRM’s with double-valued curv
have been constructed from the numerical analysis of the
equations for the LSA@14#. Experiments using high-
resonance absorption in a LSA allowed one to constr
RTRM’s with double-valued curves directly from the temp
ral evolution of the laser intensity@15#. These results have
led us to associate a homoclinic chaos identification w
those double-valued return time maps.

It has been stated in Ref.@8# that in the LSA, as well as in
other systems showing homoclinic tangency to a sad
cycle, a TFRM may yield the same information as the Po
carémaps. In this paper the equivalence between a RT
and a Poincare´ map will also be analyzed, but the main pu
pose of this work is to analyze in more detail the structure
RTRM’s with double-valued curves for the dynamics of tw
nonlinear systems: the LSA and GD. The common feat
between these physically different systems is the presenc
288 © 1998 The American Physical Society
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57 289CHARACTERIZATION OF HOMOCLINIC CHAOS . . .
a homoclinic orbit to a saddle cycle, which determines th
dynamical evolutions. Our goal is to examine how the
quence of iterations on the maps evolves and which is
mechanism responsible for the double-valued structures.
analysis starts from the numerical integration of the differ
tial equations for the LSA. We derive RTRM’s from the tim
evolution of the laser intensity for different values of a LS
control parameter and then investigate thoroughly the
quence of the iterations on these maps. The study of th
sequences enables us to develop a map model that acc
for the iteration sequences observed in both the LSA
GD. Furthermore, this model suggests that the double-va
maps are obtained when the dynamics of the analyzed
tems is an interplay of two separate processes: reinjec
and the looping around the saddle cycle, which represen
phase-space evolution associated with the homoclinic o
to a saddle cycle. As a major result of our work, we ha
found that exactly the interplay between these two pha
leads to the double-valued shape of the maps. The p
space of the LSA and the GD supports our statement tha
double-valued curves in the RTRM’s are related to how
reinjection and the looping are connected. For both the L
and GD the shape of the RTRM depends on the choice of
cross section used in the phase space to obtain the map
cross sections lead to a double-valued structure except
specific cross section, where reinjection and looping
clearly separated and which supports single-valued st
tures. All the results derived from the numerical analysis
the LSA are confirmed experimentally for both the LSA a
GD. Between these systems only a small difference ex
related to the appearance of the double-valued structure,
this difference is also analyzed within the map model.
nally, we show how to obtain single-valued multibranch
RTRM’s starting from double-valued RTRM’s. From a pra
tical point of view, it is desirable to derive the single-valu
maps directly from the ‘‘measured’’ signal because then
may overcome the noise-associated problem of reconst
ing the phase space. The procedure for obtaining sin
valued multibranched RTRM’s demonstrates how to der
the properties of homoclinic chaos encoded in the dou
valued maps.

Section II describes the LSA model and the appearanc
chaos in this system. To characterize homoclinic chaos
employ the RTRM’s, whose derivation will be analyzed
Sec. III for the simulation and the experimental data on
LSA and for the experimental results for the GD. Becau
the structure in the RTRM’s is related to the sequence of
iterations in the flow dynamics, we have developed an or
nal model that reproduces the observed double-val
RTRM’s, as presented in Sec. IV. An analysis of the pha
space dynamics and the related RTRM dynamics is p
sented in Sec. V for the LSA and the GD. Section VI co
cludes our work.

II. LSA MODEL AND HOMOCLINIC CHAOS

We use the 3-2 molecular level model coupling both
gain and absorber media for the LSA, introduced by Zamb
@16# and analyzed in Ref.@14#:
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dI

dt
52~2AD1 ĀD̄11!I ,

dD

dt
5g~12D2DI !2b~D1S!,

dS

dt
52g1~D1S!, ~1!

dD̄

dt
52 ḡ ~D̄211aD̄I !,

whereI , D, andD̄ represent the laser intensity, the popu
tion of the laser gain medium, and the population of t
absorber medium, respectively;S is an auxiliary variable as-
sociated with the pumping mechanism in the amplifier. T
parametersA and Ā represent the normalized unsaturab
laser gain and absorption, respectively, whilea is the relative
saturability of the two media. The constantsg, g1, and ḡ

represent the decay rates of the laser variablesD, S, andD̄,
respectively, whileb is a coupling constant. The system
equations~1! is dimensionless and the timet is normalized to
the cavity decay rate.

Homoclinic chaos is a short term for the complex dyna
ics that may arise when a system in its phase-space des
tion is near a homoclinic orbit@17#. The LSA homoclinic
behavior is evidenced by oscillations on the laser intensiI
displaying an alternating periodic-chaotic~APC! sequence,
i.e., an alternation between periodic and chaotic patterns b
characterized by large- and small-amplitude oscillations.
have simulated this behavior by fixing the LSA parameters
Ā51.0,a50.259 48,g58.031024, b50.099,g150.0998,
and ḡ 50.0769 with the initial conditionsI (0)542.0,
D(0)51.0/43.0,S(0)521.0/43.0, andD̄(0) 51.0/9.5 and
varying the control parameterA. An example of the time
evolution for the laser intensityI in the chaotic regime a
A544 is shown in Fig. 1~a!. Using the notation introduced
elsewhere@4#, we will denote the regime of periodic oscilla
tions by P(n), where n indicates the number of small
amplitude oscillations following a large-amplitude one. T
chaotic signals are denoted byC(n). The transition fromP(n)

to C(n) occurs through a sequence of period-doubling bif
cations. TheC(n) to P(n11) transition occurs through a tan
gent bifurcation. The accumulation point of the success
bifurcations corresponds to the homoclinic orbit. The pr
ence of this orbit in the phase space is the key requirem
for the occurrence of homoclinic chaos. A homoclinic orb
is an orbit biasymptotic to an invariant set in the phase sp
for t→6` , as a saddle focus or a saddle cycle. In the L
a saddle cycle is involved. It is not necessary to reach
control parameter values corresponding to a homoclinic o
in order to observe chaos, and chaotic behavior is expe
for parameters close to those of the homoclinic orbit@6#.

In the phase-space description of the system of equat
~1!, there are two fixed points: a saddle nodeI05

(I 0 ,D0 ,S0 ,D̄0) and a saddle focusI15(I 1 ,D1 ,S1 ,D̄1).
Different dynamical configurations are established accord
to the presence of orbits coupling or not coupling these t
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290 57A. R. ZENI et al.
points@9#. For the situation in which the LSA approaches th
homoclinic orbit to the saddle cycle, the two fixed points ar
not coupled andI0 does not interfere in the dynamics. The
LSA parameter values reported previously correspond
these conditions. In Fig. 2 the chaotic orbit corresponding
A544.0 is projected onto the space (I ,D,S). We observe
that the orbit performs some loops departing with a spira
type motion from a hole within the phase-space portrait, th
moves far from the hole, and finally is reinjected back ne
it. Therefore, the phase-space dynamics consists of an in
play of an unstable behavior~the spiraling around the hole in
the phase-space diagram! and a stable one~the reinjection
loop!. Both are connected to the phase-space hole, inside
which the saddle cycle is supposed to be present. We ha
confirmed this presence by locating the cycle with the aid
the procedure developed by Sparrow@18#. Notice that the
phase-space hole contains the fixed pointI1 and that all the
trajectories remain very far from the fixed pointI0, the I 5I 0
plane being an invariant surface from which the orbits a
repelled@4#. With the change of the control parameterA, the
phase-space orbit approaches the orbit homoclinic to t
saddle cycle. The dynamical transformations induced by th
process are manifested through the APC sequence.

III. RETURN TIME RETURN MAPS

A. Numerical analysis for the LSA

RTRM’s may be derived starting from the temporal evo
lution of the laser intensityI by considering the intersection

FIG. 1. ~a! Temporal evolution of the LSA intensity, derived
from the numerical analysis, for theC(5) window atA544.0. The
straight line represents the surfaceI 5I const. ~b! Return time map
for the same parameter values with few iterations marked on t
map.R andL refer to the symbolic coding used in the text.
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with the surface of constant intensity that cuts all oscil
tions, with I 5I const and dI/dt,0 @19#, as shown in Fig.
1~a!, and then determining the timest i between successiv
intersections. All the derived RTRM’s, i.e., the plott i vs
t i 11, present a double-valued structure. The return map
the chaoticC(5) window atA544 is shown in Fig. 1~b!. Due
to the crossing of the branches in the top of the doub
valued maps~clearly visible in the figure!, these double-
valued maps are not a proper embedding of the dynam
@20#; still we will show how to use them for the characte
ization of homoclinic chaos. In Fig. 1~b! we have identified
four branches labeled 1, 2, 3, and 4. We consider as the
iteration the one indicated by an arrow on branch 1 of
map@Fig. 1~b!# and the corresponding return timest1 andt2
are identified in Fig. 1~a!. Branch 1 is related to the first an
second loops around the saddle cycle. The iterations ass
ated with the subsequent loops around the cycle fall
branch 2. Therefore, branches 1 and 2 are related to the s
oscillations; the first iteration on branch 2 will depend on t
position of the previous iteration on branch 1. In oth
words, branch 2 approaches the bisectrix as much as
iteration on branch 1 allows. Following the iterations asso
ated with the loopings around the saddle cycle, there com
reinjection loop iteration that always falls on branch 3. T
next iteration can fall either on branch 4 or on branch 1
the orbit makes only one reinjection loop, then the iterat
falls on branch 1. Otherwise, after the occurrence of o
more reinjection loop, the iteration goes to branch 4. Fig
1~a!, betweent5600 and 800, shows three successive re
jection loops that correspond to a sequence of three iterat
on branch 4 before the iteration returning to branch 1.
usual, there is only one loop of reinjection between each
of loops around the saddle cycle; branch 4 is visited mu
less frequently than the others. The iterations falling

e

FIG. 2. Excerpt of aC(5) chaotic orbit, projected onto the spac
(I ,D,S), for the LSA model, corresponding toA544.0. The other
parameters are the same as in the text. The saddle node at co
nates (I 1 ,D1 ,S1) is indicated. Only theI 050 component of the
saddle node appears in the figure becauseD0.45D1 and
S0.45S1 .
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FIG. 3. Return time maps for experimental LSA data at a discharge current of 9.0 mA.~a! D5213.4 MHz, corresponding to theC(2)

regime;~b! D5214.5 MHz, corresponding to theC(3) regime. Times are measured inms. Also shown is the evolution of the map~2! for
c50.2 varying the parameterl: ~c! l51.9 and~d! l52.05.
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branches 1 and 2 have as abscissast i corresponding to a
looping around the saddle cycle, while the iterations
branches 3 and 4 have abscissas corresponding to reinje
times.

Looking to the abscissas of the iterations in Fig. 1~b!, we
may introduce the following symbolic coding. We associa
the labelL with the two ascending branches~1 and 2! of the
return map where the phase-space trajectory loops aroun
saddle cycle. We associate the labelR with the iterations on
the descending branches~3 and 4! where the system per
forms a reinjection. With this coding we can restate the p
vious description of the iteration sequence. The iterations
on branch 1 or 4 when the former iteration has anR-labeled
abscissa; otherwise the iterations fall on branch 2 or
Therefore, branches 1 and 4 are linked together, as
branches 2 and 3.

B. Experimental results for the LSA

The RTRM’s for experimental LSA data sets shown
Figs. 3~a! and 3~b! are obtained following the prescriptio
presented previously. The dynamical variable analyzed is
time evolution of the output intensity of a single-mode CO2
LSA operating on the 10P(12) line and containing 225
mTorr of OsO4 as the molecular gas absorber. As the la
control parameter we used the laser frequency detuningD)
modified by piezoelectric ceramics within a range of
MHz, which corresponds to one longitudinal mode of t
LSA cavity. The laser frequency tuning was measured fr
the beat note between the output LSA laser field and
f
ion

e

the

-
ll

.
re

e

r

e

output laser field of a waveguide CO2 laser stabilized upon
the Lamb dip of the 4.3-mm fluorescence of the CO2 mol-
ecule. A more detailed description of the experimental se
has been reported elsewhere@15#. At fixed discharge current
by changing only the laser frequency tuning, the time evo
tion of the laser intensity evolved from the steady stateI1 to
theC(n) chaotic regimes. This dynamics has been underst
as a homoclinic tangency to a saddle cycle originated fro
Hopf bifurcation ofI1 @9#. The maps of Fig. 3 correspond t
different chaotic regimes observed at decreasing value
the laser frequency detuning. The map of Fig. 3~a! corre-
sponds toD5213.4 MHz, when the LSA operates in aC(2)

window, while at D5214.5 MHz the laser operates in
C(3) window @Fig. 3~b!#, the discharge current being fixed
9.0 mA. The spreading of the points in the transverse dir
tion is associated with the noisy fluctuations intrinsic to t
experiment. For both the chaoticC(n) windows, the RTRM’s
derived from the experimental record for the laser intens
show double-valued structures. The branches on the left
of the map maximum approach the bisectrix of the axes
increasing then value, i.e., as the system approaches
homoclinic orbit. This behavior is similar to that observed
the LSA numerical simulations, shown in Fig. 1~b!.

C. Experimental results for the GD

The GD is a nonlinear dynamical system presenting
dynamics quite similar to that of the LSA; indeed, for bo
systems the dynamics is modeled by a horseshoe temp
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FIG. 4. Return time maps for the GD experimental data corresponding to~a! the C(1) window and~b! the C(2) window. Times are
measured inms. Also shown are maps obtained with the model of Eq.~2! for c520.2, at~c! l51.8 and~d! l52.0.
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The GD, operating in the subnormal regime@21#, is fed by a
dc voltage source, whose voltageV is the control parameter
while the discharge currentI is monitored. Further details o
the GD setup have been reported elsewhere@5#. The ho-
moclinic behavior of the GD@22# is demonstrated by self
induced oscillations on the discharge’s current displaying
typical APC sequence. Also the sequence of symbols, in
duced as in Fig. 1~b!, resulting from the iteration of the re
turn map supports the presence of homoclinic chaos.
have constructed GD RTRM’s for two chaotic time evol
tions corresponding to theC(1) and C(2) windows, respec-
tively, as shown in Figs. 4~a! and 4~b!. A double-valued
structure is evident in both maps. However, the lengths
the two branches at the left of the map maximum are in
changed with respect to the LSA results, as it appears fro
direct comparison between Figs. 3~a! and 3~b! and Figs. 4~a!
and 4~b!. This indicates that the GD sequence of iterations
different from the LSA one, concerning the order in whi
the map branches are visited.

IV. MODEL MAP

In order to explore how the sequence of iterations de
mines the double-valued structure of the RTRM’s, we ha
developed a map model that accounts for the iterati
mechanism in both the LSA and GD. We notice that in F
1~b! either branch 1 plus branch 4 or branch 2 plus branc
has a bell-shaped appearance that can be described by
ticular function f (x), wherex represents a return time. Thu
the return map seems to be the superposition of two slig
dislocated curves, say, for instance,f (x) and f (x2y).
Branches 1 and 4 are described byf (x), while branches 2
e
o-

e

f
r-
a

s

r-
e
s
.
3
par-

ly

and 3 byf (x2y). The jumping from one curve to the othe
depends on the abscissax of the iterations. More precisely
let xi be the abscissa of a generic iteration of the map. If
previous iteration has an abscissaxi 21 labeledR, then the
ordinate associated toxi will be given by f (xi); if xi 21 is
labeled L, then the ordinate ofxi will be f (xi2y). This
mechanism is described by the model

xi 115 f ~xi2yi !, yi 115cQ~x02xi !, ~2!

where f (x) is a ‘‘one-humped’’ function, the form of which
determines the bifurcation structure of the map when
control parameter is changed.Q(z) is the Heaveside step
function, which equals 1 whenz.0 and 0 ifz,0. The shape
of f (x) is not relevant to account for the double structure
the map, and we have chosenf (x)5lxexp(12x2), wherel
represents the control parameter. In Eq.~2! x0 is the point of
maximum value for the functionf (x) and the value ofyi
controls the jumping from one curve to another. To illustra
the properties of our model, the iterations off (x) for two
different control parameterl at c50.2 are presented in Figs
3~c! and 3~d!. Regarding the double curve structure, th
correspond, respectively, to the results of Figs. 3~a! and 3~b!.
The outcome is that the above model accounts for the s
sequence of iterations as observed in both the nume
simulation and the experimental results for the LSA.

A closer inspection of the successive iterations shows
the GD iteration scheme is similar to the LSA one, exce
that in order to model the GD iterations, we need to repla
in the map of Eq.~2!, f (xi2yi) by f (xi1yi). With this
replacement, for different values of the control parameterl,
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the maps of Figs. 4~c! and 4~d! are obtained in close corre
spondence with those of Figs. 4~a! and 4~b!, respectively.

We finish this section with a word of caution about th
dimensionality of the map~2!. This map is two dimensiona
in the sense that it cannot be represented by only one fu
tion. However, this map dimension is not the dimension
the dynamical system. In effect the dynamical dimension
the LSA and GD systems we have examined is one dim
sional because the points on the double-valued return m
scatter along lines.

V. ANALYSIS

A. Phase-space dynamics

The homoclinic chaotic behavior gives rise to a charact
istic structure in the dynamical evolution viewed in the a
sociated phase space. This structure is evidenced by the
formation of the strange attractor and, in order to reveal
we dissect the phase-space dynamics of the LSA in a w
similar to that applied for the GD in Ref.@12#. Our topologi-
cal analysis is implemented in Fig. 5, showing at the cen
the ID projection onto theID plane of the attractor corre-
sponding to theC(5) window. The flow is oriented in the
clockwise sense. The saddle cycle in the phase-space
scription originates the hole observed inside the attractor.
consider now the intersections between the LSA flow an
Poincare´ section plane rotating clockwise by 2p in the ID
plane about the pointO inside the hole. When this sectio
plane is fully rotated through the attractor, the success
intersections of the flow with the section plane evidence
stretching and folding mechanisms of the attractor and h
the flow is reinjected into itself. The lines in Fig. 5 labele
a–h represent different positions for the cross-section pla
The corresponding intersection points with the flow a
shown in the boxes surrounding the projection of the attr
tor.

FIG. 5. Projection of the LSA phase space on the (I ,D) plane
for the temporal evolution of theC(5) window reported in Fig. 1.
The linesa–h represent different positions for the section segme
The corresponding intersection points with the flow are shown
the boxes. The lettersT andB indicate the attractor’s borders an
M is the point in the center of the attractor.
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Following the notation introduced in Ref.@12#, we
marked three points in cross sectiona: T andB are located
on the attractor borders whereasM is in the middle. PointB
is on the border nearest the saddle cycle, and when the in
n of C(n) increases, pointB approaches the cycle. After on
revolution of the flow, the intervalBT is stretched and folded
by the flow, resulting in a line segment with a horsesh
shape. This is made clear by comparing the position of po
B, M , andT in sectionsa andg. The associated topologica
transformation of the attractor’s surface is characteristic
homoclinic chaos induced by the creation of a homocli
tangency of the stable and unstable manifolds of a sad
cycle @12#. The intersection points on the cross sections m
be classified according to their position. When they f
within the BM interval, the orbit is looping around th
saddle cycle. On the contrary, when the intersections
within the MT interval, the orbit is in the reinjection phas
According to these two distinct processes of looping a
reinjection, we may again codify the dynamics with the sy
bols L and R; the criterion is whether the flow crosses th
intervalsBM or MT.

B. Map dynamics

Rather than analyzing the phase-space dynamics in
whole complexity, an associated map provides a simp
method to capture the essential features of the dynam
From the different ways to obtain a map for a given dynam
cal system@22#, we adopt the standard technique of co
structing a map from the intersections of the phase-sp

FIG. 6. ~a! Poincare´ map r i 11 vs r i for the LSA simulation
constructed from the intersections of the phase-space flow with
section planea of Fig. 5. ~b! Return time mapt i 11 vs t i computed
in the phase-space description of the LSA, starting from sectiog
of Fig. 5.
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flow with a section plane. Because of dissipation, the in
sections of the flow with the section plane accumulate alm
on a one-dimensional manifold, as in Fig. 5. From the va
ous cross sections there, the analysis is straightforward
section a, where the intersection points scatter along
straight line. Parametrizing the position of the intersect
points with a distancer along this line (r 50 corresponds to
I1), we construct from the successiver n intersections the
Poincare´ map r n vs r n11 of Fig. 6~a!. This map presents no
double-valued structure. Passing to the map derived from
return time and computing the return times on the basis
the same sectiona of Fig. 5, we arrive at a double-value
RTRM very similar to that of Fig. 1~b!. For other sections
we also obtain double-valued return time maps. Howev
initiating clockwise from sectiona, we have noticed that the
two branches composing the double-branched structure
gin to approach. In terms of the model map of Sec. IV,
curves f (x) and f (x2y) tend to overlap. Thus we hav
found a special cross section, that denoted byg in Fig. 5,
where the return times yields the single-valued map d
played in Fig. 6~b!. Such a single-valued map is obtaine
only for sectiong. The single-valued one-dimensional ma
of Figs. 6~a! and 6~b! are dynamically equivalent becaus
their respective coordinatesr and t are related by a mono
tonic function. In other words, there is a homeomorphi
connecting those maps and therefore they yield the s
dynamical information. For instance, coding the iterates t
fall on the left-hand side of the maps withL and those falling
on the right-hand side withR, iterating both maps we obtai
the same sequence of symbolsL and R. In this sense, both
maps give an adequate description of the dynamics of
system.

FIG. 7. Return timest i against the respective starting positionr i

on the cross section that yields a single-valued return time for~a!
the LSA and~b! the GD. Time is measured inms.
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We now elaborate on the meaning of the cross sec
from which we obtain a single-valued return time map. F
this purpose, for both LSA and GD, we plot the return tim
t starting from cross sectiona against the respective startin
positionsr . The relation betweent andr , shown in Figs. 7~a!
and 7~b!, respectively, for the LSA and the GD is monoton
and composed of two straight segments with different slo
and very similar in shape for both the LSA and GD. Co
cerning that particular cross section, the monotonic incre
of t with r indicates that an orbit evolving on the attractor
outer border has a larger return time than a trajectory mov
inside the attractor. This behavior arises because the tra
toy loop has a larger extension when it departs from a larg
r position on the cross section. We verified that trajector
departing from the section withr coordinates contained
within the low-slope segment perform a looping around
saddle, while trajectories departing from the high-slope s
ment execute a reinjection. Therefore, due to the two slop
we may conclude that the two processes, looping around
saddle and reinjection, have different time scales associ
with them. For other cross sections a nonmonotonic and g
erally double-valued relation betweent and r indicates that
the times for reinjection and looping are not clearly sep
rated.

We may apply the previous procedure to the GD,
shown in Fig. 8. The GD return time map corresponding
sectiona of Fig. 1 in Ref.@12# is shown in Fig. 8~a!, while
Fig. 8~b! shows the GD map for a section of the phase sp
corresponding to that for the LSA map of Fig. 6~b!. The
cross section associated with this GD map is located betw

FIG. 8. Return time maps computed in the phase-space des
tion of the GD. The return times were measured~in ms! from a
section equivalent to~a! sectiona of Fig. 5 and~b! sectiong of
Fig. 5.
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sectionse and f of Fig. 1 in Ref.@12#. The map of Fig. 8~b!
is not exactly single valued, but certainly it does not have
double-valued structure of the map from Fig. 8~a!. It is not
exactly single valued probably because of the strong in
ence of noise in the phase-space region where the cross
tion is applied. In effect, that region is reconstructed mai
from a low-intensity part of the measured signal, theref
with a large noise and a low signal-to-noise ratio. The pr
ence of noise can be detected by the thickness of the
branches.

In order to obtain single-value time return maps it is
quired to use the proper cross sections of the phase s
where the reinjection process begins or where it ends. Fo
LSA data this happens for sectiong of Fig. 5. To clarify this
point, Fig. 9~a! shows, for the time evolution of the LSA
intensity, the return times computed from sectiong ~on the
bottom of the figure! and the return times computed fro
sectiona ~on the top of the figure!, with the subscriptsg and
a identifying the respective cross sections.R refers to the
reinjection andL to the looping around the saddle cycle. D
to the key role played by sectiong, tg,R expresses the ‘‘cor-
rect’’ duration of the reinjection process, whiletg,L1

repre-
sents the correct time associated with the first turn around
saddle cycle. For sectiona the corresponding return time
for reinjection and first looping are defined in the top part
Fig. 9~a!. From the figure it may be verified thatta,R.tg,R
andta,L1

,tg,L1
. This difference arises because of the mixi

in sectiona of the two time scales for reinjection and loo
ing. Such a mixing is visible in the evaluation ofta,L1

, which
begins before the end of the reinjection. The reinjection ti
ta,R is larger than the correct value (tg,R) at the expense o
the time measured for the first looping after reinjecti
(ta,L1

), which is then smaller than the correct valuetg,L1
. For

FIG. 9. Temporal evolution of~a! LSA intensity and~b! GD
current showing the return times for reinjection and looping co
puted from two cross sections in the flow. The meaning of
subscripts in the time variables is defined in the text.
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the return times of the next loopings this difference is not
evident and it may be seen from Fig. 9~a! that ta,L2

;tg,L2
.

For the GD a similar result is shown in Fig. 9~b!, with, at the
top, the return times computed from sectiona of Fig. 1 in
Ref. @12# and, at the bottom the correct return times obtain
from a section located between sectionse and f of Fig. 1 in
Ref. @12#. The only difference with respect to the LSA ca
is that for the GDta,R,te f,R and ta,L1

.te f,L1
. However, for

both the LSA and GD, whenever the flow performs a re
jection, the next return time is modified, and it does n
matter whether that return time corresponds to another r
jection or to the first looping around the saddle cycle. In a
case, the next return time will be ‘‘shorter’’ for the LSA an
‘‘longer’’ for the GD. This confirms the choice of the math
ematical sign in the map model of Eq.~2!: f (xi2yi) for the
LSA and f (xi1yi) for the GD. This analysis confirms tha
for all cross sections, for instance,a, where we obtain
double-valued time return maps, the computation of the
turn times corresponding to each reinjection and to the n
turn ~generally a small looping around the saddle, but som
times another reinjection! is strongly affected by the mixing
between the two different time scales.

We may restate the result above by computing the ret
time TS,S @8# to any cross section of Fig. 5, considered g
nerically asS, as the closed line integral of the reciprocal
the velocityGW along the orbitXW departing fromx1

W on S back
to S:

TS,S5 R dXW ~x1
W !

GW „XW ~x1
W !…

uGW „XW ~x1
W !…u2

. ~3!

Depending on the choice ofx1
W , XW (x1

W ) corresponds either to a
reinjection loop or to a small looping around the sadd
cycle. The different time scales for reinjection and sm
loopings are responsible for a different behavior of the
locity G(XW ): GR(XW ) along the reinjection orbit andGL(XW )
for the loopings around the cycle. We verified th
GR(XW ).GL(XW ) for both the LSA and GD.

Considering now the example of the LSA~a similar result
will hold for the GD! we may express the return times co
responding to a reinjection and to the following first sm
looping, when computed from sectiong, respectively, as

tg,R5TR
g,g5 R dXW

GW R~XW !

uGW R~XW !u2
~4!

and

tg,L1
5TL1

g,g5 R dXW
GW L~XW !

uGW L~XW !u2
. ~5!

For the return times computed from sectiona we have

ta,R5TR
a,a5E dXW

GW L~XW !

uGW L~XW !u2
1E dXW

GW R~XW !

uGW R~XW !u2
~6!

and

-
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ta,L1
5TL1

a,a5E dXW
GW R~XW !

uGW R~XW !u2
1E dXW

GW L~XW !

uGW L~XW !u2
. ~7!

The integrals of Eq.~6! are not equivalent to those of Eq.~7!
because the paths considered in the integration are distin
each case. Indeed, in addition to the dependence of the re
time on the velocity,GW R(XW ) or GW L(XW ), it is important to
notice that the computation of the return time in Eqs.~6! and
~7! is mainly determined by the path extension. Therefo
the previously mentioned discrepancy in the inequalit
~i.e., ta,R.tg,R for the LSA andta,R,te f,R for the GD! now
may be explained in terms of differences in the path ext
sion for the reinjection and the loopings in the LSA and t
GD.

For any cross section other thang a result similar to that
for a @Eqs. ~6! and ~7!# will be obtained. Therefore, in the
computation of the return times associated with such sec
plane, there is a mixing between the reinjection process
the small looping behavior that is not present in the ret
times computed from sectiong @Eqs. ~4! and ~5!#. To sum
up, the origin of the double-valued return time return ma

FIG. 10. Multibranched return maps obtained for the LSA fro
the branch with negative slope in the respective maps of~a! Fig.
6~a!, ~b! Fig. 1~b!, and~c! Fig. 6~b!.
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obtained for all cross sections exceptg is explained by this
behavior.

In Ref. @8# the equivalence between the return maps
the variabler and the time of flightt was based on the
existence of a continuous and invertible functional relat
t5F(r ) linking these variables. In our case the equivalen
between the particular RTRM of sectiong @Fig. 6~b!# and the
standard Poincare´ map of sectiona @Fig. 6~a!# @23# is guar-
anteed by a monotonic function relating their respective
ordinatest and r . This monotonic functional relation exist
because there are no foldings in the flow between sectiong
anda.

C. Multibranched map

Because multibranched return maps represent a se
identification of the presence of homoclinic chaos in a s
tem @8,9#, we have examined how to derive those maps fr
the data presented above. For the LSA numerical analys

FIG. 11. Single-valued multibranched time return maps o
tained for ~a! the LSA corresponding to theC(5) window of the
numerical analysis of Fig. 1,~b! the experimental LSA data of the
C(3) window of Fig. 3~b!, and~c! the GD experimental data of Fig
4~b! corresponding to theC(2) regime. Times are measured inms in
~b! and ~c!.
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multibranched return map is obtained from the map of F
6~a! by retaining only ther i ~the abscissas of the graph! that
lie on the branch with negative slope. From them we co
struct the mapr i vs r i 11 displayed in Fig. 10~a!. Adopting
the same or any similar procedure for the RTRM of F
1~b!, we obtain the map of Fig. 10~b!. It is obvious that the
double-valued structure of the time return map is also pre
in this multibranched RTRM because each branch is dou
valued. On the contrary, starting from the single-valu
RTRM of Fig. 6~b! and adopting the same procedure, w
obtain the single-valued multibranched RTRM shown in F
10~c!. However, in order to obtain this last map, it is aga
necessary to deal with the phase-space representation.

In the derivation of the multibranched RTRM’s of Fig
10~b! and 10~c! only the return times corresponding to th
reinjections have been considered. Therefore, these map
equivalent to the TFRM’s derived in Ref.@8#. The reinjection
return times are the abscissas of the negative slope bran
of the double-valued return time maps. However, beca
homoclinic chaos properties are encoded not only in the
bal aspects of the flow~reinjection! but also in local aspect
~loopings around the saddle cycle!, homoclinic chaos should
be characterized not only from the reinjection times but a
from the return times following each reinjection. By sam
pling only the return times following each reinjection w
have the advantage that all of them are affected by the m
ing process discussed above. Therefore, a map constru
from these return times should not present a double-va
structure. This indeed happens, as may be seen in Fig. 1
the LSA,~a! in the numerical results,~b! in the experimental
results, and~c! for the GD. The multibranched RTRM’s o
Fig. 11 are slightly different from those of Figs. 10~a! and
10~c!. Now the various branches accumulate at the bottom
the left corner, but this has no influence on the symbo
coding necessary for the characterization of homocli
chaos. The recipe developed above of obtaining sin
valued multibranched maps works for return time maps
tained either from the phase-space description or dire
from the temporal evolution.

VI. CONCLUSION

Homoclinic chaos for the LSA and GD manifests itself
the connection of two different dynamical mechanisms:
reinjection and the looping around the saddle cycle. The
terplay of these two processes determines the propertie
homoclinic chaos. These properties may be character
through maps obtained from the dynamical systems a
lyzed. We characterized homoclinic chaos from RTRM’s o
tained directly from the temporal evolution of a dynamic
variable~intensity for the LSA, current for the GD! without
the need of reconstructing the phase space. Because o
inherent problems associated with the reconstruction of
phase space, return time maps~either RTRM’s or TFRM’s!
could represent the preferable choice to characterize the
moclinic chaos dynamics in experimental data series. Th
maps often present a double-valued structure, as show
this paper for the LSA and the GD.

Examining the return times associated with different cr
sections in the phase-space flow description of the syste
we have concluded that the double-valued structure of
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RTRM’s represents an artifact generated by an inadeq
choice of the cross section. Owing to such inadequate cho
each return time measured following a reinjection proces
improperly sampled and we construct a map on the basi
return times with modified values. We have verified that t
inadequate cross section in the phase space gives rise
double-valued structure in the return maps derived from b
the LSA and GD. We have also verified that there is o
specific cross section that, on the contrary, yields a sin
valued return time map. Within the phase-space evolut
this cross section lies on the border between the mechan
of reinjection and small loopings. More precisely, this pa
ticular cross section better identifies the end of a small lo
ing and the beginning of a reinjection. The dependence of
time return map on the choice of the cross section permit
to establish where in the phase-space flow the reinjec
process begins and where it ends.

Both the double-valued RTRM’s derived from the temp
ral evolution of a dynamical variable and the phase-sp
analysis for the LSA and GD systems have evidenced
for the measured return time each time a reinjection ta
place the following return time will be modified. This con
nection between measured consecutive return times is o
site for the LSA to that for the GD: After a reinjection, th
next return time will be shorter for the LSA and longer f
the GD. This connection between the successive return ti
causes the double-valued structure in the RTRM’s. In tu
considering the TFRM, an improper determination of the
injection time gives rise also to a double-valued structure

The recipe of obtaining single-valued RTRM’s and t
related multibranched maps directly from the temporal e
lution of a dynamical variable requires one to measure
return times starting from a very specific cross section in
phase space. For the LSA and GD experimental data
investigated in this work and in most experimental inves
gations, the signal-to noise ratio is not large enough to
construct the phase space with the required precision.
overcome this problem, we achieved the major contribut
of our work: The single-valued multibranched RTRM’s ha
been derived directly from the temporal evolution of the s
tem without dealing with the phase space. The recipe is v
simple and easy to implement: It consists in considering o
return times following reinjections. These return times are
affected in the same way by the mechanism presented ab
and from them a different kind of single-valued mult
branched map is constructed. The identification of the mu
branched structure, the hallmark of homoclinic chaos, st
ing from the double-valued map is then possible, even
noisier systems~as a experimental one!. In conclusion,
single-valued multibranched RTRM’s may be derived
rectly from the temporal evolution of the system without t
need to deal with the phase space. Therefore, RTRM’s
well suited for the characterization of homoclinic chaos.
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