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Two-layer Benard-Marangoni instability and the limit of transverse and longitudinal waves
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The oscillatory instability of a Beard-Marangoni system composed of two liquid layers, of finite depth,
separated by a deformable interface is considered. We show that in the limit of large Galileo and Marangoni
numbers and small capillary numb@oundary layer approximatipntwo modes of high-frequency interfacial
excitation can be distinguished: transve(sapillary-gravity waves and longitudinal waves.
[S1063-651%98)02203-X

PACS numbd(s): 47.20.Dr, 47.35¢i

[. INTRODUCTION that correspond to essentially orthogonal oscillations of the
. : . deformable interface. The existence of longitudinal waves is
It is known that a temperatureoncentration gradient  jnyinsically related to the Marangoni effect by the tangential
applied orthogonally to a horizontal liquid layer can inducepgjance of momentum. Just as the capillary-gravity wave
instability of the motionless state, resulting in Steady Ce||U|a|keepS its identit%the oscillations are faster than their damp-
convection(monotonic instability or wave motion(oscilla-  ing) only if the Galileo number is large enough and the cap-
tory instability). Here we will restrict ourselves to the Ma- illary number is small enough, for the longitudinal wave we
rangoni mechanism of instabilifyl—3]. The role of the Ma- need the Marangoni number to be large eno(agid have an
rangoni (thermocapillary effect in Beard layers was appropriate sign Here we will understand the longitudinal
theoretically established by Pearspf]. For a layer with mode just in thigasymptoti¢ sense, although other interpre-
undeformable free surface and neglecting the properties dations also exist in the literature. Transverse and longitudi-
the overlying gas, he derived the condition for the onset onal waves at the interface separating two semi-infinitely deep
surface tension gradient-driven steady convection. As for odiquid layers were also studied by Velarde and ¢28-23.
cillatory instability, it does not exist in Pearson’s formula- _ The longitudinal waves were described by Lucassen-
tion, with an undeformable surfac€5]. However, in Reynderg 26,27 when_cons@erlng a free surface covered by
multilayer systems overstability is possible even with undeSurfactant. However, in their case the waves were strongly
formable interface$6—10. Moreover, when the overlying damp‘?dv as the relaxation time was of the order of the period
fluid is a gas, overstability can also be obtained if a two—layerQ'c oscillations. When the Iong|tud.|nal waves appear as a re-
formulation is used, when the properties of the gas are take ult of the temperatur(a;oncentratloh gradient in the.t.)ulk,
into consideratiorj7,8]. On the other hand, in doubly diffu- 'hey are always only slightly qlamped, or even amplified. An
sive systems, the oscillatory instability appears already in mportant phen_omgnon here is the resonance between trans-
one-layer formulation even with an undeformable surface’Sr>€ and longitudinal waves when the mixing of modes oc-

[11-14. However, if the interface deformability is taken curs. This point has been studied by Earnshaw and collabo-
into account, overstability becomes possible in Pearson,gators[ZS,Zq. . .

problem, as numerically shown by Takashiftz]. In the present paper we consider the system of two flnlt.e—

Physically, the undeformability of the free interface depth horizontal liquid layers separated by a deformable in-

' Fgrface, assuming that the Galileo number is large, while the

means that factors such as gravity and surface tension arg ) . .
9 Y apillary number is small. We asymptotically study the high

strong enough to maintain the interface almost flat whatevep . ber b h £ therBed-M th
flows and thermal inhomogeneities are induced. In terms o arangoni number branches ol the Bed- .arango.n( er-
capillary oscillatory instability, associated with trans-

dimensionless parameters, this corresponds to a large enou ; ) A
Galileo number and a small enough capillary number. How- erse(caplllary-gra\_/lt}) and Io_ngltudlnal waves. In Sec. i
e formulate the linear stability problem in the boundary

ever, under the same conditions, large Galileo number an S ) ) ) .
9 ayer approximation. Théleading-order dispersion relation

small capillary number, that bring about negligible surface. derived in Sec. 1II ding the . fi
deformation in Pearson’s consideration, there exists a modg dervea in Sec. i, providing the irequencies of transverse

related to high-frequency surface oscillations that is analogn?h Ion%'IUd'n%l tvr\:aves. Marglngl t\s,;ablht% cond|t|0r1tsdfo[j .
gous to capillary-gravity waves in the inviscid liquid layer oth moces and the resonance between them are studied in

[16]. In a viscous layer the Marangoni effect may be able toSec. IV. In SecV a detailed analysis of the resonance near

sustain these otherwise damped oscillations. Indeed, the rgje intersec;ion of the marg_inal curves is carried out. Finally,
sults reported in the literatufel7—21 and recent calcula- Wwe summarize our conclusions in Sec. VI.

tions [22] shqw that an oscillatory instability can be associ- Il FORMULATION OF THE LINEAR STABILITY

ated with this mode. Yet another type of high-frequency PROBLEM

oscillatory mode of instability, a “longitudinal” mode, ex-

ists. This corresponds to oscillations mainly along the sur- Consider a system of two liquid layers of finite depth and
face, in contrast to capillary-gravity wavésansverse mode infinite horizontal extent, separated by a deformable inter-
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face. The underlying laydtayer 1) rests on a flat rigid bot- Ti,=kToy; (10)

tom. The overlying laye(layer 2 has lower density than the

other to rule out Rayleigh-Taylor instability. The system isgtz=—1

bounded above by a flat rigid top. The bottom and the top are

maintained at different temperatures, inducing a linear tem- U =w;=T;=0; (1)

perature distribution inside the liquid layers. We look for

linear oscillatory perturbations that can be sustained or amang atz=h,

plified when the thermocapillarfMarangonj effect is the

only mechanism leading to instability. Upy=W,=T,=0, (12)
Let us introduce dimensionless quantities using suitable

scales, associated with the interface deformatjost like in it

the case of ideal, inviscid liqujdrather than scales related to

thermal and viscous processes. Accordingly, we choose the 3 2 2

following scales: h; for length, @h;)Y? for velocity, G= g_hl B= plghl, __do Al ,

(hy/g)Y?for time, p,gh; for pressure, angh, for tempera- ViXx1 o dT p1vixs

ture, whereh, is the depth of layer 1g is the gravity accel-

eration,p, is the liquid density in layer 1, and is the value he E Pr= " _Pe V2 _X2

of the imposed vertical temperature gradient th@ve take 1 X1 p p1’ ' X 1

B>0 if the heating is from above ang< 0 otherwisg. Cor-

respondingly, the temperature gradient in layer Zistg, K>

where k is the ratio of thermal conductivities of the second K=—,

and first liquids. Pressure and temperature refer to deviations !

of the corresponding quantities from their stationary distri- ,

butions, linear with the vertical coordinate, in the motionless 5(p>:[ 711 for j=1 5(»)5{ for } -1

state. e for j=2, ™ for j=2,
In view of symmetry, we formulate our problem in two-

dimensional geometry, witlx and z being horizontal and 5()()_{1 for j=1 5(,()_{1 for j=1

vertical coordinates, respectively. The bottom of layer 1is “" ~ |y  for j=2, 9 ~ |1 for j=2

taken atz= —1, the top of layer 2 at=h, and the interface

is at z=7(x,t). t denotes time andh is the ratio of the The subscript§=1,2 refer to the quantities in layers 1 and 2,
depths of the two layers. In the unperturbed state, the intefrespectively. We also denote byu; Wi ,p;,Tj (j=1,2) the
face is atz=0. (amplitudes of interface deformation and horizontal and ver-
Taking all these definitions and conventions into accounttical components of the velocity field, pressure, and tempera-
the linearized equations and boundary conditi®&’s) for  ture, respectively. The subscriptefers to the corresponding
the amplitudes of the normal modes exip(ikx) are derivative. h; ,p; ,v;,x;.&; (j=1,2) are the depths of the
. layers, densities, kinematic viscosities, thermal diffusivities,
tkuj+w;, =0, @ and conductivities, respectively. Symbols without subscripts
2 refer to the ratios of the corresponding properties, always
_) (Ujpr— kzuj), (2)  taken of layer 2 to that of layer 1, as defined abavés the
G interfacial tension. The Prandtl number Pr, Galileo number
by 12 G, static Bond numbeB, and Marangoni numbevl have
= — 5(P)g. v k2w been defined using the properties of layer 1. The coefficients
AWj 55 p12+5} (G) (Wizz—KoW), © 8 have been introduced to condense notation.
Equation(1) is the continuity equation. Equatiof®) and

)\Uj: — 6§P)|kpj+ 5}1})

o 5}” ) (3) are the horizontal and vertical components of the linear-
AT+ 4 Wi PG) 2 (Tizz—K°T)); (4)  ized Navier-Stokes equation, while E@) is the heat equa-
tion. BCs(5) and(6) are the kinematic and no-slip conditions
atz=0, at the interface, respectively. BC8 and(8) account for the
normal and tangential stress balances. The continuity of tem-
AP=W1=W,, 5 perature and heat flux across the interface is expressed in
BCs (9) and(10).
U;=up, (6) The problem(1)—(12) is solved asymptotically assuming
2 12 tr]lat F(’jr,B, aI_I matehr_ilal réltilt_)ls, and éhﬁ/l paramet_ef ;h>8 are
o o x b _ of order unity, while Galileo an arangoni numbers are
P17 P2= 7’(1 ptg|*T2 G) (Wiz=prWor),  (7) large. Thus the capillary numb@&/G is small. As we will

find later on, the most general asymptotics corresponds to the
) . M Marangoni and Galileo numbers being of the same order of
Up,+ikwy— pv(Uy,+ikw,) + (PIG)2 ik(7+Ty)=0, magnitude. This justifies our neglect of buoyancy. Indeed,
(8)  the density variations due to thermal expansion of liquid are
usually much smaller than the densitye., «8h,<1, where
Ti+9=Ty+x 1p, 9 a is the thermal expansion coefficignhence the Rayleigh
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numberR=aBh;G<G~M. Thus this effect proves to be a eAw;=—(— 1)j+15§")pjz.+ 65}”)sz.‘z‘.— 635}”)k2wj '
negligible correction in all cases we deal with in the present ! " (20)
paper.

The fact thatG is considered large has consequences on s S0
the expected structure of the solution of the problén- AT+ 5}")wj='— Tiz3 — € L k2T (22)
(12). Indeed, in the main bulk the dissipative effects are neg- Pr 5% Pr
ligibly small and the flow can be considered irrotational. 5-0
Vorticity appears only in the boundary layers at the rigid =
bottom or top, where the no-slip condition must be satisfied, Uu=w=T:=0. (22)
and at the free interface, where the tangentihrangonj S
stresses are present. As Pr is of order unity, as well as thg) In the interface boundary layer,
property ratios, the thermal boundary layers coincide with

the viscous ones. The boundary layers are in general charac- eiku;+w;z=0, (23
terized by a shargas compared to the main bulkhange of .
the functionsu, w, p, andT with the vertical coordinate,. AUy = — 8Pikp;+ 8" ujzz— €26 K%u; (24)
Using Eqgs.(2)—(4), we find that the thickness of the bound-
ary layers is of orde6 =Y Accordingly, we introduce the eaw; = — 8P pjz+ €8 w7z €28 Kw;, (25
smallness parameter
5J(X) , 5J(X) ,
14 ) (= 17— 21 )
EE(%r) ) 3 ATyt 0wy =5 Tz e? 5o K°Ty. (26)
At z=0,
and the variables
, A nN=W;=Wy, (27)
T e U;=u,, (28)
in the interface boundary layer, k2
P1—P2= 77( 1-p+ E) +2ewi7— 2epvWoz, (29
~ z+1
Z1=
1 € 63
U7+ eikwy— pr(uy7+ eikw,) + —— ik(#n+T,)=0,
in the bottom boundary layer, and 1z 1Pz 2+ gy Ik To)
(30)
_ h—-z
2= Tt =T+« 17, (3D
in the top boundary layer. Tiz=«To7- (32)
We look for the solution separately in each one of these
regions and subsequently match them. This apprdguh To solve the problen{14)—(32), all components of the

method of matched asymptotic expansioissstandard prac- functionf;=(u;,w;,p;,T;) are expanded in power series of
tice in problems where the smallness parameter affects the
highest-order derivativg3Q].

Rewriting the problen(1)—(12) for each one of the three
regions, we get j(=1,2) the following. (&) In the main

fj(Z):fjo+Efjl+62fj2+"‘ (33)

in the main bulk,

bulk,
N f. 4 of 28 4.
|kUJ+W]Z:0, (14) fJ(Z)—fJ0+€fJ1+€ f]2+ (34)
in the interface boundary layer, and
)\Uj:_6}p)ikpj+GZB}V)(U]'ZZ_I(ZUJ'), (15) _ y 3 _
f.(Z)=F ot efj1+efipt - (35)
)\WJ - _ 6§p)p]z+ 625}V)(szz_ kZWj), (16) I NE) jo j1 j2
in the bottom and top boundary layers. The only exception is
o , &Y , the functionu; in the interface boundary layer, which is
AT+ 8w =€ B (Tizz= KT (17 sought in the form
— Iy Ut €Ur t €Z0nd ons
(b) In the bottom and top boundary layers, Uj=€ “Uj—1) T UjoT €Ugjt eUjpt -, (36)
. ; ; ; ~1 i
eikuj+(— 1)J+1szj:0, (18) i.e., starting with the term of ordes™ *. The reason for this

choice will be provided later on.
In principle, the parameterg and A must be also repre-

[ )i (V) o e 22
NUj=—5/"ikp;+ 5| Ujz,z,~ € 8"k, (19 sented in the form of expansions wighe.g.,
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N=Ngten+---. (377  wherecg andcg are constants angl\ is taken with a posi-
tive real part. Using BG28) we obtain
However, as they are simply constaftather than functions
of z), we may regard them at each step as containing the C5=Ce- (49)
sufficient number of approximations. As far the represen- .
tation (37) will be used only in the final results, to avoid Then using Eq(23) and BC(27) we get
cumbersome intermediate calculations.

After substituting Eqs(33)—(36) into Egs.(14)—(32) we W_m:'kﬁ [1—exp \/Xz_)] +A7, (50)
get a hierarchy of linear problems correspondingefo(n NN
=-1,0,1,...). At each step a solvability condition must be
satisfied, hence providing a linear dispersion relation. Note — ikcg B
that if » and\ were also expanded with there would be a Wa0= NN v exp — v YZ) 11+ y. (5D

hierarchy of dispersion relations corresponding to each ap-

proximation ine. As they are not expanded here, there will Now we use the matching conditions betweep andw,q
instead be a single dispersion relation, but containing termgat gives

of different orders ire.

k ik
IIl. TRANSVERSE AND LONGITUDINAL WAVES y (C2=C1)— N Cs=A7, (52)
A. Zeroth-order approximation to the dispersion relation
. : k ik
In the main bulk, using Eqg14)—(16), we get ;K (Ca—Cq)+ K WW2o=\7. (53)
p1o=Cy expkz) +c, exp(—k2z), (38
It appears clear why the expansi@®6) for the horizontal
L velocity in the interface boundary layer needs to start with
U0= = [c1 exp(k2)+c, exp—k2)], 39 the term of ordere*. Otherwise we would get that;q (]

=1,2) are just constants in the interface boundary lirer
Kk view of Eq. (23)]; hence other possible solutions would be
Wio=— & [c, expkz)—c, exp(—k2)], (400 lost [such as Eq(63), see below Note that owing to the
no-slip boundary condition in the bottom and top boundary
layers the expansion for the horizontal velocity must start
with the same order as the expansion in the main bulk.
ik Eliminating the coefficients,,...,cs in the system of equa-
Upg= — Y [cs expkz)+c, exp(—k2)], (42)  tions(44)—(46), (49), (52), and(53), we get

— ik N[ pr2 coth(kh) — coth(k) ]cg
Woo= — % [c3 expkz)—c, exp(—k2)], (43 +[p coth(kh)+ coth(k) J(A%+ wé)n
=0, (59

Poo=C3exp(kz) + ¢4 expl—k2), (41

wherec,,...,C, are constants of integration, yet to be deter-
mined. In the bottom and top boundary layers, E§8)  with
yields that\ijO (j=1,2) are constants. Then, according to BC

(22), Wyp=W,,=0. The matching conditions betweémn, Wi=k 1-p+k?B (55
andw;, yield 0" p cothkh) + coth(k) °
¢, exp(—k)=c, expk), (44) Let us now proceed to the temperature field. The solution
in the interface boundary layer can be obtained in a closed
c; exp(kh)=c, exp(—kh). (450  form without referring to the main bulk and wall boundary

layer solutions. Thus, provided the temperature gradient in
In the interface boundary layer, using E@5), we get that the unperturbed state remains unchanged, the boundary layer
Pjo (J=1,2) are constants. Then using BZ9) and the con-  approximation results do not depend on the particular form

ditions of matching betweep, andp_jo we obtain of the temperature boundary condition at the rigid bottom
and top.
e Camim | 1— ot 2 46 According to Eq.(26), taking Egs.(50) and(51) into ac-
€17 CamC37Ca= 7 PT R (46) count, the zeroth-order solution approximation in the inter-
face boundary layer is
Also in the interface boundary layer, E@4) yields
o . T ikcg ikcg Pr D
Uy 1)=Cs exp(VA2), (47 107 T T N 1o pr RA2)

U_Z(fl):CG eX[i— \/XV_]'/ZZ_), (48) +C7 exq\/x Prllzz_)! (56)
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o ikce analog in the case of an inviscid liquid. Unlike the first
Tp=—k "7+ p2t mode, the second mode is not always oscillatory. Indeed, it is
VN oscillatory only if the right-hand side of E¢63) is negative,
_ i.e., if m(1— xyY?»~Y?)<0. For liquids with normal interfa-
+'kj pU2, 1 Pr exq_\/xvfllzz_) cial tension dependence on temperature, i.e., whose value
—1 . .
AN —Pr decreases with the increase of temperature, the second mode
is oscillatory wheny<<v and the heating is from above or
+Cg exp(— VAP " 17Z), (57)  wheny>v and the heating is from below.

The first mode is a transverse interfacial vibration since
capillary-gravity waves are intrinsically related to interface
deformations. The second mode corresponds to oscillations
along the surface due to the Marangoni effect, hence the
coinage “longitudinal” wave 26]. Returning to dimensional

The coefficients,; andcg are found using BG31) and(32).
Then we use the last BC30), which in the leading-order
approximation considered here becomes

Us-z = PPz -1z + Mik(7+T10 =0, 8 variables, expressiof63) does not contain quantities related
where, for convenience, modifiedMarangoni number to surface deformatiorig and o). It does not contain the
layer depths either. Thus the res(88) does not depend on
_ M e whether the surface is deformabléMG) or not (M
m= Pr (59 <G). The only condition of its validity iM>1; hence the

time scale associated with longitudinal oscillations
has been introduced. This quantity is the inverse of the

dynamicBond number. Substituting Eq&l7), (48), and(56) plhi
into Eq. (58), we obtain ——do-/dTﬁ
(1+prt9cq

is shorter than the viscous and thermal time scélMste that
mk2 Y2y~ V2 g in the estim)ations such &8> 1 we tacitly mean the absolute
+— = - ce=0. value ofM.
N (L+kx Y3 (1+ P2 () Vo~ T2t pr?) The most general case fiM>1, G>1 is the caseV
(60 ~G (m~1), when the frequencies of both modes are about
] ] ] the same. It is worth noting that, although a nonvanishing
The constant; is retained here, on the one hand, for its usejpterface deformation accompanies the second modd at
in the solvability condition in the following subsectidm  _g it still clearly manifests its longitudinal character. In-

particular, Eq.(60) can be satisfied bgs=0] and, on the  geed, for the second mode there exists a strong horizontal
other hand, to help the reconstitution with the correspondingomponent of the velocity field in the interface boundary

first-order equation in Sec. IV. layer that is 1¢ times stronger than its corresponding value
_ _ _ _ in the main bulk. For the first mode, in view of Eqg9),
B. Analysis and discussion of mode frequencies (54), and (62), the constantgs; and cg are equal to zero;

The solvability condition demands the existence of a nonlence the velocity field is everywhere of the same order. The
trivial solution for the coefficientgg and 7 of the system fact that the leading-order resul63) does not depend on

(54) and (60). It yields a vanishing determinant, i.e., layer depths, as already mentioned in the preceding para-
graph, is just a consequence of the predominance of the lon-

s 2 m gitudinal motion near the interface.
(Nt wp)| 1+ N2 There exists a combination of the parameters such that the
frequencies defined by Eg&2) and (63) become equal to

xYor12-1 each other. This corresponds to the resonance of the modes.
X (14 p v (1+ kTP (1+ P (T2~ 121 P72 It occurs for the following value of thenodifiedMarangoni
number:
=0. (61)
mres

Eq. (61) possesses two solutions: 5
_(1+le/2)(l+ KX*l/Z)(l_’_ Prl/2)(X1/2V71/2+ Pr.l/2) ﬂ

\2=— 0] (62) e 2
and (64)
X mie(xyY2v~Y2—-1) As one can see from Eqé2) and(63), the eigenvalues
N=— (1+pr (1+xx T3 (1+ P2 (V2 121 P2 - for both modes tend to zero &sapproaches zero. Thus the

(63) boundary layer approximation is not validkfis too small or
the waves are too long. Indeed, due to the lowering in oscil-
Thus we find that two different modes exist. The first onelation frequency in the long-wave region, their characteristic
(62) is just the mode that appears in ideal, inviscid, liquidtime scale is no longer shorter than the viscous and thermal
layers and accounts for capillary-gravity wavil6]. The  time scales. Let us estimate the valuekofor which the
second ond63) is due to the Marangoni effect and has no boundary layer approach breaks down. In accordance with
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the boundary layer exponents of, e.g., E4S) and(48), the  Using Eq. (18) and BC (22), we find \ijl, and then the
condition is\/_~e Taking Egs(62) and(63) into account, matching condition betweerw;o+ewj; and Wjo+ ew;;
we getk ~ €2, or recalling Eq.(13), k~G 2 (for the sec- yields

ond mode it should b&~M "2 if we do not assumen

~1). Thus we have to demand that-G~ 2. On the other

hand, there is also a limitation from above, i.e., from the side —cp exp(—k)+c; expk) = n A1, (66)
of largek or short waves. This limitation is related to the fact

that in the short-wave region the penetration' of the po- ‘

tential part of the flow inside the layer decreases fastér at ) / LR — a2

—o than that of the rotational pa#/\/A. The boundary Cz expkh) +c; exp—kh) = vihe (67)
layer approximation is valid only if the former is much larger

than the latter. For the capillary-gravity mode, this yields the Returning to the interface boundary layer, let us first de-
conditionk<e™ 4 or k<G (if B~1). We can also make the terminep;;. Equation(25) and BC(29) reduce to
corresponding estimate for the longitudinal mode. Note that

with the increase ofs andM, the domain of validity grows AW10= — P17+ Wigz 75

both towards the long-wave region and towards the short-

wave region. _ 1__ _
The zeroth-order solution has provided the frequencies of AWo= — ; P21zt ¥Wagz7-

transverse and longitudinal waves. In the following section
we show how the first-order solution for the dispersion rela-p; 7= 0,
tion provides the real parts of the eigenvalues, thus allowing
the study of the conditions for the oscillations to be amplified P11— Por=2Wygz— 2p WWags
or damped.
Then using Eqs(50) and (51) and the matching condition
IV. MARGINAL STABILITY CONDITIONS betweenp;o+ €pj, andp;, Pjot €pj1, we get
AND MODE MIXING
A. First-order solution C1Cz~C3 Ca=2(pr—1)ikes. (68)
The quantities;,, uj;, andwj; (j=1,2) have the same Equation(24) yields
form as Eqs(38)—(43). For simplicity, we do not write them
explicitly, just implying that the constants,...,c, are sub-

stituted by the corresponding primed constants. Uz0=Cg XV \/—Z)_ (C1+Ca), (69)
In the bottom and top boundary layers, using &f), we
get thatﬁjo (j=1,2) do not depend on the vertical coordi- o ik
nate. Using the matching condition to the main bulk solution, Usg= — ~ (C3tcy). (70)
we obtain p
P1o=A1, Poo=A, Note that we define the constasy, appearing at the bound-
ary layer exponential48), as already containing enough ap-
with proximations, as we earlier did withand ». That is why the
expected exponential term is absent in E)).
B B i\/Xpul’2 coth(kh) Substituting Eqs(69) and(70) into BC (28) and using the
Ar=cy exp(—k)+c; explk)=— coshk) Ce expression ot,...,c, in terms ofcg and 5, we get
p\? coth(kh) N wi[coth(k)+ p coth(kh)] c;=D, (77
k coshk) g k coshk) G
where
A,=c5 expkh)+c, exp(—kh) i i
i\/Xlelz p)\Z DEY(C1+C2)_p_)\(C3+C4)
=~ Sinhkh) %87 K sinhkhy 7 (65) )
- (1— 1/2 i _
where the constants,,...,c, have been expressed in terms - NN (1=p)»=* cothtkh)ce—iA (1 p)cotitkh) 7
of cg and % using Eqs(44)—(46), (49), (52), and(53). Then
Eq. (19) and BC(22) yield Wl
+i ~ [coth(k) + p coth(kh)] 7. (72
_ |kAl
U=~ —— [1-exp(— \\Z)],

To find w; ;1 we use Eq(23) with Egs.(69) and(70) and
BC (27). The latter yleldswll—o at z=0 as » has been
Uzo—— IkAz [1-exp(— \/—V 1/2- gzlien into account in the leading-order approximation. We
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ikc! K2 For the temperature field, E(R6) together with Eqs(73)
W_llzﬁs [1—exp(\AZ)]- ~ (ci+cp)z, (73 and(74) yields

, I ikcg ikcs Pr v k2 ( T
_ k _ =— - ex Z)+ — (ci+cy)z
Wo1= — p_)\ (C3+ C4)Z. (74) 1 )\\/X )\\/X 1-Pr A 1 2
_ o +cl exp(VAPY%Z), (79
The matching betweew;,+ ew;; andwjo+ ew;, yields
_ k2
k i Ty=k ' —5 (C3+C4)z+ch exp(— VNP2~ Y77,
" (Cé—Ci)= " Cé, (75) 21 p)\2 (Catcy) g exp( \/_ X )
A VA (79)

K Determiningc’, and cg with the help of BC(31) and (32),
— (€a—¢3)=0. (76)  which in the present approximation does not contgisub-
P stituting Eqgs.(69), (70), (78), and (79) into BC (30), and

Now eliminating ¢} ,....c. in the system(66)—(68), (71),  taking Egs.(59), (71), and(72) into account, we get

(75), and(76) as done with the corresponding unprimed co- mié 1
efficients in the systend4)—(46), (49), (52), and(53), we - — —15- =0.
oot ystent44)—(46), (49), (52), and (53) D-7 Do ir a7 -0 (€0
2 1 Note again that Eq(80) can be used only when combined
2ik2(pvr—1)Ce+ ik ND coth(k)— — A, — with the previous order equatiq60).
(pr=1)ce+ikyh k) I\ tsinh (k) Finally, combining the zeroth- and first-order solutions,
) namely, Eq.(60) with Eq. (80) multiplied by € and Eq.(54)
N k_ 1120 1 ~0 . with Eqg. (77) multiplied by ¢, and recalling the definitions
W "2 sinh(kh) (7D (65) and(72), we get
However, as we did not expand », andcg, Eq.(77) cannot 2uC+azn=0, (81)
be used alone. Rather it must be taken together with{%, ay,C+a,,m=0 (82)
which is the corresponding result of the leading-order ap- ! '
proximation. with
mk2 X1/2V71/2_ 1
A= ST (T (14 ax P (1+ PR (V% T2+ P
k (1—p)vt? il 1 mié 1 83
€ N L1t put? CONKN| 1= B e ) (15 ey 7)) 63

i 5 m 1
ay=-—¢€ Tt po?? [(1_P))\ coth(kh) — % [p COtr(kh)+COtr(k)]H1_ N PPy 1)(1+KX1/2)}' (84)

coth(kh)

2(py—1)= (1= p)»* cothkjcoth(kh) +p»™ Srn s o

a;,= —ik VN[ pr*2 coth(kh) — coth(k) ]+ eik?

1
o gt (85)

k
ay=[p coth'kh)+coth(k)J(A?+ wS)+ € — xz(l—p)cotr(k)cotr(kh)—wg[p coth(kh) + coth k) Jcoth(k)

VA
coth'kh) , coth(kh) + coth(k) / 1
- 2 +p1/1 2)\2 W . (86)

sinh(k)costik) ~° sinh(k)coth(k)
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For simplicity, we have omitted the subscript for the constantion of marginal stability, providing the marginal curves
Cg. The result481)—(86) are enough for the purpose of the “ m versusk.” Imposing Ref;)=0 in Eqgs.(88) and(89), we

present paper. get
B. Stability analysis of (oscillatory) modes [pvllz[cotf‘( k) + coth(kh)]? 1
my=m -
Satisfying the solvability condition e 1+ pv1? sint?(k)
1/2
ap182— 812821=0, (87) pv 1_
. _ _ _ . + SintE(kh) coth(k)[ coth'k) + coth(kh) ]+ SINFE(K)
we get an approximate dispersion relation. The leading-
(zerothy order approximation was studied in Sec. Il B, prif? X2~ V24 prtf2
where it was shown that two modes, transverse and longitu-  * gin(kn) T P 72, 72— 1) LcOtk)
dinal, exist. However, only the imaginary part of the eigen- .
values, and hence their corresponding frequencies, was ob- B
poncing tred — pw¥2 coth(kh) [ coth(k) + coth(kh)] (90)

tained. To assess the stability of these two modes we need to
calculate the real part, which &times smaller. This quantity

is obtained in the first-order approximation. Thus we expangy, the transverse mode and
\ as Eq.(37), implying that\ g is given by Eq.(62) for the
transverse mode and by E@3) for the longitudinal mode,

1/2 _
respectively. Then Eq87), taken at ordeg, yields the fol- Miong= mres[v tanitk) ~tanttkh) JLp cothtkh) +cothk)]

lowing equations foi ; (1-p) 1+ 01
m m
2N 1— ~ [p coth(kh)+coth(k)]+kyXo| 1— Mee for the longitudinal mode, whena,is defined in Eq(64).
Note that the marginal conditio{®1) is valid only if
X | cothtioLcothtk) + cothtk 1+ s E,= "2 tanh(k) — tant(kh) >0, 92)
1/2

+ WPV_ Otherwise the longitudinal mod@®3) is not oscillatory. De-

sintr (kh) pending on the values of and h, the inequality(92) can
112\ (Y12~ 124 ppi2 hold for all k, for some interval ok, or else for ndk at all.

kg 1+ —— (1 p:uz)(isz v Pr )} Indeed (i) if 1 <h<w»'2orh<1<v*? we haveE;>0, i.e.,
Mes PP (X7 1) Miong €Xists for allk; (i) if ¥¥2<1<h or »¥><h<1, then

pv2 coth kh) — coth(k) E,<0, i.e., there %e no marginal states for the longitudinal
T+ po?? [coth(k) +coth(kh)]=0 mode. (iii) if 1 <v~'“<h, the marginal curve occupies only

the intervalk>k,, whereky#0 is the root ofE;, which
(88 does not exist in the first two cases; and finally,) if h
<2< 1, the marginal states exist only flark,.
Due to the condition(92), the signs ofmy,q and Mg
1 always coincide. At the same time, in view of E§4), they
[p cothkh)+coth(k)]+ky\o R are defined by the sign gf*2»~¥2—1. Thus it is clear how
pv Miong behaves. As fom,, [Eq. (90)], no such simple criteria
X1/2V—1/2+ Pr1/2 exist.
+ P2 72 77— 1)H—(1—p) The possibility of extending the longitudinal marginal
curve up tomy,q=0 [cases(iii) and (iv) abovg demands
Mees 11 clarification. The same occurs whenmat-0 Eq.(89) yields
o Ly cotitkh) in some cases a persisting instability for the longitudinal
mode. This can be understood in the following way. The

for the transverse mode and

Myes
m

2)\1 l_

X (1+ v*?)coth k) coth(kh) +

oscillatory instability studied here is associated with interfa-
—coth(k)][ p coth(kh)+coth(k)]|=0 89 cial deformations at large Galileo numbe®$ 1) and con-
sequently with high Marangoni numbe¢m~ 1, henceM
for the longitudinal modem,.s was defined in Eq(64). As  ~G>1). However, in the two-layer system, the oscillatory

for both modes,q is purely imaginarywe only consider the instability can appear even if the interface is not deformable
case when the longitudinal mode is oscillaforthen VA,  (for M~1<G). It is having this fact in mind that our results
=(1=*i)|\o|¥¥v2, where (for positive k) Im(\)<O and for the longitudinal mode should be considered. For ex-
Im(X\o)>0 correspond to right and left propagating waves,ample, the fact that,,— 0 at somek— K, is an indication
respectively. that there is a vertical asymptote of a “loM-" oscillatory
The sign of ReX;) determines whether the corresponding marginal curve at the same=k,. Analogously, if the lon-
wave is damped or amplified. In particular,mat=0, Eq.(88)  gitudinal mode remains amplified for some intervalkoat
yields the damping coefficient for capillary-gravity waves in m—0, it means that there necessarily exists an amplified
the usual, isothermal situation. Rg(=0 defines the condi- oscillatory mode in the Beard-Marangoni problem with an
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undeformable interface, provided is taken large enough In the region|8(m)|>1, Ao+ €Y?A; should match with\
and has the same sign as needed for the n{68eto be  +e\; for the transverse and longitudinal modes, taken at
oscillatory. M—Mes. Ao IS defined in Eqs(62) and(63) and\ 4 in Egs.

N, diverges when calculated using Ed88) or (89) at  (88) and(89). Let us study the limit§(m)|>1 in Eq.(97).
m—m,. Thus an improved asymptotic analysis in the vi- Taking, for illustration, “positive” branch of the solution,
cinity of the resonance curve is needed. First of all, when theve have
coefficient of \; becomes small, one must also take into
account the quadratic term-(\3) when deriving an equation 1

for Ay from Eq. (87). At m=m, it becomes the leading- A= 2 8(m) e (%8)
order term containing the correction to the eigenvalug,
Consequently, the following scaling is appropriate here:  for §(m)<0 and
A=Ag+ €A+, (93 A 1

° ! A= 5(m)—5%+--- (99)
whereA o= =i w coincides with\  for the transverse mode,
while for 6(m)>0.

m—m Equation (98) coincides(up to the factore®) with the

a(m)=— B2y, (94)  result given by Eq(88), for the transverse mode, in the limit
res

mM—m,es. The second term on the right-hand side of &§)
is identical(up to the same factpto the result provided by

g. (89 for the longitudinal mode atm—m,.,, while the
first term accounts for the fact that the leading-order frequen-
cies for the longitudinal mode become different frang
away from the resonant curve. Thus the positive branch of
AT=28(m)A;+Q=0, (95  Eq. (97) tends to the transverse eigenvalue |at—m,.d
>e2 m<m,, and to the longitudinal eigenvalue at

Note that the correction to the eigenvalue becomes asym
totically higher near the resonance. Finally, using E88)
and(94) in Eq. (87), we derive the equation fok,

Ao

with |m—m,ed> €2, m>m,,. Analogously, one can show that
the opposite holds for the “negative” branch.
(1+ prY?) (xM2r~ V24 prt?) Thus there is a continuous transition from the transverse
QEk\/A_o 1+ P2 72, 12-7) mode to the longitudinal one, and vice versa, around the
resonance curve, where mode mixing occurs. The salient fea-
pr'? cothkh) —coth(k) cothk)+ coth(kh) tures of this transition ar@) conservation and alternation of
X 1+ prvi? coth(k) + p coth(kh) the sign of ReX), i.e., at each stage of the transition, Re(

>0 for one of thelmixed) modes and Ra{)<O0 for the other,
Here we assume th&®~1 and thus we exclude from con- and (ii) Re(») becomes asymptotically larger near the reso-
sideration a small interval &f aroundk, , wherek, isaroot nance, although still R&f<<Im()).
of Shown in Figs. 1 and 2 are some representative cases
illustrating the behavior of the marginal curves for the trans-
E,=pv"? coth(kh) —coth(k), (96)  verse (solid line marked 1 and longitudinal (solid line
o . . . marked 2 modes, as well as the resonance cyda&-dashed
where it exists. This peculiar case will be treated late(sae line). In view of symmetry, we plot them only fde>0. The

Sec. V. arameter values used are indicated in the figure captions. As

Near resonance, the zeroth-order eigenvalues for the t""5arlier shown, in some cases the longitudinal marginal curve

modes coinci.de z_and a differ(_ance appears only in the firStdoes not exist. These three curves, as well as the raxis
order approximation. Accordingly, Eq95) has two solu- =0, subdivide the semiplarfg>0,m} into regions, accord-

tions forA,;. ing to the different(damping or amplification status of

d Bglfore provu_jmg the §0Iqtlon, Ietgus p(_)mt Ort:t Some bas'ctransverse and longitudinal waves. We have expressed this in
etails concerning\, satisfying Eq.(95). First, there are N0 o 1 ang 2 with the help of vertical arrows: The first arrow

values of the parameters for which purely imaginary solu-,ra50nds to the transverse mode and the second one to the

“.‘”?5. exist. Thus there are no marginally stable states in thl%ngitudinal mode. An arrow pointing up means that the cor-
vicinity of the resonance point. Second, for=mes, EQ.  1egponding mode is amplified, otherwise it denotes a damped
(95) implies thatA 7 is a complex quantity. Then one of the q4e. In the quadramh>0, orm<0, where the longitudinal

eigenvalues always has a positive real part, while the rea},qge is not oscillatory, the second arrow is replaced by an
part of the other is always negative. In the absence of marsgterisk.

ginally stable states, the continuity demands that this holds in  Gjyen a particular diagram of marginal and resonance
the vicinity of the resonance point. Consequent_ly, the résogyrves, there is no need to refer to E¢88) and (89) to
nance occurs only when one of the two modes is unstable.qgtaplish the damping or amplification status in each region

The solution of Eq(99) is (i.e., setting arrows and asterigkRather, this can benam-
A 7 biguouslyestablished with the help of the earlier established
A1=—0 [5(m)i A /52(m)— - Q}. (97) fa_lcts: 0 _The transverse__mode i_s always da_mped in the re-

4 Ao gions adjacent tan=0, (ii) the sign of ReX) is conserved
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k

FIG. 1. Marginal curves for the transvergsolid line 1, Eq.
(90)] and longitudinalsolid line 2, Eq.(91)] waves and the reso-
nance curvedot-dashed line, Eq64)] for (a) h=0.2, p=0.5, v
=4.5,x=1.0,k=0.5,B=1.0, and P+6.0; (b) h=0.5,p=0.5,v
=0.4, x=2.0, k=0.5,B=0.17, and P+6.0; and(c) h=1.2, p FIG. 2. Same as in Fig. 1 fo@@ h=1.6, p=0.65, v=3.0, x
=0.5,v=1.3,x=4.0,x=0.5,B=1.0, and P+ 2.0. In each region =0.5,«x=0.3,B=3.0, and P+6.0; (b) h=0.45,p=0.95,r=0.8,
the arrows indicate whether the transvetBest arrow) and longi-  x=2.0, k=0.5,B=3.0, and P+2.0; and(c) h=0.9, p=0.95, v
tudinal (second arroyare amplified(arrow up or damped(arrow =1.05,x=0.4, k=1.0,B=15.0, and Pr0.01. Note the resonant
down). When the longitudinal mode is not oscillatory, the secondintersection of the transverse and longitudinal marginal curves in
arrow is replaced by an asterisk. the examples.
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and glternates around the resonance cuﬁbié,cro;;ing. a ). prv—1 1-p
marginal curve, we change from damping to amplification or —kiiw, cothk,)B 3W_ e

vice versa for the corresponding mode, divd the longitu-
dinal mode is oscillatory only in the semiplane containing
the resonance curv@and the longitudinal marginal curve,
when it exist$. In each case, there is only one set of arrows
and asterisks that does not contradigt(iv). A(m)  A(k)

The marginal curves can intersdefs in the examples of X ( - —2
Fig. 2 eithernonresonanthyor resonantly In the latter case,
the resonance curve also passes through the point of inter- : _ .
section. It can be shown that the necessary and sufficiev}’herga is the slope oF, [Eq.(96)] atk=k, , gis the same
condition for the existence of a resonant intersection is that"" 0 and
E,, defined in Eq(96), vanishes at somk=k, . Thus we
conclude thatesonantintersection occurs if and only if ei- =1
ther 1<pv¥?<h or h<pr'?<1.

A further improved asymptotic studfsee the next sec-
tion) is needed to properly account for tlevicinity of the
resonant intersection poifk, ,m, }, wherem, is Mg, My,
or, equivalently,m,,, evaluated ak=k, . None of the re-
sults (88)—(91), nor Eq.(97), is correct there. Indeed, &t
—Kk, , m—m,, no order unity terms exist in the matrix —q, Im?(qe)-+Im(q,)Im(qy)Req;)+ Re(qe)RE(q,)=0.
elementg83)—(86). Thus the leading order determindBf)
is of order 2, while the results(88), (89), and (97) have
been obtained evaluating the determing@w in the ordere.
On the other hand, for the purpose of studying the vicinity of — g, IM2(go) +[IM(g;) — sgn @, )Re(q,) ]Im(qo) Re(qy)

the pointk=k, , m=m, , as there are no terms of order
unity, we do not need to calculat® contributions to the +[Re(qp) +5gM w, ) IM(do) JRE(q;) =0.

coefficients(83)—(86).

2
+K, i wy i w*(1+pvl/2)<m cothz(k*)—l)

A(k))

m, Ky w2

(1 + pvl/Z)(Xl/2V7 1/2+ Prl/Z)
Prl/Z(XI/ZV— 172_ 1)

Looking for the marginally stable states described by Eq.
(10D, we set RRA(N)]=0. Then IniA(N)]=
—Im(qgg)/Re(@,), and finally eliminatingA(\), we get

Alternatively, we have

(102

After substituting the expressions fop, q;, andqg,, Eq.

(102, as expected, depends only on the absolute value of

w, , rather than on its sign.

S o ) ) ] Equation (102 is a quadratic equation foA(k) and
Qon3|der|ng the vicinity of the resonant intersection pomt,A(m)' In the planeA (m) versusA (k) it defines a hyperbolic

we impose marginal curve. Some examples are shown in Figsdid

line) for the same parameter combinations as in Fig. 2, where

the resonant intersection occurs. The dashed lines, marked 1

and 2, and dot-dashed lines correspond to the direct continu-

ations ofmy, my,ng, andmy, respectively, linearized in the

vicinity of the resonant intersection point. The axes of the

V. DETAILS OF THE MARGINAL CURVES NEAR
THE RESONANT INTERSECTION

k=k,+eAk)+---, m=m,+eA(m)+---,

A=iw, +teAN)+---, (100

where w, is wq taken atk=k, . After using Eq.(100 in

Egs.(83)-(86), Eq. (87) becomes

BA(K)
2iw,

2
+0d;

BA(K)
2iw,

AN+ +0o=0,

(101

Q2[A(7\)+

with
q,=4(1+ v~ Y coth(k, ),

A(m) _A(k)
-2
m,, Kk,

q1=2iw, (1+ v_llz)cotdk*)( -

1-p)(1+v~1?
p(1+pv')

+B %zk—))—ZK*Viw* ( coti?(k, )B
+ 2k, \/iw*(1+pv1/2)(p%1§ cothz(k*)—l),

Kiiow, Vi,

qO:WZ_ coth(k, )BaA(K)

hyperbole are naturally parallel to the linearizationsnof
andmyg,g. They provide a successful leading-order matching
between the marginal curves in the vicinity and far away
from the resonant intersection point. The appearance of the
shift is due to the use of different orders of approximation
when deriving the result€0), (91) (e* approximation, and
(102 (e? approximation. Accordingly, the shift should be
taken into account in the next-order matching, between Eq.
(102 and the next-order correction to the marginal curves
(90) and (91). This task is beyond the scope of the present
paper.

Thus, studying the detailed structure of marginal curves
near the poinfk, ,m,}, it appears that in fact they do not
intersect. Actually, there is rounding off of a pair of two
opposite corners, accompanied by the formation of a gap
between two separate branches of the marginal curve. A
simple criterion can be established concerning which one of
the two pairs of opposite corners is rounded off, the one
containing the resonance curifest possibility) or the other
(second possibility Indeed, considering the points along the
resonance curve, which in terms A{m) and A(k) can be
written as
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A(m Ak Ak
A(m) B é )_2 k( )+ (2)20'
* * ()
1000
(a) we get Im;) —sgn, )Re@;)=0, i.e., the second term on

70 the left-hand side of Eq.102) is zero. Then, asg,>0, Eq.

(102 may have two solutions fak (k), corresponding to the
intersection of the resonance curve with the two branches of
the marginal curve, only if Reg)+sgn, )Im(gy)>0, i.e., if

500

250

3pyll2+p_3V71/2_1

250 Es= R

-300 Thus, if E;<0, the first possibility is realized, while &

50 >0, the second possibility occurs, in accordance with the
cases shown in Fig. 3.

-1000

VI. CONCLUDING REMARKS

The linear analysis of the Bard-Marangoni oscillatory
A(m) instability in a system of two horizontal liquid layers of finite
depth separated by a free deformable interface and subjected
to a vertical temperature gradient has been carried out. As-
suming that the Galileo number is large, while the capillary
number is small, and using the boundary layer approxima-
tion, we have asymptotically studied the high Marangoni
number branches of instability, associated with interface de-
formations, and found that they can be described in terms of
(high-frequencytransversécapillary-gravity and longitudi-

nal wave modes.

The leading-order dispersion relation enabled us to calcu-
late the frequencies of both the transve{@2 and the lon-
gitudinal (63) waves. The longitudinal mode does not appear
always oscillatory. It is so only whem(x— v) >0, i.e., if the
heating is from above fog> v and if the heating is from
below for y<v. We have also obtained the damping or am-

250

-250

-500

-750

-1000

75 50 25 0 25 50 75 100 plification rates[Egs. (88) and (89)], which are always as-
A(k) ymptotically smaller than the frequencies. The marginal sta-
bility conditions for the both modes, represented in terms of
A(m) marginal curves “modified Marangoni number versus wave

number,”{m,k} [Egs.(90) and(91) and Figs. 1 and R have
been analyzed.

The possibility of resonance between transverse and lon-
gitudinal waves has been studied in detail. It occurs when the
frequencies given by Eq§62) and(63) approach each other,
hence defining the resonance curi@l). Near resonance,
mode mixing is expected. As a consequence of the mixing,
the transverse mode is converted into the longitudinal one
and vice vers4qEqg. (95)]. At this transition, the damping or
amplification rate becomes asymptotically higher than away
from the resonance. We have shown that, given a diagram of
the marginal and resonance cur&sgs. 1 and 2 one can
unambiguously determine in which regions of the plane
{m,k} a given mode is damped or amplified.

It was also found that there can exist nonresonant and

A(k) resonant intersections of the transverse and longitudinal mar-
ginal curves. The necessary and sufficient condition for the

FIG. 3. Enlarged view of the resonant intersection of marginal€Xistence of the resonant intersection is tBat[Eq. (96)]
curves. The Case(a)_(c) are the same as in F|g 2. Margina| curves Vanishes at some wave number. Details Of the behaViOI‘ Of
(solid line), direct continuations of the resonance cufdet-dashed ~Marginal curves in a small vicinity of the resonant intersec-
line), and transverseashed line land longitudinaldashed line 2 tion point have been analyzégig. 3).
marginal curves of Fig. 2. The results for théongitudinal modeobtained here permit
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some conclusions and predictions concerning the structure @urve at the samk=Kk,. It turns out that the existence and
the low Marangoni number branches for oscillatory instabil-behavior of this asymptote is governed by only two param-
ity in the two-layer problem with undeformable separatingetersv andh enteringE; .

interface. Indeed, the results found here, when taken in the
limit |m|<1, should match the corresponding results ob-
tained for the problem with a flat, undeformable interface
taken in the limitfM|>1. For example, the eigenvalug This work was supported by the Fundati¢Ramon

+ e\, with Ao and\; defined in Eqs(63) and(91) taken in  Areces” (Spain, by the Fundacio BBV (Programa Catedra,
the limit of smallm [Eq. (59)], provides the asymptotics of Cambridge, by INTAS Grant No. 94-242, by DGICYT
the corresponding eigenvalue in the problem with flat inter{Spair) under Grant No. PB93-81, by the Human Capital and
face at largeM. In this way, one can easily study for which Mobility Program of the European UniofNetwork No.
cases Re(;)>0, which helps orientation in the parameter ERBCHRXCT96001f by the European Space Agency Pro-
space. Take, e.g., the possibility for the longitudinal marginatdex Programme, and by the Belgian Program on Interuniver-
curve to approach zero at sorke k,, wherekg is a root, if ~ sity Poles of Attraction(PAIl 4-06) initiated by the Belgian
any, ofE, [Eg. (92)]. In this case, one should expect a ver- State, Prime Minister's Office, Federal Office for Scientific,
tical asymptote to the low Marangoni oscillatory marginal Technical and Cultural Affairs.
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