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Two-layer Bénard-Marangoni instability and the limit of transverse and longitudinal waves
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The oscillatory instability of a Be´nard-Marangoni system composed of two liquid layers, of finite depth,
separated by a deformable interface is considered. We show that in the limit of large Galileo and Marangoni
numbers and small capillary number~boundary layer approximation!, two modes of high-frequency interfacial
excitation can be distinguished: transverse~capillary-gravity! waves and longitudinal waves.
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I. INTRODUCTION

It is known that a temperature~concentration! gradient
applied orthogonally to a horizontal liquid layer can indu
instability of the motionless state, resulting in steady cellu
convection~monotonic instability! or wave motion~oscilla-
tory instability!. Here we will restrict ourselves to the Ma
rangoni mechanism of instability@1–3#. The role of the Ma-
rangoni ~thermocapillary! effect in Bénard layers was
theoretically established by Pearson@4#. For a layer with
undeformable free surface and neglecting the propertie
the overlying gas, he derived the condition for the onse
surface tension gradient-driven steady convection. As for
cillatory instability, it does not exist in Pearson’s formul
tion, with an undeformable surface@5#. However, in
multilayer systems overstability is possible even with un
formable interfaces@6–10#. Moreover, when the overlying
fluid is a gas, overstability can also be obtained if a two-la
formulation is used, when the properties of the gas are ta
into consideration@7,8#. On the other hand, in doubly diffu
sive systems, the oscillatory instability appears already
one-layer formulation even with an undeformable surfa
@11–14#. However, if the interface deformability is take
into account, overstability becomes possible in Pearso
problem, as numerically shown by Takashima@15#.

Physically, the undeformability of the free interfac
means that factors such as gravity and surface tension
strong enough to maintain the interface almost flat whate
flows and thermal inhomogeneities are induced. In terms
dimensionless parameters, this corresponds to a large en
Galileo number and a small enough capillary number. Ho
ever, under the same conditions, large Galileo number
small capillary number, that bring about negligible surfa
deformation in Pearson’s consideration, there exists a m
related to high-frequency surface oscillations that is ana
gous to capillary-gravity waves in the inviscid liquid lay
@16#. In a viscous layer the Marangoni effect may be able
sustain these otherwise damped oscillations. Indeed, the
sults reported in the literature@17–21# and recent calcula
tions @22# show that an oscillatory instability can be asso
ated with this mode. Yet another type of high-frequen
oscillatory mode of instability, a ‘‘longitudinal’’ mode, ex
ists. This corresponds to oscillations mainly along the s
face, in contrast to capillary-gravity waves~transverse mode!
571063-651X/98/57~3!/2872~13!/$15.00
r

of
f

s-

-

r
en

a
e

’s

re
er
of
gh
-
d

e
de
-

o
re-

-
y

r-

that correspond to essentially orthogonal oscillations of
deformable interface. The existence of longitudinal wave
intrinsically related to the Marangoni effect by the tangent
balance of momentum. Just as the capillary-gravity wa
keeps its identity~the oscillations are faster than their dam
ing! only if the Galileo number is large enough and the ca
illary number is small enough, for the longitudinal wave w
need the Marangoni number to be large enough~and have an
appropriate sign!. Here we will understand the longitudina
mode just in this~asymptotic! sense, although other interpre
tations also exist in the literature. Transverse and longitu
nal waves at the interface separating two semi-infinitely d
liquid layers were also studied by Velarde and Chu@23–25#.

The longitudinal waves were described by Lucass
Reynders@26,27# when considering a free surface covered
surfactant. However, in their case the waves were stron
damped, as the relaxation time was of the order of the pe
of oscillations. When the longitudinal waves appear as a
sult of the temperature~concentration! gradient in the bulk,
they are always only slightly damped, or even amplified.
important phenomenon here is the resonance between t
verse and longitudinal waves when the mixing of modes
curs. This point has been studied by Earnshaw and colla
rators@28,29#.

In the present paper we consider the system of two fin
depth horizontal liquid layers separated by a deformable
terface, assuming that the Galileo number is large, while
capillary number is small. We asymptotically study the hi
Marangoni number branches of the Be´nard-Marangoni~ther-
mocapillary! oscillatory instability, associated with trans
verse~capillary-gravity! and longitudinal waves. In Sec. I
we formulate the linear stability problem in the bounda
layer approximation. The~leading-order! dispersion relation
is derived in Sec. III, providing the frequencies of transve
and longitudinal waves. Marginal stability conditions fo
both modes and the resonance between them are studi
Sec. IV. In Sec. V a detailed analysis of the resonance ne
the intersection of the marginal curves is carried out. Fina
we summarize our conclusions in Sec. VI.

II. FORMULATION OF THE LINEAR STABILITY
PROBLEM

Consider a system of two liquid layers of finite depth a
infinite horizontal extent, separated by a deformable int
2872 © 1998 The American Physical Society
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57 2873TWO-LAYER BÉNARD-MARANGONI INSTABILITY AN D . . .
face. The underlying layer~layer 1! rests on a flat rigid bot-
tom. The overlying layer~layer 2! has lower density than th
other to rule out Rayleigh-Taylor instability. The system
bounded above by a flat rigid top. The bottom and the top
maintained at different temperatures, inducing a linear te
perature distribution inside the liquid layers. We look f
linear oscillatory perturbations that can be sustained or
plified when the thermocapillary~Marangoni! effect is the
only mechanism leading to instability.

Let us introduce dimensionless quantities using suita
scales, associated with the interface deformation~just like in
the case of ideal, inviscid liquid!, rather than scales related
thermal and viscous processes. Accordingly, we choose
following scales: h1 for length, (gh1)1/2 for velocity,
(h1 /g)1/2 for time,r1gh1 for pressure, andbh1 for tempera-
ture, whereh1 is the depth of layer 1,g is the gravity accel-
eration,r1 is the liquid density in layer 1, andb is the value
of the imposed vertical temperature gradient there~we take
b.0 if the heating is from above andb,0 otherwise!. Cor-
respondingly, the temperature gradient in layer 2 isk21b,
wherek is the ratio of thermal conductivities of the seco
and first liquids. Pressure and temperature refer to deviat
of the corresponding quantities from their stationary dis
butions, linear with the vertical coordinate, in the motionle
state.

In view of symmetry, we formulate our problem in two
dimensional geometry, withx and z being horizontal and
vertical coordinates, respectively. The bottom of layer 1
taken atz521, the top of layer 2 atz5h, and the interface
is at z5h(x,t). t denotes time andh is the ratio of the
depths of the two layers. In the unperturbed state, the in
face is atz50.

Taking all these definitions and conventions into accou
the linearized equations and boundary conditions~BC’s! for
the amplitudes of the normal modes exp(lt1ikx) are

ikuj1wjz50, ~1!

luj52d j
~r!ikpj1d j

~n!S Pr

G D 1/2

~ujzz2k2uj !, ~2!

lwj52d j
~r!pjz1d j

~n!S Pr

G D 1/2

~wjzz2k2wj !, ~3!

lTj1d j
~k!wj5

d j
~x!

~PrG!1/2 ~Tjzz2k2Tj !; ~4!

at z50,

lh5w15w2 , ~5!

u15u2 , ~6!

p12p25hS 12r1
k2

B D12S Pr

G D 1/2

~w1z2rnw2z!, ~7!

u1z1 ikw12rn~u2z1 ikw2!1
M

~PrG!1/2 ik~h1T1!50,

~8!

T11h5T21k21h, ~9!
re
-

-
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ns
-
s

s

r-

t,

T1z5kT2z ; ~10!

at z521,

u15w15T150; ~11!

and atz5h,

u25w25T250, ~12!

with

G[
gh1

3

n1x1
, B[

r1gh1
2

s
, M52

ds

dT

bh1
2

r1n1x1
,

h[
h2

h1
, Pr[

n1

x1
, r[

r2

r1
, n[

n2

n1
, x[

x2

x1
,

k[
k2

k1
,

d j
~r!5 H 1

r21
for j 51
for j 52, d j

~n![ H1
n

for j 51
for j 52,

d j
~x![ H 1

x
for j 51
for j 52, d j

~k![ H1
k21

for j 51
for j 52.

The subscriptsj 51,2 refer to the quantities in layers 1 and
respectively. We also denote byh,uj ,wj ,pj ,Tj ( j 51,2) the
~amplitudes of! interface deformation and horizontal and ve
tical components of the velocity field, pressure, and tempe
ture, respectively. The subscriptz refers to the correspondin
derivative. hj ,r j ,n j ,x j ,k j ( j 51,2) are the depths of the
layers, densities, kinematic viscosities, thermal diffusiviti
and conductivities, respectively. Symbols without subscri
refer to the ratios of the corresponding properties, alw
taken of layer 2 to that of layer 1, as defined above.s is the
interfacial tension. The Prandtl number Pr, Galileo num
G, static Bond numberB, and Marangoni numberM have
been defined using the properties of layer 1. The coefficie
d have been introduced to condense notation.

Equation~1! is the continuity equation. Equations~2! and
~3! are the horizontal and vertical components of the line
ized Navier-Stokes equation, while Eq.~4! is the heat equa-
tion. BCs~5! and~6! are the kinematic and no-slip condition
at the interface, respectively. BCs~7! and~8! account for the
normal and tangential stress balances. The continuity of t
perature and heat flux across the interface is expresse
BCs ~9! and ~10!.

The problem~1!–~12! is solved asymptotically assumin
that Pr,B, all material ratios, and the parameter 12r.0 are
of order unity, while Galileo and Marangoni numbers a
large. Thus the capillary numberB/G is small. As we will
find later on, the most general asymptotics corresponds to
Marangoni and Galileo numbers being of the same orde
magnitude. This justifies our neglect of buoyancy. Inde
the density variations due to thermal expansion of liquid
usually much smaller than the density~i.e., abh1!1, where
a is the thermal expansion coefficient!, hence the Rayleigh
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numberR[abh1G!G;M . Thus this effect proves to be
negligible correction in all cases we deal with in the pres
paper.

The fact thatG is considered large has consequences
the expected structure of the solution of the problem~1!–
~12!. Indeed, in the main bulk the dissipative effects are n
ligibly small and the flow can be considered irrotation
Vorticity appears only in the boundary layers at the rig
bottom or top, where the no-slip condition must be satisfi
and at the free interface, where the tangential~Marangoni!
stresses are present. As Pr is of order unity, as well as
property ratios, the thermal boundary layers coincide w
the viscous ones. The boundary layers are in general cha
terized by a sharp~as compared to the main bulk! change of
the functionsu, w, p, andT with the vertical coordinate,z.
Using Eqs.~2!–~4!, we find that the thickness of the boun
ary layers is of orderG21/4. Accordingly, we introduce the
smallness parameter

e[S Pr

G D 1/4

!1 ~13!

and the variables

z̄5
z

e

in the interface boundary layer,

z̃15
z11

e

in the bottom boundary layer, and

z̃25
h2z

e

in the top boundary layer.
We look for the solution separately in each one of the

regions and subsequently match them. This approach~the
method of matched asymptotic expansions! is standard prac-
tice in problems where the smallness parameter affects
highest-order derivative@30#.

Rewriting the problem~1!–~12! for each one of the three
regions, we get (j 51,2) the following. ~a! In the main
bulk,

ikuj1wjz50, ~14!

luj52d j
~r!ikpj1e2d j

~n!~ujzz2k2uj !, ~15!

lwj52d j
~r!pjz1e2d j

~n!~wjzz2k2wj !, ~16!

lTj1d j
~k!wj5e2

d j
~x!

Pr
~Tjzz2k2Tj !. ~17!

~b! In the bottom and top boundary layers,

e ikuj1~21! j 11wj z̃ j
50, ~18!

luj52d j
~r!ikpj1d j

~n!uj z̃ j z̃ j
2e2d j

~n!k2uj , ~19!
t

n

-
.

,
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h
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e

he

elwj52~21! j 11d j
~r!pj z̃ j

1ed j
~n!wj z̃ j z̃ j

2e3d j
~n!k2wj ,

~20!

lTj1d j
~k!wj5

d j
~x!

Pr
Tj z̃ j z̃ j

2e2
d j

~x!

Pr
k2Tj . ~21!

At z̃j50,

uj5wj5Tj50. ~22!

~c! In the interface boundary layer,

e ikuj1wj z̄ 50, ~23!

luj52d j
~r!ikpj1d j

~n!uj z̄ z̄2e2d j
~n!k2uj , ~24!

elwj52d j
~r!pj z̄ 1ed j

~n!wj z̄ z̄2e3d j
~n!k2wj , ~25!

lTj1d j
~k!wj5

d j
~x!

Pr
Tj z̄ z̄2e2

d j
~x!

Pr
k2Tj . ~26!

At z̄50,

lh5w15w2 , ~27!

u15u2 , ~28!

p12p25hS 12r1
k2

B D12ew1 z̄22ernw2 z̄ , ~29!

u1 z̄1e ikw12rn~u2 z̄1e ikw2!1
Me3

Pr
ik~h1T1!50,

~30!

T11h5T21k21h, ~31!

T1 z̄5kT2 z̄ . ~32!

To solve the problem~14!–~32!, all components of the
function f j5(uj ,wj ,pj ,Tj ) are expanded in power series
e :

f j~z!5 f j 01e f j 11e2f j 21••• ~33!

in the main bulk,

f j~ z̄!5 f̄ j 01e f̄ j 11e2 f̄ j 21••• ~34!

in the interface boundary layer, and

f j~ z̃j !5 f̃ j 01e f̃ j 11e2 f̃ j 21••• ~35!

in the bottom and top boundary layers. The only exception
the function uj in the interface boundary layer, which i
sought in the form

uj5e21ū j ~21!1ū j 01eū1 j1e2ū j 21••• , ~36!

i.e., starting with the term of ordere21. The reason for this
choice will be provided later on.

In principle, the parametersh and l must be also repre
sented in the form of expansions withe, e.g.,
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l5l01el11••• . ~37!

However, as they are simply constants~rather than functions
of z!, we may regard them at each step as containing
sufficient number of approximations. As forl, the represen-
tation ~37! will be used only in the final results, to avoi
cumbersome intermediate calculations.

After substituting Eqs.~33!–~36! into Eqs.~14!–~32! we
get a hierarchy of linear problems corresponding toen (n
521,0,1,...). At each step a solvability condition must
satisfied, hence providing a linear dispersion relation. N
that if h andl were also expanded withe, there would be a
hierarchy of dispersion relations corresponding to each
proximation ine. As they are not expanded here, there w
instead be a single dispersion relation, but containing te
of different orders ine.

III. TRANSVERSE AND LONGITUDINAL WAVES

A. Zeroth-order approximation to the dispersion relation

In the main bulk, using Eqs.~14!–~16!, we get

p105c1 exp~kz!1c2 exp~2kz!, ~38!

u1052
ik

l
@c1 exp~kz!1c2 exp~2kz!#, ~39!

w1052
k

l
@c1 exp~kz!2c2 exp~2kz!#, ~40!

p205c3exp~kz!1c4 exp~2kz!, ~41!

u2052
ik

rl
@c3 exp~kz!1c4 exp~2kz!#, ~42!

w2052
k

rl
@c3 exp~kz!2c4 exp~2kz!#, ~43!

wherec1 ,...,c4 are constants of integration, yet to be det
mined. In the bottom and top boundary layers, Eq.~18!
yields thatw̃j 0 ( j 51,2) are constants. Then, according to B
~22!, w̃105w̃2050. The matching conditions betweenw̃j 0
andwj 0 yield

c1 exp~2k!5c2 exp~k!, ~44!

c3 exp~kh!5c4 exp~2kh!. ~45!

In the interface boundary layer, using Eq.~25!, we get that
p̄ j 0 ( j 51,2) are constants. Then using BC~29! and the con-
ditions of matching betweenpj 0 and p̄ j 0 we obtain

c11c22c32c45hS 12r1
k2

B D . ~46!

Also in the interface boundary layer, Eq.~24! yields

ū1~21!5c5 exp~Al z̄!, ~47!

ū2~21!5c6 exp~2Aln21/2z̄ !, ~48!
e

e

p-
l
s

-

wherec5 andc6 are constants andAl is taken with a posi-
tive real part. Using BC~28! we obtain

c55c6 . ~49!

Then using Eq.~23! and BC~27! we get

w̄105
ikc5

Al
@12exp~Al z̄ !#1lh, ~50!

w̄205
ikc6

Al
n1/2@exp~2Aln21/2z̄ !21#1lh. ~51!

Now we use the matching conditions betweenwj 0 and w̄j 0
that gives

k

l
~c22c1!2

ik

Al
c55lh, ~52!

k

rl
~c42c3!1

ik

Al
n1/2c65lh. ~53!

It appears clear why the expansion~36! for the horizontal
velocity in the interface boundary layer needs to start w
the term of ordere21. Otherwise we would get thatw̄j 0 ( j
51,2) are just constants in the interface boundary layer@in
view of Eq. ~23!#; hence other possible solutions would b
lost @such as Eq.~63!, see below#. Note that owing to the
no-slip boundary condition in the bottom and top bounda
layers the expansion for the horizontal velocity must st
with the same order as the expansion in the main bu
Eliminating the coefficientsc1 ,...,c5 in the system of equa
tions ~44!–~46!, ~49!, ~52!, and~53!, we get

2 ikAl@rn1/2 coth~kh!2coth~k!#c6

1@r coth~kh!1coth~k!#~l21v0
2!h

50, ~54!

with

v0
2[k

12r1k2/B

r coth~kh!1coth~k!
. ~55!

Let us now proceed to the temperature field. The solut
in the interface boundary layer can be obtained in a clo
form without referring to the main bulk and wall bounda
layer solutions. Thus, provided the temperature gradien
the unperturbed state remains unchanged, the boundary
approximation results do not depend on the particular fo
of the temperature boundary condition at the rigid botto
and top.

According to Eq.~26!, taking Eqs.~50! and ~51! into ac-
count, the zeroth-order solution approximation in the int
face boundary layer is

T̄1052h2
ikc5

lAl
2

ikc5

lAl

Pr

12Pr
exp~Al z̄ !

1c7 exp~Al Pr1/2z̄ !, ~56!
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T̄2052k21h1
ikc6

lAl
n1/2k21

1
ikc6

lAl
n1/2k21

Pr

xn212Pr
exp~2Aln21/2z̄ !

1c8 exp~2AlPr1/2x21/2z̄ !. ~57!

The coefficientsc7 andc8 are found using BC~31! and~32!.
Then we use the last BC~30!, which in the leading-order
approximation considered here becomes

u1~21! z̄2rnu2~21! z̄1mik~h1T10!50, ~58!

where, for convenience, amodifiedMarangoni number

m[
Me4

Pr
~59!

has been introduced. This quantitym is the inverse of the
dynamicBond number. Substituting Eqs.~47!, ~48!, and~56!
into Eq. ~58!, we obtain

~11rn1/2!c6

1
mk2

l2

x1/2n21/221

~11kx21/2!~11Pr1/2!~x1/2n21/21Pr1/2!
c650.

~60!

The constantc6 is retained here, on the one hand, for its u
in the solvability condition in the following subsection@in
particular, Eq.~60! can be satisfied byc650# and, on the
other hand, to help the reconstitution with the correspond
first-order equation in Sec. IV.

B. Analysis and discussion of mode frequencies

The solvability condition demands the existence of a n
trivial solution for the coefficientsc6 and h of the system
~54! and ~60!. It yields a vanishing determinant, i.e.,

~l21v0
2!S 11

mk2

l2

3
x1/2n21/221

~11rn1/2!~11kx21/2!~11Pr1/2!~x1/2n21/21Pr1/2! D
50. ~61!

Eq. ~61! possesses two solutions:

l252v0
2 ~62!

and

l252
mk2~x1/2n21/221!

~11rn1/2!~11kx21/2!~11Pr1/2!~x1/2n21/21Pr1/2!
.

~63!

Thus we find that two different modes exist. The first o
~62! is just the mode that appears in ideal, inviscid, liqu
layers and accounts for capillary-gravity waves@16#. The
second one~63! is due to the Marangoni effect and has
e

g

-

analog in the case of an inviscid liquid. Unlike the fir
mode, the second mode is not always oscillatory. Indeed,
oscillatory only if the right-hand side of Eq.~63! is negative,
i.e., if m(12x1/2n21/2),0. For liquids with normal interfa-
cial tension dependence on temperature, i.e., whose v
decreases with the increase of temperature, the second m
is oscillatory whenx,n and the heating is from above o
whenx.n and the heating is from below.

The first mode is a transverse interfacial vibration sin
capillary-gravity waves are intrinsically related to interfa
deformations. The second mode corresponds to oscillat
along the surface due to the Marangoni effect, hence
coinage ‘‘longitudinal’’ wave@26#. Returning to dimensiona
variables, expression~63! does not contain quantities relate
to surface deformation~g and s!. It does not contain the
layer depths either. Thus the result~63! does not depend on
whether the surface is deformable (M;G) or not (M
!G). The only condition of its validity isM@1; hence the
time scale associated with longitudinal oscillations

r1h1
2

2ds/dTb

is shorter than the viscous and thermal time scales.~Note that
in the estimations such asM@1 we tacitly mean the absolut
value ofM .!

The most general case forM@1, G@1 is the caseM
;G (m;1), when the frequencies of both modes are ab
the same. It is worth noting that, although a nonvanish
interface deformation accompanies the second mode aM
;G, it still clearly manifests its longitudinal character. In
deed, for the second mode there exists a strong horizo
component of the velocity field in the interface bounda
layer that is 1/e times stronger than its corresponding val
in the main bulk. For the first mode, in view of Eqs.~49!,
~54!, and ~62!, the constantsc5 and c6 are equal to zero;
hence the velocity field is everywhere of the same order. T
fact that the leading-order result~63! does not depend on
layer depths, as already mentioned in the preceding p
graph, is just a consequence of the predominance of the
gitudinal motion near the interface.

There exists a combination of the parameters such tha
frequencies defined by Eqs.~62! and ~63! become equal to
each other. This corresponds to the resonance of the mo
It occurs for the following value of themodifiedMarangoni
number:

mres

5
~11rn1/2!~11kx21/2!~11Pr1/2!~x1/2n21/21Pr1/2!

x1/2n21/221

v0
2

k2 .

~64!

As one can see from Eqs.~62! and ~63!, the eigenvalues
for both modes tend to zero ask approaches zero. Thus th
boundary layer approximation is not valid ifk is too small or
the waves are too long. Indeed, due to the lowering in os
lation frequency in the long-wave region, their characteris
time scale is no longer shorter than the viscous and ther
time scales. Let us estimate the value ofk for which the
boundary layer approach breaks down. In accordance w
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the boundary layer exponents of, e.g., Eqs.~47! and~48!, the
condition isAl;e. Taking Eqs.~62! and~63! into account,
we getk ;e2, or recalling Eq.~13!, k;G21/2 ~for the sec-
ond mode it should bek;M 21/2 if we do not assumem
;1!. Thus we have to demand thatk@G21/2. On the other
hand, there is also a limitation from above, i.e., from the s
of largek or short waves. This limitation is related to the fa
that in the short-wave region the penetrationk21 of the po-
tential part of the flow inside the layer decreases fasterk
→` than that of the rotational parte/Al. The boundary
layer approximation is valid only if the former is much larg
than the latter. For the capillary-gravity mode, this yields
conditionk!e24 or k!G ~if B;1!. We can also make the
corresponding estimate for the longitudinal mode. Note t
with the increase ofG andM , the domain of validity grows
both towards the long-wave region and towards the sh
wave region.

The zeroth-order solution has provided the frequencie
transverse and longitudinal waves. In the following sect
we show how the first-order solution for the dispersion re
tion provides the real parts of the eigenvalues, thus allow
the study of the conditions for the oscillations to be amplifi
or damped.

IV. MARGINAL STABILITY CONDITIONS
AND MODE MIXING

A. First-order solution

The quantitiespj 1 , uj 1 , andwj 1 ( j 51,2) have the same
form as Eqs.~38!–~43!. For simplicity, we do not write them
explicitly, just implying that the constantsc1 ,...,c4 are sub-
stituted by the corresponding primed constants.

In the bottom and top boundary layers, using Eq.~20!, we
get thatp̃ j 0 ( j 51,2) do not depend on the vertical coord
nate. Using the matching condition to the main bulk soluti
we obtain

p̃105A1 , p̃205A2

with

A1[c1 exp~2k!1c2 exp~k!52
iAlrn1/2 coth~kh!

cosh~k!
c6

1
rl2 coth~kh!

k cosh~k!
h1

v0
2@coth~k!1r coth~kh!#

k cosh~k!
h,

A2[c3 exp~kh!1c4 exp~2kh!

52
iAlrn1/2

sinh~kh!
c61

rl2

k sinh~kh!
h, ~65!

where the constantsc1 ,...,c4 have been expressed in term
of c6 andh using Eqs.~44!–~46!, ~49!, ~52!, and~53!. Then
Eq. ~19! and BC~22! yield

ũ1052
ikA1

l
@12exp~2Al z̃1!#,

ũ2052
ikA2

rl
@12exp~2Aln21/2z̃2!#.
e

e

t

t-

of
n
-
g

,

Using Eq. ~18! and BC ~22!, we find w̃j 1 , and then the
matching condition betweenwj 01ewj 1 and w̃j 01ew̃j 1
yields

2c18 exp~2k!1c28 exp~k!5
k

Al
A1 , ~66!

2c38 exp~kh!1c48 exp~2kh!52
k

Al
n1/2A2 . ~67!

Returning to the interface boundary layer, let us first d
terminep̄ j 1 . Equation~25! and BC~29! reduce to

lw̄1052 p̄11z̄1w̄10z̄ z̄ ,

lw̄2052
1

r
p̄21z̄1nw̄20z̄ z̄ .

At z̄50,

p̄112 p̄2152w̄10z̄22rnw̄20z̄ .

Then using Eqs.~50! and ~51! and the matching condition
betweenpj 01epj 1 and p̄ j 01e p̄ j 1 , we get

c181c282c382c4852~rn21!ikc6 . ~68!

Equation~24! yields

ū105c58 exp~Al z̄ !2
ik

l
~c11c2!, ~69!

ū2052
ik

rl
~c31c4!. ~70!

Note that we define the constantc6 , appearing at the bound
ary layer exponential~48!, as already containing enough a
proximations, as we earlier did withl andh. That is why the
expected exponential term is absent in Eq.~70!.

Substituting Eqs.~69! and~70! into BC ~28! and using the
expression ofc1 ,...,c4 in terms ofc6 andh, we get

c585D, ~71!

where

D[
ik

l
~c11c2!2

ik

rl
~c31c4!

52
k

Al
~12r!n1/2 coth~kh!c62 il~12r!coth~kh!h

1 i
v0

2

l
@coth~k!1r coth~kh!#h. ~72!

To find w̄j 1 we use Eq.~23! with Eqs.~69! and ~70! and
BC ~27!. The latter yieldsw̄j 150 at z̄50 as h has been
taken into account in the leading-order approximation. W
get
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w̄115
ikc58

Al
@12exp~Al z̄ !#2

k2

l
~c11c2!z̄, ~73!

w̄2152
k2

rl
~c31c4!z̄. ~74!

The matching betweenwj 01ewj 1 and w̄j 01ew̄j 1 yields

k

l
~c282c18!5

ik

Al
c58 , ~75!

k

rl
~c482c38!50. ~76!

Now eliminating c18 ,...,c58 in the system~66!–~68!, ~71!,
~75!, and~76! as done with the corresponding unprimed c
efficients in the system~44!–~46!, ~49!, ~52!, and ~53!, we
get

2ik2~rn21!c61 ikAlD coth~k!2
k2

Al
A1

1

sinh ~k!

1
k2

Al
n1/2A2

1

sinh ~kh!
50. ~77!

However, as we did not expandl, h, andc6 , Eq.~77! cannot
be used alone. Rather it must be taken together with Eq.~54!,
which is the corresponding result of the leading-order
proximation.
-

-

For the temperature field, Eq.~26! together with Eqs.~73!
and ~74! yields

T̄1152
ikc58

lAl
2

ikc58

lAl

Pr

12Pr
exp~Al z̄ !1

k2

l2 ~c11c2!z̄

1c78 exp~AlPr1/2z̄!, ~78!

T̄215k21
k2

rl2 ~c31c4!z̄1c88 exp~2AlPr1/2x21/2z̄ !.

~79!

Determiningc78 and c88 with the help of BC~31! and ~32!,
which in the present approximation does not containh, sub-
stituting Eqs.~69!, ~70!, ~78!, and ~79! into BC ~30!, and
taking Eqs.~59!, ~71!, and~72! into account, we get

D2
mk2

l2 D
1

Pr1/2~11Pr1/2!~11kx21/2!
50. ~80!

Note again that Eq.~80! can be used only when combine
with the previous order equation~60!.

Finally, combining the zeroth- and first-order solution
namely, Eq.~60! with Eq. ~80! multiplied by e and Eq.~54!
with Eq. ~77! multiplied by e, and recalling the definitions
~65! and ~72!, we get

a11c1a21h50, ~81!

a12c1a22h50, ~82!

with
a11511
mk2

l2

x1/2n21/221

~11rn1/2!~11kx21/2!~11Pr1/2!~x1/2n21/21Pr1/2!

2e
k

Al

~12r!n1/2

11rn1/2 coth~kh!F12
mk2

l2

1

Pr1/2~Pr1/211!~11kx21/2!G , ~83!

a2152e
i

11rn1/2 F ~12r!l coth~kh!2
v0

2

l
@r coth~kh!1coth~k!#GF12

mk2

l2

1

Pr1/2~Pr1/211!~11kx21/2!G , ~84!

a1252 ikAl@rn1/2 coth~kh!2coth~k!#1e ik2F2~rn21!2~12r!n1/2 coth~k!coth~kh!1rn1/2
coth~kh!

sinh~k!cosh~k!

2rn
1

sinh2~kh!G , ~85!

a225@r coth~kh!1coth~k!#~l21v0
2!1e

k

Al
Fl2~12r!coth~k!coth~kh!2v0

2@r coth~kh!1coth~k!#coth~k!

2rl2
coth~kh!

sinh~k!cosh~k!
2v0

2 coth~kh!1coth~k!

sinh~k!coth~k!
1rn1/2l2

1

sinh2~kh!G . ~86!
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For simplicity, we have omitted the subscript for the const
c6 . The results~81!–~86! are enough for the purpose of th
present paper.

B. Stability analysis of „oscillatory… modes

Satisfying the solvability condition

a11a222a12a2150, ~87!

we get an approximate dispersion relation. The leadi
~zeroth-! order approximation was studied in Sec. III B
where it was shown that two modes, transverse and long
dinal, exist. However, only the imaginary part of the eige
values, and hence their corresponding frequencies, was
tained. To assess the stability of these two modes we nee
calculate the real part, which ise times smaller. This quantity
is obtained in the first-order approximation. Thus we expa
l as Eq.~37!, implying thatl0 is given by Eq.~62! for the
transverse mode and by Eq.~63! for the longitudinal mode,
respectively. Then Eq.~87!, taken at ordere, yields the fol-
lowing equations forl1 :

2l1S 12
m

mres
D @r coth~kh!1coth~k!#1kAl0S 12

m

mres
D

3Fcoth~k!@coth~k!1coth~kh!#1
1

sinh2~k!

1
rn1/2

sinh2~kh!G
1kAl0F11

m

mres

~11rn1/2!~x1/2n21/21Pr1/2!

Pr1/2~x1/2n21/221! G
3

rn1/2 coth~kh!2coth~k!

11rn1/2 @coth~k!1coth~kh!#50

~88!

for the transverse mode and

2l1S 12
mres

m D @r coth~kh!1coth~k!#1kAl0 F 1

11rn1/2

1
x1/2n21/21Pr1/2

Pr1/2~x1/2n21/221!GF2~12r!

3~11n1/2!coth~k!coth~kh!1
mres

m
@n1/2 coth~kh!

2coth~k!#@r coth~kh!1coth~k!#G50 ~89!

for the longitudinal mode.mres was defined in Eq.~64!. As
for both modesl0 is purely imaginary~we only consider the
case when the longitudinal mode is oscillatory!, then Al0
5(16 i )ul0u1/2/&, where ~for positive k! Im(l0),0 and
Im(l0).0 correspond to right and left propagating wave
respectively.

The sign of Re(l1) determines whether the correspondi
wave is damped or amplified. In particular, atm50, Eq.~88!
yields the damping coefficient for capillary-gravity waves
the usual, isothermal situation. Re(l1)50 defines the condi-
t

-

u-
-
b-
to

d

,

tion of marginal stability, providing the marginal curve
‘‘ m versusk. ’’ Imposing Re(l1)50 in Eqs.~88! and~89!, we
get

mtr5mresH rn1/2@coth~k!1coth~kh!#2

11rn1/2 1
1

sinh2~k!

1
rn1/2

sinh2~kh!J H coth~k!@coth~k!1coth~kh!#1
1

sinh2~k!

1
rn1/2

sinh2~kh!
1

x1/2n21/21Pr1/2

Pr1/2~x1/2n21/221!
@coth~k!

2rn1/2 coth~kh!#@coth~k!1coth~kh!#J 21

~90!

for the transverse mode and

mlong5mres

@n1/2 tanh~k!2tanh~kh!#@r coth~kh!1coth~k!#

~12r!~11n1/2!
~91!

for the longitudinal mode, wheremres is defined in Eq.~64!.
Note that the marginal condition~91! is valid only if

E1[n1/2 tanh~k!2tanh~kh!.0. ~92!

Otherwise the longitudinal mode~63! is not oscillatory. De-
pending on the values ofn and h, the inequality~92! can
hold for all k, for some interval ofk, or else for nok at all.
Indeed,~i! if 1 ,h,n1/2 or h,1,n1/2, we haveE1.0, i.e.,
mlong exists for allk; ~ii ! if n1/2,1,h or n1/2,h,1, then
E1,0, i.e., there are no marginal states for the longitudi
mode.~iii ! if 1 ,n1/2,h, the marginal curve occupies onl
the intervalk.k0 , wherek0Þ0 is the root ofE1 , which
does not exist in the first two cases; and finally,~iv! if h
,n1/2,1, the marginal states exist only fork,k0 .

Due to the condition~92!, the signs ofmlong and mres
always coincide. At the same time, in view of Eq.~64!, they
are defined by the sign ofx1/2n21/221. Thus it is clear how
mlong behaves. As formtr @Eq. ~90!#, no such simple criteria
exist.

The possibility of extending the longitudinal margin
curve up tomlong50 @cases~iii ! and ~iv! above# demands
clarification. The same occurs when atm→0 Eq.~89! yields
in some cases a persisting instability for the longitudin
mode. This can be understood in the following way. T
oscillatory instability studied here is associated with inter
cial deformations at large Galileo number (G@1) and con-
sequently with high Marangoni numbers~m;1, henceM
;G@1!. However, in the two-layer system, the oscillato
instability can appear even if the interface is not deforma
~for M;1!G!. It is having this fact in mind that our result
for the longitudinal mode should be considered. For e
ample, the fact thatmlong→0 at somek→k0 is an indication
that there is a vertical asymptote of a ‘‘low-M ’’ oscillatory
marginal curve at the samek5k0 . Analogously, if the lon-
gitudinal mode remains amplified for some interval ofk at
m→0, it means that there necessarily exists an amplifi
oscillatory mode in the Be´nard-Marangoni problem with an
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undeformable interface, providedM is taken large enough
and has the same sign as needed for the mode~63! to be
oscillatory.

l1 diverges when calculated using Eqs.~88! or ~89! at
m→mres. Thus an improved asymptotic analysis in the
cinity of the resonance curve is needed. First of all, when
coefficient of l1 becomes small, one must also take in
account the quadratic term (;l1

2) when deriving an equation
for l1 from Eq. ~87!. At m5mres it becomes the leading
order term containing the correction to the eigenvalue,l1 .
Consequently, the following scaling is appropriate here:

l5L01e1/2L11••• , ~93!

whereL0[6 iv0 coincides withl0 for the transverse mode
while

d~m![
m2mres

mres
e21/2;1. ~94!

Note that the correction to the eigenvalue becomes asy
totically higher near the resonance. Finally, using Eqs.~93!
and ~94! in Eq. ~87!, we derive the equation forL1 ,

4

L0
L1

222d~m!L11Q50, ~95!

with

Q[kAL0 F11
~11rn1/2!~x1/2n21/21Pr1/2!

Pr1/2~x1/2n21/221! G
3

rn1/2 coth~kh!2coth~k!

11rn1/2

coth~k!1coth~kh!

coth~k!1r coth~kh!
.

Here we assume thatQ;1 and thus we exclude from con
sideration a small interval ofk aroundk* , wherek* is a root
of

E2[rn1/2 coth~kh!2coth~k!, ~96!

where it exists. This peculiar case will be treated later on~see
Sec. V!.

Near resonance, the zeroth-order eigenvalues for the
modes coincide and a difference appears only in the fi
order approximation. Accordingly, Eq.~95! has two solu-
tions for L1 .

Before providing the solution, let us point out some ba
details concerningL1 satisfying Eq.~95!. First, there are no
values of the parameters for which purely imaginary so
tions exist. Thus there are no marginally stable states in
vicinity of the resonance point. Second, form5mres, Eq.
~95! implies thatL1

2 is a complex quantity. Then one of th
eigenvalues always has a positive real part, while the
part of the other is always negative. In the absence of m
ginally stable states, the continuity demands that this hold
the vicinity of the resonance point. Consequently, the re
nance occurs only when one of the two modes is unstab

The solution of Eq.~95! is

L15
L0

4 Fd~m!6Ad2~m!2
4

L0
QG . ~97!
e

p-

o
t-

c

-
e

al
r-
in
-
.

In the regionud(m)u@1, L01e1/2L1 should match withl0
1el1 for the transverse and longitudinal modes, taken
m→mres. l0 is defined in Eqs.~62! and~63! andl1 in Eqs.
~88! and ~89!. Let us study the limitud(m)u@1 in Eq. ~97!.
Taking, for illustration, ‘‘positive’’ branch of the solution
we have

L1>
1

2

Q

d~m!
1••• ~98!

for d(m),0 and

L1>
L0

2
d~m!2

1

2

Q

d~m!
1••• ~99!

for d(m).0.
Equation ~98! coincides~up to the factore1/2! with the

result given by Eq.~88!, for the transverse mode, in the lim
m→mres. The second term on the right-hand side of Eq.~99!
is identical~up to the same factor! to the result provided by
Eq. ~89! for the longitudinal mode atm→mres, while the
first term accounts for the fact that the leading-order frequ
cies for the longitudinal mode become different fromv0
away from the resonant curve. Thus the positive branch
Eq. ~97! tends to the transverse eigenvalue atum2mresu
@e1/2, m,mres, and to the longitudinal eigenvalue a
um2mresu@e1/2, m.mres. Analogously, one can show tha
the opposite holds for the ‘‘negative’’ branch.

Thus there is a continuous transition from the transve
mode to the longitudinal one, and vice versa, around
resonance curve, where mode mixing occurs. The salient
tures of this transition are~i! conservation and alternation o
the sign of Re(l), i.e., at each stage of the transition, Re(l)
.0 for one of the~mixed! modes and Re(l),0 for the other,
and ~ii ! Re(l) becomes asymptotically larger near the res
nance, although still Re(l)!Im(l).

Shown in Figs. 1 and 2 are some representative ca
illustrating the behavior of the marginal curves for the tran
verse ~solid line marked 1! and longitudinal ~solid line
marked 2! modes, as well as the resonance curve~dot-dashed
line!. In view of symmetry, we plot them only fork.0. The
parameter values used are indicated in the figure captions
earlier shown, in some cases the longitudinal marginal cu
does not exist. These three curves, as well as the axim
50, subdivide the semiplane$k.0,m% into regions, accord-
ing to the different ~damping or amplification! status of
transverse and longitudinal waves. We have expressed th
Figs. 1 and 2 with the help of vertical arrows: The first arro
corresponds to the transverse mode and the second one
longitudinal mode. An arrow pointing up means that the c
responding mode is amplified, otherwise it denotes a dam
mode. In the quadrantm.0, orm,0, where the longitudinal
mode is not oscillatory, the second arrow is replaced by
asterisk.

Given a particular diagram of marginal and resonan
curves, there is no need to refer to Eqs.~88! and ~89! to
establish the damping or amplification status in each reg
~i.e., setting arrows and asterisks!. Rather, this can beunam-
biguouslyestablished with the help of the earlier establish
facts: ~i! The transverse mode is always damped in the
gions adjacent tom50, ~ii ! the sign of Re(l) is conserved
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FIG. 1. Marginal curves for the transverse@solid line 1, Eq.
~90!# and longitudinal@solid line 2, Eq.~91!# waves and the reso
nance curve@dot-dashed line, Eq.~64!# for ~a! h50.2, r50.5, n
54.5, x51.0, k50.5, B51.0, and Pr56.0; ~b! h50.5, r50.5, n
50.4, x52.0, k50.5, B50.17, and Pr56.0; and ~c! h51.2, r
50.5,n51.3,x54.0,k50.5, B51.0, and Pr52.0. In each region
the arrows indicate whether the transverse~first arrow! and longi-
tudinal ~second arrow! are amplified~arrow up! or damped~arrow
down!. When the longitudinal mode is not oscillatory, the seco
arrow is replaced by an asterisk.
FIG. 2. Same as in Fig. 1 for~a! h51.6, r50.65, n53.0, x
50.5, k50.3, B53.0, and Pr56.0; ~b! h50.45,r50.95,n50.8,
x52.0, k50.5, B53.0, and Pr52.0; and~c! h50.9, r50.95, n
51.05, x50.4, k51.0, B515.0, and Pr50.01. Note the resonan
intersection of the transverse and longitudinal marginal curves
the examples.
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and alternates around the resonance curve,~iii ! crossing a
marginal curve, we change from damping to amplification
vice versa for the corresponding mode, and~iv! the longitu-
dinal mode is oscillatory only in the semiplane containi
the resonance curve~and the longitudinal marginal curve
when it exists!. In each case, there is only one set of arro
and asterisks that does not contradict~i!–~iv!.

The marginal curves can intersect~as in the examples o
Fig. 2! eithernonresonantlyor resonantly. In the latter case
the resonance curve also passes through the point of i
section. It can be shown that the necessary and suffic
condition for the existence of a resonant intersection is
E2 , defined in Eq.~96!, vanishes at somek5k* . Thus we
conclude thatresonantintersection occurs if and only if ei
ther 1,rn1/2,h or h,rn1/2,1.

A further improved asymptotic study~see the next sec
tion! is needed to properly account for thee vicinity of the
resonant intersection point$k* ,m* %, wherem* is mres, mtr ,
or, equivalently,mlong evaluated atk5k* . None of the re-
sults ~88!–~91!, nor Eq. ~97!, is correct there. Indeed, atk
→k* , m→m* , no order unity terms exist in the matri
elements~83!–~86!. Thus the leading order determinant~87!
is of order e2, while the results~88!, ~89!, and ~97! have
been obtained evaluating the determinant~87! in the ordere.
On the other hand, for the purpose of studying the vicinity
the point k5k* , m5m* , as there are no terms of orde
unity, we do not need to calculatee2 contributions to the
coefficients~83!–~86!.

V. DETAILS OF THE MARGINAL CURVES NEAR
THE RESONANT INTERSECTION

Considering the vicinity of the resonant intersection poi
we impose

k5k* 1eD~k!1••• , m5m* 1eD~m!1••• ,

l5 iv* 1eD~l!1••• , ~100!

wherev* is v0 taken atk5k* . After using Eq.~100! in
Eqs.~83!–~86!, Eq. ~87! becomes

q2FD~l!1
bD~k!

2iv*
G2

1q1FD~l!1
bD~k!

2iv*
G1q050,

~101!

with

q254~11n21/2!coth~k* !,

q152iv* ~11n21/2!coth~k* !S 2
D~m!

m*
22

D~k!

k*

1b
D~k!

v
*
2 D 22k*

Aiv*
~12r!~11n21/2!

r~11rn1/2!
coth2~k* !B

12k*
Aiv* ~11rn1/2!S 2

rn1/2 coth2~k* !21D ,

q05
k* iv*

Aiv*
rn1/2 coth~k* !BaD~k!
r

s

er-
nt
at

f

,

2k
*
2 iv* coth~k* !BS 3

rn21

rn1/2 2
12r

r D
1k* iv*

Aiv* ~11rn1/2!S 2

rn1/2 coth2~k* !21D
3S 2

D~m!

m*
22

D~k!

k*
1b

D~k!

v
*
2 D ,

wherea is the slope ofE2 @Eq. ~96!# at k5k* , b is the same
for v0

2, and

B[11
~11rn1/2!~x1/2n21/21Pr1/2!

Pr1/2~x1/2n21/221!
.

Looking for the marginally stable states described by E
~101!, we set Re@D(l)#50. Then Im@D(l)#5
2Im(q0)/Re(q1), and finally eliminatingD~l!, we get

2q2 Im2~q0!1Im~q1!Im~q0!Re~q1!1Re~q0!Re2~q1!50.

Alternatively, we have

2q2 Im2~q0!1@ Im~q1!2sgn~v* !Re~q1!#Im~q0!Re~q1!

1@Re~q0!1sgn~v* !Im~q0!#Re2~q1!50. ~102!

After substituting the expressions forq0 , q1 , and q2 , Eq.
~102!, as expected, depends only on the absolute value
v* , rather than on its sign.

Equation ~102! is a quadratic equation forD(k) and
D(m). In the planeD(m) versusD(k) it defines a hyperbolic
marginal curve. Some examples are shown in Fig. 3~solid
line! for the same parameter combinations as in Fig. 2, wh
the resonant intersection occurs. The dashed lines, mark
and 2, and dot-dashed lines correspond to the direct cont
ations ofmtr , mlong, andmres, respectively, linearized in the
vicinity of the resonant intersection point. The axes of t
hyperbole are naturally parallel to the linearizations ofmtr
andmlong. They provide a successful leading-order match
between the marginal curves in the vicinity and far aw
from the resonant intersection point. The appearance of
shift is due to the use of different orders of approximati
when deriving the results~90!, ~91! ~e1 approximation!, and
~102! ~e2 approximation!. Accordingly, the shift should be
taken into account in the next-order matching, between
~102! and the next-order correction to the marginal curv
~90! and ~91!. This task is beyond the scope of the prese
paper.

Thus, studying the detailed structure of marginal curv
near the point$k* ,m* %, it appears that in fact they do no
intersect. Actually, there is rounding off of a pair of tw
opposite corners, accompanied by the formation of a
between two separate branches of the marginal curve
simple criterion can be established concerning which one
the two pairs of opposite corners is rounded off, the o
containing the resonance curve~first possibility! or the other
~second possibility!. Indeed, considering the points along th
resonance curve, which in terms ofD(m) andD(k) can be
written as
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FIG. 3. Enlarged view of the resonant intersection of margi
curves. The cases~a!–~c! are the same as in Fig. 2. Marginal curv
~solid line!, direct continuations of the resonance curve~dot-dashed
line!, and transverse~dashed line 1! and longitudinal~dashed line 2!
marginal curves of Fig. 2.
2
D~m!

m*
22

D~k!

k*
1b

D~k!

v
*
2 50,

we get Im(q1)2sgn(v* )Re(q1)50, i.e., the second term o
the left-hand side of Eq.~102! is zero. Then, asq2.0, Eq.
~102! may have two solutions forD(k), corresponding to the
intersection of the resonance curve with the two branche
the marginal curve, only if Re(q0)1sgn(v* )Im(q0).0, i.e., if

E3[
3rn1/21r23n21/221

x1/2n21/221
,0.

Thus, if E3,0, the first possibility is realized, while ifE3
.0, the second possibility occurs, in accordance with
cases shown in Fig. 3.

VI. CONCLUDING REMARKS

The linear analysis of the Be´nard-Marangoni oscillatory
instability in a system of two horizontal liquid layers of finit
depth separated by a free deformable interface and subje
to a vertical temperature gradient has been carried out.
suming that the Galileo number is large, while the capilla
number is small, and using the boundary layer approxim
tion, we have asymptotically studied the high Marango
number branches of instability, associated with interface
formations, and found that they can be described in term
~high-frequency! transverse~capillary-gravity! and longitudi-
nal wave modes.

The leading-order dispersion relation enabled us to ca
late the frequencies of both the transverse~62! and the lon-
gitudinal ~63! waves. The longitudinal mode does not appe
always oscillatory. It is so only whenm(x2n).0, i.e., if the
heating is from above forx.n and if the heating is from
below for x,n. We have also obtained the damping or a
plification rates@Eqs. ~88! and ~89!#, which are always as-
ymptotically smaller than the frequencies. The marginal s
bility conditions for the both modes, represented in terms
marginal curves ‘‘modified Marangoni number versus wa
number,’’ $m,k% @Eqs.~90! and~91! and Figs. 1 and 2#, have
been analyzed.

The possibility of resonance between transverse and
gitudinal waves has been studied in detail. It occurs when
frequencies given by Eqs.~62! and~63! approach each other
hence defining the resonance curve~64!. Near resonance
mode mixing is expected. As a consequence of the mix
the transverse mode is converted into the longitudinal
and vice versa@Eq. ~95!#. At this transition, the damping o
amplification rate becomes asymptotically higher than aw
from the resonance. We have shown that, given a diagram
the marginal and resonance curves~Figs. 1 and 2!, one can
unambiguously determine in which regions of the pla
$m,k% a given mode is damped or amplified.

It was also found that there can exist nonresonant
resonant intersections of the transverse and longitudinal m
ginal curves. The necessary and sufficient condition for
existence of the resonant intersection is thatE2 @Eq. ~96!#
vanishes at some wave number. Details of the behavio
marginal curves in a small vicinity of the resonant interse
tion point have been analyzed~Fig. 3!.

The results for thelongitudinal modeobtained here permi

l
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some conclusions and predictions concerning the structur
the low Marangoni number branches for oscillatory instab
ity in the two-layer problem with undeformable separati
interface. Indeed, the results found here, when taken in
limit umu!1, should match the corresponding results o
tained for the problem with a flat, undeformable interfa
taken in the limituM u@1. For example, the eigenvaluel0
1el1 , with l0 andl1 defined in Eqs.~63! and~91! taken in
the limit of smallm @Eq. ~59!#, provides the asymptotics o
the corresponding eigenvalue in the problem with flat int
face at largeM . In this way, one can easily study for whic
cases Re(l1).0, which helps orientation in the paramet
space. Take, e.g., the possibility for the longitudinal margi
curve to approach zero at somek5k0 , wherek0 is a root, if
any, ofE1 @Eq. ~92!#. In this case, one should expect a ve
tical asymptote to the low Marangoni oscillatory margin
-

v

n.
of
-

e
-

-

l

l

curve at the samek5k0 . It turns out that the existence an
behavior of this asymptote is governed by only two para
etersn andh enteringE1 .
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