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Thermodynamically self-consistent theory of structure for three-dimensional lattice gases
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Recently, methods were developed to solve with high accuracy the equations that describe a thermodynami-
cally self-consistent theory for the two-body correlation function, and preliminary results were reported for
three-dimensional lattice gases with nearest-neighbor attractive interaction@R. Dickman and G. Stell, Phys.
Rev. Lett.77, 996 ~1996!#. Here we give a detailed description of our methods and of the results, which are
found to be remarkably accurate for both the thermodynamics and structure of these systems. In particular,
critical temperatures are predicted to within 0.2% of the best estimates from series expansions. Although above
the critical temperature the theory yields the same critical exponents as the spherical model, this asymptotic
behavior sets in only in a very narrow region around the critical point, so that the apparent exponents and the
thermodynamics are well reproduced up to reduced temperatures of around 1022. On the coexistence curve, on
the other hand, the exponents are nonspherical, and considerably more accurate than the spherical ones. For
instance, the exponentbcoex predicted by the theory for the shape of the coexistence curve isbcoex50.35.
@S1063-651X~98!01203-3#

PACS number~s!: 05.50.1q, 05.70.Ce, 64.60.Cn, 64.60.Fr
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I. INTRODUCTION

A widely adopted approach in the realm of liquid-sta
theory consists in closing the exact Ornstein-Zernike~OZ!
equation linking the two-particle distribution functiong(r )
and the direct correlation functionc(r ) by some approximate
relation expressingc(r ) in terms of the thermodynamic sta
of the system, the interparticle potential, and ofteng(r ) itself
@1#. As is well known, these closure schemes generally l
to thermodynamic inconsistencies: for example, differ
pressures are obtained depending on whether one use
virial, compressibility, or energy routes. Some years ag
remedy was proposed for this defect: whilec(r ) is assumed
to have always the same range as the potential—an ansa
common use in the above mentioned methods, usually
ferred to as the OZ approximation—its dependence on
thermodynamic state is not givena priori. Rather,c(r ) is
determined on the basis of consistency with a single-val
free energy function@2–4#. Despite the promise revealed
initial applications of thisself-consistent OZ approximatio
~SCOZA!, much remains to be explored regarding its ac
racy for various fluid models. In this paper we apply t
SCOZA to three-dimensional lattice gases with neare
neighbor interactions. The present study extends and e
cates the work reported in a recent Physical Review Le
@5# by presenting further results both in and away from
critical regime and by describing in some detail the the
and the numerical procedure. We have tested the quantita
accuracy of SCOZA predictions by comparing them with t
results from approximants based on extrapolation of se
expansions, which can be considered essentially exac
our purposes. We find that SCOZA describes quite ac
rately both the thermodynamics and the correlations o
most of the phase diagram. In particular, the nonunive
properties at the critical point, e.g., the critical temperatu
571063-651X/98/57~3!/2862~10!/$15.00
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internal energy, etc., and the coexistence curve are very
reproduced. Above the critical temperature the theory exh
its the same critical exponents as the spherical model@6#. We
find, however, that this asymptotic regime is very narrow,
that the observables and theeffectiveexponents are in good
agreement with the true behavior of the system until
temperature differs from its critical value by less than 1%
so. Moreover, the exponents along the coexistence curve
nonclassical, and considerably more accurate than the sp
cal ones: for instance, we find that the curvature of the
existence curve is described by an exponentbcoex50.35.

The plan of the paper is as follows. In Sec. II we descr
the theory, which leads to a nonlinear partial different
equation for the inverse correlation length, and we cast
equation in a form suitable for numerical integration. T
results of the numerical solution are described in Sec.
where nonuniversal properties are considered, and in
IV, where we focus instead on universal properties in
critical region. Our conclusions are provided in Sec.
Some details about the algorithm adopted for the numer
solution of the equation are reported in an Appendix.

II. THEORY

We consider a three-dimensional lattice gas with near
neighbor attractive interaction. Ifr i and r j are the positions
of two generic lattice sitesi and j , the interparticle potentia
is

v~r i2r j !5H 1`, r i5r j

2w, i , j nearest neighbors

0 otherwise,

~1!

where w is the strength of the nearest-neighbor poten
(w.0). For this system the above mentioned OZ appro
2862 © 1998 The American Physical Society
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57 2863THERMODYNAMICALLY SELF-CONSISTENT THEORY OF . . .
mation introduces a key simplification, since assuming t
the direct correlation functionc(r ) has the same range as th
potential implies thatc(r ) is truncated at nearest-neighb
separation. This gives only two nonvanishing values
c(r ), namely, the on-site onec0 and the nearest-neighbo
onec1. A relation betweenc0 andc1 is provided by thecore
condition, i.e., the~exact! requirement that the radial distr
bution functiong(r i2r j ) must vanish fori 5 j due to the
singular on-site repulsion in the potential~1!, which forbids
multiple occupancy of each lattice site. As is well know
@7,8#, for a nearest-neighbor lattice gas the OZ approxim
tion and the core condition enable one to express both
thermodynamics and the correlations as a function of a sin
state-dependent quantity. To this end, let us introduce
total correlation functionh(r )5g(r )21. This is related to
the direct correlation function by the OZ equation, which f
a lattice system reads

h~r i !5c~r i !1r(
j

c~r j !h~r i2r j !, ~2!

where the number densityr is the average number of pa
ticles per lattice site, and the sum is over all the lattice si
In Fourier space, Eq.~2! yields

11r h̃~k!5
1

12r c̃ ~k!
, ~3!

where c̃ (k) is given by

c̃ ~k!5c01
q

r
c1F~k!. ~4!

Here q is the number of nearest neighbors, whiler 53 for
the simple cubic~sc! and the face centered cubic~fcc! lattice,
and r 51 for the body centered cubic~bcc! lattice (r is the
number of subgroups invariant under inversions!. The
nearest-neighbor sumF(k) is

F~k!5H coskx1cosky1coskz , sc

coskxcoskycoskz , bcc

coskxcosky1coskxcoskz1coskycoskz , fcc
~5!

where it is understood that lengths are measured in unit
the ~nonvanishing! components of the nearest-neighbor l
tice vectors. By use of Eq.~3! the core conditionh(r 50)
521 becomes

E d3k

~2p!3

1

12r c̃ ~k!
512r. ~6!

If we introduce the variable

z5
qrc1

12rc0
~7!

and the function
t

r

-
e
le
e

r

s.

of
-

P~z!5E
0

pd3k

p3

1

12~z/r !F~k!
~8!

Eq. ~6! gives then

c05
1

rF12
P~z!

12rG , ~9!

c15
zP~z!

qr~12r!
. ~10!

The functionP(z) introduced in Eq.~8! is the Green func-
tion for the Helmholtz equation on a lattice. This functio
has been studied by a number of authors@9–12#, and can be
evaluated in terms of elliptic integrals. For instance, for t
bcc lattice one has@10#

P~z!5
4

p2
@K~s!#2, ~11!

whereK(s) is the complete elliptic integral of the first kind

K~s!5E
0

p/2 du

A12s2sin2u
~12!

and

s25
1

2
@12A12z2#. ~13!

Similar, but more complex expressions are known for
other lattices@11,12#. It is easily seen that the variablez is
related to the correlation lengthj defined by 1/S(k)
;x red

21(11j2k2), k→0, whereS(k)51/@12r c̃ (k)# is the
structure factor. Specifically, one hasj2/ l 25z/@q(12z)#, l
being the size of the unit cell. The value of the total cor
lation function at nearest-neighbor separationh1 is readily
obtained by settingr i50 in the OZ equation~2!. One then
gets

h152
1

qrc1
@11~12r!c0#52

12r

r

12P~z!

zP~z!
, ~14!

where Eqs.~9! and ~10! have been used.
As stated in the Introduction, most OZ theories are ch

acterized by an explicit closure relation in which the dire
correlation function is related to the microscopic interactio
and typically to the total correlation functionh as well. For
the nearest-neighbor lattice gas this gives a relation forc1
which, combined with Eq.~10!, yields a closed equation fo
z @7,8#. In SCOZA, by contrast,c1 is implicitly determined
by requiring that the compressibility and internal ener
routes to the thermodynamics lead to the same results.
requirement is embodied in the relation

]

]bS 1

x red
D5r

]2

]r2
~ru!, ~15!

wherex red is the reduced isothermal compressibility as o
tained from the structure factor at zero wave vector,u is the
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2864 57DAVIDE PINI, GEORGE STELL, AND RONALD DICKMAN
internal energy per particle as obtained by the so-ca
internal-energy rule@1#, andb51/(kBT), T being the abso-
lute temperature, andkB the Boltzmann constant. In the fo
lowing, energies and temperatures will be measured in u
of w andw/kB , respectively. From Eqs.~9!, ~10!, and ~14!
we get

1

x red
512r~c01qc1!5

~12z!P~z!

12r
, ~16!

u52
1

2
qr~11h1!52

1

2
qr1

1

2
q~12r!

12P~z!

zP~z!
.

~17!

From Eqs.~10! and~16! it can be seen that in the physical
meaningful region one has 0<z<1. In particular,z50 cor-
responds to the low-density or high-temperature limit, wh
z51 gives the locus of diverging compressibility, so thaz
51 at the critical point. Since the lattice Green functi
diverges atz51 for lattice dimensionalityd<2, SCOZA
and more generally any OZ theory incorporating the c
condition predicts that the critical temperatureTc will vanish
in one and two dimensions. We expect a finite value ofTc in
two dimensions only ifc(r ) is allowed to develop a power
law tail at the critical point.

By inserting Eqs.~16! and~17! into Eq.~15! the following
partial differential equation~PDE! in the unknown function
z(r,b) is obtained:

1

r~12r!

]

]b
@~12z!P~z!#52

q

2

]2

]r2Fr~12r!
P~z!21

zP~z! G
2q. ~18!

Equation~18! can be rewritten as a nonlinear diffusion equ
tion. To this end, let us introduce the new unknown funct

w5r~12r!
P~z!21

zP~z!
, ~19!

which is proportional to the contribution to the internal e
ergy per unit volume due to the fluctuations. In the physi
non-negative compressibility region the functiony5@P(z)
21#/@zP(z)# can be inverted to expressz asz5F(y). It is
then readily found that Eq.~18! becomes

~12y!F8~y!2F~y!@12F~y!#

@12yF~y!#2

]w

]b

5q@r~12r!#2F1

2

]2w

]r2
11G , ~20!

where we have sety5w/@r(12r)#. The advantage of this
diffusivelike form with respect to the original Eq.~18! lies in
the fact that the numerical integration of Eq.~20! is much
less cumbersome, and can be easily carried out without
erating any instability in the critical or subcritical regio
The finite-difference scheme employed by us is a predic
corrector implicit algorithm expressly devised for this kin
of quasilineardiffusion PDE@13#. Further details about the
numerical algorithm are reported in the Appendix. While t
d

its

e

-

l

n-

r-

present method is preferable to that used in Ref.@5#, we
obtained fully consistent results using the two integrat
schemes. To integrate Eq.~20!, the initial condition atb
50 and two boundary conditions at low and high density
also needed. Sincez vanishes both forb50 and forr50
and for smallz one hasP(z);11z2/q, Eq. ~19! yields

w~r,b50!50 for everyr, ~21!

w~r50,b!50 for everyb. ~22!

Moreover, since Eqs.~18! and ~20! preserve particle-hole
symmetry, the integration of Eq.~20! can be restricted in the
interval 0<r<1/2 by imposing the further boundary cond
tion

wS 1

2
1Dr,b D5wS 1

2
2Dr,b D , ~23!

whereDr is the distance between two neighboring points
the density grid. Below the critical temperature the conditi
0<z<1 is fulfilled only outside a certain interval (rs,1
2rs), wherers5rs(b) gives the locus of diverging com
pressibility for whichz51, i.e., the spinodal curve predicte
by the theory. In the numerical integration of Eq.~20! we
have excluded the thermodynamically unstable reg
bounded by the spinodal curve. Whenever for a cert
density r0 the quantity w(r0 ,b) exceeds the value
r0(12r0)@P(1)21#/P(1), which corresponds toz51, the
integration is restricted to the density interval (0,r02Dr).
Within the accuracy of the numerical mesh,r02Dr can be
identified with the densityrs on the spinodal. For subcritica
temperatures the high-density boundary condition~23! is
therefore replaced by

w~rs ,b!5rs~12rs!
P~1!21

P~1!
. ~24!

Once the quantityw has been determined,z is obtained as
z5F@w/r(12r)#. Equations~16! and ~17! then yield the
reduced compressibilityx red and the internal energy per pa
ticle u. The pressurep and the chemical potentialm can be
obtained by integrating, respectively, 1/x red and 1/(rx red)
with respect to the density. In the subcritical region the lo
and high-density branches of the isotherms are separate
the spinodal, so that on the high-density branch such a
cedure requires the pressure at a given point. This can
obtained by expanding 1/x red in powers ofr at low density
and by exploiting the symmetry of 1/(rx red) aroundr51/2.
Integration with respect to 12r then yields a high-density
expansion forp, that can be used to determinep at the next-
to-largest density 12Dr. For instance, for the sc lattice an
r→1 one has

bp;2 ln~12r!23b16 f ~12r!23 f ~113 f !~12r!2,
~25!

wheref [eb21. Alternatively, one may differentiate the in
ternal energy per particle with respect tor, and then inte-
grate with respect tob to get the pressure and the chemic
potential via the relations](bp)/]b5r2]u/]r, ](bm)/]b
5u1r ]u/]r. Thanks to the thermodynamic consisten
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TABLE I. Critical parameters of the nearest-neighbor lattice gas. The SCOZA results for the inverse
critical temperaturebc , the internal energy per particleuc , the entropy per particlesc , and the pressurepc

are compared with the best-estimate results~indicated with the subscript ‘‘BE’’! obtained from extrapolation
of series expansions for the sc, the bcc, and the fcc lattices. Energies and temperatures are in units of the
interaction strengthw and ofw/kB , respectively.

Lattice bc,SCOZA bc,BE uc,SCOZA uc,BE sc,SCOZA sc,BE (bp)c,SCOZA (bp)c,BE

sc 0.88503 0.88662a 22.0108 21.9961b 1.1035 1.1158b 0.1140 0.1124
bcc 0.62852 0.62947c 22.5645 22.5464b 1.1532 1.1641b 0.1255 0.1244
fcc 0.40775 0.40825c 23.7690 23.7423b 1.1700 1.1804b 0.1301 0.1292

aReference@14#.
bReference@19#.
cReference@15#.
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enforced by Eq.~20!, this is equivalent to integration with
respect tor, and furthermore it does not require prior know
edge of the high-density behavior. As a test of our numer
solution, we have checked that these two paths actually
to the same thermodynamics. Once the pressure on the
and high-density branches of the subcritical isotherms
known, the coexistence curve can be determined by mean
a Maxwell construction. For the lattice gas this is simp
since particle-hole symmetry implies that the two branc
of the coexistence curve in the density-temperature pl
rv(b) and r l(b) are symmetric aboutr51/2. Finding the
coexisting densities therefore reduces to finding the den
rv such thatp(rv ,b)5p(12rv ,b).

III. RESULTS

In the present section we concentrate on SCOZA pre
tions for nonuniversal properties. Universal features of
critical behavior of the theory will be discussed in the ne
section.

The critical point predicted by Eq.~20! is determined by
locating the divergence of the isothermal compressibility
the critical isochore. Since this equation preserves parti
hole symmetry, SCOZA correctly yields the valuerc51/2
for the critical density of the lattice gas. The inverse critic
temperaturebc is then obtained as the value ofb for which
1/x red vanishes. The algorithm employed for the numeri
solution of Eq. ~20! allows one to determinebc up to a
prescribed accuracy. The results, listed in Table I, are wit
0.2% of the best series estimates@14,15# ~in each case
SCOZA underestimatesbc). For comparison, we note tha
for the sc lattice simple mean-field theory yieldsbc52/3, the
quasichemical approximation yieldsbc50.811, and the
Kikuchi approximation with a square and a cubic clus
yield, respectively,bc50.868 and bc50.874 @16#. The
SCOZA value of the critical temperature is even more ac
rate than that predicted by two sophisticated closed-form
proximations, the variational scheme devised by Baxter
Forrester@17# and the renormalization-group based hierarc
cal reference theory~HRT! @18#. For the sc lattice the forme
of these theories yields againbc50.874, and in general fo
the lattices considered here the error is in the 1–3 % ran
despite the fact that it exactly reproduces many terms~up to
23, for the bcc lattice! in the low-temperature expansion fo
the free energy. HRT predicts insteadbc50.883. Table I
also includes data on the critical values of the entropy
al
ad
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,
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l
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-
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e,

r

particlesc , the internal energy per particleuc , and the pres-
surepc . We note that in the SCOZA,uc can be determined
directly from Eq. ~17! as uc52q @2P(1)21#/@4P(1)#.
While the mean spherical approximation gives the sameuc
as the SCOZA, it predictsbc54P(1)/q, which, as is well
known, considerably overestimatesbc ~by as much as 14%
for the sc lattice!. The difference between the SCOZA resu
and the best estimates from series analysis@19#, also reported
in Table I, is at most 0.7% for the critical internal energ
1.1% for the critical entropy, and about 1.4% for the critic
pressure. In Fig. 1 the reduced isothermal compressib
and the correlation length of the sc lattice on the critic
isochore (T.Tc) and on the coexistence curve (T,Tc) are
compared with Pade´

FIG. 1. Reduced isothermal compressibilityx red ~a! and corre-
lation lengthj ~b! of the sc lattice gas on the critical isochore (T
.Tc) and on the low-density branch of the coexistence curveT
,Tc) as a function of the dimensionless temperaturekBT/w. j is in
units of the lattice spacingl . Crosses: SCOZA. Solid line: approx
imant @20,21#.



er
es
in

ng
n

e-
hb
o
e

in

tt
h
e
e

is

e

n
tio

e
ly

on
e

ent

a

e
ove
f

o-
rse

o

t
c-

he

2866 57DAVIDE PINI, GEORGE STELL, AND RONALD DICKMAN
approximants to high- and low-temperature series@20,21#.
The close agreement between SCOZA predictions and s
estimates persists quite near the critical point. The compr
ibility on the critical isotherm of the sc lattice is shown
Fig. 2, where again an approximant@21# and the HRT result
@18# are reported for comparison. It is worthwhile observi
that in the present application of SCOZA both the seco
and the third virial coefficient are correctly reproduced@this
property has been used to determine the expansion~25!#,
although this feature is not intrinsic to SCOZA, but it d
pends on the quite special character of a nearest-neig
potential. In Fig. 3 we plot the specific heat at constant v
umecV of the bcc lattice on the critical isochore. As will b
seen in the next section, this quantity does not diverge
SCOZA asT→Tc . Nevertheless, the SCOZA result is
close agreement with the series predictions@22# over a wide
range of temperatures. The coexistence curve of the sc la
in the temperature-density plane is shown in Fig. 4 toget
with a Pade´ approximant from the low-temperature magn
tization series@23#; we also show the predictions of th
Kikuchi @24# theory on a square cluster and of the HRT@18#.
Evidently, the SCOZA provides quite an accurate coex
ence curve: it appears then that this theory continues to
reliable in the low-temperature regime. Finally, in Fig. 5 w
show the structure factor of the sc lattice forr51/2 and two
different temperatures along the directionkx5ky5kz of the
Brillouin zone. Also shown are a closed-form approxima
@20# and the results from the mean spherical approxima
~MSA! @7,8# and from the HRT@18#. Unlike the MSA, both
the HRT and the SCOZA are in very satisfactory agreem
with the approximant, with the SCOZA performing slight
better at smallk.

IV. CRITICAL BEHAVIOR

In Fig. 6 the isothermal compressibility of the sc lattice
the critical isochore is plotted as a function of the reduc

FIG. 2. Reduced isothermal compressibility on the critical is
therm of the sc lattice gas. The quantityrx red is plotted as a func-
tion of the chemical potentialm ~in units of the interaction constan
w). Crosses: SCOZA. Squares: HRT@18#. Solid line: approximant
@21#.
ies
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temperaturet5(T2Tc)/Tc on a log-log scale~for each of
the approximations shown in the figure, the correspond
value ofTc has been used to determinet). It appears that in
SCOZA the divergence of the compressibility asTc is ap-
proached is asymptotically governed by a power law with
critical exponentg52: this coincides with the value ofg
predicted by MSA@7,8#, whose exponents in turn are thos
of the spherical model. Indeed, our results show that ab
the critical temperatureTc the asymptotic critical behavior o
SCOZA is the same as in MSA: besidesg52, we have then
d55 anda521, where we have adopted the standard n
tation for the critical exponents. Those values are of cou

- FIG. 3. Specific heat~thermal capacity per particle! at constant
volumecV on the critical isochore of the bcc lattice gas as a fun
tion of the dimensionless temperaturekBT/w. Crosses: SCOZA.
Solid line: approximant@22#.

FIG. 4. Coexistence curve of the sc lattice gas in t
temperature-density plane. Solid line: SCOZA. Crosses: HRT@18#.
Dotted line: Kikuchi theory with a square cluster@24#. Dashed line:
approximant@23#.
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quite inaccurate, the true ones being@25# g.1.24, d.4.8,
a.0.1. However, the onset of the asymptotic critical regim
appears to be very different than in MSA: this can be be
appreciated by introducing aneffective exponentdefined as
the local slope of the log-log plot of the quantity of intere
The effective exponentsgeff and deff are plotted in Figs. 6
and 7, respectively. It can be seen that the ‘‘exact’’geff ~that
is, the one predicted by the approximant@21#! reaches its
asymptotic value fort;1022. This is true also for MSA and
for HRT @18#, whose predictions are also shown in Fig.
~HRT yields the nonclassical valueg.1.378@26#!. SCOZA,
by contrast, is affected by a strong crossover from a ne
exact to a MSA-like behavior, so thatg52 is obtained only
for t;1025. Therefore the MSA critical indices affec
SCOZA thermodynamics only in a narrow neighborhood
the critical point. For instance, fort.0.015 the relative error
in the isothermal compressibility is less than 10%, and
t.0.1 it is less than 0.5%. The specific heat at const
volume of the sc lattice on the critical isochore fort→0 is
shown in Fig. 8, together with the approximant@22# and the
HRT @27# results. Although in the SCOZA~as well as in the
HRT! this quantity does not diverge at the critical point, t
saturation does not become evident untilt;1024.

It is worthwhile noting that the evidence of spherical cri
cal exponent forT.Tc does not agree with the conclusion
of a previous analysis@4,8# based on the form assumed b
Eq. ~18! close to the critical point, i.e., forz→1, according

FIG. 5. Structure factorS(k) of the sc lattice gas along th
directionkx5ky5kz of the Brillouin zone as a function of the norm
of k ~in units of the reciprocal of the lattice spacingl ) at r51/2.
The predictions from different theories and from the approxim
are compared at the same temperaturekBT/w51.5, for which the
‘‘exact’’ reduced temperature isT/Tc.1.33 ~a!, and at reduced
temperatureT/Tc51.03 ~b!. Crosses: SCOZA. Squares: HRT@18#.
Dashed line: MSA. Solid line: approximant@20#.
e
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ly
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to which SCOZA would exhibit a scaling equation of sta
with the Gaussian three-dimensional exponentsg51, d55,
a51/2. Further investigation shows that this is not the on
possible scaling solution, and that in the critical region E
~18! does have a solution that behaves as

z;12@a~r2rc!
21bt#2, ~26!

wherea andb are constants. By using the expansion of t
lattice Green functions forz→1 @10–12#,

P~z!;P~1!2dA12z1O~12z!, ~27!

it is readily seen from Eq.~16! that Eq. ~26! gives rise to
MSA-like scaling in the equation of state, in agreement w
our numerical results. Thus we conclude that aboveTc the
critical behavior of SCOZA is described by Eq.~26!. In par-
ticular, the amplitudea of the (r2rc)

2 term is related to the
coefficients of the expansion~27! by a54P(1)/d. If Eqs.
~26! and~27! are substituted into the expression~10! for the
direct correlation function at nearest-neighbor separationc1,
an expansion forc1 around its critical valuec1,c in powers of
(r2rc)

2 and t is obtained:

c1;c1,c1A4 ~r2rc!
41B1t1•••, ~28!

where the coefficientA2 of (r2rc)
2 vanishes due to the

particular value ofa. Such behavior, which has been check
numerically, is consistent with a previous result@7# accord-
ing to which, wheneverc1 is analytic in (r2rc)

2 and t,

t

FIG. 6. Log-log plot of the reduced isothermal compressibil
x red on the critical isochore~sc lattice! as a function of the reduced
temperature (T2Tc)/Tc ~a! and corresponding effective expone
geff ~b!. Solid line: SCOZA. Crosses: HRT@18#. Dotted line: MSA.
Dashed line: approximant@21#.
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spherical-model exponents are obtained provided one
A2,c1,c /rc

2 . This condition is manifestly satisfied in th
present case, in whichA250.

Quite surprisingly, belowTc the critical behavior of
SCOZA does not coincide with the one just described.

FIG. 7. Log-log plot of the reciprocal of the reduced isotherm
compressibilityx red on the critical isotherm of the bcc lattice~low-
density branch! as a function of the reduced densityur2rcu ~a! and
corresponding effective exponentdeff21 ~b! according to SCOZA.

FIG. 8. Log-log plot of the specific heat at constant volumecV

on the critical isochore~sc lattice! as a function of the reduce
temperature (T2Tc)/Tc . Solid line: SCOZA. Crosses: HRT@18#.
Dashed line: approximant@22#. Both SCOZA and HRT predict a
finite value for the specific heat at the critical point.
as

n

fact, while MSA scaling predicts that along the spinod
curve r2rc will vanish for t→0 as ur2rcu;utubspin with
bspin51/2, we find instead that SCOZA hasbspin53/4.
Moreover, for a lattice gas in three dimensions the MSA fa
to give a coexistence curve close to the critical point on
basis of Eq.~16! @7#, which is not the case with SCOZA
Instead, it is found both analytically and numerically th
along the SCOZA coexistence curvex red, ur2rcu, and cV
assume a power-law behavior with effective critical exp
nents that take on the limiting values at critical ofg857/5,
bcoex57/20,a8521/10. These are considerably more acc
rate than either the MSA or the mean-field values, especi
in the case ofbcoex. Log-log plots of the isothermal com
pressibility and of the reduced density together with its
fective exponentbcoex

eff are shown in Figs. 9 and 10, respe
tively, where the results from the approximants@15# are also
shown ~the ‘‘exact’’ value of the exponentbcoex is bcoex
.0.33). We note again that the asymptotic regime is reac
only in a very narrow neighborhood of the critical poi
(utu.1025–1026). The difference between the exponents
the critical isochore forT.Tc and the corresponding ones o
the coexistence curve forT,Tc is a feature of the SCOZA
that is presumably an artifact of the approximation; it is n
expected to be a feature of the exact behavior of the mo
It stems from an extended form of scaling behavior that ch
acterizes the SCOZA thermodynamics close to the crit
point. In contrast, the exact lattice-gas behavior is wid
believed to be given by a simpler form of thermodynam
scaling in which exponents below and above the critical te
perature are identical.

It is worthwhile stressing that the extended scaling do
not imply any spurious singularity in the equation of sta
when theT5Tc axis is crossed at noncritical density. In fac
the same critical isotherm and the exponentd55 are recov-
ered both from above and from belowTc . Moreover, the
standard algebraic relations among the critical exponents

l

FIG. 9. Log-log plot of the reduced isothermal compressibil
x red on the low-density branch of the coexistence curve as a fu
tion of the reduced temperature (Tc2T)/Tc ~bcc lattice!. Solid line:
SCOZA. Dashed line: approximant@15#.
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satisfied in both cases. Thez that is associated with the ex
tended scaling is given by

z;12Fa~r2rc!
21btc6S ur2rcu

utu1/4 D G 2

, ~29!

where the functionsc1 , c2 account for the different behav
ior, respectively, above and belowTc : in particular, as is
readily seen from Eq.~26!, one has simplyc1[1, whilec2

is not constant and goes to 1 only when its argument
verges. This form ofz was revealed in an investigation b
two of us in collaboration with Ho”ye that we plan to repor
on in a separate paper containing derivations as well as
lytic and numerical details@28#. Some time ago it was
pointed out by one of us@29# that the very fact that scaling
can only be expected in an approximate sense~i.e., locally,
about the critical point! gives rise to the possibility of a
mechanism yieldinggÞg8, nÞn8, etc. Such an asymmetr
was subsequently found to characterize the exact behavi
certain rather special models@30#. It is interesting to find that
the imposition of self-consistency along with the core con
tion and an Ornstein-Zernike ansatz on the form ofc(r ) is in
fact enough to trigger just such a mechanism, althoughnot
the precise form of the scaled thermodynamics discusse
@29# or found in @30#.

V. CONCLUSIONS

We have applied a thermodynamically self-consistent
approximation, along the lines proposed by Ho”ye and Stell
@2–4#, to nearest-neighbor attractive lattice gases in th

FIG. 10. Log-log plot of the reduced densityur2rcu on the
coexistence curve~bcc lattice! as a function of the reduced temper
ture (Tc2T)/Tc ~a! and corresponding effective exponentbcoex

eff ~b!.
Solid line: SCOZA. Dashed line: approximant@15#.
i-

a-

of

-

in

Z

e

dimensions. The accuracy of the results is remarkable:
critical temperatures are reproduced with an error of l
than 0.2%, and outside the immediate vicinity of the critic
point the error on the coexistence curves does not exc
2%. Above the critical temperature SCOZA predicts t
same critical exponents as the mean spherical approxima
but this asymptotic behavior is detectable only in a ve
narrow neighborhood of the critical point. Therefore the th
modynamics remains accurate up to reduced temperat
around 1022. As a result of an extended form of scalin
behavior shown by SCOZA, the exponents on the coex
ence curve do not coincide with the spherical values. Th
exponents turn out to be both nonspherical and nonclass
and are considerably more accurate than either the sphe
or the mean-field ones.

Our results suggest that the application of SCOZA
other three-dimensional systems will prove most useful
further interesting feature of the theory in this respect is t
a single run of integration sweeps the whole dens
temperature plane, so that the thermodynamics and the p
diagram are obtained at once. The study of a fluid of sph
cal particles with a repulsive core and a Yukawa attract
tail potential is currently under way@31#. We are also inves-
tigating improving the approximation by extending the ran
of c(r ).
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APPENDIX

In this appendix some details about the algorithm adop
for the numerical integration of the PDE~20! are provided.
This is a nonlinear diffusion equation of the form

A
]2u

]r2
5B

]u

]b
1C, ~A1!

whereA, B, andC can be functions ofr, b, andu itself ~in
the case in handA andC depend only onr, while B depends
both on r and onu). We make use of a finite-differenc
scheme, in which the ‘‘spacelike’’ variabler and the ‘‘time-
like’’ variable b are replaced by the discrete quantitiesr j
5 j Dr, bn5nDb, whereDr andDb are the grid spacings
along ther and theb directions, andj and n are integers
such that 1< j <J, n>1. The partial derivatives with respec
to r andb are then approximated by finite-difference repr
sentations@32#. Integration of Eq.~A1! by anexplicit method
~as was done in Ref.@5#!, in which the first derivative with
respect tob is used directly to update the unknown functio
u at the temperature stepn11 by evaluating all the othe
terms in the equation at the stepn, is in principle straight-
forward, but it is not recommended for a diffusive equati
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like Eq. ~20!. In fact, as is well known@32#, in order to
achieve numerical stability those methods require thatDb
must be kept below a certain valueDbmax;(Dr)2/D, where
D is the diffusion coefficient. For Eq.~20! the role ofD is
played by the expression

D5
q

2
@r~12r!#2

@12yF~y!#2

~12y!F8~y!2F~y!@12F~y!#

5
q

2
@r~12r!#2

P~z!@12P~z!#1zP8~z!

z2P2~z!@P~z!2~12z!P8~z!#
,

~A2!

wherez and P(z) have been defined in Eqs.~7!, ~8!, andy
andF(y) are given byy5@P(z)21#/@zP(z)#, z5F(y). As
is readily seen from the expansion~27! for P(z), D diverges
whenever the compressibility diverges, namely, at the crit
point and on the spinodal curve. To carry out the integrat
in the critical and subcritical region, one would then
forced to adopt a vanishingly small spacingDb. It is better
then to turn to someimplicit method, which has the advan
tage of being unconditionally stable. In such methods
differentiation with respect tob is performed ‘‘backward,’’
so that at a generic temperature step one is left with a se
equations in theJ unknownsuj

n11 , 1< j <J. If the original
PDE is nonlinear, the resulting equations will in general
nonlinear as well, and the numerical solution can be qu
cumbersome. However, for a PDE ofquasilinear form like
Eq. ~A1!, i.e., such that the ‘‘coefficients’’A, B, andC do
not depend on the partial derivatives of the unknown fu
tion u, it is possible to adopt a predictor-corrector algorith
@13# which gives rise only to linear equations. In this proc
dure every temperature step is split in two and a tempo
Z
u
te

Y.

l

l
n

e

of

e
e

-

-
ry

value of the unknown function at the stepn11/2 is deter-
mined. The scheme is as follows:~1! predictor:

A~r j !
uj 11

n11/222uj
n11/21uj 21

n11/2

~Dr!2
5B~r j ,uj

n!2
uj

n11/22uj
n

Db

1C~r j !, ~A3!

~2! corrector:

1

2
A~r j !Fuj 11

n1122uj
n111uj 21

n11

~Dr!2
1

uj 11
n 22uj

n1uj 21
n

~Dr!2 G
5B~r j ,uj

n11/2!
uj

n112uj
n

Db
1C~r j !. ~A4!

The advantage of this method, which rests on the quasilin
structure of the underlying PDE, consists in the fact that o
is required to use the updated quantities only in the der
tives and not in the ‘‘coefficients,’’ so that when the predi
tor and the corrector are solved~respectively, foruj

n11/2 and
uj

n11), one does not get a set of nonlinear equations
rather a linear system oftridiagonal type, that can be solved
numerically with a small computational effort. For an over
sweep over the whole (r, b) plane, we typically adopted a
density spacingDr51023–531024. When high accuracies
were required very close to the critical point, for instance
determine the asymptotic critical regime, values ofDr about
an order of magnitude smaller were used. The inverse t
perature spacingDb was usually set atDb51024 at the
beginning of the integration, and subsequently decrease
get the critical temperature within a prescribed accuracy.
low the critical temperature,Db was then gradually in-
creased up to its initial value. The integration was usua
carried down toT.(0.3–0.4)Tc .
n

, J.

J.
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