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Recently, methods were developed to solve with high accuracy the equations that describe a thermodynami-
cally self-consistent theory for the two-body correlation function, and preliminary results were reported for
three-dimensional lattice gases with nearest-neighbor attractive inter@Btidbickman and G. Stell, Phys.

Rev. Lett.77, 996 (1996 ]. Here we give a detailed description of our methods and of the results, which are
found to be remarkably accurate for both the thermodynamics and structure of these systems. In particular,
critical temperatures are predicted to within 0.2% of the best estimates from series expansions. Although above
the critical temperature the theory yields the same critical exponents as the spherical model, this asymptotic
behavior sets in only in a very narrow region around the critical point, so that the apparent exponents and the
thermodynamics are well reproduced up to reduced temperatures of arouhdiOthe coexistence curve, on

the other hand, the exponents are nonspherical, and considerably more accurate than the spherical ones. For
instance, the exponemB...x predicted by the theory for the shape of the coexistence cungis=0.35.
[S1063-651%98)01203-3

PACS numbegps): 05.50+q, 05.70.Ce, 64.60.Cn, 64.60.Fr

I. INTRODUCTION internal energy, etc., and the coexistence curve are very well
reproduced. Above the critical temperature the theory exhib-
A widely adopted approach in the realm of liquid-stateits the same critical exponents as the spherical midjeWe

theory consists in closing the exact Ornstein-Zerni@z)  find, however, that this asymptotic regime is very narrow, so
equation linking the two-particle distribution functiag(r)  that the observables and teéectiveexponents are in good
and the direct correlation functiar(r) by some approximate agreement with the true behavior of the system until the
relation expressing(r) in terms of the thermodynamic state temperature differs from its critical value by |-ess than 1% or
of the system, the interparticle potential, and ofgn) itself ~ SO- Moreover, the exponents along the coexistence curve are
[1]. As is well known, these closure schemes generally leaffonclassical, gand consuderaply more accurate than the spheri-
to thermodynamic inconsistencies: for examp|e, differenlcal ones: for InStance, we f|nd that the curvature of the CO-
pressures are obtained depending on whether one uses téstence curve is described by an exponggt,=0.35.
virial, compressibility, or energy routes. Some years ago a 1he plan of the paper is as follows. In Sec. Il we describe
remedy was proposed for this defect: whilg) is assumed the th_eory, wh|c_h leads to a n_onlmear partial d|fferent|a!
to have always the same range as the potential—an ansatz @fluation for the inverse correlation length, and we cast this
common use in the above mentioned methods, usually reequation in a form suitable for numerical integration. The
ferred to as the OZ approximation—its dependence on théesults of the numerical solution are described in Sec. Il
thermodynamic state is not givem priori. Rather,c(r) is where nonuniversal properties are_c0n5|dered, a_nd in Sec.
determined on the basis of consistency with a single-value#V, Where we focus instead on universal properties in the
free energy functiofi2—4]. Despite the promise revealed in critical region. Our conclusions are provided in Sec. V.
initial applications of thisself-consistent OZ approximation Some details about the algorithm adopted for the numerical
(SCOZA), much remains to be explored regarding its accu-solution of the equation are reported in an Appendix.
racy for various fluid models. In this paper we apply the
SCOZA to three-dimensional lattice gases with nearest- Il. THEORY
neighbor interactions. The present study extends and expli- . . . . .
catgs the work reported ing recent Phg//sical Review Lettper W e consider a three-dlmensmnal lattice gas Wlth.r)earest-
[5] by presenting further results both in and away from thenelghbor attr.acuvg |nt(=,jra'ct|on.' 4 andrj are t.he pos't'o'f‘s
critical regime and by describing in some detail the theory_of two generic lattice sitesandj, the interparticle potential
and the numerical procedure. We have tested the quantitati\}a

accuracy of SCOZA predictions by comparing them with the +oo, r=r

results from approximants based on extrapolation of series o ! )
expansions, which can be considered essentially exact for v(ri—r;)=y —W, I,] nearestneighbors (1)
our purposes. We find that SCOZA describes quite accu- 0 otherwise,

rately both the thermodynamics and the correlations over
most of the phase diagram. In particular, the nonuniversavherew is the strength of the nearest-neighbor potential
properties at the critical point, e.g., the critical temperature(w>0). For this system the above mentioned OZ approxi-
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mation introduces a key simplification, since assuming that
the direct correlation function(r) has the same range as the
potential implies that(r) is truncated at nearest-neighbor
separation. This gives only two nonvanishing values for

c(r), namely, the on-site one, and the nearest-neighbor Eq. (6) gives then

onec;. A relation betweer, andc; is provided by thecore 1 P(2)

condition i.e., the(exac} requirement that the radial distri- coz—[ 1,0 (9
bution functiong(r;—r;) must vanish fori=j due to the P p

singular on-site repulsion in the potentid), which forbids 2P(2)

multiple occupancy of each lattice site. As is well known Ci=——. (10)
[7,8], for a nearest-neighbor lattice gas the OZ approxima- ap(1-p)

tion and the core condition enable one to express both th
thermodynamics and the correlations as a function of a sing|
state-dependent quantity. To this end, let us introduce th
total correlation functiorh(r)=g(r)—21. This is related to
the direct correlation function by the OZ equation, which for
a lattice system reads

The function P(2) introduced in Eq(8) is the Green func-
fion for the Helmholtz equation on a lattice. This function
Has been studied by a number of autH@&s12], and can be
evaluated in terms of elliptic integrals. For instance, for the
bcc lattice one hagl0]

4
— 2
h(r)=c(r)+p3 erhir—ry) 2 P@)= LKL 1y

whereK(s) is the complete elliptic integral of the first kind,
where the number density is the average number of par- ) P P g

ticles per lattice site, and the sum is over all the lattice sites. /2 de

In Fourier space, Eq2) yields K(s)= N —— 12
. R N T (12
1+ H k ==, 3 and

ph(k) 1= € )
~ s?=—[1-1-7%. (13

where c (k) is given by 2

Similar, but more complex expressions are known for the
c(k)=co+ gcl(I)(k). (4)  other latticed11,12. It is easily seen that the variabteis
r

Here g is the number of nearest neighbors, while 3 for
the simple cubidsc) and the face centered culgfcc) lattice,
andr =1 for the body centered cubibco lattice (r is the
number of subgroups invariant under inversion3he
nearest-neighbor sud (k) is

COK,+Coky+Cok,, SC
®(k)=14 cok,cok,cok,, bcc

COK,COK, + COK,COK,+ cok,cokK,, fcc

5

related to the correlation lengtly defined by 15(k)

~ Xred(1+ £2k?), k—0, whereS(k)=1[1—pc(k)] is the
structure factor. Specifically, one hg¥/1?=z/[q(1-2)], |
being the size of the unit cell. The value of the total corre-
lation function at nearest-neighbor separationis readily
obtained by setting;=0 in the OZ equation2). One then
gets

1-p1-P(2)
zP(z) ’

1
hy=— ——[1+(1-p)Co]= -

— 14
apcCy P (19

where Eqgs(9) and(10) have been used.
As stated in the Introduction, most OZ theories are char-

where it is understood that lengths are measured in units Gicterized by an explicit closure refation in which the direct
the (nonvanishing components of the nearest-neighbor lat-Correlation function is related to the microscopic interaction,

tice vectors. By use of E(.3) the core conditiorh(r =0)
= —1 becomes

jd3k ;_1_ ©
2m31-pek) =

If we introduce the variable

_9pCy
z= 1— e (7)

and the function

and typically to the total correlation functidm as well. For

the nearest-neighbor lattice gas this gives a relationcfor
which, combined with Eq(10), yields a closed equation for
z[7,8]. In SCOZA, by contrastg, is implicitly determined

by requiring that the compressibility and internal energy
routes to the thermodynamics lead to the same results. This
requirement is embodied in the relation

e o
B\ Xred _pﬁpz(pU)’

where y,¢q is the reduced isothermal compressibility as ob-
tained from the structure factor at zero wave veatois the
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internal energy per particle as obtained by the so-calleghresent method is preferable to that used in RBf, we
internal-energy rul¢l], and 83=1/(kgT), T being the abso- obtained fully consistent results using the two integration
lute temperature, anki the Boltzmann constant. In the fol- schemes. To integrate EQO), the initial condition atB

lowing, energies and temperatures will be measured in units-0 and two boundary conditions at low and high density are
of w andw/kg, respectively. From Eq€9), (10), and(14) also needed. Since vanishes both fo3=0 and forp=0

we get and for smallz one hasP(z)~1+2z%/q, Eq. (19) yields
1 1-2)P(z ,3=0)=0 for everyp, 21
X—d=1—p(Co+q01)=( 1_)p( ), 16) ¢(p,8=0) yp (21)
© ¢(p=0,8)=0 for everyg. (22
1 1 1 1-P(2) . .
u=-— Eqp(1+ hy)=— 50+ Eq(l_p)T(z)' Moreover, since Eqs(18) and (20) preserve particle-hole

1 symmetry, the integration of E20) can be restricted in the
17) interval O<p=<1/2 by imposing the further boundary condi-

From Eqs.(10) and(16) it can be seen that in the physically tOn
meaningful region one has0z<1. In particular,z=0 cor-
responds to the low-density or high-temperature limit, while
z=1 gives the locus of diverging compressibility, so that
=1 at the critical point. Since the lattice Green function
diverges atz=1 for lattice dimensionalityd=2, SCOZA
and more generally any OZ theory incorporating the cor
condition predicts that the critical temperatdrgwill vanish

in one and two dimensions. We expect a finite valud@ oin

¢

1 1
§+AP!B)=QD(§_AP!B)I (23)

whereAp is the distance between two neighboring points of
ethe density grid. Below the critical temperature the condition
0=<z=1 is fulfiled only outside a certain intervalp(,1
—ps), Wherep,=p<(B) gives the locus of diverging com-
. . : . _ pressibility for whichz=1, i.e., the spinodal curve predicted
E;VV(; tdalirlngp tsrl]zn;i%r;gl féirn)t.ls allowed to develop a power by the theory. In the numerical integration of HQO) we .
By inserting Eqs(16) and(17) into Eq.(15) the following have excluded the thermodynamically unstable region

partial differential equatiofPDE) in the unknown function bounpled by the spino_dal curve. Whenever for a certain
2(p,B) is obtained: density po the quantity ¢(py,8) exceeds the value

po(1—po)[P(1)—1]/P(1), which corresponds ta=1, the

9 q 7 P(z)—1 integration is restricted to the density interval {9+ Ap).
—— —[(1-2)P(2)]=—5 —z[p(l—p)— Within the accuracy of the numerical megh,—Ap can be
p(1=p) B 2 gp zP(2) identified with the density, on the spinodal. For subcritical

temperatures the high-density boundary conditi@8) is

—a (18 ierefore replaced by

Equation(18) can be rewritten as a nonlinear diffusion equa-

: : : , P(1)—1
tion. To this end, let us introduce the new unknown function @(ps ,ﬂ)zps(l—Ps)W- (24)
P(z)—1
¢=p(1=p)— 55~ P2 (19 Once the quantity has been determined,is obtained as

z=F[¢/p(1—p)]. Equations(16) and (17) then yield the
which is proportional to the contribution to the internal en-reduced compressibility,.q and the internal energy per par-
ergy per unit volume due to the fluctuations. In the physicaficle u. The pressurg and the chemical potential can be
non-negative compressibility region the functign-[P(z)  Obtained by integrating, respectively,xldy and 1/pxed
—1]/[zP(2)] can be inverted to expregsasz=F(y). Itis  Wwith respect to the density. In the subcritical region the low-

then readily found that Eq18) becomes and high-density branches of the isotherms are separated by
the spinodal, so that on the high-density branch such a pro-
(1—-y)F'(y)—F(Y)[1=F(y)] do cedure requires the pressure at a given point. This can be
1-VvEF 2 @ obtained by expanding i/q in powers ofp at low density
[1=yF(¥)] and by exploiting the symmetry of Y§,.9 aroundp=1/2.
1 P Integration with respect to 2 p then yields a high-density
=qlp(1-p)1?¥ = — +1, (200  expansion fop, that can be used to determipeat the next-
2 9p to-largest density + Ap. For instance, for the sc lattice and

1 one has
where we have set=¢/[p(1—p)]. The advantage of this P

diffusivelike form with respect to the original EGL8) lies in Bp~—In(1—p)—3B8+6f(1—p)—3f(1+3f)(1—p)?

the fact that the numerical integration of EQO) is much (25)
less cumbersome, and can be easily carried out without gen-

erating any instability in the critical or subcritical region. wheref=ef—1. Alternatively, one may differentiate the in-
The finite-difference scheme employed by us is a predictorternal energy per particle with respect go and then inte-
corrector implicit algorithm expressly devised for this kind grate with respect t@ to get the pressure and the chemical
of quasilineardiffusion PDE[13]. Further details about the potential via the relationg(Bp)/dB=p?duldp, d(Bu)l B
numerical algorithm are reported in the Appendix. While the=u+p du/dp. Thanks to the thermodynamic consistency
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TABLE |. Critical parameters of the nearest-neighbor lattice gas. The SCOZA results for the inverse
critical temperaturg3., the internal energy per particle,, the entropy per particls;, and the pressung;
are compared with the best-estimate res(iitdicated with the subscript “BE) obtained from extrapolation
of series expansions for the sc, the bcc, and the fcc lattices. Energies and temperatures are in units of the
interaction strengthv and ofw/kg, respectively.

Lattice B¢ scoza Be,Be Uc, scoza UcBE S¢,scoza Sc,BE (BP)c,scoza  (BP)c,ee
scC 0.88503 0.88662 —2.0108 —1.9967F 1.1035 1.1158 0.1140 0.1124
bcc 0.62852 0.62947 —2.5645 —2.5464 1.1532 1.1641 0.1255 0.1244
fcc 0.40775 0.408%5 —3.7690 -—3.7423 1.1700 1.1802% 0.1301 0.1292
3Referencd 14].
bReferenced 19].
‘Referencd15].

enforced by Eq(20), this is equivalent to integration with particles., the internal energy per particle., and the pres-
respect t, and furthermore it does not require prior knowl- surep.. We note that in the SCOZAj. can be determined
edge of the high-density behavior. As a test of our numericatlirectly from Eq. (17) as u.=—q [2P(1)—1]/[4P(1)].
solution, we have checked that these two paths actually lead/hile the mean spherical approximation gives the saime
to the same thermodynamics. Once the pressure on the lowts the SCOZA, it predictg.=4P(1)/q, which, as is well
and high-density branches of the subcritical isotherms iknown, considerably overestimatgs (by as much as 14%
known, the coexistence curve can be determined by means dr the sc latticg The difference between the SCOZA results
a Maxwell construction. For the lattice gas this is simple,and the best estimates from series analyk®§, also reported
since particle-hole symmetry implies that the two branchesn Table I, is at most 0.7% for the critical internal energy,
of the coexistence curve in the density-temperature plang.1% for the critical entropy, and about 1.4% for the critical
p,(B) andp|(B) are symmetric aboup=1/2. Finding the pressure. In Fig. 1 the reduced isothermal compressibility
coexisting densities therefore reduces to finding the densitgnd the correlation length of the sc lattice on the critical
p, such thatp(p, ,B)=p(1—p,.B). isochore T>T.) and on the coexistence curvé<{T,) are
compared with Pade

lll. RESULTS

100 L L T T L T T

In the present section we concentrate on SCOZA predic- C ]
tions for nonuniversal properties. Universal features of the 80 —
critical behavior of the theory will be discussed in the next C ]
section. 60 — (a) ]

The critical point predicted by Eq20) is determined by o 5 .
locating the divergence of the isothermal compressibility on >§ Y= s
the critical isochore. Since this equation preserves patrticle- C ]
hole symmetry, SCOZA correctly yields the valpg=1/2 C ]
for the critical density of the lattice gas. The inverse critical 20 E B
temperatureB; is then obtained as the value gffor which [ il 350558
1/x,eq Vanishes. The algorithm employed for the numerical 0FF =]
solution of Eq.(20) allows one to determings. up to a R0~ s ]
prescribed accuracy. The results, listed in Table |, are within C ]
0.2% of the best series estimatgs4,15 (in each case 15 — (b) ]
SCOZA underestimateg;). For comparison, we note that C ]
for the sc lattice simple mean-field theory yielfls= 2/3, the < C ]
quasichemical approximation yieldg.=0.811, and the w10 ]
Kikuchi approximation with a square and a cubic cluster C ]
yield, respectively, 3.=0.868 and 8.=0.874 [16]. The 5[ ]
SCOZA value of the critical temperature is even more accu- C . ]
rate than that predicted by two sophisticated closed-form ap- —

proximations, the variational scheme devised by Baxter and % 9 10 11 12 13 14
Forrestef17] and the renormalization-group based hierarchi- ) ' .k T/W‘ ' '
cal reference theorfHRT) [18]. For the sc lattice the former B

of these theories yields agaf,=0.874, and in general for FIG. 1. Reduced isothermal compressibilig, (@) and corre-
the lattices considered here the error is in the 1-3 % rangeagion length¢ (b) of the sc lattice gas on the critical isochor® (
despite the fact that it exactly reproduces many tefupsto  >T_) and on the low-density branch of the coexistence cuie (
23, for the bcc latticgin the low-temperature expansion for <T) as a function of the dimensionless temperat&/w. & is in
the free energy. HRT predicts insteg@]=0.883. Table | units of the lattice spacinh Crosses: SCOZA. Solid line: approx-
also includes data on the critical values of the entropy pemant[20,21.
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FIG. 2. Reduced isothermal compressibility on the critical iso-  FIG. 3. Specific heafthermal capacity per partidlet constant
therm of the sc lattice gas. The quantjty,.q is plotted as a func- volumecy on the critical isochore of the bcc lattice gas as a func-
tion of the chemical potentigk (in units of the interaction constant tion of the dimensionless temperatukgT/w. Crosses: SCOZA.

w). Crosses: SCOZA. Squares: HRT8]. Solid line: approximant ~ Solid line: approximanf22].
[21].

, ) temperature=(T—T.)/T. on a log-log scalgfor each of
approximants to high- and low-temperature sefi28,21. e approximations shown in the figure, the correspondent
The close agreement between SCOZA predictions and Series e of T, has been used to determitje It appears that in

estimates persists quite near the critical point. The compresgs~~-a the divergence of the compressibility Bs is ap-

ibility on the critical isotherm of the sc lattice is shown in . ; .
. ! . proached is asymptotically governed by a power law with a
Fig. 2, where again an approximg@tl] and the HRT result critical exponenty=2: this coincides with the value of

[18] are reported for comparison. It is worthwhile observing . .
that in the present application of SCOZA both the secondrédicted by MSA7,8], whose exponents in turn are those
and the third virial coefficient are correctly reprodudés of the spherical model. Indeed, our results show that above

property has been used to determine the expans the critical temperaturé; the asymptotic critical behavior of
although this feature is not intrinsic to SCOZA, but it de- SCOZA is the same as in MSA: besides 2, we have then
pends on the quite special character of a nearest-neighbdr— > anda=—1, where we have adopted the standard no-
potential. In Fig. 3 we plot the specific heat at constant voltation for the critical exponents. Those values are of course

umec,, of the bcc lattice on the critical isochore. As will be

seen in the next section, this quantity does not diverge in e 1 1 ]
SCOZA asT—T.. Nevertheless, the SCOZA result is in o ]
close agreement with the series predictif?®] over a wide 1.1

range of temperatures. The coexistence curve of the sc lattice

in the temperature-density plane is shown in Fig. 4 together 10
with a Padeapproximant from the low-temperature magne-
tization series[23]; we also show the predictions of the
Kikuchi [24] theory on a square cluster and of the HRB].
Evidently, the SCOZA provides quite an accurate coexist-
ence curve: it appears then that this theory continues to be
reliable in the low-temperature regime. Finally, in Fig. 5 we
show the structure factor of the sc lattice for 1/2 and two
different temperatures along the directibp=k, =k, of the
Brillouin zone. Also shown are a closed-form approximant

0.9

kgT/w

0.8

0.7

[20] and the results from the mean spherical approximation 06¢ i
(MSA) [7,8] and from the HRT18]. Unlike the MSA, both L ]
the HRT and the SCOZA are in very satisfactory agreement o5 b b b L)
with the approximant, with the SCOZA performing slightly 60 01 02 03 04 05
better at smalk. P
IV. CRITICAL BEHAVIOR FIG. 4. Coexistence curve of the sc lattice gas in the

temperature-density plane. Solid line: SCOZA. Crosses: HE3].
In Fig. 6 the isothermal compressibility of the sc lattice onDotted line: Kikuchi theory with a square clus{@4]. Dashed line:
the critical isochore is plotted as a function of the reducechpproximan{23].
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FIG. 5. Structure factoS(k) of the sc lattice gas along the FIG. 6. Log-log plot of the reduced isothermal compressibility
directionk, =k, =k, of the Brillouin zone as a function of the norm x4 on the critical isochorésc lattice as a function of the reduced
of k (in units of the reciprocal of the lattice spacihgat p=1/2.  temperature T—T.)/T. (@) and corresponding effective exponent
The predictions from different theories and from the approximanty. (b). Solid line: SCOZA. Crosses: HR[IL8]. Dotted line: MSA.
are compared at the same temperaky® w=1.5, for which the  Dashed line: approximan21].

“exact” reduced temperature i/T.~1.33 (a), and at reduced

temperaturel/T,=1.03 (b). Crosses: SCOZA. Squares: HRT8].  to which SCOZA would exhibit a scaling equation of state

Dashed line: MSA. Solid line: approximaf20]. with the Gaussian three-dimensional exponentsl, 5=5,
a=1/2. Further investigation shows that this is not the only

quite inaccurate, the true ones beillp] y=1.24, 6=4.8, possible scaling solution, and that in the critical region Eq.
a=0.1. However, the onset of the asymptotic critical regime(1g) qoes have a solution that behaves as

appears to be very different than in MSA: this can be better

appreciated by introducing agffective exponerdefined as z~1-[a(p—pc)?+bt]?, (26)
the local slope of the log-log plot of the quantity of interest.

The effective exponenty.; and S are plotted in Figs. 6 wherea andb are constants. By using the expansion of the
and 7, respectively. It can be seen that the “exagt} (that  |attice Green functions for— 1 [10—12,

is, the one predicted by the approximdg@ftl]) reaches its

asymptotic value fot~10"2. This is true also for MSA and P(z)~P(1)—dy1—-z+0O(1-2), (27
for HRT [18], whose predictions are also shown in Fig. 6

(HRT yields the nonclassical value=1.378[26]). SCOZA, it is readily seen from Eq(16) that Eq.(26) gives rise to
by contrast, is affected by a strong crossover from a nearlfiSA-like scaling in the equation of state, in agreement with
exact to a MSA-like behavior, so that=2 is obtained only  our numerical results. Thus we conclude that ab®yvehe
for t~107°. Therefore the MSA critical indices affect critical behavior of SCOZA is described by E@6). In par-
SCOZA thermodynamics only in a narrow neighborhood ofticular, the amplitude of the (p— p.)? term is related to the
the critical point. For instance, far>0.015 the relative error  coefficients of the expansio(®7) by a=4P(1)/d. If Egs.
in the isothermal compressibility is less than 10%, and for(26) and(27) are substituted into the expressid) for the
t>0.1 it is less than 0.5%. The specific heat at constantlirect correlation function at nearest-neighbor separation
volume of the sc lattice on the critical isochore ter0 is  an expansion foc; around its critical value, . in powers of
shown in Fig. 8, together with the approxima@®] and the  (p—p.)? andt is obtained:

HRT [27] results. Although in the SCOZfas well as in the

HRT) this quantity does not diverge at the critical point, the C1~CicTA, (p—po)t+Byt+---, (29
saturation does not become evident utt10™ 4.

It is worthwhile noting that the evidence of spherical criti- where the coefficienA, of (p—p.)? vanishes due to the
cal exponent foif>T_ does not agree with the conclusions particular value of.. Such behavior, which has been checked
of a previous analysi§4,8] based on the form assumed by numerically, is consistent with a previous requit accord-
Eq. (18) close to the critical point, i.e., fa—1, according ing to which, whenever, is analytic in p—p.)? andt,
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. tion of the reduced temperatur€(— T)/T, (bcc latticg. Solid line:
-3.0 -5 -<0 -15 -10 -05 SCOZA. Dashed line: approximaft5].

logolp—p.|
fact, while MSA scaling predicts that along the spinodal
curve p—p. will vanish for t—0 as|p— p¢|~|t|Psein with
Bspin=1/2, we find instead that SCOZA haBgp,= 3/4.
Moreover, for a lattice gas in three dimensions the MSA fails
to give a coexistence curve close to the critical point on the
basis of Eq.(16) [7], which is not the case with SCOZA.
Ahstead, it is found both analytically and numerically that
along the SCOZA coexistence curgg.q, |p—pcl, andcy,

FIG. 7. Log-log plot of the reciprocal of the reduced isothermal
compressibilityy,.q 0n the critical isotherm of the bcc latti¢®ow-
density branchas a function of the reduced densjip/ p| (a) and
corresponding effective exponeéifs— 1 (b) according to SCOZA.

spherical-model exponents are obtained provided one h
A2<C1’C/p§. This condition is manifestly satisfied in the

present case, in which,=0. - _ assume a power-law behavior with effective critical expo-
Quite surprisingly, belowT. the critical behavior of nhents that take on the limiting values at critical pf=7/5,
SCOZA does not coincide with the one just described. Inﬂcoex: 7120,a’ = — 1/10. These are considerably more accu-

rate than either the MSA or the mean-field values, especially
in the case ofB .y LOg-log plots of the isothermal com-
H pressibility and of the reduced density together with its ef-
fective exponen]B‘égeX are shown in Figs. 9 and 10, respec-
tively, where the results from the approximafi$] are also
i shown (the “exact” value of the exponenB.yex IS Bcoex
_ =0.33). We note again that the asymptotic regime is reached
— only in a very narrow neighborhood of the critical point
§ (|t|=10"5-10"%). The difference between the exponents on
. the critical isochore fofl >T. and the corresponding ones on
. the coexistence curve fr<T. is a feature of the SCOZA
1 that is presumably an artifact of the approximation; it is not
- expected to be a feature of the exact behavior of the model.
. It stems from an extended form of scaling behavior that char-
] acterizes the SCOZA thermodynamics close to the critical
iy point. In contrast, the exact lattice-gas behavior is widely
A believed to be given by a simpler form of thermodynamic
_0-5_6 5 -4 -3 _2 1 0 scaling in which exponents below and above the critical tem-
logo(T/T,—1) perature are identical. _
€ It is worthwhile stressing that the extended scaling does
FIG. 8. Log-log plot of the specific heat at constant volumge N0t imply any spurious singularity in the equation of state
on the critical isochordsc lattic as a function of the reduced When theT =T, axis is crossed at noncritical density. In fact,
temperature T—T,)/T,. Solid line: SCOZA. Crosses: HRM8].  the same critical isotherm and the exponért5 are recov-
Dashed line: approximar®22]. Both SCOZA and HRT predict a ered both from above and from beloW.. Moreover, the
finite value for the specific heat at the critical point. standard algebraic relations among the critical exponents are

1.0

@
3]

10@10(0\7)

0.0




57 THERMODYNAMICALLY SELF-CONSISTENT THEORY OF ... 2869

dimensions. The accuracy of the results is remarkable: the
critical temperatures are reproduced with an error of less
than 0.2%, and outside the immediate vicinity of the critical
point the error on the coexistence curves does not exceed
2%. Above the critical temperature SCOZA predicts the
same critical exponents as the mean spherical approximation,
but this asymptotic behavior is detectable only in a very
narrow neighborhood of the critical point. Therefore the ther-
modynamics remains accurate up to reduced temperatures
around 102. As a result of an extended form of scaling
behavior shown by SCOZA, the exponents on the coexist-
ence curve do not coincide with the spherical values. These
exponents turn out to be both nonspherical and nonclassical,
and are considerably more accurate than either the spherical
or the mean-field ones.

Our results suggest that the application of SCOZA to
other three-dimensional systems will prove most useful. A
further interesting feature of the theory in this respect is that
a single run of integration sweeps the whole density-
temperature plane, so that the thermodynamics and the phase
diagram are obtained at once. The study of a fluid of spheri-

L, | L, L, cal particles with a repulsive core and a Yukawa attractive
00 ., 5 2 i tail potential is currently under wa1]. We are also inves-
tigating improving the approximation by extending the range
logo(1-T/T,) of c(r).

0.0||||||||||||||||||||||||
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FIG. 10. Log-log plot of the reduced densitg—p.| on the
coexistence curvébcc latticg as a function of the reduced tempera- ACKNOWLEDGMENTS
ture (T,—T)/T, (a) and corresponding effective exponﬁiﬂex(b).
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tended scaling is given by
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where the functiong, , ¢ account for the different behav-
ior, respectively, above and beloW.: in particular, as is
readily seen from Eq26), one has simply, =1, while ¢ In this appendix some details about the algorithm adopted
is not constant and goes to 1 only when its argument difor the numerical integration of the PDR0) are provided.

verges. This form ok was revealed in an investigation by This is a nonlinear diffusion equation of the form
two of us in collaboration with Hge that we plan to report

APPENDIX

on in a separate paper containing derivations as well as ana- 92U u
lytic and numerical detail§28]. Some time ago it was A—= B@ +C, (A1)
pointed out by one of uf29] that the very fact that scaling ap

can only be expected in an approximate sese, locally, i . _
about the critical pointgives rise to the possibility of a WhereA, B, andC can be functions op, 8, andu itself (in

mechanism yieldingy# y', v# v', etc. Such an asymmetry the case in hand andC depend only om, Whi_Ie_B dt_apends
was subsequently found to characterize the exact behavior §Pth onp and onu). We make use of a finite-difference
certain rather special moddI80]. It is interesting to find that SCheme, in which the “spacelike” variabfeand the “time-
the imposition of self-consistency along with the core condi-lke” variable 5 are replaced by the discrete quantitigs
tion and an Ornstein-Zernike ansatz on the forng@f isin ~ =14p, Ba=nAB, whereAp andAp are the grid spacings
fact enough to trigger just such a mechanism, althongh along thep and theg directions, and andn are integers

the precise form of the scaled thermodynamics discussed i#Hch that Ij<J, n=1. The partial derivatives with respect
[29] or found in[30]. to p and B are then approximated by finite-difference repre-

sentation$32]. Integration of Eq(Al) by anexplicit method
(as was done in Ref5]), in which the first derivative with
respect tg3 is used directly to update the unknown function
We have applied a thermodynamically self-consistent OZ1 at the temperature stap+1 by evaluating all the other
approximation, along the lines proposed byyldand Stell terms in the equation at the step is in principle straight-
[2—-4], to nearest-neighbor attractive lattice gases in thredorward, but it is not recommended for a diffusive equation

V. CONCLUSIONS
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like Eqg. (20). In fact, as is well known32], in order to  value of the unknown function at the step-1/2 is deter-
achieve numerical stability those methods require thgt  mined. The scheme is as follow&) predictor:

must be kept below a certain vale3,.~ (Ap)2/D, where

n+1/2__ n+1/2 n+1/2_ un

. . . .. . u' Zun+l/2+u
D is the diffusion coefficient. For E20) the role ofD is A(pi) L i 7t _B(p: ,uM2-] i
played by the expression Pi (Ap)2 Pi-Y AB
q [1-yF(y)]? +C(p)), (A3)
D= 5[10(1—/3)]2 - J
(1=-y)F'(y)-F(y)[1-F(y)] (2) corrector:
=g[p(1—p)]2 P(2)[1-P(2)]+zP'(2) , }A(p-) U?Ill—2u?+l+u?f11 Uiy —2uf Ui,
2 22PA(2)[P(2)~(1-2)P'(2)] 20 (Ap)? (Ap)?
A2 1
2 =B(p; u-”“”)um(p-) (A4)
wherez and P(z) have been defined in Eq&7), (8), andy e AB I

andF(y) are given byy=[P(2)—1]/[zP(2)], z=F(y). As

is readily seen from the expansi@@?) for P(z), D diverges The advantage of this method, which rests on the quasilinear

whenever the comoressibility diveraes. namelv. at the critic tructure of the underlying PDE, consists in the fact that one
P y ges, Y, s required to use the updated quantities only in the deriva-

point and on the spinodal curve. To carry out the integratior{ives and not in the “coefficients,” so that when the predic-

in the critical and su_bc_rmcal region, one wou_Id then betor and the corrector are solvéspectively, foru?“’z and
forced to adopt a vanishingly small spaciag. It is better un+l

o . ), one does not get a set of nonlinear equations but
! ; L

then to turn to somemp!mt method, which has the advan rather a linear system afidiagonal type, that can be solved
tage of being unconditionally stable. In such methods th

. o . ] - . $umerically with a small computational effort. For an overall
differentiation Wlth respect t@ is performeql back\_/vard, sweep over the wholep( 8) plane, we typically adopted a
so that at a generic temperature step one is left with a set ‘Hcensity spacing p=10"3-5x 10"4. When high accuracies

equations in the) unknownsu “*, 1<j<J. If the original  were required very close to the critical point, for instance to
PDE is nonlinear, the resulting equations will in general bedetermine the asymptotic critical regime, values\gf about
nonlinear as well, and the numerical solution can be quitean order of magnitude smaller were used. The inverse tem-
cumbersome. However, for a PDE gfiasilinearform like  perature spacing\8 was usually set ahB=10* at the

Eq. (A1), i.e., such that the “coefficientsA, B, andC do  beginning of the integration, and subsequently decreased to
not depend on the partial derivatives of the unknown func-get the critical temperature within a prescribed accuracy. Be-
tion u, it is possible to adopt a predictor-corrector algorithmlow the critical temperatureA8 was then gradually in-
[13] which gives rise only to linear equations. In this proce-creased up to its initial value. The integration was usually
dure every temperature step is split in two and a temporargarried down tol=(0.3-0.4) ...
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