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Cellular structures in three-dimensional directional solidification: Simulation and analysis
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The use of an asymptotically valid interface equation for directional solidification allows numerical studies
of the evolution of three-dimensional cellular structures in extended systems. We consider systems that are
large enough to render a statistical description of disordered structures meaningful and to enable a direct
comparison with experiment. Moreover, it is possible to assess the stability of the observed patterns on the
basis of long-time simulations. In addition to statistical methods already employed in the analysis of experi-
ments, new statistical tools are introduced to follow the dynamics of the system. In general, three growth
phases can be distinguished. During the first, short one, the pattern dynamically selects its preferred length
scale by a coarsening or a fine-graining process. In the second, much longer phase, the cells rearrange, evolving
towards a polycrystalline, essentially ordered structure. In the third phase, a process of gradual elimination of
defects takes place. For smaller temperature gradients, there is an evolution towards oscillating patterns.
Oscillations lead to a reduction of the percentage of defects, unless they act as a precursor to weak turbulence,
which happens at even lower values of the temperature grafi&i63-651X98)00703-X]

PACS numbd(s): 64.70.Dv, 81.30.Fb

[. INTRODUCTION Therefore, we have chosen a different approach in the
present paper. We start from a partial differential equation
Directional solidification has become a paradigmatic exfor the two-dimensionainterface between the liquid and
periment for the investigation of pattern formation at inter-solid phases. This equation was derived as a description of
faces between two phases that transform into each other viar@pid solidification and is asymptotically valid near the ab-
first-order phase transition. This includes ordinary solidifica-Solute stability limit[28,40,41.
tion [1,2], but also various liquid-crystal transitiofi3,4]. Since the experiments we wish to discuss are done at
Many experiments have focused on thin samples, tryingnoderate pulling velocities, we do not expect more than
to realize an essentially two-dimensional seft6p9], which ~ qualitative agreement with our simulations. On the other
is more amenable to theoretical analysis than a thredhand, we are confident about the generic character of our
dimensional system. Indeed, the theory of two-dimensionalesults on cellular growth. Comparisons with another, more
solidification has been developed quite f40—29 and suc- generic interface equation, the damped Kuramoto-
cessfully explained a plethora of observations. Sivashinsky equation, have shown that secondary instabili-
Experiments on samples extending in all three dimensiontiés are the same for the two equations, in both [er# and
posed certain difficulties regarding their dynamical interpretwo dimensiong43,44. Moreover, it will emerge from this
tation because direct observation was not posgip830. paper that a reasonable description of experimental cellular
Transverse cuts had to be made and treated by etching ﬁsructures is feasible on the basis of our equation. We can
gain access to the cellular structure. By using transparer@asily simulate some 2000 cells, which has been shown to be
materials and carefully planned optical arrangements, it remore than sufficienf45] for a statistical description of the
cently has become feasible to continually monitor the growtHesults.
of massive samples and to follow the dynamical evolution ~ Section Il of the paper gives our basic interface equation
situ [31]. and some comments on the numerical implementation. In
Theoretical approaches have also concentrated on thgec. Ill we discuss the statistical quantities considered in our
two-dimensional casg82] for a variety of reasons. First, itis Simulations and how to measure them. Section 1V describes
more easily treated both analytically and numerically. Seca series of numerical results for a variety of temperature
ond, sophisticated Green’s-function methods of solving thedradients and discusses the long-time dynamics. We com-
model equationg33] become inefficient in three dimensions. pare the statistics of minimum spanning trees on these struc-
Third, it is a formidable task to track the interface betweentures with similar quantities calculated for experimental pat-
the liquid and solid phases in three-dimensional systemtrns. In Sec. V the results are discussed and some
[34]. The last problem is avoided jphase-field modelgnd  conclusions are drawn.
there have been numerical simulations based on this ap-
proach, dealing with free growth of single dendrif85—37

or fingerlike structure$38] and with directional solidifica- !l MODEL

tion of a few (on the order of 1P cells [39]. Large-scale Our computations will be based on the following equa-
simulations of samples containing several hundreds of celldjon, derived from a Sivashinsky-type singular expansion
however, are still beyond the scope of these methods. about the point of absolute stabilif28]:
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Herein the gradient operator is two dimensional,
V=(dx,dy), and {(x,y,t) is the height of the liquid-solid
interface; the temperature gradient is oriented alongzthe
axis.

There are three nondimensional parameters in the eque 3
tion: the segregation coefficiekf the ratiov=D¢/D of the
diffusion coefficients for impurities in the solid and the lig-

uid, and the nondimensional temperature grad@nSolute
trapping is neglected. Thene-sided modek characterized
by »=0, the symmetric modeby v=1. G is related to
physical parameters via

— 8D%L%mAc G
= YZT% V(Va—V)ZI (1) _ FIQ. 1. Simu!a.tgd.sur_face gf solidificat_ion pattetr; 10 diffu-
sion times after initialization with random interfad8=0.6,k=1,
andv=1. The system size in diffusion lengths is 26B56. Gray-
scale code: Lighter pixels correspond to more elevated interface
points, darker ones to lower-lying points.

In this expressionl. is the latent heafper unit volume of
the transition,m is the absolute value of the slope of the
liquidus line,Ac is the miscibility gap at the base tempera-
ture Ty (To=T,,—mc, with T, the melting temperature of
the pure substangey is the surface energy, assumed isotro-
pic here,V, is the velocity corresponding to the absolute
stability limit, given byV,=mLAcD/yTk, G is the tem-
perature gradient, and is the pulling velocity.

Note that Eq.(1) becomes indefinite fok=0 because
there is no absolute stability limit in this case. For simplicity, lll. STATISTICAL ANALYSIS
we shall sekk=1 in the following, i.e.,Ac= const. We do
not expect this choice to have a strong influence on the re-
sults. Figure 1 shows a typical interface, initiated with random

Moreover, most of the detailed results presented heraoise, after ten diffusion times. A cellular structure has not
were obtained within theymmetricmodel, which is not a yet fully developed, but a dominant length scale is clearly
realistic model for directional solidificatiofas opposed to Vvisible.
directional ordering in liquid crystalsbut is least problem- An approach to analyzing solidification interfaces, devel-
atic in numerical simulations since it is not very susceptibleoped by Billiaet al.[45], is based on image processing of a
to the accidental evolution of deep grooves that can easilgigitized picture of the interface. Introducing a threshold
trigger numerical instabilities. Experience from previousgray level and changing into black each pixel that is darker
simulations of one-dimensional interfadegX8] suggests that and into white each one that is lighter, they obtain a binary
the generic patterns are independent of the ratio of diffusiommage, an example of which is given in Fig. 2. White areas
constants. correspond to solidification cells, black ones to the grooves

Equation(1) was implemented on both square and hex-in between. This binary image can then be analyzed via the
agonal numerical grids using second-order accurate direeonstruction of the centers of mass of the cells and the mini-
schemes of discretization and constant time steps in the temmum spanning tree of the centers. The cell shapes may be
poral integration. More sophisticated implementations mayapproximated by a weighted Wigner-Seitz or rather Voronoi
become necessary in going to extremely long times, but witltonstruction45]. While this approach is a valuable starting
the present scheme we could simulate systems containing quoint for what we shall present here, it is obviously restricted
the order of 2000 solidification cells for as long as 30 000to a situation where a clearly distinguishable cellular struc-
diffusion times[46], which seems sufficient to compare with ture is present. This is not yet the case in Fig. 1.
experiments. There are certain theoretical questions, dis- A more complete characterization that also takes into ac-
cussed in Sec. IV, whose answers might require even long&ount some of the interface extension into the third dimen-
simulations. sion (the z direction and allows one to construct the mini-

Boundary conditions were usually periodic, and a hexagomum spanning tree from the numeric representation of the
nal geometrywith underlying hexagonal grjdvas also con- interface without the need of an intermediate image process-
sidered to make sure that the overall results were not amg step is based on the following ideas. We introduce a

artifact of our restricting hexagonal cell structures to a rect-
angular(albeit very largg periodicity unit. Results similar to

the ones that are reported here have been obtained with re-
flecting and helical boundary conditions.

A. Cluster number function
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FIG. 2. Binary picture of solidification cells from an experiment

with succinonitrile 0.5 % wt. aceton&/&2.1 um/s).

through it. Thus its temporal evolution may yield informa-
tion about the dynamics of a disordered system. Also, it may
be used to effect the construction of a minimum spanning
tree, which in the case of cellular structures will essentially
coincide with the one obtained from image processing, but
allows thedefinition of a minimum spanning tree for more
general situations.

This is achieved as follows. For any disordered structure
the cluster number function will exhibit a well-defined maxi-
mum. At small threshold levels there is just one cluster be-
cause the whole mountainous landscape above the threshold
remains connected. At large thresholds only the tip of the
highest mountain surpasses the threshold, therefore there is
also just one cluster. In between, the function, assuming it
varies in a continuous manner, must have at least one maxi-
mum, and usually there is just a single diee Fig. 3 The
threshold corresponding to this maximum will lead to a bi-
nary image containing the largest possible number of sub-
structures, so it is natural to identify the clusters at this
threshold with solidification cells. As it turns out, this ap-
proach works well at least for the construction of the mini-
mum spanning tree and the determination of its statistical
properties. In order to extract cell shapes, one would presum-
ably wish (this is suggested by a comparison of the binary
images obtained with this method and those produced “by

number of equidistant height levels of the interface, whichhand” in the analysis of experimental pictuye® take a
may be thought of as representing the grey levels in an imsomewhat smaller value of the threshold. So one will lose
age. At each of these levels we cut the interface by a horisome cells by not resolving certain pairs of closely spaced

zontal planez=z,=const. Each interface poirton the nu-

merical grid that is above the cut.e., for whichz>z;) will

be counted aparticle within a clusterIn a digitized image,
each such point would correspond to(white) pixel. For
each cut, the numbeN(z,) of different clusters is deter-

cells, but get a better overall approximation for the shape of
the remaining ones. However, we will not concern ourselves
with cell shapes here.

Recently, an approach to the morphological characteriza-
tion of patterns has been suggested by Mecke that bears

mined. We callN(z) the cluster number function and an some similarities to the one chosen hedd]. In particular,
example, corresponding to the interface of Fig. 1, is given ifMecke points out that autocorrelation functions and spatial
Fig. 3. Obviously, this function itself is a means of charac-Fourier transforms, while providing useful information about
terizing the shape of the interface via the topology of cutscharacteristic length scales, cannot distinguish well between
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FIG. 3. Cluster number function f&&= 0.6 andt=10.0.
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FIG. 5. Minimum spanning tree corresponding to the binary
picture of Fig. 4.

irregular structures with the same length scales. He then pro-

poses to use certain Minkowski functionalsmasrphological  turns out to be sufficient for a construction of the cell centers
measures for patterns, quantities that are well known in imand the minimum spanning tree.

age analysis, mathematical morpholdg$], and integral ge- It may be pointed out that we can now associate a mini-
ometry[49]. Their definition is based, as that of the cluster muym spanning tree withny pattern, be it cellular or not. For
number function, on cutting the interface by a series of equiyyr present purposes, however, it is sufficient to use the pre-
distant levels or, alternatively, dividing its gray-scale imagescription outlined above, viz., to obtain well-defined cells by

into a number, usually 256, of gray levellsupposedly cor-  -,osing the threshold at the maximum of the cluster number
responding to the interface levetsnd setting the gray value ¢ noion . In the analysis of experiments, one usually takes

of each pixel to 0 or 1, depending on whether or not it €X"out the cells at the boundary of the digitized image in order

ceeds a threshold value. This produces 256 black-and-whitﬁ ; o . ;
. . : ot to bias the statistics, as peripheral cells are incomplete
pictures out of a single gray-level one and yields, for each

level (zo), the so-called level contours, which in the lan- and their centers of mass do not correqund to_the tru_e qenter
guage used here are just the contours of the clusters. Amo the complete_z(_j Cel[45]' For the NUMErICS with periodic
the measures considered[#] is the Euler characteristig, u_nd_ary condlt_|ons, It is more approprlate to construc_t the
a topological quantity. It is related to our cluster numberpe”c’d'ca"y co_ntmued tre_e. Sq we take into account periodic
function because it is essentially the difference between thin@ge points in calculating distances between cell centers.
numbers of white and black clusters. Its calculation, how-1his is why there are branches of the tree that “cross the
ever, is simpler than that of the cluster number function beborder” of the picture and may make it appear disconnected,
cause it can be doﬂeca”y' without exp”cit Counting of the although it is not. Recall that it is defined on a torus tOpOI'
clusterg47]. Nevertheless, since the calculation of the latterogy, imposed by the periodic boundary conditions.

takes a very small percentage of the total computation time, The simplest pieces of quantitative information that can
we did not change conventions after learning about the aphe extracted from the tree are the aforementioned average
proach of[47]. Moreover, it seems to us that the clusterlength of its edges and their standard deviation. Normalizing
number function is conceptually somewhat simpler than théoth quantities by division by the square root of the average

FIG. 4. Binary picture of cell structure fa=0.6.

Euler characteristics. cell area and calling the normalized versiansand o, re-
spectively, we obtain a point in thmo diagram, originally
B. Minimum spanning tree introduced by Dussest al.[50]. The temporal evolution of

Figure 4 exhibits an example for the binary image of athiS pointin the plane spanned byando has been used by
computed structure and Fig. 5 that of the correspondingillia et al.[45] to characterize experimental structures and
minimum spanning tree, both obtained with a threshold valuéve Will do the same with simulated structures.

10% smaller than that corresponding to the maximum of the It should be noted that the edges of the minimum span-
cluster number function. This picture is to be compared withning tree form a subset of the edges in a full graph of all
Fig. 2, an image obtained from an experimental structure byearest-neighbor pairs obtained via the Voronoi construction.
a judicious choice of the threshold value while doing inter-Evidently, this subset exhibits a preference of short distances
active image processing. While cellular shapes are somewhaver long ones. Thus an overall increase of the average is not
better represented in this picture than in one obtained witho be interpreted, even at constant cell number, as an increase
the “schematic” choice of the thresholt the maximum of in the average distance of the cells; it might as well mean
the cluster number function, the latter choiget shown  that the distances become less widely distributed.
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FIG. 6. Voronoi diagram of a solidification pattern 16r=0.6 at FIG. 7. Pattern obtained from a nucleus without initial noise.
t=400 (continuing the evolution of Fig.)1 Pentagons are shaded G=0.35,t=40, and the system size is 178.279.2.
dark and heptagons light gray.

A. Early dynamics

C. Defects In most cases, we took a random interface as initial con-

For long simulation times, neither the minimum spanningdition. Figure 1 shows a very early stage of the system with
tree nor the cluster number function exhibits strong change& =0.6, which is 10% from the primary instability threshold
anymore. A useful means of characterization in this regime i¢sowards the unstable side. The image definitely conveys the
the number of defects in the pattern. Their definition is basedmpression of a perturbed water surface.
on the Voronoi diagram of the cell centers. Each cell that has This impression gets enhanced by a look at Fig. 7, a simu-
a number of neighbors different from six is considered dation starting from a circular Gauss-shaped nucleus

defect. Figure 6 gives an example of the Voronoi cells of § G=0.35 herg Apart from the center of the picture, where
system at an intermediate timeé=(400); defect cells are four almost square-shaped cells can be distinguished, this
shaded, hexagonal cells remain white. looks very much like the spreading of a water wave after a
Even in this example of very moderate time we see thestone has been thrown in a pond. The picture was taken at
two basic tendencies: defects tend to assemble in liles, t=40.0 and the wave has almost reached the system bound-
namic grain boundariesand (except at very early timgs aries, i.e., it has spread about 80 diffusion lengths in each
they come almost exclusively in pairs of pentagons and hepdirection, which yields an estimate of 2 for the wave speed.
tagons, very similar to the situation encountered in experiThe pattern is circular, due to the fact that we used isotropic
ments on Beard-Marangoni convectiofb1]. We will dis-  syrface tension in the model equations.
cuss the temporal evolution of defect numbers in the next When the wave reaches the system boundary, it starts to
section. Similar defect counting ideas have been employephterfere with its periodic images and a cellular structure be-
before in the discussion of the topology of two-dimensionalgins to develop, which at first maintains the fourfold symme-
soap frothd52]. try of the numerical boxand grid. Eventually, this symme-
try gets broken by numerical noise, and after about 500
IV. SIMULATION RESULTS diffusion times, the statistical properties of structures from
. . L this run and one with random initial conditions were essen-
From linear stability analysis it is known that a planar tially the same, although remnants of the overall symmetry
interface becomes unstable for values®below[28] in the “nucleated” system were still perceptible.
Another type of initial condition used was a pattern with
2 an imposed wavelength that was larger than the expected
2k , ) final value, in order to verify that the selected wavelength is
1+k+kv? also reached by a fine-graining procedure. The starting pat-
tern was obtained from random initial conditions by waiting
] ) ] N until the system had found its preferred wavelength and then
i.e., for the symmetric model witk=1, the critical tempera- mytiplying the system size by some appropriate factor with-
ture gradient is;. This suggests to investigate systems bothgyt changing any other parameter, to obtain a coarser struc-
in the vicinity and far from this value. In particular, we re- tyre. Again, the final system characteristics did not depend
port here on the long-time dynamics of systems with valueg, the initial condition.
of G between 0.35 and the critical value. Time is always We will from now on focus on the ‘“generic” random
measured in units of the diffusion time. initial conditions. Let us note thaxperimentalpatterns at

G-
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FIG. 8. Temporal evolution of the cluster number function ®# 0.6 up tot=30 000.

the beginning of solidification bear a strong similarity to Fig. number function. Itshapenow changes strongly whereas its

1. heightremains almost constant. A plateau develops around
With random initial conditions, the early stage of growth the maximum and the function seems to approach a rectan-

is best characterized using the cluster number function. Igular shape.

Fig. 8 we visualize its evolution by plotting it at several  Tg clarify what this means, we give a pattern in Fig. 9 that

points in time chosen to render the different growth phasegs completely ordered by constructigthe profile is given

visible. Intermediate curves have been omitted in order no . ; . 1
to overcrowd the picture. E)y the analytic expression(x,y)=sin(y)cog3(y3gx+qy

Conspicuously, the initial change of the functiup to  —7/2)]cog3(v3qx—qy+m/2)]) together withits cluster
t=40) mostly consists in a reduction of its height, whereashumber function. A rectangular cluster number function cor-
its shape remains essentially unchanged. This means that thesponds to a structure consisting of cells where all bottoms
relative distribution of cell heights does not charigete that  and all tops of the cells are at the same heights, respectively.
cell heights are always mapped to an interval from 1 to 254This situation strongly suggests a perfect underlying lattice.
so absolute heights may, and do, change during this growth Of course, given such a shape of the cluster number func-
phasg¢. However, the maximum of the cluster number func-tion, we cannot rigorously conclude a perfect lattice. The
tion and hence the number of cells decrease. Thus the avefhole point of its introduction is aeductionof the informa-
age size of cells increases and so does the dominant lengfiyn encoded in a complex interface structure to an easily
scale of the pattern. A coarsening process is operative, r'gjigestible form. Therefore, one could artificially construct

sulting in the selection of a preferred length scale. This Segifferent interfaces with the same cluster number function.
lection process igocal because it is essentially finished be- o 06 it is important to look at more than a single measure
fore information can travel by diffusion across the entire

. : . r the topological properties of the interface. Incidentally,
system. Of course, its duration depends on the amplitude E L
the initial noise to some extent, but since growth is exponenwﬁefelutsgzr |rr1]tl:1 ri?i?/ir r:gt?g::ogf ';lc?gzsg tl:)? d;?rieie:arzglris
tial initially, this dependence is slight for any reasonable : : 'g. 9
level of noise(e.g., a few percent of the final cell sjze nected with a peak getting sharper fails: The opposite hap-

If we start from a too coarse structure instead of a too finegf;;’ as the peak is getting "smeared out” with increasing
one, the time scale for length selection via cell splitting is As. the plateau of the cluster number function widens
somewhat larger. On choosing an extremely large initial P u u u unction wi '

wavelength(say, half the system sizewe have to wait much more and more cells acquire similar heights and it is natural
longer to see the characteristic wavelength appear. In thits0 presume_that this IS due to the patt_ern becomlng_ more
dered. This assumption may be confirmed by looking at

case, the interface is smooth on small scales and the divisio

into cells has to be triggered by numerical noise, which can® _surface it_self, given far=100 in Fig. 10 and fot=3300
take on the order of 1000 diffusion times. in Fig. 11. It is obvious that a well-developed cellular struc-

ture is already present in the first of these pictures and that
the basic pattern corresponds to hexagonal order.
More precise statements on the degree of order attained
As demonstrated in Fig. 8, the second stage of growth igre possible via construction of the minimum spanning tree,
characterized by a drastically different behavior of the clustea metrical rather thartopological measure, and by studying

B. Intermediate stage
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FIG. 9. Perfectly ordered structutmp) and its cluster number functiaibottom.

the evolution of the number of defects of the pattern in theperiodic tilings, the squares to experimental points.
course of time. Comparing the minimum spanning tree cor- If the vertex positions of the hexagonal lattice are per-
responding to Fig. 10 with that corresponding to Fig. 11, weturbed with Gaussian noise of increasing strength, the repre-
see that the tree clearly gives an impression of the polycryssentative point of this lattice moves up along the curve in
talline structure of the pattern and, in particular, of the higherFig. 14 connecting the hexagonal structure with a completely
degree of order present in the second daee Figs. 5 and random distribution. The upper dashed line in Fig. 13 corre-
12). To make this statement more quantitative, we give Figsponds to this curve and its importance derives from the fact
13 showing themo diagram for the temporal evolution of that experimental points seem to cluster near this line, mean-
three systems for large time intervals. ing that the corresponding pattern may be considered a per-
This evolution was calculated from a sequence of interturbed hexagonal structure. The lower dashed line of Fig. 13
faces obtained in the simulation. The dashed lines are begépresents a perturbed square pattern, also shown in Fig. 14.
explained by looking at Fig. 14, displaying representativeThese curves were recalculated by averaging, for each data
points for a variety of experimental and theoretical struc-point, over 500 realizations of the perturbed hexagonal lat-
tures. Perfect lattices evidently must have standard deviatiofice and over 100 of the perturbed square lattice, with system
o=0 and as a consequence of the normalization via the cedlizes of roughly 2000 vertices, in order to ensure sufficient
areas a square lattice has=1, while for a hexagonal lattice precision for the position of these lines in the case of peri-
m=+/2/,/3~1.075. The triangles correspond to some quasiodic boundary conditions. We noticed non-negligible finite-
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G = 0.6, t = 3300.0

‘x -
'i 250 -
=
200
150
100
A
e
50
| ALY »
T 0
A ~.
FIG. 10. Interface of the crystal from Fig. (Le., G=0.6) at FIG. 12. Minimum spanning tree far=3300.0 G=0.6).

t=100.0. - . . .
random initial conditions miss some aspects of the experi-
. . _mental initial state. It appears that they lead to a too narrow
size e'ffec'ts, SO we made the f?"?‘?'om.'y perturbed lattice ell size distribution. Experimental distributions seem to
equal in size to the simulated solidification structures.

. . . contain a larger percen f very big and v mall cell

We see from Fig. 13 that the simulated pattern moves, "?nci)tiatﬁly (at‘hii ?sevi?wfiigztetgglfyoFige)zy big and very small cells
the course of t!me, from a.pOS'“OT‘ off the upper dashed line Moreover, our structures are generally more ordered than
towards it. Whilem keep_s Increasing, albeit more and MOr€pq experimental onesn is larger than in the experimental
slowly, the standard deviation finally settles down to a valu atterns. This is due to our using the symmetric model in
that does not seem to decrease anymore. This is most like ’

due 1o th inina d . in boundaries th ¢ hich the birth and death of cells and cell rearrangement are
ue o the remaining dynamic grain boundaries the Systef,giar than in the experiment, where diffusion in the solid is
has difficulties getting rid of.

A comparison with the dvnamical evolution @kperi- essentially absent. Nevertheless, there remains an effective

compariso € dynamical evolution @xpe trapping of dynamic grain boundaries even in the symmetric
”?ema' patternsn_the ma d_|agram .revea!s similarities and model. We have verified that it is not simply due to the fact
tdn;f'erenc_est(sie Fig. t15 As In outr S'mglatt'r?n'l.the r;epreferll)- hat we use a square lattice on which no undistorted hexago-
ative point ot a system moves towards the in€ ot perturbeq, o o ctyres are possible for we observe the same imperfect
hexagonal order. However, it approaches that line fromg

s e tructures and long-time trapping of grain boundaries in
above rather than from below, which is an indication thatsimulations on a hexagonal grid in a hexagonal geometry.
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LOLLOr : E::' FIG. 13. Dynamics in theno plane of the representative point
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systems. plot. The numbers near the triangles indicate the temporal sequence
of the experimental structures.

Comparable results are obtained when we decrease the
temperature gradient 8= 0.5, the main difference being a figure reveals that in most grains of the pattétime grain
higher degree of disorder, resulting in a larger overall numstructure is depicted in Fig. 13)] a cell has a size different
ber of defectgbut see Sec. IV € On further decreasing the from that of its six neighbors and the sizes of those are al-
temperature gradient 6 =0.4, we observe similar behavior ternating. These three different sizes correspond to different
initially. However, the system does not indefinitely evolve Phases of the oscillation of each of the cells. .
towards a state of increasing apparent order. Instead, the In themo plane, the oscillations lead to the representative
shape of the cluster number function starts to becom®oint of the system approaching a fixed point near the line of
rounded and thinner again after an initial ordering process, a@erturbed hexagonal structures and making small excursions
becomes clear from F|g 16. This is a Signature of the apabout |t(F|g 13) The pattern oscillates but still has a Strong
pearance, in each instantaneous picture of the interface, éandom component; cells that are far from each other oscil-
several types of cells, larger ones and smaller ones. Figure 1ate out of phase. . . .
exemplifies this, and the reader will easily be convinced that The large scale of our simulations prevents our making
the differentiation into cells with different heights must lead Very precise statements about the position of the bifurcation
to such a change in the shape of the cluster number functioff0m a stationary to an oscillatory state. To be able to run our
An investigation of thedynamicsof the pattern of Fig. 17 largest systems for long times, we had to choose a relatively
shows that it imscillatory. This is directly seen in an anima- Pig lattice constanth=0.5. On reduction of this th=0.4,
tion of a sequence of interfaces, which unfortunately canno@scillatory patterns seem to appear only at values below
be given in this medium. However, closer inspection of theG=0.4 but above 0.35. For one-dimensional interfaces, we
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FIG. 16. Dynamics of the cluster number function B 0.4.
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FIG. 18. Percentage of defeqig as a function ofG att=100

(squaresandt =500 (triangles. ForG=0.67, the pattern starts out
developing cells, visible at=100, but then tends to the planar
interface, so there are no data for500. The system size is

256X 256.

states in Ref[43]. It turns out that the generic oscillatory
mode consists in three neighboring cells oscillating at phase

150 —

100 —

50 —

(b)

FIG. 17. (a) Oscillatory interface in the caseG=0.4

(t=11 000).(b) Corresponding defect structure.

know the bifurcation to arise aG~0.32 [28]; for two-
dimensional ones we expect it at a larger valu&afince it
is due to an interaction between modes of wave numbers
and/3q rather than between modes of wave numleend

2q as for one-dimensional interfacp43].

shifts of =2#/3 with respect to each other. This leads to a
spatial period tripling of the basic pattern. Our discovery
here is that this oscillatory structure appeap®ntaneously

in extendedsystems and thus must be stable. In small sys-
tems, we have been able to produce oscillatory patterns with
a phase shift ofr between one half of the cells and the other.
These patterns also have tripled periodicity with respect to
the basic state. However, they did not appear in our
extended-system simulations, so they are probably not stable.
Moreover, we have so far seen no signature of reguifi-

ing patterng43] in an extended system, suggesting that these
patterns are, as in two-dimensional systgi®8|, unstable
with respect to phase diffusion. On the other hand, drifting
patterns with frozen-in defects are possitdee below.

C. Late-stage growth

The simplest measure of disorder associable with defects
is the fraction of the total pattern consisting of defects, re-
gardless of their nature, i.e., of whether they correspond to
triangles, quadrangles, pentagons, heptagons, or polygons

with more edges. Therefore, we simply count the cells and
determine their nonhexagonal fraction. Invariably, at later
stages of growtht¢>1000), when the order of the pattern
increased, these defects consisted almost exclusively of equal

numbers of pentagons and heptagons, so the percentages that
are given below correspond to twice the percentage of pen-

tagons and heptagons, respectively. Also, at these times the
variation of the total number of cells is well below the per-

cent range, so defect fractions are a good measure for abso-
lute defect numbers too.
An interesting quantity is the percentagg of defects as

a function of G for a fixed time. We expected this to be a

decreasing function o6. A simulation for twenty-sixG
The basic behavior of these oscillatory structures has beevalues between 0.4 and 0.65 in large systefsize
studied in smaller systems and starting from regular initial256x 256) revealed, however, as is exhibited in Fig. 18, that
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at imet= 100 the number of defectacreasesasG=G; is
approached. This tendency reverses itself towards the ex-

pected trend whetis increased to 500. The first explanation 250 I~
that comes to mind, namely, the slowing down of the insta-

bility near threshold, can hardly be correct. A lookeatlier 200 L
times thant= 100, for which we have data from the runs for >

G=0.4, 0.5, and 0.6, clearly shows that theEthe order is as
expected, i.e., highest percentage of defectsat0.4, low- 150 —

est atG=0.6. (The point atG=0.66 in the figure probably
doesexhibit slowing down since it moves towards smaller
defect numbers much more slowly than the points with lower
G.)

Currently, we do not have a good explanation for defect 50
numbers increasing witd. Since this happens in a temporal
range that is interesting in experiments, it may, however,
render a systematic classification of patterns according to 0
their degree of defect disorder quite problematic.

Displaying the number of defects as a function of time for
our longer simulations of large systems, we notice that there
are again three distinct phasésg. 19: an initial stage, cor-
responding to the early dynamics discussed in Sec. IV A,
dgring which Fhe dgfec; number drops steadily; an interme- FIG. 20. Pattern of defect lines f@=0.6 for (a) system size
diate phase, in which it drops much more strongly as the > .y onde 10000 and(b) system size( )25{3256 and
cells equalize; and a late stage, when defect dynamics b?‘:go 000
comes much slower. During this last time range the number '
of defects decreases roughly proportional to jbgHowever, o
the slope in our plot opp versus logyt seems to decrease ered time spant=10 000, wheneveG was larger than or
further, so the time dependence of the approach to a perfeequal to 0.6. Increasing the system size to 182182.4 and

structure needs further discussion. 128x 128, respectively, we find that the system w@h- 0.6
Because these systems are too large to follow the dynanyill end up perfectly ordered b= 10 000 in some cases and
ics until all defects may have vanished, we have simulategteep on the order of 3% defects in others, depending on

smaller systems, in order to check whether they will becomenitial conditions.

completely ordered eventually. Since in our largest systems Thus our simulations seem to suggest that close enough to
(256x256), grain sizes typically approach a quarter of thethreshold any system will tend to perfect hexagonal order in
total system size, we considered systems with a size ahe long run. Therefore, crystal surfaces in directional solidi-
62.5X62.5 andG values between 0.4 and 0.65. In thesefication are definitely not candidates for the appearance of
systems, all defects disappeared within the maximum considurbulent interfacesit the instability thresholda theoretical

100 —
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G = 0.6, t = 250000.0 whole, both processes that we expect to be extremely slow.
Alternatively, they might survive forever, meaning that the
picture of line energies would be too crude to capture the
actual nonequilibrium dynamics of the system.

Finally, it should be mentioned that in a system with

G=0.35, we observed the number of defects to pass through
a minimum in the course of time. It increased strongly at

later times, which we take as an indication for the system

becoming turbulent. We will not go into details here.

100
80

60

40 V. CONCLUSIONS

To summarize, we have studied theoretically, by way of
numerical solution of a simplified local interface equation,
the temporal evolution of cell arrays in directional solidifi-
cation. We have performed a number of simulations for
times that exceed experimentally accessible periods, at least
in the low-velocity limit, and for a variety of system sizes
and parameters. The important theoretical parameter is a
renormalized temperature gradient, varied from the threshold
of the primary Mullins-Sekerka instability to the onset of
FIG. 21. Same system as in Fig.(a0 but att=250 000. chaotic solutions.

i Our main findings are the following. There aw& least
scenario suggested by Newell and Pomfz8]. three stages of grgwth. In the first, a%ocal selection process

As G is decreased, the number of defects remaining aftegietermines the basic length scale of the pattern. This scale is
a sufficient time lapse first increases but decreases again wiibt far from the fastest-growing mode of linear stability
the appearance of oscillatory patterns. This can be seen theory.

Fig. 19, where at late times the number of defects is smaller |n the second stage, lasting a few hundred diffusion times
in the system withG=0.4 than in that withG=0.5 (but  (hours to days in experimenighe cells become more simi-

larger than forG=0.6). Thus oscillations give the system lar to each other and the pattern orders in the form of dy-
additional flexibility to reduce the number of defects. namical “crystalline” grains. Th!s is the stage of the fastest

It is interesting to consider the pattern of defect lines indecay of defects. If the pattern is far enough from threshold,
the most ordered systems that we have investigated systerh-Will become oscillatory and topologicallynore ordered.

atically . Figure 20 shows two examples@t-06. Appar- o 1eIEEIOTEERRE e B o I Eeten A e
ently, the defects have a tendency to form ringlike structures y 9

suggesting a simplified description of the late-time dynamic@arts and migration of defect lines. Close enough to thresh-

to be possible in terms of defect lines, using concepts such féd the system may become completely ordered, which for

a line energy conveying a tendency to the defect lines t arge enough systems will probably occur through a fourth,

shorten via the annihilation of pairs of defects. This shortens V€N slower, stage of grain elimination. For oscillatory sys-

ing process is accompanied by local rotation of small do{ﬁg'us’hc\?vgrillggoﬁgtlog;gil Z:(i?; Ilse:salfsc‘)?)t?\dsegﬁs\l/\?r:lgﬁilﬁe
mains of cells but not of whole grains, which we find to keep 9 P

their orientation. In an infinite system, perfect alignment ma)/‘petrlcdlsorder remalns,_assoc[ateq with th.e. standard de_V|a-
be achieved, meaning that in the long run, one orientatioﬁ'on of the edge length distribution in the minimum spanning
will survive at the expense of all others. tre ) — )

In finite systems, at least, defects can survive indefinitely. Whether there is a region & values above the domain
With very small systeméontaining some 25 cellswe have of osqllatory patterns and below the or.dered ones, whe_re a
found pointlike defect patterns to persist in a stationary concertain percentage of defects must persist in the pattern, is an
figuration. In the intermediate-size system of Fig. 20, welnteresting open question. The answer may also depend on
have continued the temporal evolution uptte250 000 and the boundary conditions of the sys_tem, i.e., while |nf|n!t_ely
we find the ring of defects to be stable ancbtopagatevery e>.<tended or large systems with periodic boundary condlthns
slowly upward and to the left, which is shown in Fig. 21. It will order, systems confined to small unfavorable geometries
appears that a single asymmetric ring of defects has some 8jay be forced to accommodate a certain number as defects,
the characteristics of aolitary wavein two dimensions. Similar to observations in Berd-Marangoni convection
These patterns call for attempts at an experimental realiza>1l
tion.

Thus the existence of a fourth stage of the dynamics
seems likely, starting when all surviving grains have the
shortest boundaries compatible with their area. Then a de- It is a pleasure to acknowledge stimulating discussions
crease in the local misalignment of cells will no longer suf-with C. Misbah and I. Daumont on similarities and differ-
fice to reduce the length of defect lines. To proceed towardences between the dynamics of directional solidification and
order grains must either shrink or flip their orientation as athat of a stabilized Kuramoto-Sivashinsky equation.
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