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Cellular structures in three-dimensional directional solidification: Simulation and analysis
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The use of an asymptotically valid interface equation for directional solidification allows numerical studies
of the evolution of three-dimensional cellular structures in extended systems. We consider systems that are
large enough to render a statistical description of disordered structures meaningful and to enable a direct
comparison with experiment. Moreover, it is possible to assess the stability of the observed patterns on the
basis of long-time simulations. In addition to statistical methods already employed in the analysis of experi-
ments, new statistical tools are introduced to follow the dynamics of the system. In general, three growth
phases can be distinguished. During the first, short one, the pattern dynamically selects its preferred length
scale by a coarsening or a fine-graining process. In the second, much longer phase, the cells rearrange, evolving
towards a polycrystalline, essentially ordered structure. In the third phase, a process of gradual elimination of
defects takes place. For smaller temperature gradients, there is an evolution towards oscillating patterns.
Oscillations lead to a reduction of the percentage of defects, unless they act as a precursor to weak turbulence,
which happens at even lower values of the temperature gradient.@S1063-651X~98!00703-X#

PACS number~s!: 64.70.Dv, 81.30.Fb
ex
r

vi
a

in

re
n

on
re

g
re
r
t

t
s
ec
th
s.
e
m

a

el

the
ion

n of
b-

at
an
er
our

ore
to-
bili-

ular
can
o be

ion
. In
our
bes
ure
om-
ruc-
at-
me

a-
ion
I. INTRODUCTION

Directional solidification has become a paradigmatic
periment for the investigation of pattern formation at inte
faces between two phases that transform into each other
first-order phase transition. This includes ordinary solidific
tion @1,2#, but also various liquid-crystal transitions@3,4#.

Many experiments have focused on thin samples, try
to realize an essentially two-dimensional setup@5–9#, which
is more amenable to theoretical analysis than a th
dimensional system. Indeed, the theory of two-dimensio
solidification has been developed quite far@10–28# and suc-
cessfully explained a plethora of observations.

Experiments on samples extending in all three dimensi
posed certain difficulties regarding their dynamical interp
tation because direct observation was not possible@29,30#.
Transverse cuts had to be made and treated by etchin
gain access to the cellular structure. By using transpa
materials and carefully planned optical arrangements, it
cently has become feasible to continually monitor the grow
of massive samples and to follow the dynamical evolutionin
situ @31#.

Theoretical approaches have also concentrated on
two-dimensional case@32# for a variety of reasons. First, it i
more easily treated both analytically and numerically. S
ond, sophisticated Green’s-function methods of solving
model equations@33# become inefficient in three dimension
Third, it is a formidable task to track the interface betwe
the liquid and solid phases in three-dimensional syste
@34#. The last problem is avoided inphase-field models,and
there have been numerical simulations based on this
proach, dealing with free growth of single dendrites@35–37#
or fingerlike structures@38# and with directional solidifica-
tion of a few ~on the order of 10! cells @39#. Large-scale
simulations of samples containing several hundreds of c
however, are still beyond the scope of these methods.
571063-651X/98/57~3!/2849~13!/$15.00
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Therefore, we have chosen a different approach in
present paper. We start from a partial differential equat
for the two-dimensionalinterface between the liquid and
solid phases. This equation was derived as a descriptio
rapid solidification and is asymptotically valid near the a
solute stability limit@28,40,41#.

Since the experiments we wish to discuss are done
moderate pulling velocities, we do not expect more th
qualitative agreement with our simulations. On the oth
hand, we are confident about the generic character of
results on cellular growth. Comparisons with another, m
generic interface equation, the damped Kuramo
Sivashinsky equation, have shown that secondary insta
ties are the same for the two equations, in both one@42# and
two dimensions@43,44#. Moreover, it will emerge from this
paper that a reasonable description of experimental cell
structures is feasible on the basis of our equation. We
easily simulate some 2000 cells, which has been shown t
more than sufficient@45# for a statistical description of the
results.

Section II of the paper gives our basic interface equat
and some comments on the numerical implementation
Sec. III we discuss the statistical quantities considered in
simulations and how to measure them. Section IV descri
a series of numerical results for a variety of temperat
gradients and discusses the long-time dynamics. We c
pare the statistics of minimum spanning trees on these st
tures with similar quantities calculated for experimental p
terns. In Sec. V the results are discussed and so
conclusions are drawn.

II. MODEL

Our computations will be based on the following equ
tion, derived from a Sivashinsky-type singular expans
about the point of absolute stability@28#:
2849 © 1998 The American Physical Society
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Herein the gradient operator is two dimension
¹5(]x ,]y), and z(x,y,t) is the height of the liquid-solid
interface; the temperature gradient is oriented along thz
axis.

There are three nondimensional parameters in the e
tion: the segregation coefficientk, the ration5Ds /D of the
diffusion coefficients for impurities in the solid and the liq
uid, and the nondimensional temperature gradientḠ. Solute
trapping is neglected. Theone-sided modelis characterized
by n50, the symmetric modelby n51. Ḡ is related to
physical parameters via

Ḡ5
8D3L2mDc

g2Tm
2

G

V~Va2V!2
. ~1!

In this expression,L is the latent heat~per unit volume! of
the transition,m is the absolute value of the slope of th
liquidus line,Dc is the miscibility gap at the base temper
ture T0 (T05Tm2mc, with Tm the melting temperature o
the pure substance!, g is the surface energy, assumed isot
pic here,Va is the velocity corresponding to the absolu
stability limit, given byVa5mLDcD/gTmk, G is the tem-
perature gradient, andV is the pulling velocity.

Note that Eq.~1! becomes indefinite fork50 because
there is no absolute stability limit in this case. For simplici
we shall setk51 in the following, i.e.,Dc5 const. We do
not expect this choice to have a strong influence on the
sults.

Moreover, most of the detailed results presented h
were obtained within thesymmetricmodel, which is not a
realistic model for directional solidification~as opposed to
directional ordering in liquid crystals!, but is least problem-
atic in numerical simulations since it is not very suscepti
to the accidental evolution of deep grooves that can ea
trigger numerical instabilities. Experience from previo
simulations of one-dimensional interfaces@28# suggests tha
the generic patterns are independent of the ratio of diffus
constants.

Equation~1! was implemented on both square and he
agonal numerical grids using second-order accurate d
schemes of discretization and constant time steps in the
poral integration. More sophisticated implementations m
become necessary in going to extremely long times, but w
the present scheme we could simulate systems containin
the order of 2000 solidification cells for as long as 30 0
diffusion times@46#, which seems sufficient to compare wi
experiments. There are certain theoretical questions,
cussed in Sec. IV, whose answers might require even lon
simulations.

Boundary conditions were usually periodic, and a hexa
nal geometry~with underlying hexagonal grid! was also con-
sidered to make sure that the overall results were not
,
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artifact of our restricting hexagonal cell structures to a re
angular~albeit very large! periodicity unit. Results similar to
the ones that are reported here have been obtained with
flecting and helical boundary conditions.

III. STATISTICAL ANALYSIS

A. Cluster number function

Figure 1 shows a typical interface, initiated with rando
noise, after ten diffusion times. A cellular structure has n
yet fully developed, but a dominant length scale is clea
visible.

An approach to analyzing solidification interfaces, dev
oped by Billiaet al. @45#, is based on image processing of
digitized picture of the interface. Introducing a thresho
gray level and changing into black each pixel that is dar
and into white each one that is lighter, they obtain a bin
image, an example of which is given in Fig. 2. White are
correspond to solidification cells, black ones to the groo
in between. This binary image can then be analyzed via
construction of the centers of mass of the cells and the m
mum spanning tree of the centers. The cell shapes ma
approximated by a weighted Wigner-Seitz or rather Voro
construction@45#. While this approach is a valuable startin
point for what we shall present here, it is obviously restrict
to a situation where a clearly distinguishable cellular str
ture is present. This is not yet the case in Fig. 1.

A more complete characterization that also takes into
count some of the interface extension into the third dim
sion ~the z direction! and allows one to construct the min
mum spanning tree from the numeric representation of
interface without the need of an intermediate image proce
ing step is based on the following ideas. We introduce

FIG. 1. Simulated surface of solidification pattern,t510 diffu-

sion times after initialization with random interface.Ḡ50.6, k51,
andn51. The system size in diffusion lengths is 2563256. Gray-
scale code: Lighter pixels correspond to more elevated inter
points, darker ones to lower-lying points.
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57 2851CELLULAR STRUCTURES IN THREE-DIMENSIONAL . . .
number of equidistant height levels of the interface, wh
may be thought of as representing the grey levels in an
age. At each of these levels we cut the interface by a h
zontal planez5z05const. Each interface point~on the nu-
merical grid! that is above the cut~i.e., for whichz.z0) will
be counted asparticle within a cluster. In a digitized image,
each such point would correspond to a~white! pixel. For
each cut, the numberN(z0) of different clusters is deter
mined. We callN(z) the cluster number function and a
example, corresponding to the interface of Fig. 1, is given
Fig. 3. Obviously, this function itself is a means of chara
terizing the shape of the interface via the topology of c

FIG. 2. Binary picture of solidification cells from an experime
with succinonitrile 0.5 % wt. acetone (V52.1 mm/s!.
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through it. Thus its temporal evolution may yield inform
tion about the dynamics of a disordered system. Also, it m
be used to effect the construction of a minimum spann
tree, which in the case of cellular structures will essentia
coincide with the one obtained from image processing,
allows thedefinition of a minimum spanning tree for mor
general situations.

This is achieved as follows. For any disordered struct
the cluster number function will exhibit a well-defined max
mum. At small threshold levels there is just one cluster
cause the whole mountainous landscape above the thres
remains connected. At large thresholds only the tip of
highest mountain surpasses the threshold, therefore the
also just one cluster. In between, the function, assumin
varies in a continuous manner, must have at least one m
mum, and usually there is just a single one~see Fig. 3!. The
threshold corresponding to this maximum will lead to a
nary image containing the largest possible number of s
structures, so it is natural to identify the clusters at t
threshold with solidification cells. As it turns out, this a
proach works well at least for the construction of the mi
mum spanning tree and the determination of its statist
properties. In order to extract cell shapes, one would pres
ably wish ~this is suggested by a comparison of the bina
images obtained with this method and those produced
hand’’ in the analysis of experimental pictures! to take a
somewhat smaller value of the threshold. So one will lo
some cells by not resolving certain pairs of closely spa
cells, but get a better overall approximation for the shape
the remaining ones. However, we will not concern oursel
with cell shapes here.

Recently, an approach to the morphological character
tion of patterns has been suggested by Mecke that b
some similarities to the one chosen here@47#. In particular,
Mecke points out that autocorrelation functions and spa
Fourier transforms, while providing useful information abo
characteristic length scales, cannot distinguish well betw
FIG. 3. Cluster number function forḠ50.6 andt510.0.



pr

im

te
u
ge

e
x
h
c

n-
o

e
th
w
be

te
m
a
er
th

f a
in
lu
th
it
b

er
h
i

ers

ini-
r
pre-
by
ber
kes
er

lete
nter

the
dic
ers.
the
ed,
ol-

an
rage
ing
ge

nd

an-
all
ion.
ces
not

ease
an

ry

2852 57K. KASSNERet al.
irregular structures with the same length scales. He then
poses to use certain Minkowski functionals asmorphological
measures for patterns, quantities that are well known in
age analysis, mathematical morphology@48#, and integral ge-
ometry @49#. Their definition is based, as that of the clus
number function, on cutting the interface by a series of eq
distant levels or, alternatively, dividing its gray-scale ima
into a number, usually 256, of gray levels~supposedly cor-
responding to the interface levels! and setting the gray valu
of each pixel to 0 or 1, depending on whether or not it e
ceeds a threshold value. This produces 256 black-and-w
pictures out of a single gray-level one and yields, for ea
level (z0), the so-called level contours, which in the la
guage used here are just the contours of the clusters. Am
the measures considered in@47# is the Euler characteristicx,
a topological quantity. It is related to our cluster numb
function because it is essentially the difference between
numbers of white and black clusters. Its calculation, ho
ever, is simpler than that of the cluster number function
cause it can be donelocally, without explicit counting of the
clusters@47#. Nevertheless, since the calculation of the lat
takes a very small percentage of the total computation ti
we did not change conventions after learning about the
proach of @47#. Moreover, it seems to us that the clust
number function is conceptually somewhat simpler than
Euler characteristics.

B. Minimum spanning tree

Figure 4 exhibits an example for the binary image o
computed structure and Fig. 5 that of the correspond
minimum spanning tree, both obtained with a threshold va
10% smaller than that corresponding to the maximum of
cluster number function. This picture is to be compared w
Fig. 2, an image obtained from an experimental structure
a judicious choice of the threshold value while doing int
active image processing. While cellular shapes are somew
better represented in this picture than in one obtained w
the ‘‘schematic’’ choice of the thresholdat the maximum of
the cluster number function, the latter choice~not shown!

FIG. 4. Binary picture of cell structure forḠ50.6.
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turns out to be sufficient for a construction of the cell cent
and the minimum spanning tree.

It may be pointed out that we can now associate a m
mum spanning tree withanypattern, be it cellular or not. Fo
our present purposes, however, it is sufficient to use the
scription outlined above, viz., to obtain well-defined cells
choosing the threshold at the maximum of the cluster num
function. In the analysis of experiments, one usually ta
out the cells at the boundary of the digitized image in ord
not to bias the statistics, as peripheral cells are incomp
and their centers of mass do not correspond to the true ce
of the completed cell@45#. For the numerics with periodic
boundary conditions, it is more appropriate to construct
periodically continued tree. So we take into account perio
image points in calculating distances between cell cent
This is why there are branches of the tree that ‘‘cross
border’’ of the picture and may make it appear disconnect
although it is not. Recall that it is defined on a torus top
ogy, imposed by the periodic boundary conditions.

The simplest pieces of quantitative information that c
be extracted from the tree are the aforementioned ave
length of its edges and their standard deviation. Normaliz
both quantities by division by the square root of the avera
cell area and calling the normalized versionsm and s, re-
spectively, we obtain a point in thems diagram, originally
introduced by Dussertet al. @50#. The temporal evolution of
this point in the plane spanned bym ands has been used by
Billia et al. @45# to characterize experimental structures a
we will do the same with simulated structures.

It should be noted that the edges of the minimum sp
ning tree form a subset of the edges in a full graph of
nearest-neighbor pairs obtained via the Voronoi construct
Evidently, this subset exhibits a preference of short distan
over long ones. Thus an overall increase of the average is
to be interpreted, even at constant cell number, as an incr
in the average distance of the cells; it might as well me
that the distances become less widely distributed.

FIG. 5. Minimum spanning tree corresponding to the bina
picture of Fig. 4.
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57 2853CELLULAR STRUCTURES IN THREE-DIMENSIONAL . . .
C. Defects

For long simulation times, neither the minimum spanni
tree nor the cluster number function exhibits strong chan
anymore. A useful means of characterization in this regim
the number of defects in the pattern. Their definition is ba
on the Voronoi diagram of the cell centers. Each cell that
a number of neighbors different from six is considered
defect. Figure 6 gives an example of the Voronoi cells o
system at an intermediate time (t5400); defect cells are
shaded, hexagonal cells remain white.

Even in this example of very moderate time we see
two basic tendencies: defects tend to assemble in linesdy-
namic grain boundaries, and ~except at very early times!
they come almost exclusively in pairs of pentagons and h
tagons, very similar to the situation encountered in exp
ments on Be´nard-Marangoni convection@51#. We will dis-
cuss the temporal evolution of defect numbers in the n
section. Similar defect counting ideas have been emplo
before in the discussion of the topology of two-dimensio
soap froths@52#.

IV. SIMULATION RESULTS

From linear stability analysis it is known that a plan
interface becomes unstable for values ofḠ below @28#

Ḡc5
2k2

11k1kn2
, ~2!

i.e., for the symmetric model withk51, the critical tempera-
ture gradient is2

3. This suggests to investigate systems b
in the vicinity and far from this value. In particular, we re
port here on the long-time dynamics of systems with val
of Ḡ between 0.35 and the critical value. Time is alwa
measured in units of the diffusion time.

FIG. 6. Voronoi diagram of a solidification pattern forḠ50.6 at
t5400 ~continuing the evolution of Fig. 1!. Pentagons are shade
dark and heptagons light gray.
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A. Early dynamics

In most cases, we took a random interface as initial c
dition. Figure 1 shows a very early stage of the system w
Ḡ50.6, which is 10% from the primary instability thresho
towards the unstable side. The image definitely conveys
impression of a perturbed water surface.

This impression gets enhanced by a look at Fig. 7, a sim
lation starting from a circular Gauss-shaped nucle
(Ḡ50.35 here!. Apart from the center of the picture, wher
four almost square-shaped cells can be distinguished,
looks very much like the spreading of a water wave afte
stone has been thrown in a pond. The picture was take
t540.0 and the wave has almost reached the system bo
aries, i.e., it has spread about 80 diffusion lengths in e
direction, which yields an estimate of 2 for the wave spe
The pattern is circular, due to the fact that we used isotro
surface tension in the model equations.

When the wave reaches the system boundary, it start
interfere with its periodic images and a cellular structure
gins to develop, which at first maintains the fourfold symm
try of the numerical box~and grid!. Eventually, this symme-
try gets broken by numerical noise, and after about 5
diffusion times, the statistical properties of structures fro
this run and one with random initial conditions were ess
tially the same, although remnants of the overall symme
in the ‘‘nucleated’’ system were still perceptible.

Another type of initial condition used was a pattern wi
an imposed wavelength that was larger than the expe
final value, in order to verify that the selected wavelength
also reached by a fine-graining procedure. The starting
tern was obtained from random initial conditions by waitin
until the system had found its preferred wavelength and t
multiplying the system size by some appropriate factor wi
out changing any other parameter, to obtain a coarser st
ture. Again, the final system characteristics did not dep
on the initial condition.

We will from now on focus on the ‘‘generic’’ random
initial conditions. Let us note thatexperimentalpatterns at

FIG. 7. Pattern obtained from a nucleus without initial nois

Ḡ50.35, t540, and the system size is 179.23179.2.
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FIG. 8. Temporal evolution of the cluster number function forḠ50.6 up tot530 000.
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the beginning of solidification bear a strong similarity to F
1.

With random initial conditions, the early stage of grow
is best characterized using the cluster number function
Fig. 8 we visualize its evolution by plotting it at sever
points in time chosen to render the different growth pha
visible. Intermediate curves have been omitted in order
to overcrowd the picture.

Conspicuously, the initial change of the function~up to
t540) mostly consists in a reduction of its height, where
its shape remains essentially unchanged. This means tha
relative distribution of cell heights does not change~note that
cell heights are always mapped to an interval from 1 to 2
so absolute heights may, and do, change during this gro
phase!. However, the maximum of the cluster number fun
tion and hence the number of cells decrease. Thus the a
age size of cells increases and so does the dominant le
scale of the pattern. A coarsening process is operative
sulting in the selection of a preferred length scale. This
lection process islocal because it is essentially finished b
fore information can travel by diffusion across the ent
system. Of course, its duration depends on the amplitud
the initial noise to some extent, but since growth is expon
tial initially, this dependence is slight for any reasonab
level of noise~e.g., a few percent of the final cell size!.

If we start from a too coarse structure instead of a too fi
one, the time scale for length selection via cell splitting
somewhat larger. On choosing an extremely large ini
wavelength~say, half the system size!, we have to wait much
longer to see the characteristic wavelength appear. In
case, the interface is smooth on small scales and the divi
into cells has to be triggered by numerical noise, which c
take on the order of 1000 diffusion times.

B. Intermediate stage

As demonstrated in Fig. 8, the second stage of growt
characterized by a drastically different behavior of the clus
.

In
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number function. Itsshapenow changes strongly whereas i
height remains almost constant. A plateau develops aro
the maximum and the function seems to approach a rec
gular shape.

To clarify what this means, we give a pattern in Fig. 9 th
is completely ordered by construction„the profile is given

by the analytic expressionz(x,y)5sin(qy)cos@ 1
2(A3qx1qy

2p/2)]cos@ 1
2(A3qx2qy1p/2)#… together with its cluster

number function. A rectangular cluster number function c
responds to a structure consisting of cells where all botto
and all tops of the cells are at the same heights, respectiv
This situation strongly suggests a perfect underlying latti

Of course, given such a shape of the cluster number fu
tion, we cannot rigorously conclude a perfect lattice. T
whole point of its introduction is areductionof the informa-
tion encoded in a complex interface structure to an ea
digestible form. Therefore, one could artificially constru
different interfaces with the same cluster number functi
Hence it is important to look at more than a single meas
for the topological properties of the interface. Incidental
the cluster number function is one of the rare examp
where the intuitive notion of increasing order being co
nected with a peak getting sharper fails: The opposite h
pens, as the peak is getting ‘‘smeared out’’ with increas
order.

As the plateau of the cluster number function widen
more and more cells acquire similar heights and it is natu
to presume that this is due to the pattern becoming m
ordered. This assumption may be confirmed by looking
the surface itself, given fort5100 in Fig. 10 and fort53300
in Fig. 11. It is obvious that a well-developed cellular stru
ture is already present in the first of these pictures and
the basic pattern corresponds to hexagonal order.

More precise statements on the degree of order atta
are possible via construction of the minimum spanning tr
a metrical rather thantopologicalmeasure, and by studyin
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FIG. 9. Perfectly ordered structure~top! and its cluster number function~bottom!.
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. 14.
data
lat-
tem
ent
ri-
e-
the evolution of the number of defects of the pattern in
course of time. Comparing the minimum spanning tree c
responding to Fig. 10 with that corresponding to Fig. 11,
see that the tree clearly gives an impression of the polyc
talline structure of the pattern and, in particular, of the hig
degree of order present in the second case~see Figs. 5 and
12!. To make this statement more quantitative, we give F
13 showing thems diagram for the temporal evolution o
three systems for large time intervals.

This evolution was calculated from a sequence of int
faces obtained in the simulation. The dashed lines are
explained by looking at Fig. 14, displaying representat
points for a variety of experimental and theoretical stru
tures. Perfect lattices evidently must have standard devia
s50 and as a consequence of the normalization via the
areas a square lattice hasm51, while for a hexagonal lattice
m5A2/A3'1.075. The triangles correspond to some qua
e
r-
e
s-
r

.

-
st

e
-
on
ll

i-

periodic tilings, the squares to experimental points.
If the vertex positions of the hexagonal lattice are p

turbed with Gaussian noise of increasing strength, the re
sentative point of this lattice moves up along the curve
Fig. 14 connecting the hexagonal structure with a comple
random distribution. The upper dashed line in Fig. 13 cor
sponds to this curve and its importance derives from the
that experimental points seem to cluster near this line, me
ing that the corresponding pattern may be considered a
turbed hexagonal structure. The lower dashed line of Fig
represents a perturbed square pattern, also shown in Fig
These curves were recalculated by averaging, for each
point, over 500 realizations of the perturbed hexagonal
tice and over 100 of the perturbed square lattice, with sys
sizes of roughly 2000 vertices, in order to ensure suffici
precision for the position of these lines in the case of pe
odic boundary conditions. We noticed non-negligible finit
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2856 57K. KASSNERet al.
size effects, so we made the randomly perturbed latt
equal in size to the simulated solidification structures.

We see from Fig. 13 that the simulated pattern moves
the course of time, from a position off the upper dashed l
towards it. Whilem keeps increasing, albeit more and mo
slowly, the standard deviation finally settles down to a va
that does not seem to decrease anymore. This is most li
due to the remaining dynamic grain boundaries the sys
has difficulties getting rid of.

A comparison with the dynamical evolution ofexperi-
mental patternsin the ms diagram reveals similarities an
differences~see Fig. 15!. As in our simulation, the represen
tative point of a system moves towards the line of perturb
hexagonal order. However, it approaches that line fr
above rather than from below, which is an indication th

FIG. 10. Interface of the crystal from Fig. 1~i.e., Ḡ50.6) at
t5100.0.

FIG. 11. Interface of the crystal from Fig. 1~i.e., Ḡ50.6) at
t53300.0.
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random initial conditions miss some aspects of the exp
mental initial state. It appears that they lead to a too narr
cell size distribution. Experimental distributions seem
contain a larger percentage of very big and very small c
initially ~this is vindicated by Fig. 2!.

Moreover, our structures are generally more ordered t
the experimental ones:m is larger than in the experimenta
patterns. This is due to our using the symmetric mode
which the birth and death of cells and cell rearrangement
easier than in the experiment, where diffusion in the solid
essentially absent. Nevertheless, there remains an effe
trapping of dynamic grain boundaries even in the symme
model. We have verified that it is not simply due to the fa
that we use a square lattice on which no undistorted hexa
nal structures are possible for we observe the same impe
structures and long-time trapping of grain boundaries
simulations on a hexagonal grid in a hexagonal geometr

FIG. 12. Minimum spanning tree fort53300.0 (Ḡ50.6).

FIG. 13. Dynamics in thems plane of the representative poin

of the system shown in Figs. 1, 10, and 11 (Ḡ50.6) and two other

systems (Ḡ50.5 andḠ50.4). Time varies betweent52.5 and

30 000 for Ḡ50.6, t510 and 10 000 forḠ50.5, andt51 and

6000 forḠ50.4.
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Comparable results are obtained when we decrease
temperature gradient toḠ50.5, the main difference being
higher degree of disorder, resulting in a larger overall nu
ber of defects~but see Sec. IV C!. On further decreasing th
temperature gradient toḠ50.4, we observe similar behavio
initially. However, the system does not indefinitely evol
towards a state of increasing apparent order. Instead,
shape of the cluster number function starts to beco
rounded and thinner again after an initial ordering process
becomes clear from Fig. 16. This is a signature of the
pearance, in each instantaneous picture of the interface
several types of cells, larger ones and smaller ones. Figur
exemplifies this, and the reader will easily be convinced t
the differentiation into cells with different heights must le
to such a change in the shape of the cluster number func
An investigation of thedynamicsof the pattern of Fig. 17
shows that it isoscillatory. This is directly seen in an anima
tion of a sequence of interfaces, which unfortunately can
be given in this medium. However, closer inspection of

FIG. 14. ms plot of some ideal lattices and some experimen
systems.
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figure reveals that in most grains of the pattern@the grain
structure is depicted in Fig. 17~b!# a cell has a size differen
from that of its six neighbors and the sizes of those are
ternating. These three different sizes correspond to diffe
phases of the oscillation of each of the cells.

In thems plane, the oscillations lead to the representat
point of the system approaching a fixed point near the line
perturbed hexagonal structures and making small excurs
about it~Fig. 13!. The pattern oscillates but still has a stron
random component; cells that are far from each other os
late out of phase.

The large scale of our simulations prevents our mak
very precise statements about the position of the bifurca
from a stationary to an oscillatory state. To be able to run
largest systems for long times, we had to choose a relativ
big lattice constant,h50.5. On reduction of this toh50.4,
oscillatory patterns seem to appear only at values be
Ḡ50.4 but above 0.35. For one-dimensional interfaces,

FIG. 15. Temporal evolution of the representative point of t
system succinonitrile 0.5 % wt. acetone (V52.1 mm/s! in the ms
plot. The numbers near the triangles indicate the temporal sequ
of the experimental structures.

l

FIG. 16. Dynamics of the cluster number function forḠ50.4.
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know the bifurcation to arise atḠ'0.32 @28#; for two-

dimensional ones we expect it at a larger value ofḠ since it
is due to an interaction between modes of wave numbersq
andA3q rather than between modes of wave numbersq and
2q as for one-dimensional interfaces@43#.

The basic behavior of these oscillatory structures has be
studied in smaller systems and starting from regular initia

FIG. 17. ~a! Oscillatory interface in the caseḠ50.4
(t511 000).~b! Corresponding defect structure.
en
l

states in Ref.@43#. It turns out that the generic oscillator
mode consists in three neighboring cells oscillating at ph
shifts of 62p/3 with respect to each other. This leads to
spatial period tripling of the basic pattern. Our discove
here is that this oscillatory structure appearsspontaneously
in extendedsystems and thus must be stable. In small s
tems, we have been able to produce oscillatory patterns
a phase shift ofp between one half of the cells and the othe
These patterns also have tripled periodicity with respec
the basic state. However, they did not appear in
extended-system simulations, so they are probably not sta
Moreover, we have so far seen no signature of regulardrift-
ing patterns@43# in an extended system, suggesting that th
patterns are, as in two-dimensional systems@28#, unstable
with respect to phase diffusion. On the other hand, drift
patterns with frozen-in defects are possible~see below!.

C. Late-stage growth

The simplest measure of disorder associable with def
is the fraction of the total pattern consisting of defects,
gardless of their nature, i.e., of whether they correspond
triangles, quadrangles, pentagons, heptagons, or poly
with more edges. Therefore, we simply count the cells a
determine their nonhexagonal fraction. Invariably, at la
stages of growth (t.1000), when the order of the patter
increased, these defects consisted almost exclusively of e
numbers of pentagons and heptagons, so the percentage
are given below correspond to twice the percentage of p
tagons and heptagons, respectively. Also, at these times
variation of the total number of cells is well below the pe
cent range, so defect fractions are a good measure for a
lute defect numbers too.

An interesting quantity is the percentagepD of defects as
a function ofḠ for a fixed time. We expected this to be
decreasing function ofḠ. A simulation for twenty-sixḠ
values between 0.4 and 0.65 in large systems~size
2563256) revealed, however, as is exhibited in Fig. 18, t

FIG. 18. Percentage of defectspD as a function ofḠ at t5100

~squares! andt5500 ~triangles!. For Ḡ50.67, the pattern starts ou
developing cells, visible att5100, but then tends to the plana
interface, so there are no data fort5500. The system size is
2563256.
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57 2859CELLULAR STRUCTURES IN THREE-DIMENSIONAL . . .
at time t5100 the number of defectsincreasesasḠ5Ḡc is
approached. This tendency reverses itself towards the
pected trend whent is increased to 500. The first explanatio
that comes to mind, namely, the slowing down of the ins
bility near threshold, can hardly be correct. A look atearlier
times thant5100, for which we have data from the runs f
Ḡ50.4, 0.5, and 0.6, clearly shows that there the order is
expected, i.e., highest percentage of defects atḠ50.4, low-
est atḠ50.6. ~The point atḠ50.66 in the figure probably
doesexhibit slowing down since it moves towards smal
defect numbers much more slowly than the points with low
Ḡ.!

Currently, we do not have a good explanation for def
numbers increasing withḠ. Since this happens in a tempor
range that is interesting in experiments, it may, howev
render a systematic classification of patterns according
their degree of defect disorder quite problematic.

Displaying the number of defects as a function of time
our longer simulations of large systems, we notice that th
are again three distinct phases~Fig. 19!: an initial stage, cor-
responding to the early dynamics discussed in Sec. IV
during which the defect number drops steadily; an interm
diate phase, in which it drops much more strongly as
cells equalize; and a late stage, when defect dynamics
comes much slower. During this last time range the num
of defects decreases roughly proportional to log10t. However,
the slope in our plot ofpD versus log10t seems to decreas
further, so the time dependence of the approach to a pe
structure needs further discussion.

Because these systems are too large to follow the dyn
ics until all defects may have vanished, we have simula
smaller systems, in order to check whether they will beco
completely ordered eventually. Since in our largest syste
(2563256), grain sizes typically approach a quarter of t
total system size, we considered systems with a size
62.5362.5 andḠ values between 0.4 and 0.65. In the
systems, all defects disappeared within the maximum con

FIG. 19. Percentage of defects as a function of time forḠ50.6

~squares!, Ḡ50.5 ~upward triangles!, and Ḡ50.4 ~downward tri-
angles!, at a system size of 2563256. Logarithms are with respec
to the base 10.
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ered time span,t510 000, wheneverḠ was larger than or
equal to 0.6. Increasing the system size to 102.43102.4 and
1283128, respectively, we find that the system withḠ50.6
will end up perfectly ordered byt510 000 in some cases an
keep on the order of 3% defects in others, depending
initial conditions.

Thus our simulations seem to suggest that close enoug
threshold any system will tend to perfect hexagonal orde
the long run. Therefore, crystal surfaces in directional sol
fication are definitely not candidates for the appearance
turbulent interfacesat the instability threshold, a theoretical

FIG. 20. Pattern of defect lines forḠ50.6 for ~a! system size
102.43102.4 andt510 000 and~b! system size 2563256 and
t530 000.
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2860 57K. KASSNERet al.
scenario suggested by Newell and Pomeau@53#.
As Ḡ is decreased, the number of defects remaining a

a sufficient time lapse first increases but decreases again
the appearance of oscillatory patterns. This can be see
Fig. 19, where at late times the number of defects is sma
in the system withḠ50.4 than in that withḠ50.5 ~but
larger than forḠ50.6). Thus oscillations give the syste
additional flexibility to reduce the number of defects.

It is interesting to consider the pattern of defect lines
the most ordered systems that we have investigated sys
atically . Figure 20 shows two examples atḠ50.6. Appar-
ently, the defects have a tendency to form ringlike structu
suggesting a simplified description of the late-time dynam
to be possible in terms of defect lines, using concepts suc
a line energy conveying a tendency to the defect lines
shorten via the annihilation of pairs of defects. This short
ing process is accompanied by local rotation of small
mains of cells but not of whole grains, which we find to ke
their orientation. In an infinite system, perfect alignment m
be achieved, meaning that in the long run, one orienta
will survive at the expense of all others.

In finite systems, at least, defects can survive indefinite
With very small systems~containing some 25 cells!, we have
found pointlike defect patterns to persist in a stationary c
figuration. In the intermediate-size system of Fig. 20,
have continued the temporal evolution up tot5250 000 and
we find the ring of defects to be stable and topropagatevery
slowly upward and to the left, which is shown in Fig. 21.
appears that a single asymmetric ring of defects has som
the characteristics of asolitary wave in two dimensions.
These patterns call for attempts at an experimental rea
tion.

Thus the existence of a fourth stage of the dynam
seems likely, starting when all surviving grains have t
shortest boundaries compatible with their area. Then a
crease in the local misalignment of cells will no longer s
fice to reduce the length of defect lines. To proceed towa
order grains must either shrink or flip their orientation as

FIG. 21. Same system as in Fig. 20~a!, but att5250 000.
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whole, both processes that we expect to be extremely s
Alternatively, they might survive forever, meaning that t
picture of line energies would be too crude to capture
actual nonequilibrium dynamics of the system.

Finally, it should be mentioned that in a system wi
Ḡ50.35, we observed the number of defects to pass thro
a minimum in the course of time. It increased strongly
later times, which we take as an indication for the syst
becoming turbulent. We will not go into details here.

V. CONCLUSIONS

To summarize, we have studied theoretically, by way
numerical solution of a simplified local interface equatio
the temporal evolution of cell arrays in directional solidi
cation. We have performed a number of simulations
times that exceed experimentally accessible periods, at l
in the low-velocity limit, and for a variety of system size
and parameters. The important theoretical parameter
renormalized temperature gradient, varied from the thresh
of the primary Mullins-Sekerka instability to the onset
chaotic solutions.

Our main findings are the following. There are~at least!
three stages of growth. In the first, a local selection proc
determines the basic length scale of the pattern. This sca
not far from the fastest-growing mode of linear stabili
theory.

In the second stage, lasting a few hundred diffusion tim
~hours to days in experiments!, the cells become more simi
lar to each other and the pattern orders in the form of
namical ‘‘crystalline’’ grains. This is the stage of the faste
decay of defects. If the pattern is far enough from thresho
it will become oscillatory and topologicallymoreordered.

The final stage~accessible to our numerics! is a slow pro-
cess of defect elimination by local reorientation of gra
parts and migration of defect lines. Close enough to thre
old, the system may become completely ordered, which
large enough systems will probably occur through a four
even slower, stage of grain elimination. For oscillatory s
tems, completetopological order is also a possibility~al-
though we have not seen examples for this!, even when the
metric disorder remains, associated with the standard de
tion of the edge length distribution in the minimum spanni
tree.

Whether there is a region ofḠ values above the domai
of oscillatory patterns and below the ordered ones, whe
certain percentage of defects must persist in the pattern, i
interesting open question. The answer may also depend
the boundary conditions of the system, i.e., while infinite
extended or large systems with periodic boundary conditi
will order, systems confined to small unfavorable geometr
may be forced to accommodate a certain number as def
similar to observations in Be´nard-Marangoni convection
@51#.
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