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Observing and modeling nonlinear dynamics in an internal combustion engine
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We propose a low-dimensional, physically motivated, nonlinear map as a model for cyclic combustion
variation in spark-ignited internal combustion engines. A key feature is the interaction between stochastic,
small-scale fluctuations in engine parameters and nonlinear deterministic coupling between successive engine
cycles. Residual cylinder gas from each cycle alters the in-cylinder fuel-air ratio and thus the combustion
efficiency in succeeding cycles. The model’s simplicity allows rapid simulation of thousands of engine cycles,
permitting statistical studies of cyclic-variation patterns and providing physical insight into this technologically
important phenomenon. Using symbol statistics to characterize the noisy dynamics, we find good quantitative
matches between our model and experimental time-series measurei8&683-651X98)08903-X

PACS numbd(s): 05.45+b

I. INTRODUCTION causes of combustion irregularities.
Economic and regulatory pressures are pushing engine
Under constant nominal operating conditions, sparksnanufacturers to operate with lean fueling and exhaust-gas
ignited internal combustion engines can exhibit substantiatecirculation(EGR) to increase fuel economy and minimize
cycle-to-cycle variation in combustion energy release. ThisNO, emissions. CV increases with lean fueling and EGR and
phenomenon has been observed and studied since the 1%tbtually limits the potential benefits which can be derived
century(e.g., Clerk[1]), and research has continued until the from these operating modes. Thus understanding the ultimate
present[2—10]. Extensive reviews of previous works are causes of CV can have important economic and environmen-
given in[11,17. Previous researchers have characterized tal consequences. Our goal is to provide engine designers
clic variability (CV) in terms ranging from stochastic to lin- with insight that could lead to design improvements and ac-

ear determinism to deterministic chaos. To date there hagve control methods for improving engine performance.
been no experimental confirmation of deterministic chaos

underlying CV, but there has been experimental support pre-
sented for both stochastic and linear deterministic features.
This ambiguity has created a continuing debate in the engi-
neering community about the true nature of CA8]. Most gasoline-fueled automobiles use engines operating
We propose a simple, discrete engine model that explainwith the four-stroke, spark-ignitiorfOtto) cycle. Initially,
how both stochastic and deterministic features can be oluel and air are inducted through the intake valve into the
served. Our model is unique in that it combines stochasticylinder, and the resulting mixture is compressed. At a point
and nonlinear deterministic elements to provide a globatypically just before maximal compression, the discharge of
combustion description consistent with the underlying physa high-voltage spark initiates combustion. Combustion and
ics. Our approach ignores complex spatial details and insteaakpansion of the hot gases proceed following ignition, and
focuses on the cylinder-average mass balance and energyork is transferred through the piston, connecting rod and
release. The result is a simple nonlinear map that producesankshaft to the load. As the piston moves upward again
cycle-resolved combustion time sequences statistically simifollowing the power stroke, exhaust gases are vented through
lar to a real engine. Because our model is physically realisticche exhaust valve. Following exhaust, a fresh fuel and air
we expect that it can be used to predict CV trends with as-fedharge is inducted into the cylinder to begin the next cycle.
fuel-air ratio and to provide fundamental insight into the In real engines, not all of the gases in the cylinder are
expelled during the exhaust process. Titasidual fraction
which includes combustion products and typically some un-
*Present address: Engineering Technology Division, Oak Ridg&eacted fuel and air, is a function of engine design. Residual
National Laboratory, P.O. Box 2009, Oak Ridge TN 37831-8088.fraction is affected by several design parameters, one of the
Electronic address: dawcs@ornl.gov most important beingalve overlapthe brief period that the

Il. FOUR-STROKE ENGINE CYCLE
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Stroke vaporization, and fuel deposits on the cylinder wall. By the
Compression  Power Exhaust Intake central-limit theorem, we expect these noisy parametric in-
puts to be Gaussian distributed because they arise from the
combined contribution of many processes. Although the
fluctuations are input randomly, their ultimate effect is fil-
tered through the global nonlinear determinism.

Our model is discrete in time, representing each full en-
gine cycle(including intake and exhaysas a single event.
The dynamical variables which define the two-dimensional
state space are the masses of fuel and air present in the cyl-
inder at the time of sparkn[i] anda[i], respectively.

Pressure

540 0 180 360 540
Crank angle [deg]
A. Intake phase

FIG. 1. Variability in cylinder pressure from cycle to cycle. . . .
Pressure-trace segments from ten consecutive engine cycles are The total mass of gas in the cylinder at the time of spark

overlaid for visibility. Is"equal to the residual mass from the previous cycle plus

new intake,
intake valve is open before the exhaust valve closes. Valve mM[i]=Myed i 1+ Mneli ], (1
overlap is generally helpful at higher engine speeds in pro-
ducing power but at lower, near-idle speeds tends to degrade alil=aedi]1+aneli] )
re ne 1

combustion (i.e., increases CN The detailed physical
mechanisms governing residual fraction are quite compli
cated, involving turbulent mixing in the cylinder and intake
and exhaust ports. For our model, it is the net effect of thes
flows that is important, as discussed in Sec. IIl.

The crankshaft transfers power from the piston to th
driveshaft, which transfers power to the lo@dg., wheels, in
automotive applicationslt is typical to describe piston lo-
cation in terms oftrank angle degree€CAD), the angle of
the crankshaft relative ttop dead centerwhich is at “the

wherem,Ji] anda,Ji] are the masses of unreacted fuel
and air remaining from the previous cycle, and where
ﬁwnem[i] anda,,[i] are the masses of fuel and air introduced
during the intake stroke.

€ The new fuel and air masses fed to the cylinder in each
cycle are controlled by two constraints. First, the newly fed
fuel and air are externally maintained in a fixed ratibe
equivalence ratip ¢,. The high-dimensional dynamics as-
5 of | K d wh he pi N h sociated with fuel vaporization, fuel-injector variations, and
top™ of its stroke and where the piston extension into e ;. ¢ ,q| mixing are accounted for by stochastically perturbing

cylinder is maximal. . . . .
. this ratio about its nominalmean value,
The course of each combustion event can be followed by & rj

monitoring the internal cylinder pressure versus crank angle, Moo fi]
as depicted in Fig. 1. As energy is released during combus- neve = o[ 1+ T 4yN(0,1)], 3
tion, cylinder pressure exceeds that which occurs without new 1]

combustion, thereby producing useful work. CV causes non- ] ) . .
repeating pressure traces during successive engine cyclééhereo, is a scaling factor andli(0,1) is a random deviate
The region in Fig. 1 in which the pressure traces diverge i§lrawn each cycle from a zero-mean, unit-variance Gaussian
the combustion region. In some cycles, combustion is incomdistribution. . _ _
plete, leaving residual unburned fuel. In other cycles, excess Second, we assume that immediately before combustion,
energy is produced from combustion of both residual andhe total number of moles of fuel and air combined in the
fresh fuel. Both extremes of combustion are undesirable becylinder is a constant. In nondimensional units,
cause they produce alternating pulses of fuel and nitrogen
oxides in the exhaust and a feeling of “roughness” to the mli]+WRdi] @
driver. 1+WR 7
whereW=w; /w, is the ratio of the molecular weights of the
principal fuel and air fractions, ang is the air-fuel mass
The primary deterministic element we focus on is theratio at stoichiometric burning, that is, the condition at which
presence of retained fuel and oxygen from one engine cyclevery fuel molecule is fully oxidized and no excess oxygen
to the next. Retained fuel and oxygen influence succeedingemains.
cycles because of a strong nonlinear dependence of combus- This latter constraintEq. (4)] can be reasonably justified
tion rate on the in-cylinder gas composition at the time ofassuming ideal-gas behavior and constant input pressure,
spark. We assume that other dynamical effects can be reprthrottling conditions, temperature, and cylinder volume. In
sented as stochastic fluctuations in one or more key paraneur simulations, we use/;=114 g/mol andw,=29 g/mol,
eters, such as injected fuel-air ratio, residual-gas fractionand R=14.6, appropriate for common hydrocarbon fuels in
and the lower ignition limit(the minimal fuel-air ratio to air. Equations(3) and (4) implicitly define the amount of
achieve combustign By introducing these random paramet- new fuel and air injected into the cylinder each cycle as a
ric fluctuations, we intend to account for complex, high-function of the amount of residual gas from the previous
dimensional processes such as turbulent mixing, fuel-dropletycle.

Il. MODEL DEVELOPMENT



57 OBSERVING AND MODELING NONLINEAR DYNAMICS . .. 2813

B. Combustion efficiency mli+1]=A(m[i],ali],¢o,04,Fo,0¢,.), (9
Combustion efficiency in any given cycle is defined as the ) . .
fraction of the fuel present that burns. In the current version ali+1]=B(m[il,a[il,¢0,04,F,0¢,...) (10

of our model, we assume net combustion efficieftys a
function only of the in-cylinder equivalence rati@p[i]
=m[i]/a[i], at the time of spark:

for mapping functionsA and B. The key features are the

nonlinearity produced by the sharp change in combustion

efficiency with ® and the amplification of the random dy-

C[i]=C(®[i])=Cpmal 1+ 100 (Pl ém)/(y= )] ~1, namical perturbations i, and F, by the nonlinear map-
(5)  ping.

The constraint imposed by E¢4) reduces the effective

As represented by Eg5), the relationship between com- degrees of freedom to 1, so that the mapping can actually be
bustion efficiency and equivalence ratio has a sigmoidalyritten in the form

shape, converging t6,., (near 2 as® approaches stoichi-
ometry(i.e., ®=1) and converging to 0 a becomes very Qli+1]=f(Q[il.m[i],ali],¢y,04,F5,0F,...).
small. We parametrize the position of the knee dyand 1y
¢, the conditions where the efficiency is approximately ) i
10% and 90% OfC .y, defining ¢m=(du+ ¢)/2. In this We keep the two-equation f_qn[rEqs.(9) a_nd(lO)] to sim-
work, we only consider stoichiometric to lean combustionPlify computation and to facilitate future improvements.
(P=<1).

The exact functional form of the combustion efficiency is IV. MODEL PREDICTIONS
somewhat arbitrary, but its general shape reflects the experi-

mental observation and the physics of combustion. Specifiéhfr']fuég"?t'on;r'lz%aemrigg;org?:;tggrzzagr:ﬁ?ﬁ ilralanied; n
cally, it is known that asb drops below a critical value ges inb, P 9. 2

called thelean limit, the burning rate and combustion effi- The parameter changes illustrated were selected to be within

: : the expected ranges described in Sec. lll. Each plot is pro-
ciency decrease exponentialli4,15. Also, C,,,x Cannot ex- : ; . X
ceed 1 by definition. For hydrocarbon fuels, the criticalduced by iterating the mappinggs.(9) and(10)] for a fixed

equivalence ratio is typically 0.5—-0[@4]. The steepness of ¢, and the indicated parameter values beginning with arbi-

this curve is a consequence of the sensitivity of flame-fronfr.ary iniial values form anda and discarding start-up tran-

- ; - nts.
ropagation speed to small changes in gas composition ne . . . .
Fheﬁegn limit P g 9 P Although the bifurcation details change with parameter

values, certain general trends are apparent.

(i) Near stoichiometric conditions, the amount of fuel
burned in each cycle stabilizes to a fixed point.

The heat released in each combustion event is propor- (i) For a decrease oth, below a critical value, the
tional to Q[i]=C[i]m[i]. The physical mechanism for amount of fuel burned undergoes a period-2 bifurcation.

C. Combustion and exhaust phase

cycle-to-cycle coupling is that a fractida of the unreacted (iii) For still lower ¢,, combustion oscillations become
fuel and air remains in the cylinder for the next cycle, thusmore complex, leading to multiperiodic or chaotic patterns.
affecting the next cycle’s combustion: (iv) For very low ¢,, combustion effectively ceases.
) . ] (v) When noise is added to eithér, or F, or both, the
Meed i +1]=Fm[i](1-C[i]), (6)  detailed bifurcation structure becomes fuzzy but still reflects
, . . , the underlying sequence of fixed point, period-2 bifurcations
aedi+1]=F(ali]-RCi]m[i]). (7) and/or chaos.

(vi) Noise also causes the initial bifurcation to occur at a
higher ¢, (i.e., higher than when no noise is adgexhd
maintains combustion in the extreme lean limit because of

F=F,[1+0eN(0, D], (8) occasional spikes of additional fue_l. _

Briefly stated, our model predicts that combustion be-
whereor is a scaling factor andl(0,1) is a random deviate comes unstable near the lean limit due to the onset of period-
drawn each cycle from a zero-mean, unit-variance Gaussia@oubling bifurcations. This instability is enhanced by ran-
distribution. Experimental measurements suggestiatan ~ dom perturbations in parameters such as injected equivalence

vary from 0 to 0.3 depending on engine design and operatinfgtio and residual fraction. The prediction of a period-
conditions[15]. doubling instability is important because it provides a unique

signature that can be experimentally verified, and because it
demonstrates the relevance of nonlinear dynamics to real-

} o ] ~world engine behavior.
We have nondimensionalized all air and fuel masses in

units of what the fuel and air mass would each be at perfectly
combusting stoichiometric conditions with no residué®
=Cra=1, Mes—a,e=0). To provide a set of detailed observations which could be
The overall model is thus characterized as a two-compared with our model, we made a series of CV measure-
dimensional dynamic map, taking the state variabieenda  ments at fueling conditions ranging from near stoichiometric
one cycle forward in time: to very lean using a highly instrumented and well-

We model fluctuations ifr, by perturbing it each cycle with
a random number,

D. Summary of nondimensionalized model

V. EXPERIMENT
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FIG. 3. Segments of measured engine heat-release time se-
guences at nominal operating conditions §igy=0.91 (i), 0.59(ii),
and 0.53(iii).

problematic. Feedback engine controllers were engaged to
achieve an operating condition; once the condition was
achieved, the feedback controllers were shut off, and the en-
gine was run in open-loop mode, except for the dynamom-
eter speed control. This strategy assured that combustion was
minimally influenced by feedback controllers while the en-
gine ran at a constant speed.

We recorded combustion pressure once per CAD from a
single cylinder and nominal operating conditions at a 50-Hz
rate for over 2800 contiguous cycles. Combustion pressure
measurements were made with a piezoelectric pressure trans-
ducer mounted in the cylinder head. To provide a dynamic
. . s . . . . measurement that could be compared with the model, we
calculated the combustion heat release for each cycle by in-
tegrating the cylinder pressure data using a method equiva-
lent to the Rassweiler-Withrow meth¢dl5]. As a result, for
each engine experiment we produced time sequences of over
2800 heat-release values.

Figure 3 shows short segments of heat-release time se-
guences from the engine at three equivalence ratios. At the
nearly stoichiometric conditiofiFig. 3(a)], combustion is
variable, but the range of variations is small. For lean con-

, ditions [Figs. 3b) and 3c)], the range of combustion heat
0 ; . : s : | release increases. As seen in the figure, the mean value of the
056 058 06 062 064 066 068 hea}t re_Iease for. the thre_e condmc_)ns sr_nfts slightly, but the
Nominal equivalence ratio main difference is in the increase in variance.
Although many measurements of CV have been made

FIG. 2. Model equivalence-ratiog(;) bifurcation plots with ~ previously, we believe that the experimental protocol de-
04=0 (@), ,=0.001(b), ando;,=0.01(c). Fixed model param- ~scribed above is unique. Specifically, we took great pains to
eters arep,=0.59, ¢,=0.60,F,=0.25, ando=0. eliminate noncombustion dynamic effects from the standard

engine controllers, and we collected much longer sequences
characterized engine. Although the engine was highly instruef combustion measurements than is usual. The additional
mented, it was basically a production V8 engine with stan-data provided us with much greater confidence in the exis-
dard port fuel injection connected to a dc motoringtence of consistent dynamic patterns.
dynamometer. Thus we expect that our observations are One complication in our experimental procedure which
likely to be relevant in a practical engineering context. made comparisons with the model more difficult was that we

The nominal engine operating condition was 1200 RPMcontrolled the injected fuel-air ratio by adjusting the throttle.
27.1-N m brake torquéengine loagli 20 CAD before top Because the throttle changes intake pressure, factors such as
center spark. The dynamometer was operated in speeth-cylinder mixing and residual gas fraction are also
control mode to maintain a nearly constant engine speed dehanged. Thus it was not possible to make a series of runs
spite erratic combustion at very lean conditions. Without thechanging only one parameter. Nevertheless, we were able to
dynamometer, the engine speed fluctuates significantly whevary the degree of CV enormously from very small amounts
large numbers of misfires occur, making engine behavionear stoichiometric fueling¢,=1.0) to very high amounts
nonstationary, and a comparison of the engine and modeilt very lean fueling $,<0.55).

Normalized heat release

056 058 06 062 064 066 0.68
Nominal equivalence ratio

Normalized heat release
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series based on a defined partition. Sequence vector length
FIG. 5. Determination of a suitable sequence vector lehgbly
VI. APPLICATION OF SYMBOL STATISTICS a minimum in the modified Shannon entropy. Data are from the

Contending with the effects of dynamical parameter noisémdel at four equivalence ratiog): 0.91(i), 0.67(ii), 0.63iii),
and 0.59(iv).

is a key issue in characterizing the predicted model dynamics
and comparing the model with experimental observations.
As seen in the model bifurcation diagrams, we expect suchVhite [19]. Using this method of identifying each symbol
noise to blur but not completely obscure the deterministicsequence also allows us to observe the relative-frequency
signature. To observe these noisy dynamical patterns, waistograms as two-dimensional platee Sec. VI\
employ the symbol-statistics approach suggested by Tang We refer to the tally of symbol-sequence frequencies ver-
et al. [16]; an alternate but analogous approach may bé&us sequence code asyabol-sequence histograBecause
found in Ref.[17]. Although this method is motivated by Of our partitioning rule, the relative frequency of each pos-
symbolic dynamics theory, it is not completely rigorous, sible sequence for truly random data will be eqsalbject to
mainly because generating partitions are undefined in thtéhe availability of sufficient data Thus any significant de-
presence of noise. The reader is referred to Crutchfield andation from equiprobability is indicative of time correlation
Packard 18] for a detailed discussion. Like Tarej al, we  and deterministic structure. Similar to Taagal, we define
use a practically motivated approach to depict the dynami@ modified Shannon entropy as
patterns in model-produced or observed measurements and
to compare the goodness of fit between the model and ex-
perimental data. In the latter case, we have been able itera- Ho(L)= 1 S piLInp (12)
tively to adjust the model parameters to obtain good agree- S In N394 Pi.n N Pi
ment with the observations.

Our basic idea in using the symbol-statistics approach is
to discretize the predicted or measured heat-release valuggeren>%is the total number of sequences with nonzero
into a finite set of discrete values, as predicted in Fig. 4frequency,i is a string-sequence index of sequence vector
Depending on the value of a given heat release, it is assignddngthL, andp; . is the probability of string sequenceThe
one ofn symbolic valuege.g., 0 or 1 fom=2; in the ter- only difference between Eq12) and the definition used by
minology of symbol dynamics) is thealphabet size Typi-  Tanget al. is that we use the number of non-zero-frequency
cally, we define discretization partitions such that the indi-sequences instead of the total number of possible sequences.
vidual occurrence of each symbol is equiprobable with allThis choice ofn®®reflects the fact that many possible se-
others. We do this to obtain ready discrimination betweerguences may not be realized because of finite data-set length.
random and nonrandom symbol sequences, recognizing th&he result is to biaslg upward when the number of possible
the resulting partition is not generating. Since a generatingequences becomes large relative to the available data. For
partition is undefined in the presence of noj48], some random datad g should equal 1, whereas for nonrandom data
such practical approach is required in order to proceed. it should be between 0 and 1.

Once a heat-release time series is symbolized, we evalu- One approach we found useful for selecting an appropri-
ate the relative frequency of all possible symbol sequences iate sequence vector length)(involves using the modified
the data defined by a symbol-sequence vectot afycles  Shannon entropy. Specifically, we find thhlg typically
length (in the terminology of symbolic dynamics, this se- reaches a minimum value as vector length is increased from
guence vector constitutesard andL is theword size. For 1. This trend is illustrated in Fig. 5 using data generated with
example, if we leL =5, we determine the relative frequency the model at four operating conditions. As the bifurcation
of occurrence for each possible sequential combination gprogresses, the nonrandom part of the dynamics becomes
five symbols. A simple way to keep track of symbol- more evident, even though significant parametric noise is
sequence frequencies is to assign a unique number to eaphesent. We explain this minimum iHg as reflecting the
possible sequence by evaluating the equivalent base-10 valsgmbol-sequence transformation which best distinguishes the
of each baser sequence; we call this number tekequence data from a random sequence. Sequence vectors that are too
code For example, a sequence of 010101 occurring with ahort lose some of the important deterministic information.
binary partition 6=2) would have a sequence code of 21.Sequence vectors that are too long reflect noise and data
This is very similar to the approach used by Rechester andepletion(i.e., there are not enough data to obtain reliable
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ratios (¢,): 0.91(i), 0.67(ii), 0.63iii), and 0.59(iv). (i) ——
0.5 1 (iif)
=}
statistics for such long sequenge®ne can thus argue that g
the L value for whichHg is minimum is an “optimal” E 0.1 1
choice for the given data. 2
I}
& 005
VIl. SYMBOL-SEQUENCE COMPARISONS
In comparing the experimental heat-release patterns with 0+ . : ; : . .
those predicted by the model, we begin by evaluating the 0 10 20 30 40 50 60

general trends for the modified Shannon entropy. As illus- Sequence code

trated ip Fig. 6 we find that the real e.ngine.exhibited similar g1 7. Symbol-sequence histograms, with a binary partition
trends inHg with degree of leanness in fueling and symbol- ang sequence vector length of 6, for modal and engine(b) at

sequence lengticompare with Fig. 5 for the modelThe  three equivalence ratioss(): 0.91 (i), 0.59(ii), and 0.53iii).
similarity in the figures suggests that the model and real

engine behave consistently in response to increasingly leal[ﬂent between symbol statistics represented by the

fueling. symbol-sequence histograror iterations of the model and

Figure 7 illustrates a more detailed comparison of theexperimental data.

gg)din?gdh.;ﬁpfgm:nfrgzrgggz.sgaSf?)?uaeirc?otgfss)t/&bzl'_ In Ref. [16], the Euclidean distance between vectors
qu IStog ' ' P : fihose elements are the occupations of all possible sequences

ciuzenfei ((S:)Odl?loftzr tLhaet isr:xggt?lmct;esregln;égkze?elilzhcﬁtin,gnhighserVEd as the minimization target, but in this work, we use a
=2, L=6). , ) > I o D T
frequencies of 01010121) and 101010(42) combinations two-sampley” statistic as the criterion for minimization:

begin to emerge from a flat profile as the noisy period-2

bifurcation begins. The high visibility of these peaks, even , (NPbs— mode})2

when there is a high noise level, suggests that symbol- X = ~ T \Obs} ymoder - (13
sequence histograms may be generally useful for detecting ' !

the onset of noisy bifurcations.
Using this method, we can also evaluate the statistical sig-

nificance of a trial model fit, using the standar@i probabil-
ity inference withn®¢%-1 degrees of freedom, with**?the

As mentioned previously, we were not able to control ourtotal number of sequences with non-zero frequency for either
experimental engine such that all of the parameters remainedodel or data.
constant while the injected fuel-air ratio was reduced. We With a good fit, the model converges tgea value which
also had no way of directly measuring the residual fractionwill accept the null hypothesis that the same process gener-
F,, or the noise amplitudes fd¥, and the injected fuel-air ated the histogram-bin occupations for model and experi-
ratio ¢,. Thus in making detailed comparisons between theanent, thus providing some quantitative assurance that the
model and experiment, we were limited to evaluating howmodel is a valid description of the experimental observa-
well the model could reproduce the observed behavior as thigons. The minimization algorithrf20] was a hybrid of sim-
unknown parameters were adjusted over physically reasorplex and genetic methods designed for continuous parameter
able ranges. spaces without requiring derivatives.

To fit the model against observed data, we adjusted the Whereas a binary partition is sufficient for detecting the
model free parametersp,,,,d,,04,F,,0r, and a mul-  onset of bifurcations, we find that higher-level partitions are
tiplicative scale factor relating nondimensional to experi-needed to obtain the best fit of our model to experimental
mental heat-release unitdVe assumed the structure of the data. A vivid example of the insufficiency of a binary parti-
parametric noise terms to be Gaussian. We optimized the fiton for fitting is illustrated in Figs. 8 and 9. Figuréa is the
by iteratively adjusting the parameters to give the best agredirst return map for measured engine heat-release values at

VIIl. FITTING THE MODEL
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FIG. 9. Symbol-sequence histograms for engine datapat
—_ =0.63 and a noisy period-2 logistic map. A binary partition and
x 0.5 1 - sequence vector length of 6, seen(&, does not provide the dis-
1 criminatory power seen with a quaternary partition and sequence
vector length of 3, seen itb).
0.25 1 - the engine data from a noisy logistic map by increasing the
number of symbols from 2 to 4[the sequence length was
reduced from 6 to 3 to produce histograms with the same
0 level of detail (26=4%=64 elementd. Since a generating
' ' ' artition is not available in cases such as ours, partition
0 0.25 0.5 0.75 1 P P

x() choice must be based on a tradeoff between the number of
symbols and the sequence vector length, both of which affect
FIG. 8. Lag-1 return maps for engine datafat=0.63(a) and a  the size and statistical significance of the symbol-sequence
noisy period-2 logistic magb). The noisy logistic map is intro- histogram. In our case, the high noise level and rapid diver-
duced to show that a simple binary partition using our equiprobablgyence of nearby points reduces the information memory of
convention does not distinguish two very different models. the system to be a short time, making symbolizations long in
$,=0.63, whereas Fig. (B) is a first return map for the time but coarse in partitionipg less desirable, and empiri-
logistic map with Gaussian noise added to the feedback p&2lly. less effective for best fitting.
rameter. In the latter case, the mean value of the feedback [N Fig. 10, we use return maps to illustrate how well our
parameter has been adjusted to produce a period-2 oscillfifted model matches the observed data for a moderately lean
tion. These return maps clearly reveal that the shapes of tHgleling case. We used a variable partition of 9 and 8 in a
underlying deterministic maps are different. Indeed, we ex{wo-cycle-long sequence to achieve this degree of fit, where
pect the logistic map to be less accurate than our engin® is the number of partitions applied to the first member of
model in matching our experimental data. Nevertheless, akhe sequence and 8 is the number of partitions used for the
illustrated in Fig. 9a), the symbol-sequence histograms us-second member. Variable partitioning schemes are by no
ing binary symbolization are nearly identical, making dis-means essential to the method but may be used without
crimination of the two data sets on the basis of these histoharm. They sometimes provide better fits because the one-
grams very difficult. Our point here is that a binary partition dimensional marginal distributions of trial simulations are
is clearly insufficient for distinguishing a more- from a less- constrained to match the data more closely when the symbol
appropriate model, given that the dynamics is dominated byartitions are not commensurate.
a noisy period-2 oscillation. Even in the absence of noise, an Note that in the first return map comparisidfig. 10a)],
equiprobable binary partition cannot distinguish period 2there is a downward bias in the upper-left portion of the
from period 4, period 8, etc. experimental map. This bias is a consistently occurring fea-
Figure 9b) illustrates how much easier it is to distinguish ture that we expect is due to a real difference between our
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. . . ting an overly general and unrealistic mathematical function.
FIG. 10. Return maps for engine datadaj=0.59(light point9

and optimized-fit model datédark points for lag 1 (a) and lag 2

(b).
IX. CONCLUSIONS

model and the experimental engine. We attribute this to an We believe our model provides a physically reasonable
additional temperature effect that is currently unaccountedhypothesis that explains the observed time-resolved patterns
for by the model. Specifically, we conjecture that lower-in cyclic combustion variability. Depending on the injected
than-expected heat release occurs following exceptionallfuel-air ratio, the behavior can appear to be purely stochastic
poor combustion events because of reduced initial temperar a mixture of stochastic and nonlinear dynamics. This
ture at the time of spark. We plan to include this reducedange of possible behavior may help explain apparently con-
temperature effect in future model revisions. flicting observations from previous studies. The ability to
Finally, in Fig. 11, we illustrate how well the general describe engine fluctuations with such a simple yet physi-
trends of the model and experimental data match. At each afally plausible model may also aid in the development of
three fueling conditions corresponding to near stoichio-cycle-resolved control schemes to reduce or alter the pattern
metric, moderately lean, and very lean, we fitted the model t@f cyclic fluctuations in order to improve engine perfor-
the observed data. It is apparent that the same basic pattemmance.
are clearly occurring in both cases; namely a transition from Symbol-sequence statistics are useful for characterizing
(1) very-small-amplitude Gaussian combustion variationengine behavior and quantitatively confirm the ability of a
near stoichiometric fueling t62) a noisy period-2 combus- low-dimensional nonlinear map to explain the experimental
tion bifurcation at moderately lean fueling {8) a noisy observations. We expect such statistics to be generally useful
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for detecting noisy bifurcations and fitting models to noisybal dynamics with simple deterministic models involving
data. stochastic parametric noise.

We conjecture that the basic modeling approach we used
for engine combustion variations may have more general ap- ACKNOWLEDGMENTS
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