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Chaos in wavelength with a feedback tunable laser diode
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Wavelength is used to induce optical nonlinearities and to generate chaos from a multielectrode wavelength
tunable laser diode. Chaotic modulation of wavelength ruled by a nonlinear differential difference equation is
demonstrated. The method offers a high flexibility, which should open the way to simple chaotic systems with
complicated nonlinear functiongS1063-651X98)06003-§

PACS numbg(s): 05.45+b, 42.65.Sf, 42.55.Px

[. INTRODUCTION Several other experimental devices have been extensively
studied for their chaotic dynamics, such as He-Ne lasers with
There are many situations, in many disciplines, that carelectro-optic feedback10], Q-switched and mode-locked
be described by a first order, nonlinear differential differenceNO, and CQ lasers with intracavity absorbef1], pulsed
equation(also termed Ikeda’s equatipnwvhich may be ex- Nd-YAG lasers with modulation of the cavity lo§$2], etc.

pressed in the normalized form but their chaotic dynamics is obtained in intensity or in po-
larization. Most of them are more complicated than that re-

X(t) ported here, and do not feature a high applicability as “tun-
X()+ dt =BFX(t=tr)] @) able” generators of chaos in terms of systems. They are

characterized by nonlinearities that are intrinsic to the laser

in which the function F[X]=sir[X(t—tg)] is a periodic itself, without offering a variety of possibilities in changing
function of a variableX evaluated at a retardation tinig,  the type of nonlinearity, and hence of dynamics. In contrast,
and g is the bifurcation parameter. Such equations exhibit athe method reported in the following is general and can be
array of dynamical behavior, from stable points to a bifur-applied to a variety of chaos problems. Physically, it is es-
cating hierarchy of stable cycles and to chaotic fluctuationssentially due to the use of wavelength to generate nonlineari-
They are well known to occur in optical or electrical bistableties, instead of intensity.
systems(whose nonlinearity is thé function) with a de-
layed feedback. In this work, we begin by noting that the|l. EXPERIMENTAL CONFIGURATION AND MODELING
chaotic regimes reported in optics concern systems in which )
the optical turbulence is characterized by a chaotic variation L€t US consider the wavelength tunable two-electrode
of light intensity[1-5] or polarization[6]. Chaotic fluctua- sgmlconductor laser with the fegdback loop, as |Ilustr.ate'd in
tions of wavelength were also reported, especially fromF19: 1..In a two-electrode I.ase_r diode, the Wavellength is fixed
semiconductor lasers. However, they are closely coupled tB! @ given valueA by adjusting a couple of bias currents
chaos in intensity, which makes their handling comgl&k (Ig,11) on each of the.electrodes, ano_l Can_be tune_d electri-
On the other hand, the experimental regimes that obey E§@lly aroundA, by varying current, by i, while keepingl,
(1) reported so far concern mainly systems with low bifur- constant. The power emitted is wavelength independent. In
cation parametersd< 3), yielding simple chaotic processes,
while theoretically8>15 is needed to have a chaotic process
with a Gaussian probability density lai8]. This feature,
combined with a high dimensional chaos, is required to im-
prove confidentiality in cryptography by chaos, for instance.

The object of this paper is to show that wavelength- Plate
induced nonlinearities can be used advantageously to gener- BP
ate chaos. Such nonlinearities were proposed originally for l DBR Py P, ' PD
exotic demonstrations of bistability in wavelend®y. The Dnable
recent advances in the wavelength agility of tunable multi- chaos
section laser diodes make them very attractive to implement s 1 Generator of chaos in wavelength using a wavelength

simple generators of chaos with very complex dynamicsynaple laser diode with a nonlinear feedback loop. The nonlinearity
is induced by the birefringent plate BP set between two crossed or
parallel polarizer$?; andP,. The intensity detected by the photo-
*Permanent address: Laboratoire d’Optique P.M. Duffieux, UMRdetector PD is a nonlinear function of the wavelength emitted by
CNRS 6603, Universitele Franche-Comte25030 Besayan Ce-  the laser diodez; is the gain of the photodetector afidthe time
dex, France. delay introduced in the feedback loop.

T

Birefringent

N

1063-651X/98/5{3)/27954)/$15.00 57 2795 © 1998 The American Physical Society



2796 GOEDGEBUER, LARGER,

the conditions of continuous wavelength tuning i.e., without

mode hopping, the wavelength shiftis proportional to the
variation i of the injection current)(t)=«i(t), where «

=dA/di is the tuning rate of the laser diode, and the emitted

wavelength isA (t)=Ag+\(t). The feedback loop consists
of a birefringent plat€BP) whose fast and slow axes are at
45° to two crossed polarizef®; and P,, a photodetector
(PD) with a time response, a delay line with a retardation
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time T, and a voltage-to-current converter. The latter pro-

vides the tuning currerit which is superimposed to the bias
currently. The plate BP induces the nonlinear functibn

FIG. 2. Graphical representation af,=g,F[\,_41] for two
valuesD; andD, of the optical path difference. F&r, (solid line),

between the wavelength emitted by the laser diode and the single intersection poim; occurs with the linex,=\,_,. For
optical power detected by the photodetector, through it$, (dashed ling three intersection point3;, B,, B; occur.
spectral transmission curve, which is that of a so-called

“channeled spectrum’F(A)=sir’(wD/A), whereD is the
optical path differenc€OPD) of BP. Since\(t)<Ag, F can
be developed around the center wavelenyjthas

[ wD\
F(7\)=Sln2(7— ¢o>, (2
0

with ¢o=7D/A,. TheF function is a sik function, which

been extensively treated and we refer the reader, for instance,
to hybrid systems described in Ref2-4]. However, the
experiments reported so far concern mainly systems ®ith
<3, that may result in a lack of generalitg.g., the dimen-
sion of chaos increases linearly withand the chaotic solu-
tions of Eq.(1) are shown to feature a Gaussian-Markovian
character for@3>15 [8]]. The reason is twofold(i) in such
systems, increasing the bifurcation parameter is implemented

exhibits oscillations spaced in wavelength by a free spectratlectrically, increasing the gain in the feedback loop, that

range(FSR~A3/D. The photodetector converts linearly the
detected poweF(\) in a feedback voltage with a gaif, ,

sets an upper limit due to electronids, the nonlinearity
F[X] in the previous systems is induced by Pockels effect or

which is then converted by a voltage-to-current converter irBragg diffraction (which are well known to produce $in

the feedback currerit(t) with a conversion efficiencyy,.

transfer curves in powgwith the disadvantage that the driv-

The response times of the electronic devices in the feedbadRg voltagesV are also limited due to electronics. This re-

loop and of the laser diode are much smaller than thatf

sults in anF function truncated to a single oscillation and to

the photodetector, which behaves as a low pass filter withow values ofg, yielding simple chaotic processes.
derivative properties. Taking the dynamical properties of the The situation is different when using the present system.

device into consideration, the modulation of wavelengtt)
is shown to be ruled by the following differential difference
equation:

A(t)+ T% A(t)=B,sir?

7D
Az AMt=T)— ¢0} (©))

whereg, = Pya 147, is the bifurcation parametéexpressed
in wavelength units andP is the optical power of the laser
diode. Note that Eq(3) can be expressed in the normalized
form of Eq. (1) with X(t)=mD\(t)/A2, B==Dp, /A2
and tg=T/7. For T>r, a convenient way to analyze the

A high bifurcation parameter can be obtained optically as
well as electrically. Periodic nonlinearities with a large num-
ber of oscillations can be easily achieved optically with large
OPDs. The maximum numbé\,,, of oscillations ofF within
the\ range is set by the spectral resolution of the device, i.e.,
the laser linewidthdA, and is expressed ds,,~AA/dA
%DmAA/AS. It can be very high, typically 1810 for a

10 MHz linewidth. The maximum bifurcation parameter thus
obtained is

B~aNp~7D AAIA3,

with D,~AZ/dA. (5

instability of the device is to neglect the differential term andHere 3 is written in its normalized form for easy comparison.

to express Eq(3) in the form:

M= B\F[Np-1]= ﬁ)\smz

7D
XOZ)\nl_qsO)’ (4)

where A,=\(to+nT), n being an integer and,, being a
certain initial time. The device is unstalte3] if the slope at
the intersection points of the 45° ling,= \,_; with the sirf
function of N, versus \,_; exceeds|+45° i.e., if
By|dF/d\|>1, as shown in Fig. 2. Then the laser wave-

B is 5x 10* times higher than in previous systems but there
are experimental limitations with implementing the 25 m
OPD thus required. Practicallg=30 seems to be a maxi-
mum when using birefringent slabs with maximum achiev-
able OPDs,D,,~15mm; B in the range of 10-10° are
easily achievable with fiber Mach-Zehnder interferometers
with OPDs up toD,, of several tens of cm.

To check the validity of the method, we made simulations
of the behavior of the device. Figure 3 shows two calculated
bifurcation diagrams of the laser wavelength plotted against

length fluctuates periodically or chaotically, depending onthe bifurcation parametes, , for two fixed values of the

the values of3, , ¢q, and of the number of oscillations Bf

OPD: D;=1.6 mm andD,=1.9 mm. The parametep, is

within the tuning range of the laser diode. Increasing thed,= 7/4 in the two cases. The bifurcation parameggris

number of oscillations of is equivalent to increasing the
nonlinearity strength3 in Eq. (1). Theoretical and experi-
mental studies of the solutions of differential difference
equations in which the nonlinearity is a $ifunction have

varied from 0 to 1.5 nm in order to simulate wavelength
tuning within the entire spectral range of the laser diode
used, which waa A =1.5 nm. The two bifurcation diagrams
are calculated from the differential difference equat{8h
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FIG. 3. Bifurcation diagrams calculated f@r, and D,. The
axes are in nm. A sudden widening of the chaotic attractor occurs at (b)
Bs=1.3 nm(interior crisi9 in (b).

using parameter values compatible with those in the experi- k——@h

ments discussed later. In the first céBg. 3@)], D is such 0.3 Bszl‘j
that a single oscillation occurs within the tuning range of the
laser diode, yielding a single intersection pokit (see Fig. FIG. 4. Experimental bifurcation diagrams 0y, in (a), andD,

2). The bifurcation diagram is similar to that discussed, forin (b). In (b), the interior crisis aBs=1.3 nm can be clearly seen.
instance, iN4]. In the second case, the function exhibits

two oscillations, yielding the intersection poirss,B,,Bs. cation diagram thus obtained by varying the gainof the

The _bifurcation diagram thu_s _obtained _is given in Figo)3 photodetector, and hence the bifurcation paramgfer The
and illustrates an interior crisis k. It is formed by tWo gy rcation diagram was obtained by analyzing the wave-
scenarios. For a range @, less than the critical valug, length emitted by the laser diode through a FabreP-

= 1.3 nm(which also may be regarded as a switching bifur-(erferometer operating at the inflection point of an edge of its
cation parametgy the chaotic attractor lies within a band, spectral transmission curve to convert linearly the modula-

which suddenly widens when the bifurcation parameter injon, of wavelengthy into a detectable modulation of inten-
creases past the critical valyig=1.3 nm. Then the bifurca- gjty \We observed the well-known transitions and bifurca-
tion diagram maps another scenario, which denotes, for thgons from the period-two oscillation to the period-four state,

parameter values chosen, a full chaos different from the prepen 1o the prechaotic reginiperiod-two chags and to full
vious one, as can be clearly seen in Figh)3A detailed cphaos.

discussion of such sudden changes of chaotic orbits is given | 5 second step, we used another slab with an OPD of
in [14]. D,=1.9 mm, yielding anF function with two oscillations
located within the tuning range of the laser diddefortu-
IIl. EXPERIMENTAL VERIFICATION nately, no other birefringent slab with a larger OPD was

) ] available at the laboratory when we made the experiments
The behavior of the system was checked experimentallyne ¢ parameter was kept at/4+2p (p is an integer.

using a two electrode distributed Bragg reflector laser dioderne pifurcation diagram thus obtained is shown in Figp) 4
The laser diode featured a tuning ran§ya =1.5nm. One  Two maps of chaos can be clearly seen. A sudden widening

electrode was connected to the feedback léagrrentls).  of the chaotic attractor occurs at the critical vals
The value of the center wavelength could be adjusted using a 1 3 nm, in good accordance with the theoretical predic-

bias current; on the other electrode. The linewidth was 10+jons. Finally, in order to check which part of tiefunction

MHz. The wavelength could be tuned continuously, i.e..operated for values of the bifurcation parameter before and
without mode hopping, by varying currehy (while keeping  after the interior crisis occurs, we displayed in Fig. 5, the

current I, at a fixed valugp with a tuning rate @  chaotic signal detected by the photodiode, which is propor-
=0.2 nm/mA. The power emitted by the laser diode was

Po=1 mW and was checked to be wavelength independent.
The response time of the photodetector available was 4 F[A] (a.u.) A F[A] (a.u.)
=9 us, much larger than the response times of the delay line
and of the laser diode which were 100 and 10 ns, respec-
tively. We introduced a delay=0.5 ms by inserting an ana-

log sampled delay circuit in the feedback loop. The delay
circuit was a charge-coupled device memory operating with

an input signal that was sampled every.4, that was negli- \\. A
gibly small compared to the response time of the system. - . >
First, the center wavelength was adjustedAgt= 1550 nm 0.3 @ 1.5 0.3 (b) 15

and the retardation plate BP was an antireflection coated cal-

cite slab of thicknes$=10 mm with an OPD ofD;=|n, FIG. 5. Experimental visualization of the dynamical regime in
—Ng|t=1.6 mm where|n,—ng|=0.157 is the calcite bire- e (\,F) plane observed in the case of Figby In (a), chaotic
fringence at 1550 nm wavelength. The value of thepa-  regime forg, <gs; the attractor lies at the bottom of the fanc-
rameter wasr/4+2ma (m is an integer. Then the system tjon, in a narrowi interval. In(b), chaotic regime fo, > s the
operated with thé= function exhibiting a single oscillation unstable orbit lies within a period of the $ifunction, correspond-
with a single intersection point. Figuréa} shows the bifur- ing to a wide\ interval.
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tional to the left member of Eq3), as a function of the able spectral filters in the feedback loop. This is different
variable\. First, in Fig. 5a), the bifurcation parameter was from other experimental configurations reported up to the
set at a value8, =1.2 nm, which is slightly less than the presen{1-7,10-12, which are based on intensity or polar-
critical value 85. The chaotic region lies at the vicinity of ization. Physically it is essentially due to the fact that wave-
the bottom of the sthcurve, within a narrom interval[0.25  length can be handled and controlled with experimental con-
nm, 0.56 nm. When increasings3, pastg;, the operating figurations much simpler than those based on power. This
region of theF function lies suddenly from the previous should open the way to systems with complicated nonlinear
valley to the next peak of the girturve, as shown in Fig. functions. Moreover, the latter could be synthetized and
5(b), which was obtained foB, =1.5 nm (3=4). Then, the changed in real time, using electrically tunable spectral filters
unstable orbit lies within a much widerinterval[0.25 nm,  such as low-voltage integrated electro-optic Solc or Lyot fil-
1.5 nml. These evolutions are the same as the theoreticders [15]. This should allow the realization of “tunable”
predictions[similar results that are not reported here, can begenerators of chaos featuring a number of different complex
obtained wih a 7 cmthick calcite slablOPD=11 mm and dynamics that could be tuned easily. It should also be men-

N=7), yielding 8=22]. tioned that the dimension of chaos can be very high.
An estimate of the dimension of the chaotic attractor is
IV. CONCLUSION given by the relationship 0.8T/7, which applies to

delayed-feedback nonlinear systel@slé], which are known

In summary, we have reported a system in whichto be very simple devices producing hyperchaos, i.e., very
wavelength-induced nonlinearities are used to generate chaigh dimensional chaos. For the device reported lith
otic fluctuations of the wavelength of a tunable laser diodethe 7 cm thick calcite plajethis yields a dimension of 5
The advantage of the device is its hlgh simplicity, erX|b|I|ty, X 102, which Corresponds to approxima‘[e|y 250 zero and
and applicability as a generator of chaos in which the parampositive Lyapunov exponents. Straightforward applications
eters governing the nonlinearity can be controlled accuratelgeal with increasing confidentiality in signal encryption for
through wavelength. The fact that the nonlinearity is extrin-secure communications using high dimensional chaos. We
sic to the laser chip is another advantage. It is expected th@llso speculate that chaos in wavelength as defined in this

a wide range of dynamical properties can be obtained, as wilhaper might be extended to all optical devices.
be discussed in a longer paper, along with considerations on

the Lyapunov exponents and the entropy of chaos. Though
the description was limited in these first experiments to
routes to chaos produced by %ifunctions, we emphasize The support of France Telecof@ontract No. 931B0190
that a variety of nonlinear functions can be used with suitis gratefully acknowledged.
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