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Condensation in globally coupled populations of chaotic dynamical systems
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The condensation transition, leading to complete mutual synchronization in large populations of globally
coupled chaotic Rssler oscillators, is investigated. Statistical properties of this transition and the cluster
structure of partially condensed states are analylZ&t063-651X97)06012-1]

PACS numbdrs): 05.45+b, 05.20-y, 05.90+m

The appearance of condensates is an important properti/e also consider how full mutual synchronization is influ-
of quantum and classical systems. When a population of inenced when random variations in the parameters of indi-
teracting Bose particle@uch as, e.g., superfluid liquitHe) ~ vidual chaotic oscillators are introduced.
is considered, a condensate is formed by a finite fraction of Not every form of global coupling between elements can
particles occupying the same quantum sfdie Condensa- lead to mutual synchronization. Synchronous chaotic oscilla-
tion of electron-hole pairs in metals is responsible for thetions are possible if “vector” couplingwith identical cou-
phenomenon of superconductivifz]. Condensation phe- Ppling coefficients for all oscillator variablgss employed
nomena in classical systems are closely related to the effett3]. Asymptotic synchronization conditions in the limit of
of mutual synchronization of oscillations. In large popula-high coupling intensities have also been constructed for the
tions of globally coupled limit-cycle oscillators, one or sev- case when coupling involves only one of the oscillator vari-
eral groups of oscillators following exactly the same phasedbles[10]. However, only the linear stability of synchronous
trajectory can spontaneously appEar7]. A similar behav-  oscillations is proven in both of these cases and therefore
ior in populations of globally coupled logistic or circle maps even for a strong coupling the presence of other dynamical
has been found by KaneK8,9]. Mutual synchronization of ~attractors, corresponding to persistent asynchronous oscilla-
several coupled chaotic oscillators has been studseg, tions, cannot be excludegd4].

e.g.,[10]). However, large populations of chaotic oscillators  In this paper a different form of global coupling that
may also be globally coupled. This is typical, for instance,yields more robust synchronization is introduced. We take
for surface chemical reactions where a great number ofn arbitrary dynamical system wittm variables w(t)
nanoscale dynamical microreactors on the catalytic surface{wi(t), ... wn(t)} whose evolution is determined by
are globally coupled through the gas phfs#|. The behav- equations

ior of a large population of globally coupled chaotic fRter )

oscillators has recently been investigaf&#], but only weak w=f(w), D
synchronization leading to the appearance of statistical cor-

relations has been discussed. In contrast to this, we analyxéheref(w) are some known functions. A globally coupled
in this paper the statistical properties of a transition to thepopulation consisting of N such dynamical systems
fully synchronous state that is found when a different form(i=1,2, . . . N) is constructed by adding the coupling terms,

of global coupling is applied to the same system. so that the resulting evolution equations are
We find that the synchonization begins at low coupling ) o o
intensities with the appearance of small coherent groups on w;=f(w;) +eA(w—w;)+&'[f(w)—f(w;)], 2

the background of the rest of the population performing o o
asynchronous oscillations. The elements belonging to suclwherew is the global averagen(t)=N"13;_,Nw;(t), the
groups consititute a dynamical condensate. As the couplingositive parameters ande’ specify the intensity of global
strength is increased, the number of particles in the Conde’b‘oupling, andA is a constant matrix. Note that the previ-
sate grows and eventually the whole population becomes dBust used forms of coupling correspond to a chaite:0:
vided into several coherent clusters. Within each cluster, th?ne wvector” counling is obtained fo =1 wherel is the
elements follow the same chaotic dynamical trajectory. Un-.d tit tri piing
der further increase of the global coupling, the number of dentity ma,li'x'

coherent clusters gets reduced until full mutual synchroniza- Whene'=1 Eq.(2) reduces to

tion is achieved. The aims of our study are to introduce ap- . J— —

propriate order parameters for this condensation transition, to w;=eA(W=w;) +f(w). 3)
investigate distributions over the clusters, and to analyze th

dependence of the condensation behavior on the system Si%at'ey describe linear motion of elements forming the popu-

ion under action of a force that is collectively produced by
all of them. The evolution of the deviationgw;(t)

*Permanent address: Consejo Nacional de InvestigacioneS Wi(t)_W(_t) is then determined by aexactlinear set of
Cientficas y Tenicas, Centro Atmico Bariloche, 8400 Bariloche, equationsdw;= —eAdw; . Therefore, these deviations expo-
Argentina. nentially decrease with time, and global stability of synchro-
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nous oscillations is thus guaranteed, if all real eigenvalues of 1.0

the matrixA and the real parts of all its complex eigenvalues

are positive. 08 |
Since globally stable synchronous oscilations are present

in the system2) at ¢’ =1, they may also be expected ina &
neighborhood of this point, i.e., for an interval of coupling 306 I N
intensitiesey<e’<1. As shown below, this interval can be §
so wide that even weak coupling leads to synchronization. &

We consider a population of chaotic §sber oscillators. § 04T

Each elementary oscillator is described now by three vari-
ables w(t)={x(t),y(t),z(t)}, and we havef,=—-y—z, 02 |
fy=x+ay, andf,=b—cz+xz wherea, b, andc are fixed

parameters. The collective dynamics of a globally coupled

: . . . ) . 0.0 ‘ ‘ ‘
populatlon ofN |dent|qal Rasler oscillatorsi(=1,2, ... N) b.00 0.02 0.04 0.06 0.08 010 012
is governed by equations K

)'(i =-vi—z, FIG. 1. Order parametersands of the condensation transition

as a function of the coupling constait Averaging over 20 inde-
- — pendent realizations with random initial conditions is performed,;
yi=xitay+K(y—vi), (4 bars indicate statistical dispersiémean square deviatipof data
at several selected points.
z=b—cz+xz+K(Xxz—%z),

L L To prepare the initial condition, the system is first allowed
where x(t), y(t), and z(t) are global averages, such asto evolve up tot=100 without global couplingik=0) so
X(H)=N"1ZN % (t), andK is the intensity of global cou- that its elements get uniformly distributed over thésEler
pling. This form of coupling is derived from E@2) by tak-  attractor. Global coupling is then introduced, time is reset to
zero, and the evolution of the coupled population is started.
We see that as time goes on the trajectories of some elements
converge and become identical. These elements form the dy-
namical condensate. The transient is over when the number
) A of elements in the condensate ceases to increase with time. In

The eigenvalues of the matrbA are N\;=c and  our simulations, the transients were always shorter than
)\2,3=%(1—a)t%\/(1—a)2—4. All three eigenvaluegor  t=1000. This has been checked by following the evolution
their real partsare positive ifa<1. Therefore, foK=1 all of the system for longer times at different values of the cou-
deviations from the global averages exponentially decreasgling intensityK, including the values oK very close to the
with time and the states of all elements in the populatioronset of the condensation transition.
asymptotically converge. We see thatkat1 the oscillator To quantitatively characterize the condensation, two
population(4) possesses a global attractor that correspondder parametergan be used. The first of them is given by the
to coherent motion of all elements of the system. This attracratior of the number of pairs with zero distances to the total
tor coincides with the attractor of a single $&ber oscillator number of pairs. In the absence of a condengate). On
and is chaotic for the parametess=0.15, b=0.4, and the other hand;=1 when complete mutual synchronization
¢=8.5 used in our simulations. Thus, the populatighof  of the whole population takes place. The second pararseter
globally coupled chaotic Rasler oscillators should undergo represents the fraction of the population belonging to coher-
condensation as the coupling intensKy is gradually in- ent clusters. It is given by the relative number of elements
creased towardk = 1. To investigate the condensation phe-that have at least one other element with the same state in the
nomena, we have typically performed numerical simulationsonsidered population. Thereforecan be viewed as char-
of a population ofN=1000 such oscillators under varying acterizing the size of the condensate.
intensity K of global coupling. Figure 1 shows the dependence of the order parameters

The distancesd;; =[(x;—X;)?+ (y;—y;)?+(z—z)?]** ands on the global coupling intensiti obtained by aver-
between the states of a(N—1)/2 possible pairs of ele- aging over 20 realizations &t=2000. Condensation begins
ments (,j) have been computed. When condensation occursit K.~0.017 when the condensate first appears and a non-
the distances between some of the elements would decreaggnishing fraction of identical pairs becomes present. In the
and asymptotically approach zero. Note, however, that in énterval fromK, to K~0.06, nonmonotonous dependence of
computer simulation, the variables specifying the states oboth order parameters on the coupling intensity is observed.
the elements are defined only up to a certain precision deteAt higher coupling intensitie&, the condensate size and the
mined by the number of digits used to represent real numfraction of identical pairs grow until full condensation
bers. Therefore, any two converging states become indistift =1) is established foK >K,, with Ky~0.1. Under con-
guishable when all the digits coincide. Once this hadditions of partial condensation, the condensate size and the
occurred, the two trajectories remain identical at all subsenumber of identical pairs vary from one realization to an-
guent times. Following8], we assume that the distance be-other. Bars in Fig. 1 indicate statistical dispersion of the
tween such two trajectories is zero. simulation data at a few selected values of the global cou-

ing e=¢’ =K and choosing a matriA whose elements are
zero except for A=A,=—A,=1, A,~=c, and
Ayy=1-a. The systen(4) reduces to a set of independent
identical Resler oscillatorg15] for K=0.
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FIG. 3. Number of clusters counted at different values of the
FIG. 2. Normalized histograms of the distribution over pair dis- global coupling intensitK separated by intervals &fK =3x 10 4
tancesd between elements in a population Nf=1000 globally  for a single simulation with random initial conditions at each point.
coupled Rasler oscillators at different stages of the condensation

transition: (@) K=0; (b) K=0.01;(c) K=0.02; (d) K=0.05. cillations and therefore this chaotic clustering is different

N . . . from the behavior previously known for large populations of
pling intensity. Note that the dispersion reveals a degeneracenoba"y coupled limit-cycle oscillatoré&see[6]).

in the asymptotic properties of this system in the partially The cluster structure of the condensate as a function of the

corjl_?lense(;j state. ds ch e th I d global coupling intensityk has been analyzed. The dots in
e order parametersands characterize the overall de- £y "3 ghow the numbers of clusters found at different cou-

gree of condensation, but are not sensitive to the condensalgcﬁng intensities separated by intervalk =3x 104, For
structure. To determine the detailed structure of the populai| :
q

, T o ach value oK, a single simulation starting from random
tion, distributions over pair distances between the states qfiiial conditions has been performed. We see that the num-
all elements at a fixed time moment=2000) have been b i

: N ; er of clusters is strongly fluctuating and may be largely
analyzed. Histograms of such distributions at four different o ant even for close values of the global coupling inten-
coupling intensitieK are shown in Fig. 2. They are con-

db ; . ith di Vi ithi b sity. Even when the coupling intensity was fixed, the number
structed by counting pairs with distances lying within SUbse-¢"cy;sters varied from one simulation to another. Figure 4

quent intervals of widthAd=0.25. The number of pairs in-  gpo\vs the mean number of clusters as a function of the in-

side each interval, divided by the total number of pairSyngjry K, averaged over 20 independent realizations. The
N(N—1)/2, yields the height of the respective bar. In thebars show the statistical dispersion of the data.

absence of global coupling, elements are relatively uniformly The mean number of clusters can be estimated using the

distributed over the single-oscillator attractor and a smootqWO order parameters andr. The total number of elements

distribution over di;tancgd is thus observedl_:ig. 23)]. belonging to the condensate $&\. Assuming that the con-
When global coupling is introduced but remains below thedensate consists ¥l clusters of equal size, each cluster
critical pointK. of the condensation transition, the distribu-

tion is modified[Fig. 2(b)]. Now, pairs with small distances .
have already appeared, though identical pairs are still abser
(cf. Fig. 1. Slightly above the critical point, a strongly non- !
uniform distribution with narrow peaks is se¢hig. 2(c)].
The distributions found at larger intensities of global cou-
pling [e.g., Fig. 2d)] are formed by several distinct lines.
When complete condensation has taken place 1), the
histogram has only one line locatedds 0 (not shown.
Distributions formed by several lines are characteristic for g
situations when the whole population breaks down into a& 5|
number of coherent clusters. All elements in a cluster follow 3
the same dynamical trajectory and, hence, distances betwee
pairs of elements belonging to the same cluster are zero
When elements from two different clusters are chosen, theit
distances are all equal. M such clusters are present, the 0 - ‘ . ‘ ‘
distribution over pair distances would consist of 0.00 0.02 0.04 0.06 0.08 0.10 0.12
M(M—1)/2+1 individual lines. For instance, four lines K
seen in Fig. &) correspond to a condensate with three clus-  FIG. 4. Mean number of clustefsold curve and its estimate as
ters. We have checked that the coherent motion of elements/r (dash curvias a function oK. Averaging over 20 indepen-
inside the clusters is not degenerated to simple periodic ostent realizations at each point; bars show the data dispersion.

—
o
T

ber of clusters

mean




57 CONDENSATION IN GLOBALLY COUPLED ... 279

10 number of coherent clusters and their mean size steadily
grow and approach intermediate saturation in the interval
08 | from aboutKk ~0.045 toK~0.065. Here the typical size of a
: cluster is about 150. At the end of this interval the clusters
g forming the condensate already include almost all population
é 06 | members §~1). At larger coupling intensities, redistribu-
= tion of elements over a decreasing number of clusters is ob-
8 served. Eventually, aK~0.1 only one cluster is typically
% 04 r found (although occasionally two clusters may also appear
g close to this point This means that full mutual synchroni-
02 | zation has been achieved.
’ Complete condensatiom £ s=1) has been found within
a wide interval of the global coupling intensity. Starting in
0.0 s - - - . this region with random initial conditions for all elements,
0.00 0.02 0.04 0.06 0.08 0.10 0.12

we see that the elements soon form a compact cloud that
K rapidly shrinks with time. The characteristic radiRét) of
FIG. 5. The relative mean size of a clustéN=r/s as a func-  this cloud can be defined by
tion of the coupling intensitK.

1 N
would containn=sN/M elements. The distances between R*(t) _N Z 5Xi2(t)+éyi2(t)+5zi2(t)]’ ©®
the elements within any cluster are zero. Therefore, if the
numbern of elements in each cluster is large, the total num-where 8x;, 8y;, and 8z, are the deviations from the respec-
ber of identical pairs in a single cluster would be approxi-tive global averages. The radil& decreases with time, as
mately given byn?/2. Hence, the total number of identical the trajectories of all elements asymptotically converge to
pairs in the condensate Mn?/2. Since the total possible the same orbitin our simulations the convergence was fol-
number of pairs is approximately?/2, the order parameter  lowed until the trajectories of all elements became identical
is up to the computer precision of about ). An important
quantitative property of this regime is the characteristic time
Mn? s that the system needs to reach the condensed state; the in-
rzvzﬁ' ) verse of this time represents the condensation exponent
(closely related to the transverse Lyapunov exponents dis-
Thus, the number of clusters can be estimateass?/r. ~ cussed in Refl10]):
The dashed curve in Fig. 4 displays the mean number of
clusters obtained using this estimate, which is valid if the y=—1lim = L |nﬂ 7
clusters have equal sizes. It can be seen that generally it oo R(0)"
shows a reasonable agreement with the data obtained by di-
rect counting of clusters. The deviations are due to the facthe simulations show thay starts to grow from zero at
that the clusters have a distribution of sizes and some df=Kj,, has a maximum aK~0.65, and then slowly de-
them may be small. Note that the mean relative size of &reases, approaching the valye0.38 atK=1.
cluster can be estimated agN~r/s. Figure 5 shows the The robustness of the complete condensation suggests
dependence of the mean cluster size, obtained using this eat it might persist in some form even in heterogeneous
timate, on the coupling intensity. populations. To test this, we have carried out simulations
Thus, the condensation transition leading to complete muwhere the elements forming the population were not identi-
tual synchronization of the whole population can be de-cal. Heterogeneity was introduced by replacing the constant
scribed as follows. The condensate appearing above the traparameterc in Egs. (4) by random numbers; that were
sition point includes only a small fraction of elements, souniformly distributed inside the segmdmt— o ,c+ o]. Al-
that the order parameteris small in this region. The con- ternatively, the same procedure was applied to the parameter
densed elements are distributed over a few small clusters that Starting from random initial conditions, a compact cloud
represent nuclei of the condensed state. The rest of the popaf elements was again formed in the heterogeneous case.
lation has asynchronous dynamics, though it is already eddowever, the cloud did not shrink until it transformed into a
sentially influenced by global coupling between the ele-single point. Instead, after an initial decrese, its radR(g)
ments, as evidenced by the histogram shown in Fig).2 fluctuated around a certain mean value. Figure 6 shows the
When the coupling intensity is increased, the number of clusmean radiugR) as a function of dispersions, or o, for
ters rapidly grows and reaches a maximum of about 10 aK=0.2. We see that in a wide interval of heterogeneities the
K=~0.03. At the same time, the mean size of clusters slowlynean radius of the cloud is approximately linear proportional
increases up to a few tens. After that a sudden desynchronie the dispersion. Moreover, even for relatively large disper-
zation atk~0.04 is observed. The number of clusters dropssions this radius is significantly smaller that the characteristic
down and, in some realizations, synchronization is everttractor diameteD, representing the maximal possible pair
completely los{Fig. 3). The few persisting clusters are small distance ak =0 [i.e., D~25, cf. Fig. 2a)]. Therefore, even
in this region. Under further increase of the global couplingthough the states of all elements are no longer identical
intensity, synchronization is gained back. Now, both thethe complete condensation is destroyeteir variations re-

2
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FIG. 6. Radius(R) of the cloud formed by a heterogeneous
population as function of dispersions, (empty circle$ and o FIG. 7. Dependence of the order parameten the population
(filled circles at K=0.2. sizeN at a fixed intensity of global coupling=0.08. Averaging
over 20 independent realizations; bars indicate statistical dispersion
of data.

main small. The elements form a little cloud whose center
moves along a definite trajectory.

This behavior can pe understood _by analyzing the effectas peen analytically shown above onlykat 1, persists in
of weak heterogeneities at the maximal strength of global, \\ige range of coupling intensities. Moreover, this depen-
couplingK =1. If the parametec is replaced byt;=c+ACi  yance is found even for relatively large dispersions, where
W'th random variationdc;, the population dynamics is de- the paramete® would not be small. This behavior is appar-
scribed by ently a consequence of a strong compression provided in the
entire interval of complete condensation by global coupling.
Our analysis has been performed for a population com-
) prising 1000 chaotic Rssler oscillators. The question may
arise whether the statistical behavior found for a population
of this size is already characteristic for a limit of very large
systems. To answer it we have done a series of simulations

Hence, motion of each element is governed by linear equalith varying population sizes. Figure 7 shows the typical
tions of motion in the presence of global driving forcyTs depepplence of the order pgramgteof the condensgthn
and xz_. which are the same for all elements. Therefore transition on the total population sid& where each point is

deviationssz: from the alobal averaae obev the equation 'obtained by averaging over 20 independent realizations and
4 9 verag y quatl the intensity of global coupling is kept constamt=€0.08).

We see that a strong size dependence is characteristic for
9 ) , ,

relatively small populationsN<500). Starting from a popu-
If heterogeneities are weak, i.&¢;= 6; whereg is a small ~ lation size of abouN=1000, the dependence displays satu-
parameter, the last two terms in this equation have ofder rat|(_)n,_ Wlth_the remaining small variations lying within the
and can be neglected. Integrating the resulting linear equéstatistical dispersion range. Hence, the results of our study of

Xi=—Yi~7z,
yi=x+(@-1y+y,

zi:b_CiZi+XZ.

5Zi: _ngi_ACiZ_ACi 5Zi+ACi 5Zi.

tion, we obtain a population with 1000 oscillators might already be represen-
tative for the asymptotic behavior in the infinite-size limit
” — N—. The condensation transition has been studied above
6zi(t)=60¢; | exp—cT)z(t—7)d7. 10 } ) . . .
(H=04 fo K-cnz(t-ndr (10 for a particular kind of chaotic oscillator and for a certain
o _ o form of global coupling. We have, however, checked that
Considering the behavior of other deviatiodis; and dy;,  similar results are also obtained when a differéwector” )

one can similarly show that they are also proportional toform of global coupling is used. This suggests that observed
Ac;=6¢;. This means that the radiy®) of the population  giatistical properties may be typical for various large popu-

cloud depends aRR)~ 6 on the heterogeneity strength. Note |4tions of globally coupled chaotic oscillators undergoing a
also that in this case all deviations are scaling identical, i.e.,qndensation transition.

for example,6z;(t) = 6£;Q(t) where the functiorQ(t) is the ]

same for any elemert The same results are obtained when Financial support from FundagioAntorchas, Argentina,

weak random variations of the parameteare considered. and from Alexander von Humboldt-Stiftung, Germany, is
The simulations have revealed that the linear dependenagratefully acknowledged. D.H.Z. wishes to thank the Fritz

of the mean radiugR) on the dispersions, and o, that  Haber Institute for hospitality during his stay in Berlin.
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