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Loss of synchronization in lasers via parameter degradation
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We have found a general scaling law that describes the loss of forced synchronization in single-mode lasers.
The degrading parameters are the corresponding cavity frequencies and the atomic frequencies of the synchro-
nizing lasers. The scaling is general in the sense that it does not depend on the laser operation regime or
whether the laser belongs to class classB, or classC. [S1063-651X98)00302-X]

PACS numbgs): 05.45:+b, 42.55f

[. INTRODUCTION be underlined that, upon unidirectional synchronization of
the lasers, the coupling term, which appears in the slave laser
Synchronization of systems whose dynamics is periodic ignodel, tends to zero regardless of the laser operation regime.
an important and well-known effect in physics, engineering,Here the coupling term is proportional to the difference be-
and other disciplined1,2]. Recently, synchronization of tween the electric fields of the coupled lasers.
chaos[3] has aroused much interest due to its potential ap- For the sake of illustration, it is useful to compare the
plications[2,4]. In this article we discuss a general scalingclassical Landau theory of second-order phase transitions
law that describes the way forcédnidirectiona) synchroni-  [12] with the loss of synchronization as studied in this paper.
zation is lost in single-mode lasers as the synchronizindn the classical Landau theory of second-order phase transi-
(mastey and synchronizedslave lasers differ more and tions, a system undergoes a transition from one ptstag
more in their cavity and atomic frequencies. These lasers cai® another one in a continuous way. Here the symmetry of
operate in periodic, chaotic, or steady-state regimes. one phase is higher than that of the other and it is precisely
It is said that two dynamical systems synchronize if thethe symmetry of the system that changes discontinuously at
distance between their states converges to zero as time gode transition poinf12]. As a result, it is possible to find that
to infinity [1,2]. This refers to periodic as well as chaotic the degree of ordering, a quantity that depends on the state
synchronization. Synchronization of two laser systems i®f the system, depends, as a power law, on the difference
closely related to laser injection lockiri®]. The latter has between the current value of the external parameter and its
received a great deal of attention since the invention of theritical value, where the valug=0 corresponds to the most
laser[5]. Here the basic idea is to inject a weak monochro-symmetric phas¢12]. Along similar lines we can consider
matic continuous wave laser signal into the resonant cavityhe loss of unidirectional synchronization. The state -
of another laser such that the natural lasing frequencies dect) synchronization is characterized by the symmetry rela-
both lasers are within a certain locking range. As a result, théion F{M2s*®= F(slave) - \yheref(mastersiavelsiang for the vari-
lasing frequency of the laser undergoing the injection beables of the master and slave lasers, respectively. As long as
comes equal to that of the injected laser signal. the corresponding frequencies of the master and slave lasers
Recently, within the context of chaotic synchronization,are different, this symmetry is broken. Here the degree of
different ways to achieve synchronization in laser systemsrdering z is a suitable distance between the states of both
have been carried oil6—11]. In Ref.[6] a model consisting lasers, while the difference between the external parameter
of three semiconductor waveguide lasers is considerednd its critical value is given by a suitable distance between
These lasers are coupled by means of their overlapping evéhe frequencies of both lasers in parameter space. hjere
nescent fields. Synchronization between two chaotidepends, as a power law, on the distance between the fre-
Nd:YAG lasers(where YAG denotes yttrium aluminum gar- quencies of the lasers, as we will see. For lasers in a steady
nep was achieved experimentally by the overlap of the int-state, we demonstrate this property analytically and numeri-
racavity laser field§7]. Synchronization between two cha- cally, while for lasers in a time-dependent state, this is
otic diode resonators has been experimentally carried out byhown numerically. Here alsp=0 corresponds to the sym-
applying a generalization of the occasional proportionalmetric state, i.e., the state @erfec) synchronization.
feedback schemf8]. On the other hand, two CQchaotic In contrast, there are interesting studies dealing with loss
lasers with saturable absorber were synchronized by injecbf synchronization in blowout bifurcationsl3]. Here, as-
ing the radiation of the master GQaser into the saturable suming always that the parameters of the synchronizing sys-
absorber of the slave GQaser[9]. In Ref.[10] a regime of tems are the same, it was shown that there is an interval of
recurrent synchronization is found in GQaser systems, the coupling constafg) where synchronization is lo$t3].
which is further generalized for different dynamical systemsAt the boundary of this interval, synchronous chaotic behav-
Another particular case in a system of two lasers consistior is interrupted by bursts of desynchronized mofit8]. In
in optically coupling one laser to the other while leaving onecontrast to Ref[13], the system that we study here can be
of the lasers uncoupldd.1]. This way of synchronization is considered as made of two stages. First, both the master and
called forced(unidirectional synchronization. This is pre- slave lasers reach the state(pérfec} synchronization since
cisely the coupling scheme considered in this article. It musthe (unidirectional coupling constant has been made large
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enough. At this stage, all the parameters of both lasers amherey=6,,— 6s and = w,,— ws. The master oscillatat,,,

the same, with the exception of the coupling that affects onlydescribes a regular oscillation with,,=1 and d#é,,/dt

the slave laser. Second, ong@eerfec} synchronization is =w,,. The onset of this regular oscillation occurs as a result
reached, we allow a progressive smooth variation of the paef a supercritical Hopf bifurcation. The locking range is de-
rameters of the lasers. In the present case, we change tfined by the equationly/dt=0 [2,5]. Locking between the
cavity frequency, the atomic frequency, or both frequenciesnaster and slave oscillators is lost through a saddle-node
of the master laser, leaving those of the slave laser unbifurcation [2]. As a result, within the locking range, the
changed. We can change the frequencies of the slave lasgnstantaneoysfrequency of the slave oscillator becomes the
leaving those of the master laser unchanged. That yields trgame as that of the masteép/dt=w,,. Within the locking

same result. rangep,, and p will differ from each other unles=0 and
Finally, it is worth mentioning that for chaotic maps and ,=0.
flows, Ref.[14] studies the degradatidiioss of synchroni- Let us first consider the cage=0 and 5<I'. From Eq.

zation as the parameters of the synchronizing systems di2) we obtain
verge. This study14] used the scheme of Pecora and Carroll
[3], which is impossible to implement in lasers to reach syn- )

chronization via optical coupling7]. In Ref. [14] mutual SNX=1 P

correlation dimensions were found to scale with the differ-

ence between corresponding parameters of the synchronizing 2 4

systems. In this study, no comment was made regarding the cosy~1+z|Fp| +O(p")>0. ()

universality of the scaling exponents for a given mutual cor-
relation dimensiorf14]. In contrast, our model is based on Next, in order to find the steady-state solution forwe
the forced synchronization scheme, which can be impleinsert in Eq.(2) the approximate expression for cgsand

mented naturally in laser systems via all-optical methodsexpandp in series ofe=3(5/I")?<1. As a result, we obtain
The power-law scaling found in the extended Lorenz model

is general for all the laser operation regimes and all the dif- r I?(4-T)
ferent relaxation rates of this laser model. The latter defines p=lto et (2+1)° €
the different types of lasers.

This article is divided as follows. In Sec. Il we study the lossTherefore, ash undergoes small changes within the full lock-
of synchronization in unidirectionally coupled Hopf oscilla- ing range, the power-law scaling feris given by

tors. In Sec. lll we describe the unidirectionally coupled ex-

tended Lorenz model. In Sec. IV we consider the loss of In|p—pm[~=21In[5|+C, (5)

synchronization in the extended Lorenz model. In Sec. V we , . L
give the conclusions. whereC is a constant. Thus the scaling exponent is given by

v=2. Equation(5) describes the loss of forced synchroniza-
tion in the coupled Hopf oscillators.

Now let us consider the case<1 and §=0. Here the
locking condition is always satisfied and=0. The equation
for p is given by

2+0(€%. (4)

II. LOSS OF SYNCHRONIZATION
IN UNIDIRECTIONALLY COUPLED
HOPF OSCILLATORS

Before considering the loss of synchronization in the ex- 1 )
tended Lorenz model, we will present a simple model that p=1+ 5 wtOu). (6)
illustrates how the above-mentioned power-law arises. The
model is given by Thus, asu undergoes small changgs; p,~ x and the ex-
iz ponent isv=1. We will show below that the exponenis
kK 2 =1,2 considered above are related as well to the scaling of
at - 2 |Zd T )+ T Zi= 2. @ amplitudes, i.e., bounded variables of the extended Lorenz

model when the corresponding atomic and cavity frequencies
Here Z, and Z, are the complex amplitudes of the Hopf of the lasers differ from each other.
oscillators, wher&=m,s andl =s,m, respectivelym ands We underline that Eq(1) can be derived from the ex-
stand for the master and slave oscillators, respectively. Heréended Lorenz model upon adiabatic elimination of the
without loss of generality,a,=1+iw, and a;=1+pu atomic variables and neglecting the frequency pulling and
+iwg. To consider only unidirectional coupling, we need to pushing coefficientd15]. The Hopf oscillator model de-
set '=I' and I',=0. Using the new variablesZ,, scribes the transversally and longitudinally monomode
=pm explb,) and Zs=p exp(d), we obtain for the slave He-Ne laser oscillating at 3.38m [16].
oscillator

IIl. THE MODEL OF THE LASER SYSTEM

d
d—f=p(l+ﬂ—p2)+r(pm CoOsx—p), We will assume that the laser systems are coupled simi-

larly to the Hopf oscillators, i.e., unidirectionally. This way

of coupling in lasers can be realized with all-optical methods
d_X: S—T Pm sin @) [5,7,11,17. When (perfec} synchronization between both
dt p X master and slave lasers is reached, the synchronizaibonr
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pling) term vanishes and the equations of both lasers become WhenI'=0, the master and slave lasers are uncoupled.

the same. The dynamics of these systems has been studied extensively
We now introduce the model for the laser system where @ previous articled18,19. In this case, at a steady state

finite detuning between the atomic transition frequeng\of 6(t)=0 and the frequency), of the reference frame is

the resonant levels and the cavity frequengyis present.  given by the well-known relation

The model is known as the extended Lorenz m¢d8|19.

It is based upon the usual field-matter equations for two-level _wcy twgk

atoms in a resonant cavif)20]. The slave laser system is oy +k ©)

described by the set of equations

For the sake of definition, we have d@tequal to the lasing

frequency at a steady stafk, in both the master and slave

lasers. We define A,=(w)—w)/y, and A=(w,

—wy)/y, as the detunings in each laser system. If in the

dE
Tp = ~KE+i(Q-w)E~gP+Tk(En—E),

dp _ extended Lorenz model the relaxation rates of the atomic

TR P+i(Q—wy)P—gEN, variables differ substantially, particular cases can be derived
from this model that have been used to describe important

dN lasers such as CONd:YAG, and He-Ne laser0].

gt ~9(PE*+EP")—yN+»Q, (7

IV. DEGRADATION OF SYNCHRONIZATION IN LASERS

whereE is the complex amplitude of the electric field, is WITH DIFFERENT DYNAMICAL REGIMES

the polarization, andN is the population difference of the A. Steady-state operation
upper and lower resonant energy levéls, is the amplitude
of the electric field of the master lasey.is the field-matter
coupling constan(a real numberand(} is the frequency of
the laser reference fram@. is the incoherent pump and the
relaxation rate ofN is written asy. A similar equation holds
for the master laser, except tHat=0 and the atomic transi-
tion frequencyw]' of the resonant levels and the cavity fre-
quencyw;' can be different from those of the slave laser.

By increasing the pum® from a state withp,,=0, the
extended Lorenz model undergoes eventually a transcritical
bifurcation and reach a steady state with nonzero amplitude
pm# 0. When the instantaneous laser frequena®s,/dt
anddé/dt are the same, this defines, as before, the locking
range for lasers at a steady state, idy/dt=0. Here we
consider two casesa) the case when the cavity frequencies
of both lasers are the same, i.e,=w{', and(b) the case

If we write the electric field and polarization of the slave \yhen the atomic frequencies of both lasers are the same, i.e.
and master lasers in polar coordinates=p exp(6), P 0= oM
a a "

;;f/ee)l(:sqgr)’eganz;iggseégggnr%eand Pm=tm expl), the When w.=w{', we obtain, from the locking condition

dy/dt=0,
dp
i~ B Br cos 5+ BT (pry cOSx—p), BT 7 sin(x) = fﬁ[? Sin( o)~ sin(@] (10
m
du JBoN s Subtracting the equation faté/dt from that fordé,,/dt in
dt - H* BpN cos s, the laser model and making use of Eg0) yields
ds £ Pl Pm VB No 2 sin(8,)—N 2 sin(8) | +e=0,  (11)
EE—— P J— _ m m '
n A+ B p+NMsm5+,BF 5 sinx, o “
dN wheree= w)'— w,, |€|<1, is the perturbation parameter. In
——=4\Bup cos5— yN+yQ, a steady state, it is possible to represent the difference be-
dt tween the variables, i.e., amplitudes of the master and slave
lasers, as a Taylor expansion in termseafver a range of
dx we— W] JB JO JU Pm . small detuningss. Therefore, the linear term coefficient of
at -y, VB o o0 Sm— N S|—Br " SMX- i these Taylor expansions is in general different from zero
(8) in order to satisfy Eq(11) and as a result the scaling expo-
nent is one.
Here B=kly, , A=(wa—wc)/y, , andd=6—14. t, p, and On the other hand, whew,= ], we obtain from the

w have been renormalized as-y,t, p—gp/\ky,, and locking conditiondy/dt=0

u—g2ulky, , respectively.N and Q are renormalized in

the same way ag. The subscript or superscriph labels Pm . _ Mm . Mmoo

variables or parameters of the master laser. The phase AT P sin(x) =B Pm SiN(Om) = P sin(9) | +e, (12
fluences the dynamics of the slave laser model via the equa-

tion for y=6,,— 6. The same equation holds for the masterwhere this timee=w.— (', |€|<1. It is easy to check that
laser, except that therE=0 and the phas#,, does not the equalitys,,= é holds. This is shown by using the equa-
influence the dynamics of the master laser model. tion for du/dt=0 and the equation



2728 CARLOS L. PANDO L. 57

0 ; T T T T only o} changes. In the case]'= w,, the numerical calcu-

: 5 ‘ : ‘ 1 lation of the scaling exponent gives=2.0+0.01, while in
the casen('= w, it is given by r=1.0+0.01. The scaling for
the difference between other corresponding variables of the
master and slave lasers, such as that of the populaligns
—N or that of the laser intensity of the electric figli,,
—E|?, shows the same scaling exponentd gf | .

logyg | In— 1T

B. Class<C laser operation

When the solution in the Lorenz model is time dependent,
‘ : : ; ; the locking conditiondy/dt=0 no longer holds since the
-16 L L ! L L parameters of the master and slave lasers are different. How-

-6 -5 -4 -3 2 -1 0 ever, the same scaling law discussed above is found here for
logyy | Am— A suitable averages of the difference between the variables, i.e.,

amplitudes of the master and slave lasers, as we will see
FIG. 1. Plot of logg|l m—1| versus logg A, — Al. The solid line  pelow. In a classC laser, the variables of the system that
stands for the case; = w,, while the dashed line stands for the take into account the population inversion and polarization
ca}sew’c*‘: w¢, Here the laser operates at steady state with a CoUplay an important role in the dynamics of the system
pling constant”=2.0. [20,18,19. For the parameterg=2.0, y=0.25, andQ
=15.0, the dynamics and bifurcations of this system have
been extensively studied in Refd8,19. Here we set the
detuningA=0.6. As before, the control parameter As, .
For these parameters the master oscillator describes chaotic
which was obtained similarly to Eq11). By representing motion[19].
the other variables of the slave laser as a Taylor expansion in Before we proceed to describe loss of synchronization
terms ofe and keeping the linear terms in E@), we obtain  when the dynamics is chaotic, we will consider the case of
(perfec} chaotic synchronization between the master and

VBING 2™ sin(s)—N 2 sine)| =0, (13
Mm M

(1+T)Bpy+ VB cog ) 1+ BT py[ 1—cog x) e *=0, slave lasers. When the frequencies of both lasers are the
same @;“,C:wa,c), in order to reach synchronization it is
VBN €08 8)p1+ s+ \Bpm COS N1 =0, required that the tendency for exponential separation of two

close trajectories, one of which belongs to the master laser
4\Bum cod 8)p1+4\Bpm 0L 8) w1~ YN1=0, (14  and the other to the slave laser, must be compensated by the
effect of coupling between the lasers. Mathematically, this
can be expressed by saying that the largest conditional
Lyapunov exponent must be negative in order to reach cha-
otic synchronizationf3,21]. In Fig. 2a) we can observe the
two largest conditional Lyapunov exponents as the coupling
constanf” increases. A’ .~0.25 the master and slave lasers
synchronize and as a result the maximum conditional
rI‘.yapunov exponent is negative. Another useful quantity to

wheree has been factored and, w,, andN, are the linear
term coefficients in the Taylor expansion. Sincis the per-
turbation parameter, from Ed12) it follows that x~e.
Therefore, in Eq(14) the factor 1-cosy~x’~€. As a re-
sult, the linear equation for the coefficients, w,, andN;
becomes homogeneous since terms of oedme not present
in this equation. Since the determinant of this linear equatio

is given by study synchronization is the distance between the states of
Ap2.2 both lasers. This can be observed in Figh)2 where the
4B°pm COS (5[ 14T + Ny COS(Jy)] dependence of lgg1—m| and log, o versus the coupling
—yB[1+T =N, cog(5,)], (15  constantl’ is plotted.m is the slope in the linear regression
of the set of points|(,,l) and o is its deviation. Wherj1
which is in general different from zero, the coefficiepts, —m|—0 ando—0 (perfec} synchronization sets in, i.e., a

wn1, andNy are zero. If the Taylor expansion in E@) takes  straight line with slope one appears in the plahg,(). Both
into account quadratic terms €2, the resulting linear equa- log;o/1—m| and log, o show a bound of order 13 due to
tion for the coefficients of the quadratic terms will be inho- roundoff errors forl'’>I".~0.25. Once the regime dper-
mogeneous due precisely to the facterdosy. Thatis why  fect) chaotic synchronization is reached for a given set of
in the casew,= w} the scaling exponent is 2. parameters, we start to changf'— w., wy —w,, or both.
Next we will verify numerically the power-law scaling We consider now the case]'=w,. In Fig. 3a we can
found above. The steady state is defined by the set of pararapserve the scaling of lggl—m| as a function of
etersf=2.0, y=0.25,Q=2.0, andA=0.6. The control pa- |og,|A,,—A|=log;d ™ w,| for different values of the
rameter isAp. In Fig. 1 we can observe the scaling of the coypling constant” such thatl’'>T";~0.25. In this figure,
intensity difference between the master and slave lager \hen loggAm—A|~—6 or less, scaling is not observed due
—1 with respect to the mismatch,—A. 1,=p5 andl  again to roundoff errors. A related scaling can be observed in
= p?. The solid line stands for the casg'= w, where only  Fig. 3b) for the plot of logy o versus loggAm—A]
the cavity frequencyw,' changes. On the other hand, the =log,wf'— w.. m and o are calculated from the linear
dashed line represents the case witi= w. and therefore regression of the set of points.(,1). Notice thato accounts
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0.1 0.25 0.4 r 0.55 0.7 0.85 1 14 A i } i 1
-6 -5 -4 -3 -2 -1 0
FIG. 2. Here we consider the case wit= w, andw('= w, for logjg | A — A |
the classc laser studied in the texta) The first two conditional o ) )
Lyapunov exponents versus the coupling constantb) log;q1 FIG. 3. Here the case,=w, is considered. The parameters

—m| and log oo versus the coupling constalt Herem and o are correspond to the class-laser. (a) Plot of log1—m| versus
the slope and its deviation, respectively, in the linear regression o9 Am— A for different coupling constant=0.5, 1.0, 1.5, and
the set of pointsi(,,1). Here and below the solid and dashed lines 2-0-(b) Same aga), but for the corresponding deviatian Here the
correspond to the first and second plot, respectively. slopem and its deviatior are calculated as in Fig.(1.

as p, is zero. Second, the time average of the difference
for a statistical difference with respect to some optimal fit-between the corresponding amplitudes of the master and

ting straight line with slopen. This suggests that we can find slave lasers must have a dependence on the frequencies mis-
the same scaling in lqg(1,—1)| and logg o(I,,—1) versus match that is the same as that of the steady-state case, as long

109y Am—A| Where(l ,—1) ando (I ,—1) stand for the sta- a@Sx is bounded. As a result, the scaling of the difference of
tistical average and standard deviation, respectively, of théhe corresponding averaged amplitudes gives exponents
set of pointsl ,— 1. This is confirmed by Figs.(d) and 4b)  =1.2 as explained above.
for different values of the coupling constalit for which I’
>T".. We underline that other averages such those of
F(pms#m»Om:Nm) —F(p,u,8,N), where F is a suitable The parameters of the cla€s-laser model considered
function, obey the same scaling law. above have been used to describe the dynamics of the NH
In Figs. 3 and 4 we have studied the casf=w, for  far-infrared single-mode las¢d8]. ClassB lasers are sys-
which the scaling exponent is=2.0+0.01. In contrast, the tems such as the G@nd Nd:YAG lasers. Models for these
casewy'=w, has as scaling exponent=1.0+0.01. This is lasers have been derived as particular cases from the ex-
shown in Fig. 5 for log, o versus logg A ,— A|, whereo is tended Lorenz mod€]20]. These models are obtained by
the deviation of the corresponding slopein the linear re- €liminating adiabatically the atomic polarizatioR. For
gression of the set of pointd {,!). A similar picture is classAlasers such as the He-Ne lasers, the polarizafton
obtained for the scaling of lggl—m|. The solid and and inversionN can be adiabatically eliminated in the ex-
dashed lines correspond to different coupling constBrfee ~ tended Lorenz mod¢R0].
whichI'’>T.. The classBlaser model considered here has the set of
Here we give a qualitative explanation to understand whyparametergg=0.0578,y=0.0084,A=0.6, and a modulated
the amplitude scaling in the steady-state case still persists igxternal pumpQ=1.4X[1.0+m sin(wt)]. For m=0.25 and
the chaotic regime or, as we will see, in the periodic regimew=10"% (which corresponds to 400 khizthe laser shows
One must consider two facts. First, the time average fronthaotic behavior. For the case'— w,=0, the scaling expo-
time derivatives of bounded quantities, i.e., amplitudes, suchent is given byr=2.0=0.01. On the other hand, for the

C. ClassB and classA laser operation
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]
w

.
=]

'
©

logyy |[< I, — I >|

-12

10{_;;1” ‘ Am — A ‘ l()gm ‘ Am -A |

FIG. 5. Here the case{'=w, is considered. The parameters
correspond to those of the claGslaser. Plot of logys versus
l09;dA—Al. The solid line stands fdf = 1.0 and the dashed line
for '=1.5. ¢ is the deviation of the best-fitting slope in the linear
regression of the set of points,(,1).

'
w

of—w.=d cos . (16)

logy, o(l, — I)
&

The corresponding scaling exponents are found by changing
d while keeping# constant. With this notation, the cases
ol'—w,=0 and wl'— w.=0 correspond toy=0,7 and i
=/2,3m/2, respectively.

The scaling exponentsy have been obtained for
l0910/{I,m—1)| with respect tod. For the steady-state case,
l0g19/{I »—1)| degenerates into lqg! ,—1|.

Here the parameters of the steady state in the Lorenz
model are the same as that of Sec. IV A. In Fig. 6 we see that
the scaling exponent ig=1.0=0.01 everywhere with the
exception of the vicinity ofy=0 or 7. In Fig. 7(a) we show
the slopes corresponding to values @ffor which ¢»—0. In
this figure, lineq1) and(2) stand forl'=1.0 and 2.0, respec-

m ) tively, both for >0, while lines(3) and (4) stand forl"
casew; — =0, »=1.0-0.01. A classB laser with modu-  —1 ¢ and 2.0, respectively, both fgr<0. There is no sym-
lated losses shows the same scaling laws as the previowf,etry between the positive and negative values:oHow-
cases. Pump-modulated and loss-modulated lasers have besjer, as observed in Fig(hy) in this vicinity of ¢, the devia-
studied theoretically and experimentally,22]. tion o of the slopev is relatively large. This means that in an

For the clas#A laser model considered here, we have cho-interval of this vicinity, we cannot characterize the depen-
sen the parameter8=0.0578, y=0.2, andQ=1.4X[1.0  dence of logyl,—!| on the considered values af as
+m sin(wt)]. Herem=0.1 andw=0.1. Under pump modu-
lation, the oscillations in this system are only periodic since T T T T T T
the phase space of the system becomes two dimensional. For : ' ‘ : 5
both casesw)'=w, and o'=w., the same scaling expo-
nentsy found previously hold also here.

¢
©

l(’gm l Am - A |

FIG. 4. Here the parameters are the same as in Fig) ®lot of
10g1g/{1m—1)| versus logyA,—Al. (b) Plot of log,go(I ,—1) ver-
sus loggAp—Al. (I,—1) ando (1 ,—1) are the mean and standard
deviations, respectively, of the set of ddtg—I|. The solid line
corresponds td'= 1.0, while the dashed line stands 6 2.0.

D. Simultaneous variation of the cavity frequency

and atomic frequency 1.5

In the previous subsections we have considered strictly
only two cases, namelyp]'=w, and w{'=w.. Different
laser operation regimes, which belong to the same case, have
the same scaling exponent. Now we will approach (fer- . ;
fect) synchronized state by reducing simultaneously the finite . :
detuningsw] — w,#0 and w!'— w.#0 towards zero. This b
can be carried out by introducing the variableandd:

m . FIG. 6. Plot of the scaling coefficientversus the angle (de-
wy —wa=d sin ¢, fined in the text This plot corresponds to the steady-state case.
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0.5 1 i !

0.4 T

0.1

6 -4
log,g | Y |

FIG. 7. (a) Plot of the slope coefficient versus logg /| for the
steady-state case. Lin€s and(2) correspond tay>0 and lineg3)
and (4) to ¢<0. Lines(1) and (3) are calculated fol’=1.0 and

lines(2) and(4) for I'=2.0. (b) Same aga), but for the deviationr
of the slopev.

a certain straight line since consideration of quadratic term

of d is necessary. Here E(l1) is replaced by

JB Nm%sir‘((Sm)—N %sin(é) +d sin(y)=0.
) (17

2731

IV A, the linear term coefficient in these Taylor expansions
is in general different from zero as long &s-0. That is, as
y—0 and for small enough values df the linear term will
be the relevant term. However, dsbhecomes larger tha,
the quadratic term becomes more and more relevant. This is
precisely what we see in Fig. 7, whereand o have been
calculated for 108<d=10"2. Within this interval ofd and
for intermediate values ofs the dependence of lggl ,— ||
ond is neither a straight linév=1 ando=0) nor a para-
bolic curve(vr=2 ando=0) since both terms are relevant.
This is the reason for the relative large valuedn this in-
terval of v.

A similar situation takes place when the trajectory of the
laser is chaotic. Here the parameters are the same as those of

Sec. IV B. Here the picture is qualitatively the same as that
of Figs. 6, 71a), and 71b).

V. CONCLUSIONS

In this article we have studied the progressive loss of
(perfec} synchronization as the frequencies of the master
and slave lasers differ from each other. We have found that
the dependence of the distance or average distance between
the corresponding amplitudes of both lasers with respect to a
small difference in the frequencies between the lasers is
ruled by a scaling law. The scaling exponent is generically
v=1.0; however, the scaling exponent becomes2.0 in
the casav)' — w,= 0. The generality of the scaling exponents
for coupled single-mode lasers, which are described by the
extended Lorenz model, refers to the fact that the scaling
exponents are the same regardless of the type of (akess
A, classB, or classC) and the laser operation regirteteady
state, periodic, or chaobic

It would be interesting to study further the loss of syn-
chronization via parameter degradation in other important
laser models such as those of multimode semiconductor and

Qber lasers. The extension of these studies to spatially ex-
tended laser systems may also be of interest due to the im-
portance in the control of the spatial laser characteristics.
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