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Similarities and differences between Bose and Fermi gases
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The purported “equivalence” between noninteracting Bose and Fermi gases in two dimensions is critically
examined. Staying away from the thermodynamic limit, an exact calculation reveals some subtle, but signifi-
cant, differences between the properties of the two systems that arise characteristically from the statistics
obeyed by them. At the same time, certain physical quantities show differences that are not so subtle, in that
they remain present even when the thermodynamic limit is taken. The role played by the spatial dimensionality
d is also elucidated and it turns out that there is nothing fundamentally special about dimensionality 2; if the
single-particle energy spectrum operating in the systems is of thedonpd, then the equivalence in question
arises when and only wheth=s. [S1063-651X98)11903-7

PACS numbsgs): 05.30—d, 05.70.Fh, 68.35.Md, 82.65.Dp

[. INTRODUCTION (i) How far does the “equivalence” of the two systems
f go? In other words, do statistics not matter at all, insofar as
the observed properties of the two systems are concerned?

To answer these and other allied questions is the main
purpose of the present paper.

In Sec. Il we consider an ideal gas of bosons and side by
side an ideal gas of fermions, with energy spectremp?,
Ronfined to ad-dimensional “box” of volumeV. If d is
regarded as a continuous variaklies s is), then we can
readily see that the aforementioned equivalence between the
two gases arises when and only wheéss. Thus, if the
single-particle energy is proportional to thesquareof the

In a recent paper Legl] has resurrected an old result o
May [2], according to which the specific he@y(N,T) of an
ideal Bose gas inwo dimensions is identical to that of a
corresponding Fermi gas for al, V, andT; of course,V
here denotes tharea of the two-dimensional domain to
which each gas is confined. This remarkable result stem
from the fact that the fugacitgg of the Bose gas and the
fugacity zr of the Fermi gas in dimensionality 2 are mutually
related through the Euler transformation

Zg= Z , (1a) momentump (as is often the casethen the equivalence
1+27¢ arises ad=2; if, on the other hand, the energy-momentum
relationship idinear (as, for instance, happens in the case of
! 1b an extreme relativistic gasthen the equivalence arisesdat
ZF_l—zB’ 1 _q Clearly, there is nothing fundamentally special about
dimensionality 2.
which, through a simpléyet tricky) calculation[3], shows To answer questioitii) we must consider systems of a
that the internal energiddg andU of the two gases differ finite size, for if the thermodynamic limit is invoked right
by a mere constant, i.e., from the beginning, then the phase transition in the Bose gas
will set in strictly, and critically, aff=0 K. However, in a
Ug(N,V,T)=Ug(N,V,T)—Ug(N,V,0). (2) finite-sized systenjwith d=s=2), the same transition will

be nonsingularand will be spread over eange of tempera-
Differentiating Eq.(2) with respect toT, at constantN and  tures whose width is determined by the precise valueNof

V, we readily obtain the result in question, viz., Only then would one expect to see the real distinction be-
tween the Bose gas and the Fermi gas. The desired calcula-
[Cy(N,T)]g=[Cy(N,T)]¢. (3)  tion, under periodic boundary conditions, is carried out in the
Appendix and the main features of the results so obtained are
Struck by the equality of the two specific heats, one isdiscussed in Sec. Ill. In Sec. IV we examine questiidin

tempted to conclude that the two gases, which are normallgnd show that there are several properties of the two systems
so different, become thermodynamically equivalent wherthat are significantly different from one another, not only
confined to two dimensions. This raises the following queswhenN andV are finite but also wheN andV approach

tions. infinity.
(i) What is so special about dimensionality 2?
(i) As T approaches absolute zero, the Bose gas will ul- Il. SYSTEMS WITH ARBITRARY d AND s
timately undergo a phase transition, transferring all its par-
ticles from the excited statdg>0) to asingle state(e=0). Following the customary procedure, in which the

The Fermi gas, on the other hand, will settle into a sea oBummations-over-states appearing in the expressions for the
states, capped by the Fermi eneegyN/V). One wonders if various thermodynamic quantities pertaining to a given sys-
this vital difference between the two systems would have anyem are replaced by integrations, we obtain for a
repercussions at finite temperatures. d-dimensional Bose gas with energy spectramAp®
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x92(d/s)! Vv de where\ (=h/y27mkT) is the mean thermal wavelength of
= (/2] hoATs (kT)**gq/s(z8) (4 the particles and. the side of the box, assumed square, to
which the gas is confined. At low temperatures, the fugacity
and Zg is very close to unity, so Eq$10) and (11) assume the

asymptotic formg4]
7(d/s)! d Vv

U= — axas (KDY g 46 41(28),  (5) L2 (1
(d/i2)! s h®A%s s NNF In - (12)
whereV is the “volume” of the region to which the gas is
confined,g,(zg) are the Bose-Einstein functions, and the and
other symbols have their usual meanings. The corresponding s )
expressions for the Fermi gas are U~— kT 77_+ aln a—a (13)
N 6 '
n¥%(dis)! VvV os
= (@)1 hiATs (KT)“™f 4/s(Z¢) (6)  wherea=—Inzs. Clearly, a at low temperatures is much
less than unity and its temperature dependence is given by
and [see Eq(12)]
dr2 ~exp(—\%/1?) (14)
x2(d/s)! d Vv a~exp(—\/19),
U= (k) Y9 g 41(26), (7)

< hdadls
(di2)} s h°A wherel [=L/\/N] is the mean interparticle distance in the

system. Now the number of particles in the ground state

wheref (zg) are the(rival) Fermi-Dirac functions. Equating (e=0) is given by

expressiong4) and (6), we obtain an implicit relationship
between the fugacitiezs andzg of the two gases, viz., 1 1

1
No=2= =~ (15)
9as(z8) = fars(zr)- (8) zz'-1 e*-1 a

For the special casé=s, this relationship assumes the Substituting Eq(14) into Eq.(15), we get
simple form
No~exp(A?/1?). (16)
—In(1-zg)=In(1+zp), (9
Unfortunately, expression(16) becomes prohibitively
which leads to the Euler transformatig¢h) and in turn to large asT—0, in the sense that, while the total number of
Egs.(2) and(3). particlesN, on an average, is held fixed, the numidgy,
Now, keeping in mind the basic mathematical propertiesnstead of approachinyl, continues to rise unchecked and
of the functionsg,(z) and f,(z), we readily see that the ultimately approaches infinity. The reason for this fallacious
aforementioned simplification and the resulting “equiva- behavior lies in the fact that, because of the initial replace-
lence” between the two systems arise only wiikas and  ment of the summation-over-states by an integral, @q)
not at any other value ofl. If s=2, this will happen in and, along with it, Eq(12) do notinclude particles in the
dimensionality 2; ifs=1, it will happen in dimensionality 1. condensate and account only for particles in the normal com-
Thus, while there is nothing fundamentally special about diponent of the system. Accordingly, the expresgibf) for «
mensionality 2, the cas=s in the present context is indeed and the resulting expressidi6) for Ny obtained with the
exceptional. help of these equations cannot be relied upon.
We will now address questiofii) and, for this purpose, In fact, at low temperatures, whese<1, even the normal
will examine critically the low-temperature behavior of the component is not given correctly by expressi@g) because,
two systems. For a concrete study, we will takes=2 and, as it stands, this expression is singularanwhereas the

for obvious reasons, will s&t=L2 andA=1/2m. original sum that determines the population of this compo-
nent, viz.,
Il. LOW-TEMPERATURE BEHAVIOR
OF THE GIVEN SYSTEMS WITH d=s=2 Ne= ZO (ea+ﬁa_ 1)—1, (17)
&
We start with the more intriguing case of the Bose gas for
which Egs.(4) and(5) now become is strictly analytic ina; the true singularity of the problem
5 rests only in thes=0 term, of the full sum folN, which is

(10) absent from the partial surfl7) and stands separately in
expression(15) for Ny. For the same reason, we must not
succumb to the temptation of simply adding expressids)

and to Eg.(12) and hoping that by doing so all will be web].

According to our experience, the proper way to handle
this sort of problem is to carry out an exact evaluation of the
full sum

N= 32 91(zg)

L2
U= 7 KTay(zo), ap
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a singletemperature T=0) and with it the phenomenon of

N=2 (e*"Pe—1)"1 (18 Bose-Einstein condensation in two dimensions becomes im-
° perceptible.
in a manner that accounts accurately bwth N, and Ny. The specific heaCy(N,T) of the Bose gas, which hap-

Such an evaluation is carried out in the Appendix and théened to be the main focus of both May and Lee, can be
desired result, fow<1, is given by Eq(A14), which now obtained from Eq(A18) of the Appendix. We get

determinesy as a function ofN, L, andT; note that, accord- 1 21 2 P
ing to this expression, the parameterindeed tends to the —Cy(N,T)= T Na+T _a)
correct limit LN asT—0. Oncew is known, Eq.(15) deter- k 3 A IT )L
minesNg, the number of particles in the condensate, while 9 P
Ne, the number of particles in the normal component, is — 5 |2a+T _) (24)
given by A IT L
2 2 2 S, 1 Now, by Egs.(15) and (23),
Ne:F{'”(F r2c-T 3 2y 7717 R e
== TV a~Ngl~[N(1-1)]"*. (25)
2 mal? 7.7 ;
(y :T’I = \/I1+2>0), (19 Equation(24) then takes the form
. : 1 w2 L2 1 2—t I?
C being a constant approximately equal t®.16095; we — C(N,T)~— —5———5———5 3 (263
observe that expressiqn9), unlike Eq.(12), is strictly ana- 3 A7 (1-9° (1-D7A
lytic in . We are now in a position to examine the region of 5
phase transition in the system that, for a fiiteis noncriti- _m N t— 3 In N
cal. 3 InN m?(1-1)2 N
Now the onset of phase transition in a Bose system is
characterized by the fact that bdify andN,, are of ordem. 3t(2-t) 1
In the present case, this requires that C m(1-0ZN (26b)
azo(l) (208 By contrast, no such corrections arise in the corresponding
N/’ case of the Fermi gas and we have simply the main term
w?L?/3\?, which is directly proportional td, as it should
and be for a Fermi gas. So, once again, we notice a subtle differ-
\2 ence between the two systems in the temperature regime
=7 =0(In N); (20p (2D

IV. DENSITY FLUCTUATIONS, ISOTHERMAL

accordingly, the parametg? in the transition region would COMPRESSIBILITY. ETC.

be O(1/InN). In view of Eqg. (20b), we introduce a new

temperature parameter defined by In this section we consider those quantities that are sig-
) ) nificantly different for the two systems, not only whahis
tEI_ In N= 2amkl In N|T=0(1) (21) finite but also in the limitN—. We start with the isother-
2 2 . . . L .
A h mal compressibility«t, which is intimately related with the

. . , density fluctuations in the systejd|
Equation(19) then gives for the normal fractiof,

TAM2
N, In(t=* In N)+2|C]| 12 PR ﬂ) _V @an :_L(ﬁ) :
fe= =41 NN —Oli-n/ | @2 VaP/ kT (n) (N)%KT | da/
(27)
and hence for the condensate fractign — )
note that the quantitil here is the same as has been denoted
Ng In(t™* In N)+2|C] 1\2 by the simpler symboN in the previous sections, a notation
fo= = (1~ D+t NN nNl we will continue to use in the following. If we substitute the
(23) bulk expression10) into Eq. (27), we obtain for the Bose
gas
valid for 0<t<1, provided that bottN/In N and(1—t)In N
are much greater than unifg]. _27m N N 28
We thus see that in the temperature regime defined by Eq. KT =22 9o(Zg) n= v L2 (28

(21), whereT~1/In N, the Bose gas experiences a macro-

scopic accumulation of particles in the ground stat®. No  In the light of the discussion carried out in Sec. lll, the fore-
such accumulation is possible in the Fermi gas. Clearly, thgoing result would be valid only whel,<<N. In particular,
two systems differ radically in this temperature regime. Un-when the temperature of the gas is sufficiently high, its
fortunately, the limitN— o makes this regime collapse onto fugacity would be much less than unity; in that limit,
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Jo(zg) =~zg~n\2, with the result thaik; would approach its As T—0, the adiabatic compressibility of the Bose gas di-
classical value DHkT. At low temperatures, however, where verges while that of the Fermi gas approaches the limiting
No=O(N), we must use expressio\14) instead of Egq. value
(10); the quantityx; then turns out to be 5
1 L 1
L2 |7L% & 1 1 (KS)OZZ_PO: _2U0: neg’ (36)
=——|—7 ——— s+ —5|.
KT= 2T | N2 } zz—m 2 772 Q2 (29
' which is identical to &7)o. Once again, the two systems
Since the parametgr in this region is much less than unity, differ considerably.

the primed sum in Eq(29) may be approximated by Finally, in view of the thermodynamic relatio65/C,,
. =«kt1/kg, We infer that while the specific hea®, of the
1 3 1 2G two systems are asymptotically equal, the specific h€ats
= o 14 372 B0 will be quite different. We indeed find that while the ratio

Cp/C,y, for the Fermi gas at low temperatures tends to unity,
hereG is Catalan’s constant, which is approximately equalfor the Bose gas one gets
to 0.915 966. In view of Eq915) and(19), expression(29)
may be written as Cp wy (LYkDF§ #°L*5 «® N

L — ~ 2.1

, , Cy re ANTAKT. B2 3 inNTUEL

~L_ g fe +f2 (32) (37
KTZKT |73 {In(LAn)2 " o)

the inequality arises from the conditions on the varialtles
Clearly, the most dominant contribution to the isothermaland 1—t stated after Eqg22) and (23).
compressibility of, and to the density fluctuations in, the

Bose gas comes from the condensate fractipriWe may as ACKNOWLEDGMENT
well write
Financial support from the Natural Sciences and Engi-
=~ (LZKT) T3, (32 neering Research Council of Canada is gratefully acknowl-
edged.

which shows that, in the temperature regime defined by Eq.
(21), the isothermal compressibility of the Bose gas is di-

rectly proportional to the size of the system and its tempera-
ture dependence is determined by the quarﬁﬁty'. We note In this appendix we evaluate the syd8) for a Bose gas
that results similar to Eq:32) have been encountered earlier confined to a square box of side. Assuming periodic

in the study of other finite-sized, Bose-Einstein systems unboundary conditions, we have

dergoing a phase transitid8].

APPENDIX

The isothermal compressibility of the Fermi gas, on the . . - o
other hand, is given by the bulk expression N=2 (ev*FPe—1)"1=3 le e JeTlbe (AL
27m 2mm  zp
KT:W fO(ZF) = W 1+—ZF, (33) where

2
which holds atall temperatures. For comparison with the

Bose gas, we observe that whEns sufficiently low(so that ~2mlL?
ze becomes much greater than upjtyhe isothermal com- i i ,
pressibility of the Fermi gas approaches the limiting value N view of Eq.(A2), the sum in Eq(A1) may be written as

(n?+nd) (N ,=0,+1,+2,...). (A2

2mm 1 * . - . 2 2 th 7T)\2
R s e — = —Ja —jw(ni+n3) — =
(k1o h2nZ = neg’ (34 N jzle nl,zz—xe 17 M2 (W >miZ- 2]
(A3)

whereer (=nh?/27m) is the Fermi energy of the gas in two

dimensions. The contrast between expressi8&sand (34) where\ (=h/27mkT) is the mean thermal wavelength of

is indeed striking. o o the particles. Making use of the identity
Next we consider the adiabatic compressibility of the

two systems. For this we recall that in the case of noninter- o0 2=

acting systems the constancy $fand N implies the con- 2 e = = 2 e~ a2 (a>0), (A4)
stancy of the fugacity; with d=s, this further implies the n=-e ajl a=-=

constancy of the produatT and of the ratioP/T2. Conse- o ) ) )

quently, which is a special case of the Poisson summation formula,

we render expressiofA3) into the form

1 (r?V) 1 (aVIdT)g 1-VIT 1
Ks=— o | ==| = =

VP V(PlaT)s V 2PIT 2P N=S eja(i) S e adin. (ap)
(39 =1 W/ qy = =o
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For obvious reasons, we separatedhke0 term from the rest
and write

KEDN e~ AT ay)iw .

=1 ] arEe 1
(AB)

the primed summation here implies that the term wvgthO
is excluded.
Now the summation in the first part of EGA6) leads to

the Bose-Einstein functiog;(«), while the same summa-
tion in the second part can be handled with the helgaof
generalization ofthe Poisson summation formula, namely

(9],
b 0
2 M= 2

(b>a).
(A7)

b .
f()e*™dj+3f(a)+3f(b)
a

Applying formula (A7), with a=0 andb=o0, to the second
part of expressiofA6) and noting that botli(0) andf ()
vanish[because on one hand the parameigiO, while on
the other hand the variable{+q3) in this sum is positive
definite], we get

2
gl(a)+2q12§_:7 r_ch Ko \/W )1/2

(d=Va1+0d3>0), (A8)

(a 2ir

whereK(z) is a modified Bessel function. In most practical

situations, the parameter (= wA?/L?)<1. The terms with
r#0 in expressior(A8) are thenO(e ), wherec is of

2701

C=vy—In =~—0.160 95, (A11)

{r@y
2

v being the well-known Euler constant. It seems important to

point out here that formuldA10) is valid for all y>0,

though it is particularly useful foy<1. Substituting(A10)

into Eq. (A9), we obtain the desired result

_ (a)+ = +In Yl ac
N2 Ol y2 p
Y <
- T T |2(y2+772|2) ' (Alz)

For a<1, which marks the onset of Bose-Einstein con-
densation in the system, we may use the approximation

gi(a)=—In(l—e “)=~—In «a (A13)
and combine it with the term Igf/), thus canceling the
nonanalytic terms containing dn Equation(A12) then takes

the form

L2 L2 VR 1 1
N=xz|nxz) +2C W.HZ,@ 22+ 729 | a
(A14)

It will be noted that the condensal,, which is essentially
equal to 1&, emerges naturally from the term/y? in Eq.
(A12). The normal componer, is now clearly identifiable
in Eq. (A14).

Following the same procedure, we obtain for the internal
energy of the gas

UZE (ea+,88_1)—18

order unity; such terms are clearly negligible. We may there-

fore retain the term witlr=0 only and write

L2
=32 gl(a)+2 2

77_1/2 a,l/2|_ )
d12=—*

o(ZVQ)} (y: —
(A9)

Note that, in arriving at the foregoing result, no errors of

2 ©

L
=2 KT go(a) —2a 2

d12=—*

Ko(2ya)|. (Al5)

Combining Eqs(A9) and (A15), we obtain a rather simple
result, viz.,

2

order \/L)" are committed; in that sense, the above evalu-

ation may be regarded as “exact.”
It has been shown previous[{0] that
*© 2

/ T 1.1y
> Ko(2yQ)= 5.2+ 5 In| | +C

O12=—%

27 | o 12(y2+ 7°1?)

(I1=\I$+15>0), (A10)

where

L
= 3z kT[g,(a)+ agi(a)]—NakT. (Al6)
For o<1,
772
Oo(a@)+agq(a)= ?-f-a/ na—a+---
71_2
+a(—In a+'-')%€—a
(A17)
Equation(A16) then takes the form
U= T NakT— 5 kT A18
=6 a2 KT NakT- 5z akT. (AL
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