
PHYSICAL REVIEW E MARCH 1998VOLUME 57, NUMBER 3
Similarities and differences between Bose and Fermi gases

R. K. Pathria
Department of Physics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

~Received 17 November 1997!

The purported ‘‘equivalence’’ between noninteracting Bose and Fermi gases in two dimensions is critically
examined. Staying away from the thermodynamic limit, an exact calculation reveals some subtle, but signifi-
cant, differences between the properties of the two systems that arise characteristically from the statistics
obeyed by them. At the same time, certain physical quantities show differences that are not so subtle, in that
they remain present even when the thermodynamic limit is taken. The role played by the spatial dimensionality
d is also elucidated and it turns out that there is nothing fundamentally special about dimensionality 2; if the
single-particle energy spectrum operating in the systems is of the form«}ps, then the equivalence in question
arises when and only whend5s. @S1063-651X~98!11903-7#

PACS number~s!: 05.30.2d, 05.70.Fh, 68.35.Md, 82.65.Dp
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I. INTRODUCTION

In a recent paper Lee@1# has resurrected an old result
May @2#, according to which the specific heatCV(N,T) of an
ideal Bose gas intwo dimensions is identical to that of
corresponding Fermi gas for allN, V, andT; of course,V
here denotes thearea of the two-dimensional domain to
which each gas is confined. This remarkable result ste
from the fact that the fugacityzB of the Bose gas and th
fugacityzF of the Fermi gas in dimensionality 2 are mutua
related through the Euler transformation

zB5
zF

11zF
, ~1a!

zF5
zB

12zB
, ~1b!

which, through a simple~yet tricky! calculation@3#, shows
that the internal energiesUB andUF of the two gases differ
by a mere constant, i.e.,

UB~N,V,T!5UF~N,V,T!2UF~N,V,0!. ~2!

Differentiating Eq.~2! with respect toT, at constantN and
V, we readily obtain the result in question, viz.,

@CV~N,T!#B5@CV~N,T!#F . ~3!

Struck by the equality of the two specific heats, one
tempted to conclude that the two gases, which are norm
so different, become thermodynamically equivalent wh
confined to two dimensions. This raises the following qu
tions.

~i! What is so special about dimensionality 2?
~ii ! As T approaches absolute zero, the Bose gas will

timately undergo a phase transition, transferring all its p
ticles from the excited states~«.0! to a singlestate~«50!.
The Fermi gas, on the other hand, will settle into a sea
states, capped by the Fermi energy«F(N/V). One wonders if
this vital difference between the two systems would have
repercussions at finite temperatures.
571063-651X/98/57~3!/2697~6!/$15.00
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~iii ! How far does the ‘‘equivalence’’ of the two system
go? In other words, do statistics not matter at all, insofar
the observed properties of the two systems are concerne

To answer these and other allied questions is the m
purpose of the present paper.

In Sec. II we consider an ideal gas of bosons and side
side an ideal gas of fermions, with energy spectrume}ps,
confined to ad-dimensional ‘‘box’’ of volumeV. If d is
regarded as a continuous variable~as s is!, then we can
readily see that the aforementioned equivalence between
two gases arises when and only whend5s. Thus, if the
single-particle energy« is proportional to thesquareof the
momentump ~as is often the case!, then the equivalence
arises atd52; if, on the other hand, the energy-momentu
relationship islinear ~as, for instance, happens in the case
an extreme relativistic gas!, then the equivalence arises atd
51. Clearly, there is nothing fundamentally special abo
dimensionality 2.

To answer question~ii ! we must consider systems of
finite size, for if the thermodynamic limit is invoked righ
from the beginning, then the phase transition in the Bose
will set in strictly, and critically, atT50 K. However, in a
finite-sized system~with d5s52!, the same transition will
be nonsingularand will be spread over arange of tempera-
tures, whose width is determined by the precise value ofN.
Only then would one expect to see the real distinction
tween the Bose gas and the Fermi gas. The desired calc
tion, under periodic boundary conditions, is carried out in
Appendix and the main features of the results so obtained
discussed in Sec. III. In Sec. IV we examine question~iii !
and show that there are several properties of the two syst
that are significantly different from one another, not on
when N and V are finite but also whenN and V approach
infinity.

II. SYSTEMS WITH ARBITRARY d AND s

Following the customary procedure, in which th
summations-over-states appearing in the expressions fo
various thermodynamic quantities pertaining to a given s
tem are replaced by integrations, we obtain for
d-dimensional Bose gas with energy spectrum«5Aps
2697 © 1998 The American Physical Society
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N5
pd/2~d/s!!

~d/2!!

V

hdAd/s ~kT!d/sgd/s~zB! ~4!

and

U5
pd/2~d/s!!

~d/2!!

d

s

V

hdAd/s ~kT!~d/s!11g~d/s!11~zB!, ~5!

whereV is the ‘‘volume’’ of the region to which the gas i
confined,gn(zB) are the Bose-Einstein functions, and t
other symbols have their usual meanings. The correspon
expressions for the Fermi gas are

N5
pd/2~d/s!!

~d/2!!

V

hdAd/s ~kT!d/sf d/s~zF! ~6!

and

U5
pd/2~d/s!!

~d/2!!

d

s

V

hdAd/s ~kT!~d/s!11f ~d/s!11~zF!, ~7!

wheref n(zF) are the~rival! Fermi-Dirac functions. Equating
expressions~4! and ~6!, we obtain an implicit relationship
between the fugacitieszB andzF of the two gases, viz.,

gd/s~zB!5 f d/s~zF!. ~8!

For the special cased5s, this relationship assumes th
simple form

2 ln~12zB!5 ln~11zF!, ~9!

which leads to the Euler transformation~1! and in turn to
Eqs.~2! and ~3!.

Now, keeping in mind the basic mathematical propert
of the functionsgn(z) and f n(z), we readily see that the
aforementioned simplification and the resulting ‘‘equiv
lence’’ between the two systems arise only whend5s and
not at any other value ofd. If s52, this will happen in
dimensionality 2; ifs51, it will happen in dimensionality 1
Thus, while there is nothing fundamentally special about
mensionality 2, the cased5s in the present context is indee
exceptional.

We will now address question~ii ! and, for this purpose
will examine critically the low-temperature behavior of th
two systems. For a concrete study, we will taked5s52 and,
for obvious reasons, will setV5L2 andA51/2m.

III. LOW-TEMPERATURE BEHAVIOR
OF THE GIVEN SYSTEMS WITH d5s52

We start with the more intriguing case of the Bose gas
which Eqs.~4! and ~5! now become

N5
L2

l2 g1~zB! ~10!

and

U5
L2

l2 kTg2~zB!, ~11!
ng

s

i-

r

wherel (5h/A2pmkT) is the mean thermal wavelength o
the particles andL the side of the box, assumed square,
which the gas is confined. At low temperatures, the fugac
zB is very close to unity, so Eqs.~10! and ~11! assume the
asymptotic forms@4#

N'
L2

l2 lnS 1

a D ~12!

and

U'
L2

l2 kTFp2

6
1a ln a2a G , ~13!

wherea52 ln zB . Clearly, a at low temperatures is muc
less than unity and its temperature dependence is given
@see Eq.~12!#

a'exp~2l2/ l 2!, ~14!

where l @5L/AN# is the mean interparticle distance in th
system. Now the number of particles in the ground st
~«50! is given by

N05
1

zB
2121

5
1

ea21
'

1

a
. ~15!

Substituting Eq.~14! into Eq. ~15!, we get

N0'exp~l2/ l 2!. ~16!

Unfortunately, expression~16! becomes prohibitively
large as T→0, in the sense that, while the total number
particlesN, on an average, is held fixed, the numberN0 ,
instead of approachingN, continues to rise unchecked an
ultimately approaches infinity. The reason for this fallacio
behavior lies in the fact that, because of the initial repla
ment of the summation-over-states by an integral, Eq.~10!
and, along with it, Eq.~12! do not include particles in the
condensate and account only for particles in the normal c
ponent of the system. Accordingly, the expression~14! for a
and the resulting expression~16! for N0 obtained with the
help of these equations cannot be relied upon.

In fact, at low temperatures, wherea!1, even the normal
component is not given correctly by expression~12! because,
as it stands, this expression is singular ina, whereas the
original sum that determines the population of this comp
nent, viz.,

Ne5 (
«.0

~ea1b«21!21, ~17!

is strictly analytic ina; the true singularity of the problem
rests only in the«50 term, of the full sum forN, which is
absent from the partial sum~17! and stands separately i
expression~15! for N0 . For the same reason, we must n
succumb to the temptation of simply adding expression~15!
to Eq. ~12! and hoping that by doing so all will be well@5#.

According to our experience, the proper way to han
this sort of problem is to carry out an exact evaluation of
full sum
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N5(
«

~ea1b«21!21 ~18!

in a manner that accounts accurately forboth Ne and N0 .
Such an evaluation is carried out in the Appendix and
desired result, fora!1, is given by Eq.~A14!, which now
determinesa as a function ofN, L, andT; note that, accord-
ing to this expression, the parametera indeed tends to the
correct limit 1/N asT→0. Oncea is known, Eq.~15! deter-
minesN0 , the number of particles in the condensate, wh
Ne , the number of particles in the normal component,
given by

Ne5
L2

l2 F lnS L2

l2D12C2
y2

p (
l 1,252`

`

8
1

l 2~y21p2l 2!G
S y25

paL2

l2 ,l 5Al 1
212

2.0D , ~19!

C being a constant approximately equal to20.160 95; we
observe that expression~19!, unlike Eq.~12!, is strictly ana-
lytic in a. We are now in a position to examine the region
phase transition in the system that, for a finiteN, is noncriti-
cal.

Now the onset of phase transition in a Bose system
characterized by the fact that bothN0 andNe are of orderN.
In the present case, this requires that

a5OS 1

ND , ~20a!

and

l2

l 2 5O~ ln N!; ~20b!

accordingly, the parametery2 in the transition region would
be O(1/ln N). In view of Eq. ~20b!, we introduce a new
temperature parametert, defined by

t[
l 2

l2 ln N5F2pmkl2

h2 ln NGT5O~1!. ~21!

Equation~19! then gives for the normal fractionf e

f e[
Ne

N
5tF12

ln~ t21 ln N!12uCu
ln N

2OS 1

ln ND 2G ~22!

and hence for the condensate fractionf 0

f 0[
N0

N
5~12t !1tF ln~ t21 ln N!12uCu

ln N
1OS 1

ln ND 2G ,
~23!

valid for 0,t,1, provided that bothtN/ ln N and~12t)ln N
are much greater than unity@6#.

We thus see that in the temperature regime defined by
~21!, whereT;1/ln N, the Bose gas experiences a mac
scopic accumulation of particles in the ground state«50. No
such accumulation is possible in the Fermi gas. Clearly,
two systems differ radically in this temperature regime. U
fortunately, the limitN→` makes this regime collapse on
e

s

f

is

q.
-

e
-

a single temperature (T50) and with it the phenomenon o
Bose-Einstein condensation in two dimensions becomes
perceptible.

The specific heatCV(N,T) of the Bose gas, which hap
pened to be the main focus of both May and Lee, can
obtained from Eq.~A18! of the Appendix. We get

1

k
CV~N,T!5

p2

3

L2

l22NFa1TS ]a

]TD
N,L

G
2

L2

l2 F2a1TS ]a

]TD
N,L

G . ~24!

Now, by Eqs.~15! and ~23!,

a'N0
21'@N~12t !#21 . ~25!

Equation~24! then takes the form

1

k
CV~N,T!'

p2

3

L2

l22
1

~12t !22
22t

~12t !2

l 2

l2 ~26a!

5
p2

3

N

ln N F t2
3

p2~12t !2

ln N

N

2
3t~22t !

p2~12t !2

1

N
. ~26b!

By contrast, no such corrections arise in the correspond
case of the Fermi gas and we have simply the main te
p2L2/3l2, which is directly proportional toT, as it should
be for a Fermi gas. So, once again, we notice a subtle dif
ence between the two systems in the temperature reg
~21!.

IV. DENSITY FLUCTUATIONS, ISOTHERMAL
COMPRESSIBILITY, ETC.

In this section we consider those quantities that are
nificantly different for the two systems, not only whenN is
finite but also in the limitN→`. We start with the isother-
mal compressibilitykT , which is intimately related with the
density fluctuations in the system@7#

kT52
1

V S ]V

]PD
T

5
V

kT

~Dn!2

~ n̄!2 52
V

~N̄!2kT
S ]N̄

]a D
T,V

;

~27!

note that the quantityN̄ here is the same as has been deno
by the simpler symbolN in the previous sections, a notatio
we will continue to use in the following. If we substitute th
bulk expression~10! into Eq. ~27!, we obtain for the Bose
gas

kT5
2pm

h2n2 g0~zB! S n5
N

V
5

N

L2D . ~28!

In the light of the discussion carried out in Sec. III, the for
going result would be valid only whenN0!N. In particular,
when the temperature of the gas is sufficiently high,
fugacity would be much less than unity; in that limi
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g0(zB)'zB'nl2, with the result thatkT would approach its
classical value 1/nkT. At low temperatures, however, wher
N05O(N), we must use expression~A14! instead of Eq.
~10!; the quantitykT then turns out to be

kT5
L2

N2kT Fp2L4

l4 (
l 1,252`

`

8
1

~y21p2l 2!2 1
1

a2G . ~29!

Since the parametery2 in this region is much less than unity
the primed sum in Eq.~29! may be approximated by

1

p4 (
l 1,252`

`

8
1

l 4 5
2G

3p2 ; ~30!

hereG is Catalan’s constant, which is approximately equ
to 0.915 966. In view of Eqs.~15! and~19!, expression~29!
may be written as

kT'
L2

kT F2G

3

f e
2

$ ln~L2/l2!%2 1 f 0
2G . ~31!

Clearly, the most dominant contribution to the isotherm
compressibility of, and to the density fluctuations in, t
Bose gas comes from the condensate fractionf 0 . We may as
well write

kT'~L2/kT! f 0
2, ~32!

which shows that, in the temperature regime defined by
~21!, the isothermal compressibility of the Bose gas is
rectly proportional to the size of the system and its tempe
ture dependence is determined by the quantityf 0

2/T. We note
that results similar to Eq.~32! have been encountered earli
in the study of other finite-sized, Bose-Einstein systems
dergoing a phase transition@8#.

The isothermal compressibility of the Fermi gas, on t
other hand, is given by the bulk expression

kT5
2pm

h2n2 f 0~zF!5
2pm

h2n2

zF

11zF
, ~33!

which holds atall temperatures. For comparison with th
Bose gas, we observe that whenT is sufficiently low~so that
zF becomes much greater than unity!, the isothermal com-
pressibility of the Fermi gas approaches the limiting valu

~kT!05
2pm

h2n2 5
1

n«F
, ~34!

where«F (5nh2/2pm) is the Fermi energy of the gas in tw
dimensions. The contrast between expressions~32! and ~34!
is indeed striking.

Next we consider the adiabatic compressibilitykS of the
two systems. For this we recall that in the case of nonin
acting systems the constancy ofS and N implies the con-
stancy of the fugacityz; with d5s, this further implies the
constancy of the productVT and of the ratioP/T2. Conse-
quently,

kS52
1

V S ]V

]PD
S

52
1

V

~]V/]T!S

~]P/]T!S
52

1

V

2V/T

2P/T
5

1

2P
.

~35!
l

l

q.
-
-

-

e

r-

As T→0, the adiabatic compressibility of the Bose gas
verges while that of the Fermi gas approaches the limit
value

~kS!05
1

2P0
5

L2

2U0
5

1

n«F
, ~36!

which is identical to (kT)0 . Once again, the two system
differ considerably.

Finally, in view of the thermodynamic relationCP /CV
5kT /kS , we infer that while the specific heatsCV of the
two systems are asymptotically equal, the specific heatsCP
will be quite different. We indeed find that while the rat
CP /CV for the Fermi gas at low temperatures tends to un
for the Bose gas one gets

CP

CV
5

kT

kS
'

~L2/kT! f 0
2

3l2/p2kT
5

p2L2f 0
2

3l2 '
p2

3

N

ln N
t~12t !2@1;

~37!

the inequality arises from the conditions on the variablet
and 12t stated after Eqs.~22! and ~23!.
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APPENDIX

In this appendix we evaluate the sum~18! for a Bose gas
confined to a square box of sideL. Assuming periodic
boundary conditions, we have

N5(
«

~ea1b«21!215(
«

(
j 51

`

e2 j a2 j b«, ~A1!

where

«5
h2

2mL2 ~n1
21n2

2! ~n1,250,61,62, . . . !. ~A2!

In view of Eq. ~A2!, the sum in Eq.~A1! may be written as

N5(
j 51

`

e2 j a (
n1,252`

`

e2 jw~n1
2
1n2

2
! S w5

bh2

2mL2 5
pl2

L2 D ,

~A3!

wherel (5h/A2pmkT) is the mean thermal wavelength o
the particles. Making use of the identity

(
n52`

`

e2an2
5S p

a D 1/2

(
q52`

`

e2p2q2/a ~a.0!, ~A4!

which is a special case of the Poisson summation form
we render expression~A3! into the form

N5(
j 51

`

e2 j aS p

jw D (
q1,252`

`

e2p2~q1
2
1q2

2
!/ jw. ~A5!
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For obvious reasons, we separate theq50 term from the rest
and write

N5
p

w F (
j 51

`
e2 j a

j
1 (

q1,252`

`

8 (
j 51

`
e2 j a

j
e2p2~q1

2
1q2

2
!/ jwG ;

~A6!

the primed summation here implies that the term withq50
is excluded.

Now the summation in the first part of Eq.~A6! leads to
the Bose-Einstein functiong1(a), while the same summa
tion in the second part can be handled with the help o~a
generalization of! the Poisson summation formula, name
@9#,

(
j 5a

b

f ~ j !5 (
r 52`

` E
a

b

f ~ j !e2p ir j d j1 1
2 f ~a!1 1

2 f ~b! ~b.a!.

~A7!

Applying formula~A7!, with a50 andb5`, to the second
part of expression~A6! and noting that bothf (0) and f (`)
vanish @because on one hand the parametera.0, while on
the other hand the variable (q1

21q2
2) in this sum is positive

definite#, we get

N5
p

w Fg1~a!12 (
q1,252`

`

8 (
r 52`

`

K0S 2pq

Aw
~a22p ir !1/2D G

~q5Aq1
21q2

2.0!, ~A8!

whereK0(z) is a modified Bessel function. In most practic
situations, the parameterw (5pl2/L2)!1. The terms with
rÞ0 in expression~A8! are thenO(e2cL/l), wherec is of
order unity; such terms are clearly negligible. We may the
fore retain the term withr 50 only and write

N5
L2

l2 Fg1~a!12 (
q1,252`

`

8 K0~2yq!G S y5
p1/2a1/2L

l D .

~A9!

Note that, in arriving at the foregoing result, no errors
order (l/L)n are committed; in that sense, the above eva
ation may be regarded as ‘‘exact.’’

It has been shown previously@10# that

(
q1,252`

`

8 K0~2yq!5
p

2y2 1
1

2
lnS y2

p D1C

2
y2

2p (
l 1,252`

`

8
1

l 2~y21p2l 2!

~ l 5Al 1
21 l 2

2.0!, ~A10!

where
-

f
-

C5g2 ln
$G~ 1

4 !%2

2p
.20.160 95, ~A11!

g being the well-known Euler constant. It seems importan
point out here that formula~A10! is valid for all y.0,
though it is particularly useful fory!1. Substituting~A10!
into Eq. ~A9!, we obtain the desired result

N5
L2

l2 Fg1~a!1
p

y2 1 lnS y2

p D 12C

2
y2

p (
l 1,252`

`

8
1

l 2~y21p2l 2!G . ~A12!

For a!1, which marks the onset of Bose-Einstein co
densation in the system, we may use the approximation

g1~a!52 ln~12e2a!'2 ln a ~A13!

and combine it with the term ln(y2/p), thus canceling the
nonanalytic terms containing lna. Equation~A12! then takes
the form

N5
L2

l2 F lnS L2

l2D12C2
y2

p (
l 1,252`

`

8
1

l 2~y21p2l 2!G1
1

a
.

~A14!

It will be noted that the condensateN0 , which is essentially
equal to 1/a, emerges naturally from the termp/y2 in Eq.
~A12!. The normal componentNe is now clearly identifiable
in Eq. ~A14!.

Following the same procedure, we obtain for the inter
energy of the gas

U5(
«

~ea1b«21!21«

5
L2

l2 kTFg2~a!22a (
q1,252`

`

8 K0~2yq!G . ~A15!

Combining Eqs.~A9! and ~A15!, we obtain a rather simple
result, viz.,

U5
L2

l2 kT@g2~a!1ag1~a!#2NakT. ~A16!

For a!1,

g2~a!1ag1~a!5S p2

6
1a ln a2a1••• D

1a~2 ln a1••• !'
p2

6
2a.

~A17!

Equation~A16! then takes the form

U5
p2

6

L2

l2 kT2NakT2
L2

l2 akT. ~A18!
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