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Large-q series expansion for the ground-state degeneracy of thepstate Potts antiferromagnet on
the (3-122) lattice
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We calculate the largg-series expansion for the ground-state degenefacgxponent of the ground-state
entropy per site of theg-state Potts antiferromagnet on the (2?) lattice, to orderO(y*?), wherey=1/(q
—1). We note a remarkable agreementQ¢y*®), between this series and a rigorous lower bound derived
recently.[S1063-651X98)09803-1

PACS numbse(s): 64.60.Cn, 75.10.Hk, 05.20y

I. INTRODUCTION Bakaev and co-workerfsl6], and work reported if10,11].
Related work on series expansions for the ground-state de-
Nonzero ground-state disorder and associated entropgeneracy of ice was done by Nadl&7].

S,#0, is an important subject in statistical mechanics. One Largeq series expansions of the respectiéA ,q) func-
physical example is provided by ice, for which the residualtions on various Archimedean lattices were computed in Ref.
molar entropy isSy=0.82+0.05 cal(K mole), i.e., S,/R  [11]. In particular, W(A,q) for A=(3-12%) was computed
=0.41+0.03, whereR=NayogKg [1,2]. A particularly simple  to O(y*d [11]. In the present paper we extend this series to
model exhibiting ground-state entropy without the complica-higher order, namely, t@(y®). Our main motivation is to
tion of frustration is theq-state Potts antiferromagnéF) check the accuracy of the lower bound W((3-12%),q)
[3,4] on a latticeA, for q=yx(A), wherey(A) denotes the given in[11]. It is interesting that this lower bound coincides
minimum number of colors necessary to color the vertices ofvith the first 19 terms, i.e., t®(y®), in the largeg series.
the lattice such that no two adjacent vertices have the sam@&e choose the lattica = (3-12?) as an illustrative example
color. This model has a deep connection with graph theory imf a heteropolygonal Archimedean lattice. The reader is re-
mathematics, since the zero-temperature partition function derred to Refs[9-11] for further background and references.
the above-mentioned-state Potts antiferromagnet on a lat-

tice A satisfiesZ(A,q,T=0)par=P(A,q), whereP(G,q) Il. LARGE- q SERIES EXPANSION
is the chromatic polynomig]5] expressing the number of . _ _
ways of coloring the vertices of a graghwith g colors such Before proceeding, we recall that an Archimedean lattice

that no two adjacent verticegonnected by a bond of the is defined as a uniform tiling of the plane by regular poly-
graph have the same color. Hence, the ground-state entrop§ons in which all vertices are equivaldnig]. Such a lattice
per site is given bySy/kg=INW(A,q), whereW(A,q), the s specified by the ordered sequence of polygons that one

ground-state degeneracy per site, is traverses in making a complete circuit around a vertex in a
given (say counterclockwigedirection. This is incorporated
W(A,q)= lim P(A,,q)"". (1.2)  in the mathematical notation for an Archimedean lattice
n—oo
Here, A, denotes am-vertex lattice of typeA with appro- A= ( H pi |, (2.1

priate(e.g., fre¢ boundary conditions. Since nontrivial exact

solutions for this function are known in only a very few . - Cac
cases(square lattice fo=3 [6], triangular lattice[7], and where in the above circuit, the notathnﬁ indicates that the

kagomelattice forq=3 [8,4]), it is important to exploit and "€gular polygorp; occurs contiguouslyg; times; it can also

extend general approximate methods that can be applied f#cur noncontiguously. We shall denaigs as the sum of

all cases. Such methods include rigorous upper and lowdhe @;'s over all of the occurrences of the givgm in the

bounds, larget series expansions, and Monte Carlo me‘-31__[:)rc_>duct_. Because the starting point is irrelevant, the symbol

surements. Recently, with R. Shrock, the present author studf invariant under cyclic permutations. The number of poly-

ied the ground-state entropy in antiferromagnetic Potts moddons of typep; per site is given by

els on various lattices and obtained further results with these

three method§9-11]. We derived a general lower bound on - Qs 2.2

W(A,q) [11] which applies to all Archimedean lattices and i p '

coincides to many orders with largeseries expansion of

this function. Previous largg- series expansions include The coordination number for an Archimedean latticeAis

works by Baker[12], Nagle[13,14], Kim and Enting[15], =3,a; s. In particular, for the (312?) lattice considered in
this paper, the number of triangles per sitepis=1/3, the
number of 12-gons per site [5,=1/6, and the coordination

*Electronic address: tsai@insti.physics.sunysb.edu number isA = 3. A section of this lattice is shown in Fig. 1.
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FIG. 1. Section of the (312%) Archimedean lattice.

A general upper bound on a chromatic polynomial for a
n-vertex graphG is P(G,q)<q". This yields the corre-
sponding upper boun?/({G},q)<q. Hence, as in our pre-
vious work[9—11], it is natural to define a reduced function
that has a finite limit ag]— oo,

W, ({G},a)=q~*'W({G},q).

When calculating larger Taylor series expansions folV
functions on regular lattices, it is most convenient to carr
this out for the related function

(2.3

W(A,q)

W(A,y)= m, (2.9

for which the largeg series can be written in the form

)

vV(A,y>=1+mZ:1 W my™ (2.5

with

1

= q—_l (2.6)

y

Our calculations of large- series expansion use the
method of Ref[14]. The chromatic polynomial is written as
the sum

(e—v)

(g—1)°

(q—1)F
q(Efn)

>

Ga=G

P(G,q)= —-1)° m(G,.q),

(2.7

whereE is the total number of edges of timevertex graph
G, m(G,,q) are weightd19] of weak subgraph&, of G,

ande andv are the numbers of edges and vertices, respe
tively, of G,. The summation is over all weak subgraphs

G,. The weight functiorm(G,,q) vanishes ifG, has any
vertices of degree one or @&, has a bridge. Another prop-
erty is thatm(G,,q) does not change under the insertion o
deletion of vertices of degree two i@,. Thus in the sum-
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FIG. 2. lllustration of star graphs with cyclomatic numhber
<7. (d) Gs is a graph withc=5, (b) G is derived fromGs by
omitting one edge between verticeandj, and(c) G¢ is the graph
with verticesi andj identified.(d) Gg is a graph withc=6 and(e)
G, hasc=7. Vertices of degree 2 are not shown.

formula. Referencgl4] gives the weights of all star graphs
with cyclomatic number less or equal to foua0].

Y The series expansion fonv((3-122),q) to O(y!d) in-
volves star graphs with cyclomatic number up to 7. The
graphs with cyclomatic number equal to 5, 6, and 7, which
enter in the series expansion to this order are shown in Figs.
2(a), 2(d), and Ze), respectively. To derive the weights of
these graphs, we use theorems Il and VII of R&#l]. Theo-
rem |l states that if a grap® consists of two piece&, and
G, that have just one vertex in common, its weight is given

by

1
Theorem VIl states that
1 ! n
m(G,q)=— am(G ,a4)+m(G",q), 2.9

whereG’ is derived fromG by omitting the edge between
two vertices, say andj, andG" is the graph with vertices
andj identified. As an example, consider the graghs G
and G¢ depicted in Figs. @), 2(b), and Zc). G¢ has an
articulation point and, using Eq2.8), we can write its
weight asm(GZ,q)=q 'm(P,q)m(G%,q), where P here
stands for polygon. The weights f& and G; are m(P,q)
=(q—1) and m(G{,q)=(q—1)(q—2)*q* [14]. Hence,
%Eq. (2.9 yields

1 1
m(Gs,q)=— am(Gé,Q)+m(G" q)= E(q_ 1)(a-2)*
(2.10

r

mation of weak subgraphs, one effectively has to consider

(connected and disconnecjexibgraphs with no vertices of Note that vertices of degree two have been omitted in Fig. 2.
degree one and without bridges. One also has to consider The weights of the graphs with higher cyclomatic num-
graphs with articulation points. Weight functiong G,,q) bers, shown in Figs. (@) and Ze), can be similarly deter-
are independent d& and satisfy a simple recursion relation mined to be
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Juy /_/"\\ Ay angles connected to a 12-gofiij) graphs composed of a
/ A / A o triangle connected to a 12-gon and two disconnected tri-
L I L. I L T angles, andiv) graphs formed by three triangles connected
S N t to a 12-gon and one disconnected triangle.

To O(y*"), other subgraphs ai@ graphs formed by six
triangles connected to a 12-gatii,) three disconnected tri-
angles and one 12-goiiii) two triangles connected to a
12-gon and two disconnected triangles, aid four tri-

, angles connected to a 12-gon and one disconnected triangle.
//\\ PANE AN To O(y*), further subgraphs aré) graphs formed by
/ 7 4 / ( / nine disconnected trianglefij) graphs formed by one tri-
k‘ ) L ; . angle connected to a 12-gon and three disconnected tri-
- T el anglessiii) graphs comprised of three triangles connected to
) © ) a 12-gon and two disconnected triangles, dn graphs
formed by five triangles connected to a 12-gon and one dis-

FIG. 3. Illlustration of some graphs that enter in the lagge- connected triangle.
series forW((3-12%),q). Graphs(a), (b), and(c) enter in series to To O(y*9), new subgraphs ar¢) graphs formed by four
O(y'?, while graphs(d), (e), and (f) contribute toO(y®®) and  disconnected triangles and one 12-g@in,graphs formed by
higher. two triangles connected to a 12-gon and three disconnected

triangles,(iii ) graphs formed by four triangles connected to a
1 12-gon and two disconnected triangléis;) graphs formed
m(Ge,0)=—(a—1)(q— 2)° (2.1) by six triangles connected to a 12-gon and one disconnected
q triangle, and(v) 20-gons.
To this order, we obtain

and
1 — 1 1 5 10 22
m(G-.q)=—(gq—1)(g—2)®, 21 192y y)=1— —y2_ —yA_ T \6__"\8_2%10
(G7.9) q6(q )(g—2) (212 W((3:12%).y)=1-3 5 > e A
respectively. 1, 154 ., 1 . 374 ,
The subgraphs which contribute to the serieOtg/*?) +5y - ? 18y gy
are (i) graphs formed byt disconnected triangles, whete
=1,2,...,6,(ii) polygons with 12 vertices (12-gonsas
shown in Fig. 8a), (iii) graphs formed by a triangle con- Loas 9355 S i 21505 4

=AY T Y T ey T o Y
nected to a 12-gon, as shown in Figéb)3and 3c). Let us 54 310 486 313

refer to the edge in the overlap between a triangle and a 9

12-gon as an internal edge. Internal edges can be part of the +——y194+ O(y?). (2.13

subgrapHas in Fig. 3c)] or not[as in Fig. 3b)]. 1458
Further subgraphs which contribute ®(y*®) are (i)

graphs formed by one 12-gon and one disconnected triangle The Jower bound of Refi11], namely,

and (i) graphs formed by two triangles connected to a

12-gon. In the latter case, one has to consider graphs with no _

internal edge$as in Fig. 3d)], one internal edggas in Fig. W((3-12%),y)=(1-y) B (1+yhHs (214

3(e)], and two internal edgdss in Fig. 3f)]. Moreover, one

has to consider all the distinguishable permutations in th

- : L . Qoincides with the first 19 terms of the series given in Eq.
positions of the two triangles. In the remaining of this paper,(z_w i.e., toO(y'®). This is remarkable and shows that this
when we refer tat triangles connected to 12-gons, we are N

. . ; (IS > ~lower bound is indeed a very accurate approximation to the
including all possible distinguishable permutations of the tri- ) — _ . .
angles and all cases whereinternal edges belong to the exact solution for th&V function. The lower b_ound first dif-
subgraph, withi =0,1, . . . f. fers from the largey expansion for the exadV function at

To O(y'¥) other subgraphs that enter in the series(@re ordery!% the Taylor series expansion of this lower bound
graphs formed by seven disconnected triangliés,graphs ~ gives — (5/729)y*° whereas the largg-series expansion of
formed by three triangles connected to a 12-gon, éingd W yields (719/1458)*°.
graphs formed by one triangle connected to a 12-gon and one It is interesting to note that the lowest ordenjirin which
disconnected triangle. the bound(2.14 differs from the series is an order in which

The series taD(y*®) includes(i) graphs formed by four subgraphs involving two adjacent 12-gons, i.e., 20-gons, first
triangles connected to a 12-gofi,) graphs formed by two contribute in the series expansion. If one were to calculate
triangles connected to a 12-gon and one disconnected trthe series expansion without considering the contribution of
angle, andiii) two disconnected triangles and one 12-gon. 20-gons taO(y'®), one would get a result that coincides with

To O(y?9), extra subgraphs ar@) graphs comprised of the coefficient of theD(y'®) term in the Taylor series of the
eight disconnected triangle&ij) graphs formed by five tri- bound(2.14).
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[l. CONCLUSIONS series expansions to high orders for other types of lattices.

We report on larget series expansion for the ground-
state degeneracy of the Potts antiferromagnet on the
(3-12%) lattice, to O(y9). It is remarkable that the lower | would like to thank Professor Robert Shrock for helpful
bound derived previously coincides with the first 19 terms ofcomments on the manuscript. This research was supported in
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