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Effect of static disorder and reactant segregation on theA+B—0 reaction
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We derive the long-time behavior of tihe+ B— 0 reaction in two dimensions, finding a universal exponent
and prefactor in the absence of disorder. Sufficiently singular disorder leadsubdiffusion-limited reaction
and a continuously variable decay exponent. Pattern matching between the reactant segregation and the disor-
der is not strong enough to affect the long-time de¢&L063-651X98)08503-1

PACS numbes): 82.20.Db, 05.40+j, 82.20.Mj

I. INTRODUCTION tion. In Sec. lll we map the master equation onto a field
theory using the coherent state representafihtil,13. In
The A+B—0 reaction shows quite different behavior Sec. IV we derive an exact, stochastic partial differential
from the A+ A— 0 reaction because of the distinguishability equation that can be used to analyze this reaction system. We
of A andB reactants. Ovchinnikov and Zeldovich, Toussaintstate the most natural form of the mean field theory, and
and Wilczek, and Kang and Redner first noticed theshow that it applies for both short and long times. In Sec. V
diffusion-controlled kinetics that can arise from reactant segwe analyze the long-time behavior of the field theory using
regation[1—-4]. Heuristic arguments predict that the concen-renormalization grougRG) theory, finding segregation of
tration decays from an initially random configuration aseactants into isolated domains. We match the RG flows to a

—d/a ; ; ; ;
Ca(t)~Cyt™ ™" in d dimensions fod<4 [1-4]. This scaling  resylt that is asymptotically exact in the diffusion-limited,
arises essentially from the competition between diffusion an%atching limit. Through this procedure we are able to deter-

randomness in the initially random reactant densities. Simuz,, -\ the universal exponent and prefac®y for the con-

l;:l.o?eStgg;e[sg,](;or'rg;n?gshr;fsssvzpealngeaAJEZ(T?ethfeorczgé Ofcentration decay. We confirm our results with numerical so-
fracﬁal’me d.ia(sée for example, Ref§6. 7). It turns out lutions of the exact, stochastic PDE’s for the concentration
' ' ' ' nDrofile. We then turn to the effect of disorder on the segre-

however, that two dimensions is the upper critical dimension’__. - . )
for this system, and so collective motions of the reactant§d2tion- For sufficiently singular disorder, the decay exponent

become important fod< 2. By the upper critical dimension, changes. We calculate the new exponen_t, V‘_'h'Ch. comes
we mean the dimension below which perturbation theory diSC/€ly from the fact that the reaction isubdiffusion lim-
verges at long wavelengths. Standard arguméitsthen. ited. We conclude with a discussion of our results in Sec. VI.
suggest that mean field theories such as the standard reaction

diffusion partial differential equation will fail in two dimen-

sions and below. The most important consequence of these Il. A+B—0 REACTION

collective effects, and what causes the standard theories to

fail, is renormalization of the effective, or apparent, reaction . . )
bp distinct types of reactantsjh and B, diffuse on a two-

rate. We will derive this natural renormalization of the effec- . ) .
tive rate from renormalization group arguments. Disorder irdimensional square lattice. When the reactants occupy the

the medium can also influence the reaction kinetics. Thé@me lattice site, they react with reaction rateThe reac-
most important effect is renormalization of the effective dif- tants do not interact other than through the reaction. The
fusion constant. Anomalous diffusion can occur if thereactants do, however, move in a potential fieJcreated by
quenched defect potential is sufficiently long ranged. disorder. The energy of reactaitat positionx is v(x), and
The reactionA+B—0 with Poissonian random initial the energy of reactarfi at positionx is —v(x). We take the
conditions was recently analyzed via field theoretic tech-correlations of the potential field to be long ranged. Specifi-
niques[9]. By placing bounds on the exact, stochastic partiacally, we consider the correlation function whose Fourier
differential equationgPDE’s) for the concentration profiles, transform is given by yx,,(k)=fdx expGk-X)x,,(X)
it was shown that/c(t))~C4t~ % for 2<d=4, and the = y/k2. It turns out that any disorder with a correlation func-
coefficientC4 was determined. An approximate mean fieldtion less singular than this at long wavelengths is technically
theory was shown to apply for long times fir-2. Rigorous irrelevant. Such disorder does not lead to any interesting,
bounds on the decay were derived in all dimensions for th@ew scaling behavior.
case of infinite reaction rafe.Q]. Given this description, we can state the master equation
Here we analyze the behavior of the- B— 0 reaction in  that governs changes in the configuration of the lattice
two dimensions in the presence of correlated disorder. WE9,12]. The master equation relates how the probabHitpf
describe the reaction and our motivation for this study ina given configuration of particles on the lattice changes with
Sec. Il. We express the reaction in terms of a master equdime:

The mathematical problem we consider is one where two
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IP{mi}{ni},t) ~ Dp

2 [Thm+1)P(..m—1m+1,..1)— T mP]

at (A2 £
D
+ (ArB)2 .2, [TE(n+1)P(....n—1n;+1,...)— TEnP]
)
+W§i‘, [(M+1)(n+1)P(...m+1,...n+1,..)—mn;P]. 1)

Herem; is the number oA particles on site, andn; is the  teresting scaling limit, we take the initial average densities to
number ofB particles on sitd. The summation over is  be the same{ca(x,0))={cg(x,0))=ng. For simplicity, we
over all sites on the lattice, and the summation gvisrover  assuméd ,=Dg=D. No adsorption or unimolecular desorp-
the nearest neighbors of siteThe lattice spacing is given by tion is allowed. The random potential is incorporated with
Ar. The diffusive transition matrix for hopping from sitdo  the replica trick[15], usingN replicas of the original prob-

a nearest neighbor sifeis given byTi‘}=[1+,3(Ui—vj)/2] lem. The concentrations averaged over initial conditions are
and TE=[1-pB(vi—v;)/2]. The inverse temperature is given by

given by B=1/(kgT).

The formal motivation for our study is theoretical inves- (ca(x,1))=lim (a(x,t)),
tigation of the effects of disorder on thet B— 0 reaction in N-=0 ©
two dimensions. Our model, however, could be considered
roughly to represent a reaction between ions on the surface (cg(x,1))= lim (b(x,1)),
of a crystalline ionic lattice. The cubic substrate lattice has N—0

dislocation line pairs, which form line vacancies or line in-

terstitials. These defects are static and generate a randompere the average on the right hand side is taken with re-
quenched electrostatic potential on the surface. Each lingpect to exptS). In the field-theoretic formulation, the ran-
charge produces an electrostatic field on the surface of thdom initial conditions have already been averaged over. The
crystal that grows logarithmically with distance from the fieldsa, a, b, andb remain to be integrated over in the field
charge. Charge neutrality, however, implies that the twotheory. Before averaging, they have no physical meaning and
dimensional density-density correlation function of the de-may assume complex values. The action is giverSkyS,
fects should vanish &€ for smallk. Since the potential is +S5,+5,+S;:

given by the convolution of the defect density with Cou-

lomb’s law, the appropriate form of the potential-potential o

correlation function on the surface of the crystal is that as- SO:J ddXJ dta,(x,t)[d,— DVZ+ 8(t)Ja,(x,t)

sumed above. Moreover, the statistics of the potential field 0

are very likely Gaussian at smal[13]. On the surface of o

the crystal, the reactioA+B— 0 occurs, wheré andB are +J ddXJ dtb,(X,)[ ;= DV?+8(t) Jba(x,1),

ions of opposite charge. The ions interact with a Cbu- 0
lomb potential, which turns out to be irrelevant in two di-
mensions. Technically, this means that the Mhteraction
will not affect any flow equations produced by renormaliza-
tion group theory. This interaction can only affect the

slzf ddxf:dt[xla_a(x,t)aa(x,t)ba(x,t)

“matching limit.” In order to avoid any significant effects in + 250 (X,)a,(x,t)b(X,1)

the matching limit, and to facilitate segregation of the reac- _ .

tants, we may want to include a low density of counterions. +Aza,(xt)a,(x,0)b(x,t)b,(x,1)],

The density of counterions should be lower than that of the 3)

defects, so as not to screen out the effects of the disorder as
well. We will not consider these details further, however,
and we will be content to analyze the mathematical problem
defined by Eq(1) of reactantsA andB interacting with the
random potential but not with each other. B32D?2

S3=— fdtldtzf (2m)968(kq+ky+ kgt kg)
kqkokskg

S,=—ng f dx[ @,4(x,0)+ b ,(x,0)],

Ill. MAPPING TO THE FIELD THEORY

We will write the reaction in terms of a field theory X[ag, (K1 t1)a,, (Ka,t1) = b, (Ki,t1)bg, (Ko te)]
[9,12,14. For initial conditions, we will assume that the . R . R
andB particles are placed at random on the lattice. The ini- X[aas(kg,tz)a%(k@tz)— ba4(k3,t2)ba4(k4,t2)]

tial concentration®\ andB at any given site will, therefore, R
be Poissonian random numbers. So as to reach the most in- XKy (K Kko)ks: (Kp+Ko) xp, (ke + ko).
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Summation is implied over replica indices. The notatjgn interpretation, an approximate means of correcting &g.
stands forfd%/(27)9. The upper time limit in the action is would be to use the running couplingl) in place of the
arbitrary as long as¢;=t. The termS, represents simple original rate constant. As we will see, however, the reac-
diffusion, without an external potential. Th&function en-  tion becomes diffusion limited at long times, and so the ac-
forces the initial condition on the free field propagator. Thetual value of\(I) does not matter.

term S; comes from the reaction terms. The parameters are

related to the conventional reaction rakg,by \;=\. The V. FLOW EQUATIONS AND THE MATCHING LIMIT

term S, comes from averaging over the Poissonian random L

initial condition. The termS; comes from averaging the VW& use renormalization group theory to analyze the long-
theory over the random potential with the replica trick. Thelime behavior of actiori3) [8]. The flow equations are simi-
potential is assumed to be Gaussian, with zero mean arg' t0 those for theA+A—0 reaction[14]. The flow equa-

correlation functiony,,(r). We take tions in two dimensions, to one loop order, are
vv N
- dinn
va(k):/y/kz_ (4) dl 0:2,
This correlation function leads to anomalous diffusion in two 5
dimensions. dinx; X3 By
dl 47D 47’
IV. STOCHASTIC EQUATIONS OF MOTION
. . . din; As By
An exact expression for the concentration profiles can be a ~  a.D A (8)
derived by performing a Hubbard-Stratonovich transforma- & .
tion on Eq.(3), and integrating out the fields andb: dinkg X3 B2y
da,,=DV?a,,+BDV-(a,,Vv)—\ia,b,, di 4nD 4w’
+(mpa+inpa,,, dg?y
dl

(?tby,v:DVme—ﬂDV.(b,,vVv)—)\za b )

no™~ nu
. The dynamical exponent is given b
+(n3tin)b,,, P g y

By
anu(xao):bnu(xyo):noa z=2+ E (9)
where the real, Gaussian, random fieldhas zero mean and

variance, We note that if the sign of the attraction for theand B

reactants to the potential were the same, instead of opposite,
(D) 75X )=\, S(x—x') S(t—t"). (6)  the second term in the flow equations fay would be
+3B%yl(4).
The potential fieldy(x) enters the equations in the expected The flow equations are integrated to a time such that
fashion. The physical concentration is given by averaging the -
solution over the random fields; . The solution before this t(1*)=te Jo2dl=1,, (10)
averaging has no physical meaning—it is complex. Recall,
also, that the random initial conditions have already beerlhe matching time, is chosen to be relatively small, so that
averaged over. It is for this reason that we have deterministioean field theory can be applied. It must be nonzero, how-
initial conditions in Eq.(5). ever, so as to remain within the scaling regime. We note that,
A natural approximation for the concentration profiles isfor large I*, the renormalized initial density is large, the
the standard reaction diffusion PDE with Poissonian randonienormalized reaction rate is small, and the renormalized dis-

initial conditions order strength remains at the bare value. At these short times,
the diffusion is normal with essentially the bare diffusivity.
9Ca,=DV2Cp,+ BDV - (Ca, V) —NCa,Cg, We can derive the appropriate matching theory by consid-
(7)  ering the renormalized reaction within the original master
9Cg,=DV?cg,—BDV-(Cg,Vv)—\Cp,Cpg, - equation formulation. The Poissonian initial densities be-

come asymptotically Gaussian since they are so large. We
Unlike the mean field theory that arises from a direct saddleonsider one lattice site and assume without loss of general-
point approximation to actiori3) [9], which has uniform ity thatca(x,0;1)>cg(x,0;). Because the renormalized den-
initial conditions, these equations are valid for both short andity is large, the reaction terms will dominate. We see that
long times. At intermediate times, they are incorrect, becauseg(x,t;I) will be driven to a value of order
they do not capture the renormalization of the effective ratel[k(l)ca(x,t;1)]. This will happen in a time of the order of
constant. Our renormalization group treatment will predictl[k(l)ca(x,t;1)], before any significant diffusion can take
how the effective reaction rate at length scalee' scales place. For times>t,, then, we will find that there is either
with |. One should interpret this result as the effective, renora significant amount oA or B at each lattice site, but not
malized reaction rate observed at this length scale. With thiboth. The matching limit is, therefore, like the infinite reac-
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tion rate limit, as long as the renormalized reaction rate is not 100 ' '
too small. The single-species lattice sites are the renormal
ized vestige of the long-time reactant segregation that occur:
in the A+B—0 reaction. In this infinite reaction rate limit,
the field o(x,t) =ca(X,t;1) —cg(X,t;l) exactly satisfies the
diffusion equation

Jdo 5
-t DV,

In <c>

11

12
o(x.0)= 2no(l)} R

@] N

where N(x) is a unit Gaussian variable. The potential has
been omitted from Eq(11) because it does not affect the 0.0 ‘ s -
short-time behavior. Furthermore, we can invert the defini- ~ ~'%° 0 e ™ = °e
tion of ¢ to obtain

FIG. 1. Presented are numerical solutions of the exact, stochas-

ca(X,t:D)=o(x,t)H(e(x,1)), tic PDE’s(5) for ng=10% 10%, and 16. For each solution we show
(120 (ay (solid), (b) (solid), {|a—b|}/2 (short dashed and\{(a—b)?)
ce(X,t;h=—@(x,t)H(— @(x,t)), (long dashed We usedk=D=Ar=1 and8?y=0 in this and all
figures.

whereH(x) is the Heaviside step function. The fiefdis a
Gaussian random variable, since it satisifies a linear equation Alternatively, we can do direct perturbation theory on Eq.
and is Gaussian at=0. The average concentrationafand (5. We defineyy=a—b and¢=a+b. We use the reference
B at the matching time is, then, given by state ap=bo=1/(ng '+ \4t) and perturb in the parameter
N3. The first order corrections are
{<¢Z(to)>r2
2

to:N)={(cg(te;:))=3{|e(ty)|)= —t’
(calto;)=(ca(to;))=3(|e(to)]) <lﬂi>:2)\3ftdt’ ?n[f),fit)\ :,))3’
) 2n0(I)G(0,2tO)r’2 . ° T TR (15
- 2m ' ( 3) 2 2)\3 t ’ ’ -1 AYA
<¢1>:—m fodt GL(0,2(t—t")](ng ~+ A qt")%.

where G(0,t) =exg —4Dt/(Ar)2]Ig2Dt/(Ar)?)/(Ar)? is the
two-dimensional lattice Green's function evaluatedat0.  Fyrthermore i is Gaussian to this order, so we firifi|)
These average concentrations are independent of position, (2(y2)/7)Y2 To second order we find
once we have averaged over the initial conditions in Eq.
(11). Forty>(Ar)?/2D, we find A3 t
<¢z>=mfdt'[Wf(t’))—(sﬁi(t’))]
no(1) o TP

1/2
<CA(t°;')>:<CB(t°;'»%Wmo} - 14 X (ng 4+ A t))2. (16)

To confirm this matching limit, in Fig. 1 we present nu- In Fig. 2 we plot the exact results as well as the perturbative
merical solutions of the exact stochastic PDE®. The results. We see that this perturbation theory @y is accu-
PDE’s were integrated with an explicit Euler metHd®] on  rate until the reaction becomes diffusion limited. In the long-
square 258 256 or 51512 grids. We clearly see three time regime, the perturbation theory fails. Interestingly, the
time regimes. During the first, 9t<(Ar)/(kyny), the mi- first order result fox %) seems to be exact. Asymptotically
nority reactant disappears at each lattice site. During the sewe have(2)~ny/(4mwDt), which we have seen is correct
ond, (Ar)/(kyng)<t<(Ar)%D, the reaction is diffusion in the long-time, diffusion-limited regime. Buty?) also
limited, but lattice effects are present. During the thitd, agrees with the exact)?) for all times, and for all initial
>(Ar)?/D, the reaction is diffusion limited, and we have densities that we have examined numerically. Note that the
reached asymptotic scaling. A limited range of thefield (x,t) has already been averaged over the initial con-
asymptotic scaling regime is shown in Fig. 1. Simulationsditions, and so it does not equa{(x,t) — cg(X,t) for a given
run to longer time would clearly show this scaling. Note thatinstance of the initial conditions. This identification does
the range of data shown in Fig. 1 is enough to verify @d) hold, however, when each lattice site contains ohlgr B.
in the short-time, matching limit, which is all we require.  Finally, we can also solve the standard reaction diffusion
Furthermore, as shown below, the scaling of the concentra®DE’s (7) with Poissonian initial conditions. Upon doing so,
tion with \/n, for all but very short times, which is clearly we would find that the reaction diffusion PDE’s are accurate
seen in Fig. 1, is enough to establish the exponent of théor short times. They are also accurate for long times, since
long-time decay. they correctly capture the diffusion-limited nature of the re-
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4.0 . . VI. DISCUSSION

We found the exponent and prefactor for the concentra-
tion decay of theA+B—0 reaction at long times. These
quantities are universal in the absence of disorder. Unlike the
A+ A—0 reaction, we do not have a logarithmic correction
in the upper critical dimensiod;=2 in the absence of dis-
order. This is becausk;(1*) has no effect on the matching
limit. Like the A+ A— 0 reaction, however, the correction to
the decay exponent due to the disorder is exactly the same
correction that occurs to the mean-square displacement ex-
ponent[14]. This phenomenon is not accidental, and occurs
precisely because the reaction becomes diffusion limited in
the long-time limit. For this reason, we do not expect higher
loop calculations of the flow equation to produce terms that
modify 8%y. We checked that the two-loop flow equations

%00 50 0o 5o do not modify 8?y. Higher order calculations may modify
Int the flow equations fok;, but this will not affect the concen-
. tration decay at long times. In fact, if the flow equations for

FIG. 2. Presented are the perturbative res(i and_(16) as \; were unchanged by higher orders,@?y, the matching
well as the exact results famo=10. We show(a) (solid), (b) it would be like the infinite reaction rate limit only for
(solid), ay+(a,) (long dashell V(y?) (solid), and V(y7) (short 82,4 Note that an extension of the RG argument gives

dashe (ca(t))~ Vng/[ V7 (87Dt)¥4] for 1<d<4 in the absence

. . o . f disorder, extending the results of RE9] to one and twi
action. Only for intermediate times do we see ad|screpancygirgesnosigis’ extending the results of RE3] to one and two

It is only during these times that the renormalization of the The reactants andB are attracted to regions of the po-

_?_f;zcgi\gir?tzrfgn;?:émhzz g?ngrlfee::]zoc;r};ree??/fiﬁ;vedogfns'%ntial that have opposite signs. One might expect that the
ould not pbe n}:)t'ceable for the aramegtjers of Ie:130 1 forsegregation of the reactants will be biased by the presence of
\t,avx;mple : P 9. L Nine disorder. Indeed, pattern matching between the reactant

We are now in a position to combine, with confidence thesegregation and the potential does occur to some extent:
. . ' ““whenA andB hav i raction for th ntial, th
RG flow equations and the matching theory. We take enA andB have opposite attraction for the potential, the

2 : . . ; effective reaction rate is decreased, asymptotically reaching
»_(A_r_) /(2D) to be In t_he scal_lng regime. There will be no zero. If the attraction is the same, the effective reaction rate
significant renormalization dD if ty is not chosen too large

N 2 . is increased, asymptotically reaching a nonzero fixed point
[to=(Ar)*/D is reasonable Using Eqs.(8), (10), and(14) value. The dominant mechanism for the long-time decay of

20 -

0.0

In <c>

we find the reactants, however, is diffusion-limited decay of initial
n 12/ 1\ 012 density variations. These density variations are, in our
(ca(t))={(cg(t))= TO —| (177  model, not affected by the disorder.
87Dt to
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