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Effect of static disorder and reactant segregation on theA1B˜0 reaction
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We derive the long-time behavior of theA1B→0 reaction in two dimensions, finding a universal exponent
and prefactor in the absence of disorder. Sufficiently singular disorder leads to a~sub!diffusion-limited reaction
and a continuously variable decay exponent. Pattern matching between the reactant segregation and the disor-
der is not strong enough to affect the long-time decay.@S1063-651X~98!08503-1#

PACS number~s!: 82.20.Db, 05.40.1j, 82.20.Mj
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I. INTRODUCTION

The A1B→0 reaction shows quite different behavi
from theA1A→0 reaction because of the distinguishabil
of A andB reactants. Ovchinnikov and Zeldovich, Toussa
and Wilczek, and Kang and Redner first noticed t
diffusion-controlled kinetics that can arise from reactant s
regation@1–4#. Heuristic arguments predict that the conce
tration decays from an initially random configuration
cA(t);Cdt2d/4 in d dimensions ford<4 @1–4#. This scaling
arises essentially from the competition between diffusion
randomness in the initially random reactant densities. Sim
lation studies confirmed these analytical results~see, for ex-
ample, Ref.@5#!. The results were extended to the case
fractal media~see, for example, Refs.@6, 7#!. It turns out,
however, that two dimensions is the upper critical dimens
for this system, and so collective motions of the reacta
become important ford<2. By the upper critical dimension
we mean the dimension below which perturbation theory
verges at long wavelengths. Standard arguments@8#, then,
suggest that mean field theories such as the standard rea
diffusion partial differential equation will fail in two dimen
sions and below. The most important consequence of th
collective effects, and what causes the standard theorie
fail, is renormalization of the effective, or apparent, react
rate. We will derive this natural renormalization of the effe
tive rate from renormalization group arguments. Disorder
the medium can also influence the reaction kinetics. T
most important effect is renormalization of the effective d
fusion constant. Anomalous diffusion can occur if t
quenched defect potential is sufficiently long ranged.

The reactionA1B→0 with Poissonian random initia
conditions was recently analyzed via field theoretic te
niques@9#. By placing bounds on the exact, stochastic par
differential equations~PDE’s! for the concentration profiles
it was shown that̂ cA(t)&;Cdt2d/4 for 2,d<4, and the
coefficientCd was determined. An approximate mean fie
theory was shown to apply for long times ford.2. Rigorous
bounds on the decay were derived in all dimensions for
case of infinite reaction rate@10#.

Here we analyze the behavior of theA1B→0 reaction in
two dimensions in the presence of correlated disorder.
describe the reaction and our motivation for this study
Sec. II. We express the reaction in terms of a master eq
571063-651X/98/57~3!/2681~5!/$15.00
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tion. In Sec. III we map the master equation onto a fie
theory using the coherent state representation@9,11,12#. In
Sec. IV we derive an exact, stochastic partial differen
equation that can be used to analyze this reaction system
state the most natural form of the mean field theory, a
show that it applies for both short and long times. In Sec
we analyze the long-time behavior of the field theory us
renormalization group~RG! theory, finding segregation o
reactants into isolated domains. We match the RG flows
result that is asymptotically exact in the diffusion-limite
matching limit. Through this procedure we are able to det
mine the universal exponent and prefactorCd for the con-
centration decay. We confirm our results with numerical
lutions of the exact, stochastic PDE’s for the concentrat
profile. We then turn to the effect of disorder on the seg
gation. For sufficiently singular disorder, the decay expon
changes. We calculate the new exponent, which com
solely from the fact that the reaction is~sub!diffusion lim-
ited. We conclude with a discussion of our results in Sec.

II. A1B˜0 REACTION

The mathematical problem we consider is one where
distinct types of reactants,A and B, diffuse on a two-
dimensional square lattice. When the reactants occupy
same lattice site, they react with reaction ratel. The reac-
tants do not interact other than through the reaction. T
reactants do, however, move in a potential fieldv, created by
disorder. The energy of reactantA at positionx is v(x), and
the energy of reactantB at positionx is 2v(x). We take the
correlations of the potential field to be long ranged. Spec
cally, we consider the correlation function whose Four
transform is given by x̂vv(k)5*dx exp(ik•x)xvv(x)
5g/k2. It turns out that any disorder with a correlation fun
tion less singular than this at long wavelengths is technic
irrelevant. Such disorder does not lead to any interest
new scaling behavior.

Given this description, we can state the master equa
that governs changes in the configuration of the latt
@9,12#. The master equation relates how the probabilityP of
a given configuration of particles on the lattice changes w
time:
2681 © 1998 The American Physical Society
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Heremi is the number ofA particles on sitei , andni is the
number ofB particles on sitei . The summation overi is
over all sites on the lattice, and the summation overj is over
the nearest neighbors of sitei . The lattice spacing is given b
Dr . The diffusive transition matrix for hopping from sitei to
a nearest neighbor sitej is given byTi j

A5@11b(v i2v j )/2#
and Ti j

B5@12b(v i2v j )/2#. The inverse temperature i
given byb51/(kBT).

The formal motivation for our study is theoretical inve
tigation of the effects of disorder on theA1B→0 reaction in
two dimensions. Our model, however, could be conside
roughly to represent a reaction between ions on the sur
of a crystalline ionic lattice. The cubic substrate lattice h
dislocation line pairs, which form line vacancies or line i
terstitials. These defects are static and generate a ran
quenched electrostatic potential on the surface. Each
charge produces an electrostatic field on the surface of
crystal that grows logarithmically with distance from th
charge. Charge neutrality, however, implies that the tw
dimensional density-density correlation function of the d
fects should vanish ask2 for small k. Since the potential is
given by the convolution of the defect density with Co
lomb’s law, the appropriate form of the potential-potent
correlation function on the surface of the crystal is that
sumed above. Moreover, the statistics of the potential fi
are very likely Gaussian at smallk @13#. On the surface of
the crystal, the reactionA1B→0 occurs, whereA andB are
ions of opposite charge. The ions interact with a 1/r Cou-
lomb potential, which turns out to be irrelevant in two d
mensions. Technically, this means that the 1/r interaction
will not affect any flow equations produced by renormaliz
tion group theory. This interaction can only affect th
‘‘matching limit.’’ In order to avoid any significant effects in
the matching limit, and to facilitate segregation of the re
tants, we may want to include a low density of counterio
The density of counterions should be lower than that of
defects, so as not to screen out the effects of the disorde
well. We will not consider these details further, howev
and we will be content to analyze the mathematical prob
defined by Eq.~1! of reactantsA andB interacting with the
random potential but not with each other.

III. MAPPING TO THE FIELD THEORY

We will write the reaction in terms of a field theor
@9,12,14#. For initial conditions, we will assume that theA
andB particles are placed at random on the lattice. The
tial concentrationsA andB at any given site will, therefore
be Poissonian random numbers. So as to reach the mos
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teresting scaling limit, we take the initial average densities
be the same,̂cA(x,0)&5^cB(x,0)&5n0 . For simplicity, we
assumeDA5DB5D. No adsorption or unimolecular desorp
tion is allowed. The random potential is incorporated w
the replica trick@15#, usingN replicas of the original prob-
lem. The concentrations averaged over initial conditions
given by

^cA~x,t !&5 lim
N→0

^a~x,t !&,

~2!

^cB~x,t !&5 lim
N→0

^b~x,t !&,

where the average on the right hand side is taken with
spect to exp(2S). In the field-theoretic formulation, the ran
dom initial conditions have already been averaged over.
fieldsa, ā , b, and b̄ remain to be integrated over in the fie
theory. Before averaging, they have no physical meaning
may assume complex values. The action is given byS5S0
1S11S21S3 :

S05E ddxE
0

t f
dt āa~x,t !@] t2D¹21d~ t !#aa~x,t !

1E ddxE
0

t f
dt b̄a~x,t !@] t2D¹21d~ t !#ba~x,t !,

S15E ddxE
0

t f
dt@l1 āa~x,t !aa~x,t !ba~x,t !

1l2 b̄a~x,t !aa~x,t !ba~x,t !

1l3 āa~x,t !aa~x,t ! b̄a~x,t !ba~x,t !#,

~3!

S252n0E ddx@ āa~x,0!1 b̄a~x,0!#,

S35
b2D2

2 E dt1dt2E
k1k2k3k4

~2p!dd~k11k21k31k4!

3@ â̄a1
~k1 ,t1!âa1

~k2 ,t1!2 b̂̄a2
~k1 ,t1!b̂a2

~k2 ,t1!#

3@ â̄a3
~k3 ,t2!âa3

~k4 ,t2!2 b̂̄a4
~k3 ,t2!b̂a4

~k4 ,t2!#

3k1•~k11k2!k3•~k11k2!x̂vv~ uk11k2u!.
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Summation is implied over replica indices. The notation*k
stands for*ddk/(2p)d. The upper time limit in the action is
arbitrary as long ast f>t. The termS0 represents simple
diffusion, without an external potential. Thed function en-
forces the initial condition on the free field propagator. T
term S1 comes from the reaction terms. The parameters
related to the conventional reaction rate,l, by l i5l. The
term S2 comes from averaging over the Poissonian rand
initial condition. The termS3 comes from averaging th
theory over the random potential with the replica trick. T
potential is assumed to be Gaussian, with zero mean
correlation functionxvv(r ). We take

x̂vv~k!5g/k2. ~4!

This correlation function leads to anomalous diffusion in tw
dimensions.

IV. STOCHASTIC EQUATIONS OF MOTION

An exact expression for the concentration profiles can
derived by performing a Hubbard-Stratonovich transform
tion on Eq.~3!, and integrating out the fieldsā and b̄ :

] tahv5D¹2ahv1bD“•~ahv“v !2l1ahvbhv

1~h21 ih1!ahv ,

] tbhv5D¹2bhv2bD“•~bhv“v !2l2ahvbhv

1~h31 ih1!bhv ,

~5!

ahv~x,0!5bhv~x,0!5n0 ,

where the real, Gaussian, random fieldh i has zero mean an
variance,

^h i~x,t !h j~x8,t8!&5l3d i j d~x2x8!d~ t2t8!. ~6!

The potential fieldv(x) enters the equations in the expect
fashion. The physical concentration is given by averaging
solution over the random fieldsh i . The solution before this
averaging has no physical meaning—it is complex. Rec
also, that the random initial conditions have already be
averaged over. It is for this reason that we have determin
initial conditions in Eq.~5!.

A natural approximation for the concentration profiles
the standard reaction diffusion PDE with Poissonian rand
initial conditions

] tcAv5D¹2cAv1bD“•~cAv“v !2lcAvcBv

~7!
] tcBv5D¹2cBv2bD“•~cBv“v !2lcAvcBv .

Unlike the mean field theory that arises from a direct sad
point approximation to action~3! @9#, which has uniform
initial conditions, these equations are valid for both short a
long times. At intermediate times, they are incorrect, beca
they do not capture the renormalization of the effective r
constant. Our renormalization group treatment will pred
how the effective reaction rate at length scaleDrel scales
with l . One should interpret this result as the effective, ren
malized reaction rate observed at this length scale. With
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interpretation, an approximate means of correcting Eq.~7!
would be to use the running couplingl( l ) in place of the
original rate constantl. As we will see, however, the reac
tion becomes diffusion limited at long times, and so the
tual value ofl( l ) does not matter.

V. FLOW EQUATIONS AND THE MATCHING LIMIT

We use renormalization group theory to analyze the lo
time behavior of action~3! @8#. The flow equations are simi
lar to those for theA1A→0 reaction@14#. The flow equa-
tions in two dimensions, to one loop order, are

d ln n0

dl
52,

d ln l1

dl
52

l3

4pD
2

b2g

4p
,

d ln l2

dl
52

l3

4pD
2

b2g

4p
, ~8!

d ln l3

dl
52

l3

4pD
2

b2g

4p
,

db2g

dl
50.

The dynamical exponent is given by

z521
b2g

4p
. ~9!

We note that if the sign of the attraction for theA and B
reactants to the potential were the same, instead of oppo
the second term in the flow equations forl i would be
13b2g/(4p).

The flow equations are integrated to a time such that

t~ l * !5te2*0
l* z~ l !dl5t0 . ~10!

The matching timet0 is chosen to be relatively small, so th
mean field theory can be applied. It must be nonzero, h
ever, so as to remain within the scaling regime. We note t
for large l * , the renormalized initial density is large, th
renormalized reaction rate is small, and the renormalized
order strength remains at the bare value. At these short tim
the diffusion is normal with essentially the bare diffusivity

We can derive the appropriate matching theory by cons
ering the renormalized reaction within the original mas
equation formulation. The Poissonian initial densities b
come asymptotically Gaussian since they are so large.
consider one lattice site and assume without loss of gene
ity that cA(x,0;l ).cB(x,0;l ). Because the renormalized de
sity is large, the reaction terms will dominate. We see t
cB(x,t; l ) will be driven to a value of order
1/@k( l )cA(x,t; l )#. This will happen in a time of the order o
1/@k( l )cA(x,t; l )#, before any significant diffusion can tak
place. For timest.t1 , then, we will find that there is eithe
a significant amount ofA or B at each lattice site, but no
both. The matching limit is, therefore, like the infinite rea
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tion rate limit, as long as the renormalized reaction rate is
too small. The single-species lattice sites are the renorm
ized vestige of the long-time reactant segregation that oc
in the A1B→0 reaction. In this infinite reaction rate limi
the field w(x,t)5cA(x,t; l )2cB(x,t; l ) exactly satisfies the
diffusion equation

]w

]t
5D“

2w,
~11!

w~x,0!5F2n0~ l !

~Dr !2 G1/2

N̂~x!,

where N̂(x) is a unit Gaussian variable. The potential h
been omitted from Eq.~11! because it does not affect th
short-time behavior. Furthermore, we can invert the defi
tion of w to obtain

cA~X,t; l !5w~x,t !H„w~x,t !…,
~12!

cB~X,t; l !52w~x,t !H„2w~x,t !…,

whereH(x) is the Heaviside step function. The fieldw is a
Gaussian random variable, since it satisifies a linear equa
and is Gaussian att50. The average concentration ofA and
B at the matching time is, then, given by

^cA~ t0 ; l !&5^cB~ t0 ; l !&5 1
2 ^uw~ t0!u&5F ^w2~ t0!&

2p G1/2

5F2n0~ l !G~0,2t0!

2p G1/2

, ~13!

where G(0,t)5exp@24Dt/(Dr)2#I0
2@2Dt/(Dr)2#/(Dr)2 is the

two-dimensional lattice Green’s function evaluated atx50.
These average concentrations are independent of pos
once we have averaged over the initial conditions in E
~11!. For t0@(Dr )2/2D, we find

^cA~ t0 ; l !&5^cB~ t0 ; l !&5F n0~ l !

8p2Dt0
G1/2

. ~14!

To confirm this matching limit, in Fig. 1 we present n
merical solutions of the exact stochastic PDE’s~5!. The
PDE’s were integrated with an explicit Euler method@16# on
square 2563256 or 5123512 grids. We clearly see thre
time regimes. During the first, 0,t,(Dr )/(kAn0), the mi-
nority reactant disappears at each lattice site. During the
ond, (Dr )/(kAn0),t,(Dr )2/D, the reaction is diffusion
limited, but lattice effects are present. During the thirdt
.(Dr )2/D, the reaction is diffusion limited, and we hav
reached asymptotic scaling. A limited range of t
asymptotic scaling regime is shown in Fig. 1. Simulatio
run to longer time would clearly show this scaling. Note th
the range of data shown in Fig. 1 is enough to verify Eq.~14!
in the short-time, matching limit, which is all we requir
Furthermore, as shown below, the scaling of the concen
tion with An0 for all but very short times, which is clearl
seen in Fig. 1, is enough to establish the exponent of
long-time decay.
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Alternatively, we can do direct perturbation theory on E
~5!. We definec5a2b andf5a1b. We use the reference
state a05b051/(n0

211l1t) and perturb in the paramete
l3 . The first order corrections are

^c1
2&52l3E

0

t

dt8
G@0,2~ t2t8!#

~n0
211l1t8!2 ,

~15!

^f1
2&52

2l3

~n0
211l1t !4 E

0

t

dt8G@~0,2~ t2t8!#~n0
211l1t8!2.

Furthermore,c is Gaussian to this order, so we find^ucu&
5(2^c2&/p)1/2. To second order we find

^f2&5
l3

2~n0
211l1t !2 E

0

t

dt8@^c1
2~ t8!&2^f1

2~ t8!&#

3~n0
211l1t8!2. ~16!

In Fig. 2 we plot the exact results as well as the perturba
results. We see that this perturbation theory for^a& is accu-
rate until the reaction becomes diffusion limited. In the lon
time regime, the perturbation theory fails. Interestingly, t
first order result for̂ c2& seems to be exact. Asymptoticall
we have^c1

2&;n0 /(4pDt), which we have seen is correc
in the long-time, diffusion-limited regime. But̂c1

2& also
agrees with the exact̂c2& for all times, and for all initial
densities that we have examined numerically. Note that
field c(x,t) has already been averaged over the initial co
ditions, and so it does not equalcA(x,t)2cB(x,t) for a given
instance of the initial conditions. This identification do
hold, however, when each lattice site contains onlyA or B.

Finally, we can also solve the standard reaction diffus
PDE’s ~7! with Poissonian initial conditions. Upon doing s
we would find that the reaction diffusion PDE’s are accur
for short times. They are also accurate for long times, si
they correctly capture the diffusion-limited nature of the r

FIG. 1. Presented are numerical solutions of the exact, stoc
tic PDE’s~5! for n05103, 104, and 105. For each solution we show

^a& ~solid!, ^b& ~solid!, ^ua2bu&/2 ~short dashed!, andA^(a2b)2&
~long dashed!. We usedk5D5Dr 51 andb2g50 in this and all
figures.
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action. Only for intermediate times do we see a discrepan
It is only during these times that the renormalization of t
effective rate constant has an effect on the observed den
The discrepancy becomes smaller for larger values ofn0 . It
would not be noticeable for the parameters of Fig. 1,
example.

We are now in a position to combine, with confidence,
RG flow equations and the matching theory. We taket0
@(Dr )2/(2D) to be in the scaling regime. There will be n
significant renormalization ofD if t0 is not chosen too large
@ t05(Dr )2/D is reasonable#. Using Eqs.~8!, ~10!, and~14!
we find

^cA~ t !&5^cB~ t !&5S n0

8p2Dt D
1/2S t

t0
D d/2

, ~17!

with

d5S 11
8p

b2g D 21

. ~18!

FIG. 2. Presented are the perturbative results~15! and ~16! as
well as the exact results forn0510. We show^a& ~solid!, ^b&
~solid!, a01^a2& ~long dashed!, A^c2& ~solid!, andA^c1

2& ~short
dashed!.
ys

d
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VI. DISCUSSION

We found the exponent and prefactor for the concen
tion decay of theA1B→0 reaction at long times. Thes
quantities are universal in the absence of disorder. Unlike
A1A→0 reaction, we do not have a logarithmic correcti
in the upper critical dimensiondc52 in the absence of dis
order. This is becausel i( l * ) has no effect on the matchin
limit. Like the A1A→0 reaction, however, the correction t
the decay exponent due to the disorder is exactly the s
correction that occurs to the mean-square displacement
ponent@14#. This phenomenon is not accidental, and occ
precisely because the reaction becomes diffusion limited
the long-time limit. For this reason, we do not expect high
loop calculations of the flow equation to produce terms t
modify b2g. We checked that the two-loop flow equation
do not modifyb2g. Higher order calculations may modif
the flow equations forl i , but this will not affect the concen
tration decay at long times. In fact, if the flow equations f
l i were unchanged by higher orders ofb2g, the matching
limit would be like the infinite reaction rate limit only fo
b2g,4p. Note that an extension of the RG argument giv
^cA(t)&;An0 /@Ap(8pDt)d/4# for 1<d,4 in the absence
of disorder, extending the results of Ref.@9# to one and two
dimensions.

The reactantsA andB are attracted to regions of the po
tential that have opposite signs. One might expect that
segregation of the reactants will be biased by the presenc
the disorder. Indeed, pattern matching between the reac
segregation and the potential does occur to some ex
whenA andB have opposite attraction for the potential, th
effective reaction rate is decreased, asymptotically reach
zero. If the attraction is the same, the effective reaction r
is increased, asymptotically reaching a nonzero fixed po
value. The dominant mechanism for the long-time decay
the reactants, however, is diffusion-limited decay of init
density variations. These density variations are, in
model, not affected by the disorder.
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