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Coherent structures in quantum systems with two coupled types of excitation

J. M. Dixon
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

M. L. A. Nip and J. A. Tuszyn´ski
Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2J1

K. J. E. Vos
Department of Physics, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4

~Received 9 December 1996; revised manuscript received 5 November 1997!

This paper investigates the consequences of coupling two different types of quantum quasiparticle in many-
body systems. It utilizes a nonlinear field theoretical approach. Four main cases have been studied depending
on the statistics of the component quasiparticles and the attendant equations of motion for the quantum fields
have been derived. In each case Poincare´ sections reveal the presence of chaotic as well as regular behavior in
the phase space. Within the class of regular orbits our interest is focused on separatrices and the appearance
and disappearance of periodic solutions. The general method is illustrated by two examples:~a! distinguishable
fermion particles and~b! an electron-phonon system. In the latter case we derive criteria for the emergence of
localized states.@S1063-651X~98!07603-X#

PACS number~s!: 05.30.2d
op
wo

o
tt

s

g
g

ti
id
e
a
h
fie

e
a

a
v-
ite
or

s
or

on
rs

od-
eed
u-
as

aper
ond-
au-
in-
of

zed
tion
ng
lity
on
ith
cha-

c
to

of
of

field
-
he

co-
r
dy

il-

s.
ys-
I. INTRODUCTION

A large variety of condensed matter systems exhibit pr
erties which manifest underlying competition between t
distinct types of order or degrees of freedom. Examples
such behavior are numerous within the condensed ma
physics area and include metamagnets@1#, ferroelectric-
ferromagnetic systems@2#, ferroelectric-piezoelectric crystal
@3#, crystalline-superfluid systems@4#, as well as orientation-
position ordering phenomena in molecular liquid crystals@4#,
to name just a few. Two different types of order may enga
in a competition, e.g., superconductivity and ferroma
netism, ferromagnetism and antiferromagnetism@1#, ferro-
magnetism and ferroelectricity@2#; different lattice deforma-
tion components give rise to a plethora of ferroelas
behaviors@5# and even two-mode lasers should be cons
ered to be examples of this complex behavior. It is w
known that an interplay between two distinct orders m
result in critical temperature shifts as well as crossover p
nomena. This can be readily analyzed using the mean
approximation@5#. In particular, Schulman@6# used catastro-
phe theory to predict the effects of the coupling on the r
evant phase diagram for systems with several order par
eters. Specific applications to Landau-type expansions
free energies with two coupled order parameters were m
@7,8a# and simple rules were derived for multicritical beha
ior of the systems involved. Another situation which is qu
prevalent in many-body physics involves the coupling of
der parameters~critical degrees of freedom! to nonordering
variables such as elastic variables@8b# or electromagnetic
fields @8c# to, for example, spin degrees of freedom. The
couplings can lead to a rich variety of possible behavi
including critical crossover effects@8d# creation of Wigner-
order critical points@8e# and, in addition to these equilibrium
effects, dynamic phenomena such as instabilities or solit
Imry @8f# pointed out that in view of the universal behavio
571063-651X/98/57~3!/2660~15!/$15.00
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classified by renormalization group theory, appropriate m
els to study such coupled-fields phenomena would just n
to be field-theory Hamiltonians in generalized Landa
Ginzburg form. Some twenty years after this proposal h
been made we intend to demonstrate in the present p
how a connection can be made between microscopic sec
quantized Hamiltonians for coupled systems and Land
Ginzburg order parameter expansions. Furthermore, we
tend to show how in practice the resultant equations
motion for coupled order parameter fields may be analy
and, in many cases, exactly solved. Concisely, our inten
is to provide the reader with a practical toolbox for deali
with coupled quantum many-body systems close to critica
in one or both variables. Our emphasis will be placed
extracting nonlinear features of the dynamic behavior w
such attendant properties as solitons, localization, and
otic regions of the phase space.

As realized early in@8f#, a more fundamental microscopi
approach to the problem poses a serious difficulty due
inherent nonlinearities in the description. The objective
the present paper is to provide an insight into the problem
coupled degrees of freedom using a recently developed
theoretical technique@9,10#, which applies to systems com
posed of a large number of strongly interacting particles. T
original method, henceforth referred to as the method of
herent structures~MCS! @9,10#, is based on a nonlinea
analysis of collective modes of behavior in these many-bo
systems.

The starting point is the generic second quantized Ham
tonianH of the form

H5(
k

vkak
†ak1 (

k,l,m
Dk,l,mak

†al
†amak1 l2m ~1.1!

which includes both one- and two-body interaction term
This type of Hamiltonian appears in numerous cases in ph
2660 © 1998 The American Physical Society
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57 2661COHERENT STRUCTURES IN QUANTUM SYSTEMS WITH . . .
ics such as electrons in metals, superfluidity, the BCS the
of superconductivity, anharmonic phonons in crystals, etc
each case the annihilators and creators refer to the anni
tion or creation of quasiparticles which may obey either B
son or Fermi-Dirac commutation rules and, in nearly
cases in the plane wave representation, the interaction t
the linear momentum conserving form as in Eq.~1.1!. The
first step of the method is to derive the equations of mot
for a particular annihilator,ah(t) say, using Heisenberg’
equation of motion

i\] tah52@H,ah#2. ~1.2!

The commutator is readily calculated using Bose or Ferm
commutation rules and in either case may be cast in the s
form, i.e.,

i\] tah5vhah12(
k,m

Dh,k,mak
†amak1h2m . ~1.3!

In a standard way the one-body and two-body matrix e
ments,vh and Dh,k,m, respectively, in Eq.~1.3!, are then
expanded about a particular point ink space, (h0 ,k0 ,m0) ~or
quantum number space!. Thus, when both sides of Eq.~1.3!
are multiplied by exp(2ih•r )/AV and summed over allh,
the equation of motion in Eq.~1.3! may be written entirely in
terms of a quantum fieldc and its derivatives wherec is
defined by

c5
1

AV
(

k
exp~2 ik•r !ak . ~1.4!

The point (h0 ,k0 ,m0) is now chosen carefully to be a crit
cal or fixed point of the system under consideration. T
may also be viewed as an expansion about the corres
dence principle limit. One reason for this is that close to su
a point the fieldc is predominantly classical. Secondly,
this point corresponds to a second order phase transi
renormalization group ideas may be used to truncate the T
lor expansion about (h0 ,k0 ,m0). The reason for this is tha
the equation of motion may be shown to be derivable, as
Euler-Lagrange equation from a Hamiltonian functional. U
der quite general conditions on the field treated as a clas
function, the Hamiltonian density can be written in a sta
dardfn-field theory form@11,12#. A particularfn model is
well known to be renormalizable when the number of ind
pendent space~or space-time! variablesNc is given byNc
52n/(n22). For af4 model, the Hamiltonian density i
renormalizable forNc54 which means that if an expansio
away from (h0 ,k0 ,m0) is made in the Hamiltonian densit
only terms which deviate away from it toO(k4) need be
retained. Thus in the equation of motion only terms up
O(k3) need be retained, all higher order contributions mer
redressing those below those ofO(k3). One finds, after con-
siderable algebra@9,10# that for an isotropic or cubic system
the most general field equation of motion is
ry
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i\] tc5m0c1 i m1•“c1m2¹2c22~“c†!c~“c!

1m3c†cc1 i $c†c~m4•“ !c1c†@~m4•“ !c#c%

1@~¹2c†!cc1c†c“

2c# ~1.5!

in the Euclidean case, wherem0 andm3 are constant param
eters andm1 andm4 are constant vectors.

This classical envelope equation can, for example,
solved with the help of recent mathematical discoveries
the area of nonlinear partial differential equations~PDE’s!
@13–15#. The new powerful mathematical techniques at o
disposal allow us, at the very least, to extract import
physical information about the local geometry of the eme
ing coherent structure resulting from many-body intera
tions. Quite often also the analytical form of these classi
nonlinear fields existing in multidimensional space-time c
be determined. The final stage in this procedure~MCS! is an
analysis of the stability of the classical analytical solution
Once the stable classical solutions are found they provide
effective potential in a linear Schro¨dinger equation for the
internal quantum oscillations. As an example of this pro
dure to a system with spherical symmetry and how the
fective potential is provided by the classical field, the rea
is referred to Ref.@16#. It should be pointed out in this con
nection that approaches very similar in spirit were propo
almost simultaneously by other authors~see, e.g., Ref.@17#!.
In the present paper we will not be concerned with quant
fluctuations because of the closeness to the correspond
limit.

Apart from the general framework, several specific phy
cal applications have been recently worked out with the a
of testing the validity of the method. First, the BCS Ham
tonian for superconductivity has been used and a car
analysis resulted in a remarkable confirmation of earlier st
dard scaling laws for the superconducting current and ene
gap @18#. Another application was concerned with the eq
librium phases of metamagnets, i.e., spin systems with
or more sublattices. In this case an independent analy
support was provided@19# for a numerical form of the phas
boundaries between the three possible ground states@20#.
Furthermore, new insights have been provided into
Haldane gap problem for quantum Heisenberg spin cha
@21# and also the bound states in multielectron atoms h
been investigated@16#. Another important observation ha
been recently made@22# in connection with the presence o
spin degrees of freedom. This requires the use of a sepa
field for each spin component. However, it was rigorou
demonstrated that the inclusion of spin does not alter
form of the equations of motion for each individual quantu
field and hence the basic results of the calculations rem
valid. What is affected, however, by the presence of spin
the magnitude of the nonlinear coupling coefficient when
spin S. 1

2 , in which case it becomes multiplied by the sp
degeneracy (2S11) ~for integer spins only!. This may also
lend support to the approach described since the critical t
perature will be spin dependent and, for example, for sup
fluid 3He and4He the transition temperature is much high
in the latter case than in the former@23#. Finally, it has been
demonstrated that the form of the nonlinear field equatio
provided the field is suitably defined, is exactly the same
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2662 57DIXON, NIP, TUSZYŃSKI, AND VOS
any orthonormal basis of states not just a plane-wave bas
originally used@24#.

The motivation for this paper is to extend the MCS b
yond a single quasiparticle type and include another se
degrees of freedom~critical or noncritical!, which may rep-
resent either another subsystem~e.g., a heat reservoir! or a
different type of quasiparticle~electrons and phonons, fo
instance!, when the two subsystems are coupled togeth
This is an importantstep in the direction towards realist
modeling of complex many-body interacting systems.
fact, under close scrutiny nearly all many-body structures
comprised of several distinct subsystems or components.
perconductivity, for example, involves electrons a
phonons dynamically coupled via an electron-phonon in
action@25# and the interaction is, in fact, key to the existen
of the emergent phenomena, i.e., superconductivity.
general situation described here is indeed ubiquitous in c
densed matter physics with, for example, various pho
modes interacting amongst themselves and leading to s
tural instabilities@26#. Practically speaking, any combinatio
of two types of excitation present in a solid may be describ
in this manner~electron-plasmon, magnon-phonon, electro
polaron, photon-electron interactions, etc.!. This paper,
therefore, addresses the significant question of the co
quences of physical coupling between the two subsyste
We will demonstrate step by step how these generic ma
body problems can be dealt with using modern tools of n
linear analysis.

II. DERIVING THE EQUATIONS OF MOTION

In this section, the MCS is applied to a general Ham
tonian describing two types of particle. Here, the ent
physical system is divided into two parts, denoted A and
with strong interactions within each of the systems and c
pling terms between the two subsystems. The form of
coupling terms in this study is quite general and includ
one- and two-quantum exchanges between systems A a
with associated second-quantized operators (a,a†) and
(b,b†), respectively. The model Hamiltonian will be take
generically as

H5Ha1Hb1Hab , ~2.1!

where

Ha5(
k,l

vkak
†ak1 (

k,l,m
dk,l,m

~0! ak
†al

†amak1 l2m

1 (
k,l,m

$ek,l,mak
†alak2 l1ek,l,m* ak2 l

† al
†ak%, ~2.2!
as
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Hb5(
k,l

Vkbk
†bk1 (

k,l,m
Dk,l,mbk

†bl
†bmbk1 l2m

1 (
k,l,m

$Lk,l,mbk
†blbk2 l1Lk,l,m* bk2 l

† bl
†bk%, ~2.3!

and

Hab5(
k

$jkak
†bk1jk* bk

†ak%1(
k,l

$hk,lak
†albk2 l

1hk,l* bk2 l
† al

†ak%1(
k,l

$lk,lbk
†blak2 l1lk,l* ak2 l

† bl
†bk%

1 (
k,l,m

$mk,l,mbk
†al

†amak1 l2m1mk,l,m* ak1 l2m
† am

† albk%

1 (
k,l,m

$gk,l,mak
†bl

†bmbk1 l2m1gk,l,m* bk1 l2m
† bm

† blak%

1 (
k,l,m

$ak,l,mak
†bl

†bmak1 l2m1ak,l,m* ak1 l2m
† bm

† blak%,

~2.4!

where Ha and Hb are the associated Hamiltonians for th
two separate subsystems A and B, andHab is an operator
providing interactions between them. Each of the labelsk, l,
andm denote a set of quantum numbers for a complete se
states. In view of the fact that spin labels do not alter
form of the MCS equations of motion, provided the intera
tions themselves are spin independent, and a change of
also leaves the form of the equations invariant, we drop s
labels and use a plane-wave basis throughout. The inte
tion terms inHa andHb are such that linear momentum is
conserved. Thus an assumption about the form of interac
has been made, but this would cover most examples in p
ics. The terms retained inHa andHb represent, respectively
a one-particle energy (vk ,Vk), two-body interactions
(dklm

(o) ,Dklm), as well as scattering processes annihilating t
quasiparticles and creating one. For phonons, for exam
the latter terms would describe umklapp processes. Note
the interactionHab has to be Hermitian and this is reflecte
in the form of Eq.~2.4!. Three-body interchanges have be
specifically excluded, i.e., six-legged operators will not a
pear in the Hamiltonian. The reader should not presupp
that in all four cases discussed below, the form ofH @in Eq.
~2.1!# is the same but each particular case will never inclu
terms which do not appear above. Thus, when we cons
individual cases we can drop terms from Eq.~2.1! as appro-
priate and do away with the need to have a separate Ha
tonian in each section.

The first step in this procedure is to calculate the Heis
berg equations of motion for the ladder operators of the t
systems. In general, four cases can be considered depen
on the types of statistics obeyed by the quasiparticles,
~1! boson-boson,~2! indistinguishable fermion-fermion,~3!
distinguishable fermion-fermion, and~4! boson-fermion
cases. We consider each of these cases in turn as, in gen
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57 2663COHERENT STRUCTURES IN QUANTUM SYSTEMS WITH . . .
they lead to different equations of motion, case three be
the simplest, then case four with the boson-boson situa
the most complex. For the sake of brevity only the first ca
will be shown in all detail; the three remaining cases
calculated analogously and thus only the main steps wil
given.

Case 1: the boson-boson system.For this situation all
terms in Eqs.~2.1!–~2.4! are included. Thea andb operators
satisfy Bose-Einstein commutation rules, namely,

@ak ,al
†#25dk,l , @bk ,bl

†#25dk,l , ~2.5a!

@ak ,al#25@ak
† ,al

†#25@bk ,bl#25@bk
† ,bl

†#250,
~2.5b!

and

@ak ,bl#25@ak ,bl
†#25@ak

† ,bl#25@ak
† ,bl

†#250.
~2.5c!

We have specifically excluded interactions or terms inter
to a subsystem which create one particle from the vacu
but have allowed transformation of one particle to anot
and two of one type to scatter off another but in the proc
linear momentum is conserved. Since there are two-b
terms in Eq.~2.4! we include not only interactions whic
preserve different particles separately but incorporate te
where, for example, two B particles are destroyed, a B par-
ticle is created but an A particle also appears to conse
momentum. No processes of the type in which a B particle is
destroyed at the expense of creating three A particles h
been included. Employing Heisenberg’s equation of mot
in the form

i\] tan5@an ,H#2 , ~2.6!

we find

i\] tan5vnan1(
l,m

~dn,l,m
~0! 1d l,n,m

~0! !al
†aman1 l2m1jnbn

1(
l

$hn,lalbn2 l1h l,n* bl2n
† al%1(

l
ln1 l,l* bl

†bn1 l

1(
l,m

~en,l,malan2 l1en1 l,l,m* al
†an1 l1e l,n,m* al2n

† al!

1(
l,m

$m l,n,mbl
†amal1n2m1mn1m2 l,l,m* am

† albn1 l2m

1m l,m,n* al1m2n
† ambl%1(

l,m
gn,l,mbl

†bmbn1 l2m

1(
l,m

$an,l,mbl
†bman1 l2m

1an1m2 l,l,m* bm
† blan1m2 l% ~2.7!

and
g
n
e
e
e

l
m
r
s
y

s

ve

ve
n

i\] tbj5Vjbj1(
l,m

$Dj,l,mbl
†bmbj1 l2m

1D l,j,mbl
†bmbl1j2m%1jj* aj1(

l
hj1 l,l* al

†aj1 l

1(
l

$lj,lblaj2 l1l l,j* al2j
† bl%1(

l,m
$Lj,l,mblbj2 l

1Lj1 l,l,m* bl
†bj1 l1L l,j,m* bl2j

† bl%

1(
l,m

$mj,l,mal
†ambj1 l2m%

1(
l,m

$g l,j,mal
†bmbl1j2m1gj1m2 l,l,m* bm

† blaj1m2 l

1g l,m,j* bl1m2j
† bmal%1(

l,m
$a l,j,mal

†bmbl1j2m

1a l,m,j* al1m2j
† bmal%. ~2.8!

In Eqs. ~2.7! and ~2.8!, since the two subsystems are a
sumed isolated from the environment, momentum conse
tion requires that the following parameters become diago
v,V,j.

In order to obtain quantum field equations, two quantu
fields are defined corresponding to the two sets of opera
as follows

F~x!5
1

AV
(

k
bk exp@2 ik•r #, ~2.9a!

and

c~x!5
1

AV
(

k
ak exp@2 ik•r #, ~2.9b!

whereV is a volume over which the plane waves are n
malized. For completeness we give the well-known relatio

E
v

exp@2 i ~k12k2!•r #d3r5Vdk1 ,k2
, ~2.10a!

(
k

exp@ ik•~r2r 8!#5Vd~r2r 8!. ~2.10b!

The procedure outlined earlier@9,10# for a single quantum
field is now followed and the coefficients in each equation
motion are Taylor expanded about a particular point in
ciprocal or quantum number space. It is assumed that the
at least one such ‘‘point’’ which is common to both su
systems. This point may be chosen as an actual critical p
of a subsystem with coordinates (n0 ,k0 ,m0) in ‘‘reciprocal’’
space or it may be a point in a regime where the system
close to classical from the correspondence principle@27#. As
an example, expandingv we find

vn5vn0
1(

s51

`
@~n2n0!•“n#sv0

s!
. ~2.11!
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We expand bothv andV to second order in deviations from
the critical point and assume the remaining model para
eters to be ‘‘momentum’’ independent. For more details
these expansions see Ref.@9#. Having made the appropriat
Taylor expansions and defined fields for each subsystem
multiply both sides of Eqs. ~2.7! and ~2.8! by
V21/2 exp(2in•r ) and V21/2 exp(2ij•r ), respectively, and
then sum overn and j. We find the following equation of
motion for the quantum fieldc:

i\] tc5v0c1 i v1•“c1v2¹2c12d0c†cc1j0F

1h0cF1h0* F†c1l0* F†F1e0c212e0* c†c

1m0F†c212m0* c†cF1g0F1FF

1~a01a0* !F†Fc, ~2.12!

where the new parameters are related in an obvious fas
to those in the original equation, i.e., Eq.~2.7!. In a similar
manner we obtain, for the other fieldF,

i\] tF5V0F1 i V1•“F1V2¹2F12D0F†FF1j0* c

1h0* c†c1l0Fc1l0* c†F1L0F212L0* F†F

1m0c†cc1g0c†FF12g0* F†Fc

1~a01a0* !c†Fc. ~2.13!

It should be noted thatv2 and V2 in Eqs. ~2.12! and
~2.13!, respectively, are written in this form for convenien
since in general they are second order tensors and the
placian is replaced by mixed second order derivatives. H
ever, for numerous physical systems they will reduce t
Laplacian operator due to their inherent spatial symmetr
These equations, even when treated classically, are
tremely difficult to solve but nevertheless can be analyze
extract important physical information about the system
behavior.

Case 2: fermion-fermion, indistinguishable particles.As
an example of such systems we might imagine two mu
electron atoms in a solid each with their own electrons@28#
that may influence each other through mutual interactio
As these particles are indistinguishable, the associated a
hilators and creators satisfy the following Fermi-Dirac co
mutation rules:

@ak ,al
†#15dk,l , @ak ,al#15@ak

† ,al
†#150, ~2.14a!

@bk ,bl
†#15dk,l , @bk ,bl#15@bk

† ,bl
†#150, ~2.14b!

@ak ,bl
†#15@ak ,bl#15@ak

† ,bl#15@ak
† ,bl

†#150.
~2.14c!

Going through the same procedure as before and noting
e, L, h, l terms vanish since charge must be conserved,
find for the field equations of motion
-
f

e

on

a-
-

a
s.
x-

to
s

i-

s.
ni-
-

at
e

i\] tc5v0c1 i v1•“c1v2¹2c12d0c†cc1j0F

1@~a01a0* !#F†Fc1g0F†FF2m0F†cc

~2.15!

and, for theF field,

i\] tF5V0F1 i V1•“F1V2¹2F12D0F†FF1j0* c

2~a01a0* !c†Fc2g0c†FF1m0c†cc ~2.16!

since for Fermionsdnlm
(0) 52d lnm

(0) . Note that two terms inm*
have cancelled out. This is obvious since otherwise
would either create or destroy a particle.

In Eqs. ~2.15! and ~2.16!, we have again used the scal
symbols v2 and V2 , respectively, to simplify the secon
order derivatives so that they take the form of a Laplaci
They can be generalized if need be to give mixed sec
order derivatives.

Case 3: fermion-fermion, distinguishable particles.Here,
as an example, we might have a plasma made up of elect
and protons. Unlike case 2, here we must preserve the
ticle numbers separately for each type so single annihila
or creators for either subsystem are not allowed. The seco
quantized operators here satisfy

@ak ,al
†#15dk,l , @ak ,al#15@ak

† ,al
†#150, ~2.17a!

and

@bk ,bl
†#15dk,l , @bk ,bl#15@bk

† ,bl
†#150, ~2.17b!

but between subsystems they commute~not anticommute as
in case 2!, i.e.,

@ak ,bl
†#25@ak ,bl#25@ak

† ,bl#25@ak
† ,bl

†#250.
~2.17c!

For this casee, L, j, h, g, m, g-type interactions are no
present. The field equations of motion readily become

i\] tc5v0c1 i v1•“c1v2¹2c12d0c†cc

1~a01a0* !F†Fc ~2.18!

and

i\] tF5V0F1 i V1•“F1V2¹2F12D0F†FF

1~a01a0* !c†cF. ~2.19!

They may, at first, appear complicated but much import
information can be gained from them and will be analyzed
Sec. III.

Case 4: fermion (a)-boson (b).For this particular situation
we have in mind the important example of interacting ele
trons and phonons. Thusa operators for the Fermions satisf
Fermi-Dirac commutation rules

@ak ,al
†#15dk,l , @ak ,al#15@ak

† ,al
†#150, ~2.20a!

whereas the Boson operators satisfy

@bk ,bl
†#25dk,l , @bk ,bl#25@bk

† ,bl
†#250, ~2.20b!
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TABLE I. Painlevécase of the system of two quartic anharmonic oscillators in Eq.~3.4! with m5g
5e50 following Ref. @29# ~M is the number of arbitrary constants!.

Case Parametric restriction M
Integrals of motion

I 1(5H), I 2

1~i! A5B, a5b, d56a 4 I 151/2(px
21py

2)1a(x41y416x2y2)1A(x21y2),
3 I 25pxpy12@A12a(x21y2)#xy

1~ii ! a5b, d52a 4 I 151/2(px
21py

2)1Ax21By21a(x21y2)2,
3 I 25(xpy2ypx)

21(2/a)(B2A)@1/2px
21Ax2

1a(x21y2)x2#

2b~i! A54B, a516b, 4 I 151/2(px
21py

2)1B(4x21y2)1b(16x41y4

112x2y2),
d512b 3 I 25(ypx2xpy)py12(B14bx212by2)xy2

3
2b~ii ! A54B, a58b, d56b 4 I 151/2(px

21py
2)1B(4x21y2)1b(8x41y4

16x2y2),
3 I 25py

414y2(B16bx21by2)py
2216bxy3pxpy

3 14by4px
214B2y414b@2B1b(2x21y2)#(2x2

1y2)y4
t

rd
ld
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and between subsystems the operators commute so tha

@ak ,bl
†#25@ak ,bl#25@ak

† ,bl#25@ak
† ,bl

†#250.
~2.20c!

In this case terms of typee, j, l, m, andn must be omitted
from the Hamiltonian. This case is relatively straight forwa
and we readily derive the equations of motion for the fie
as

i\] tc5v0c1 i v1•“c2v2¹2c12d0c†cc1h0cF

1h0* F†c1~a01a0* !F†Fc ~2.21!

and

i\] tF5V0F1 i V1•“F2V2¹2F12D0F†FF1h0* c†c

1~a01a0* !c†Fc1L0F212L0* F†F. ~2.22!

III. ANALYSIS OF THE EQUATIONS
AND THEIR SOLUTIONS

In all the cases above the coupled equations of motion
each of the nonlinear Schro¨dinger ~NLS! type with addi-
tional terms due to the mutual interactions between
fields. First, there are cross-terms proportional toFC as well
uFu2C and ucu2F. Secondly, ‘‘source’’ terms appear pro
portional to the other field and its squared modulus. T
method for solving these nonlinear coupled differential eq
tions is to first treat the fields as classical and effectiv
decouple them by assuming a particular type of analytic o
in the phase space given by the general formula

G~F,C!50. ~3.1!

Some commonly used examples of this function invo
straight lines, parabolae, ellipses, and hyperbolae@12# but it
is not at all guaranteed that any of these approaches
actually produce analytical results in all the cases conside
s

re

e

e
-

y
it

ill
d.

Each time a particular orbit is investigated, compatibil
conditions have to be satisfied and for stationary orbits
condition

F ]G

]FG2

u“Fu25F ]G

]C G2

u“Cu2, ~3.2!

which follows from Eq. ~3.1!, can be used to effectively
decouple the two equations. Rather than provide an exten
general discussion on the applications of this general te
nique we shall refer the reader to the book by Rajaram
@12# where several cases have been worked out in detai
principle, depending on the actual form of the systems
coupled equations, a different approach may have to be ta
so it is rather hard to provide simple prescriptions for deal
with them.

Limiting our interest to the real and stationary space
solutions maps the problem onto the study of the Hami
nians of the type

H5 1
2 ~px

21py
2!1V~x,y!, ~3.3!

where, in general, the potentialV(x,y) is given by

V~x,y!5Ax21By21ax41by41dx2y21mxy1gxy3

1eyx3. ~3.4!

A number of papers have used Painleve´ analysis to find con-
ditions for integrability of this type of system@29–34# and a
summary of integrable cases is given in Table I. In gene
however, the system is not integrable leading to the coex
ence of regular and chaotic solutions. For illustration,
Figs. 1–4 we have demonstrated how the shape of the po
tial V(x,y) affects the character of the orbits in the pha
space by plotting Poincare´ sections at different energy levels
In Fig. 1~a! the potential only contains the terms withA
5B51, a5b521, andd521. This results in a globally
unbounded situation but with a local minimum atx5y50.
Consequently, as shown in Fig. 1~b! there is a small region
around the origin where regular closed orbits exist. Outs
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this region there are four maxima but the orbits are
bounded characteristic of singular solutions. In Fig. 2~a! the
potential has nonzero terms withA5B521, a5b511,
and d521 such that the potential is asymptotically lar
and therefore binds the orbits. Figures 2~b!–2~d! illustrate
the transition from completely regular to mainly stochas
and eventually completely chaotic behavior as the total
ergy is gradually raised to correspond to the value of
local maximum at the origin. Figure 3~a! corresponds toA
5B51, a5b521, d51. The situation here resembles th
in Fig. 1 since there is a finite region where orbits a
bounded. However, the presence of three local minima al
each diagonal leads to a different topology of the regu
orbits in Fig. 3~b!. Finally in Fig. 4 we have shown th
potential that contains also odd power terms and the co

FIG. 1. ~a! The potentialV(x,y) of Eq. ~3.4! with A5B51, a
5b521, d521, and the remaining coefficients zero.~b! A Poin-
carésectiondx/dt versusx of the corresponding Hamilton’s equa
tions for the energyE510.22.
-

-
e

t

g
r

fi-

cients used areA5B521, a5b5d511, and m5n5e
51. In addition to the familiar elliptic shaped orbits Fig. 4~b!
indicates the existence of a separatrix orbit which delinea
the boundary between the regular and stochastic region.
latter is fully developed at an energy level corresponding
Fig. 4~c!.

A more in-depth analysis of the structure of regular a
chaotic solutions to the equations of motion discussed her
general can be made for specific cases. For example,
Fröhlich Hamiltonian for electron-phonon systems is d
cussed as an illustration in Sec. V. In connection with no
stationary, complex solutions, Malomed@35# considered two
coupled nonlinear Schro¨dinger equations with incoheren
and coherent nonlinear couplings and with different gro
velocities. He showed that two soliton solutions for the
equations can form a strongly bound state with a single c
ter of mass or several weakly bound states with far remo
centers, provided the coherent type of coupling dominate

A final comment we wish to make in this section is wi
respect to the relationship between the MCS and the Land
Ginzburg theory which makes it very relevant in view of th
comments made by Imry@8f# about the formalism required
to adequately treat couplings between two degrees of f
dom. In the previous paper on the MCS@9# it has been ob-
served that for a single field the equations of motion can
derived via the Euler-Lagrange equations, from a Ham
tonian density of the Landau-Ginzburg form

HLG
a 5aac†c1bac†c†cc1ga~“c†!•~“c!. ~3.5!

It can be readily shown that the corresponding Hamilton
density in this problem of two coupled fields can be writt
in all the cases above within a Landau-Ginzburg formali
as

H5HLG
a ~c,“c!1HLG

b ~F,“F!1HLG
ab~F,C,“F,“c!,

~3.6!

where HLG
a is that of Eq.~3.5!, HLG

b is obtained from Eq.
~3.5! by changingC to F and replacinga by b. The last
term in Eq.~3.6! takes the form~in general!

HLG
ab5m1uFu2uCu21m2~F1F* !uCu21m3~C1C* !uFu2

1m4~cF* 1FC* !1m5~F* uCu2C1FuCu2C* !

1m6~C* uFu2F1CuFu2F* !. ~3.7!

On going to first order in the interaction~the reader
should consult the original MCS papers Refs.@9,10#! the
form of HLB

ab would become modified to include terms whic
involve a gradient of one field and are proportional to t
square or modulus squared of the other field. Second o
corrections will bring in Laplacians of one field and squar
of the other. In specific systems, cubic terms such asF
1F* )uCu2 may be excluded on symmetry grounds but oft
are important and, for example, in an electron-phonon s
tem,F1F* would denote a displacement of the lattice a
uCu2 an electron density distribution. The next section, ho
ever, deals with a significantly simpler example of coupl
distinguishable Fermion systems. The presence of spe
terms above depends on the case considered and for gr
clarity of exposition is summarized in Table II. We see fro
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FIG. 2. ~a! The potentialV(x,y) of Eq. ~3.4! with A5B521, a5b11, d521, and the remaining coefficients zero.~b! A Poincaré
sectiondx/dt versusx of the corresponding Hamilton’s equations for the energyE520.5. ~c! Same as in~b! exceptE520.1. ~d! Same as
in ~b! exceptE510.1.
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this table that the term proportional touFu2uCu2 appears in
all cases, the one proportional toCF* is only present in the
boson-boson and fermion-fermion indistinguishable cas
Terms which are linear in one field and quadratic in the ot
are only allowed whenever at least one boson field is pres
Finally, terms linear in one field and cubic in the other a
restricted to the fermion-fermion indistinguishable case.

Before we deal with specific examples presented in
sections that follow we should comment on the rationale
treating the field equations as classical to first order of
proximation. In this context, recall that the particle numb
operator is

N5(
k

ak
†ak5E

v
d3xc†~x!c~x!, ~3.8!

so thatN acting on a state will give as its eigenvalue the to
number of particles in the energy level. Thus, treating
s.
r

nt.

e
r
-

r

l
e

fields c1 and c as classical scalar fields to first order
approximation means that there must be a macroscopic
occupied condensate whose density is proportional toucu2.

IV. SOLUTIONS FOR THE DISTINGUISHABLE
FERMION-FERMION CASE „CASE 3…

In this case it is relatively easy to obtain exact solutions
the system of equations of motion forC andF, namely, Eqs.
~2.18! and ~2.19!. It is assumed for simplicity that the coor
dinate system is chosen in such a way thatv1•¹c
5V1–¹F50. This can be achieved by either a convenie
rotation of the coordinates or the choice of a moving fra
of reference. The time dependence of the two fields is ta
in the form

F→ceiE2t/\

and
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c→ceiE1t/\. ~4.1!

Then, the two fields are assumed to be linearly depend
which yields

F5lc, ~4.2!

which transforms Eqs.~2.18! and ~2.19! into two similar
equations. This is certainly the simplest nontrivial type o
interdependence but not necessarily the only one allowed
the system. Since the two equations then refer to the sa
field, compatibility is then required. The equations take th
form

05~v01E1!c1v2¹2c1@2d01l2~a01a0* !#c†cc,
~4.3!

and

FIG. 3. ~a! The potentialV(x,y) of Eq. ~3.4! with A5B511,
a5b521, d511, and the remaining coefficients zero.~b! A
Poincare´ section withE510.23.
nt

f
by

e
e

05~V01E2!c1V2¹2c1@2D0l21~a01a0* !#c†cc.
~4.4!

Multiplying Eq. ~4.3! on both sides by an arbitrary consta
b and comparing corresponding terms in the two equati
gives

bv25V2 , ~4.5!

b~v01E1!5V01E2 , ~4.6!

and

b@2d01l2~a01a0* !#52D0l21~a01a0* !. ~4.7!

From Eq.~4.5!, b is fixed asb5V2 /v2 . Substituting this
into Eq. ~4.6! we may solve forE2 to give

FIG. 4. ~a! The potentialV(x,y) of Eq. ~3.4! with A5B521,
a5b511, d511, and m5n5e511. ~b! A Poincarésection
with E520.69. ~c! A Poincarésection withE520.2193.
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E25
V2

v2
~v01E1!2V0 , ~4.8!

where, of course,E1 is still arbitrary. Then in Eq.~4.7!,
substituting forb from Eq. ~4.5! we obtain

l25
v2 /V2~a01a0* !22d0

@~a01a0* !22~v2 /V2!D0#
. ~4.9!

The net result is that the two equations in Eqs.~4.3! and~4.4!
are made compatible and both become a stationarynonlinear
Schrödinger equation. There are a number of solutions o
this equation which have been thoroughly investigated in
past. Suffice it to say that, among the spatially inhomo
neous solutions one finds elliptic waves of several kinds
well as hyperbolic localized solutions~solitons! and there
exist critical currents above which nonsingular solutio
cease to exist@36#. This signifies the onset of dynamica
symmetry breaking.

V. INTERACTING ELECTRONS AND PHONONS

A. The Fröhlich Hamiltonian

To illustrate the general method described in Sec. II
will use another specific example in which bosons will
represented by phonons and fermions by electrons. Inte
tions between electrons and phonons in a metal were
described in a quantum mechanical formalism@25# using the
Fröhlich Hamiltonian

H5(
k

\2

2m
k2ak

†ak1(
q

\vqbq
†bq

1(
k,l

M k,l@bq1b2q
† #ak

†al , ~5.1!

whereq5k2 l. Here, the operatorsak
1 , ak refer to the elec-

trons whilebq
1 , bq refer to the phonons. This Hamiltonian

apparently one of the simplest possible examples of the g
eral fermion-boson type since onlyv, h, and V terms are
retained. Its analysis turns out to be quite involved as
show below. The effective coupling constantM k,l is usually
@25# written as

TABLE II. The types of coupling terms present for various s
tistics of quasiparticles.

No. Case
Nonvanishing two-field

interaction potential

1 BB cf* 1fc*
(f1f* )ucu2, (c1c* )ufu2

ufu2ucu2

2 FF Indistinguishable cf* 1fc*
ufu2ucu2

c* ufu2f1cufu2f*
f* ucu2c1fucu2c*

3 FF Distinguishable ufu2ucu2

4 FB ufu2ucu2

(c1c* )ufu2, (f1f* )ucu2
e
-
s

s

e

c-
st

n-

e

M k,l5 iA N\

2Mvq
u l2kuVk2 l , ~5.2!

whereVk2 l is the Fourier transform of a screened Coulom
potential due to a particular ion at the origin andN is the
number of distinct collective coordinates associated with
tice displacements. TypicallyVk2 l takes the form

Vk2 l5
2pe2

uk2 lu21qc
2 , ~5.3!

whereqc
21 is of the order of the interparticle distance an

plasma waves only exist when their wavelength is grea
than this. In this simple model the ions of the metal a
assumed to interact with one another and with conduc
electrons via a short-range screened potential. The con
tion electrons, on the other hand, are considered to be es
tially independent Fermions. Note that the ‘‘bare’’ Coulom
interaction between the ions and the conduction electron
not used, and, to incorporate screening repulsive terms h
been built in to some extent via the short-range nature of
effective interaction remaining. The Fro¨hlich Hamiltonian, in
spite of its approximate nature, played an important role
the development of the theory of superconductivity by lea
ing directly to the BCS model.

A fairly up-to-date review of the electron-phonon pro
lem can be found in Ref.@37#. In particular, model param
eters for a number of materials can be obtained. Howeve
this review paper, the theoretical approaches to the prob
are predominantly of perturbative type. Our approach e
phasizes nonlinearity and nonperturbative effects. This t
of procedure for the Fro¨hlich problems has been studied b
fore. Evans@38# found a macroscopic phonon wavefunctio
which is due to the displacement field manifesting the o
diagonal long-range order for superconductors. Eremko@39#
has recently examined the other side of the problem, i.e.,
behavior of electronic charge. He found charge density w
equations of nonlinear Schro¨dinger type which is consisten
with our approach. In what follows, we present the behavi
of both electronic and phonon subsystems within a nonlin
framework of the MCS as outlined in Secs. II and III.

B. The MCS analysis

We proceed by expanding linearly inq2 to obtain a
q-dependent correction to the coupling constant. Thus,
obtain

hq>h02h0Lq21¯ , ~5.4!

whereL51/qc
2 and

h05 iA N\

2Mv~qF!

qF2pe2

qF
21qc

2 ' iA N\

2M uV2u
2pe2

qc
2 .

~5.5!

This will result in the following equations of motion for th
C andF fields:

i\] tC52v2¹2C12@Re~h0F!#C12L¹2@Re~h0F!C#

~5.6!
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and

i\] tF52V2¹2F1h0* ucu21Lh0* ¹2~ uCu2!. ~5.7!

To analyze Eq.~5.7! we write

F5FR1 iF I , h05 ix, ~5.8!

and

C5heif0eiEt/\, ~5.9!

so that the real and imaginary parts of this equation beco
respectively,

Re: ¹2FR52
\

V2
ḞI , ~5.10!

Im: ¹2~V2F I1Lxh2!5\ḞR2xh2. ~5.11!

We then assume that the argument on the left-hand sid
Eq. ~5.11! is zero so that

F I52
Dxh2

V2
~5.12!

and

ḞR5
xh2

\
. ~5.13!

In principle, we could add any harmonic function of spa
and an arbitrary function of time to the right-hand side of E
~5.12! so that the left-hand side of Eq.~5.11! is still zero but
we draw back at such, possibly unnecessary, complex
Next we differentiate Eq.~5.10! with respect to time once
and substitute Eq.~5.7! for ḞI to obtain a wave equation in
the form

¹2h251
\2L

V2
2 ] tth

2, ~5.14!

the solution of which in one dimension may be written a
wave propagating with velocityv so that

h25h2~j!,

where

j5x2vt ~5.15!

and v5V2 /\AL. Note that the functionh in Eq. ~5.15! is
anarbitrary function ofj and this does not impose any co
straints on the procedure to follow.

We now return to Eq.~5.6! with Eq. ~5.12! providing a
link and making full use of Eqs.~5.8! and ~5.9!, to obtain

i\] tC52v2¹2C12
L

V2
x2uCu2C12

L2

V2
x2¹2~ uCu2C!.

~5.16!

This equation will now be solvedexactly.
e,

of

.

y.

a

In order to interpretE in the definition ofc in Eq. ~5.9!
we consider the kinetic energy part of the Lagrangian den
L5T2V which takes the form

T5
i

2
~CC t* 2C* C t!. ~5.17!

Thus, inserting Eqs.~5.8! and~5.9! into Eq. ~5.17! gives the
kinetic energyT as

T5E
h2

\
. ~5.18!

Hence, it is clear thatE must be positive since the kineti
energy is proportional toE and the amplitude squared of th
field.

Writing c in modulus-argument form and separating re
and imaginary parts yields for Eq.~5.16!

Re: 2\h
]f0

]t
1Eh52v2@¹2h2h~“f0!2#1lh3

1lL@6h~“h!213h2¹2h

2h3~“f0!2#, ~5.19!

and

Im: \
]h

]t
52v2@2“h•“f01h¹2f0#

1lLh2@6“h•“f01h“

2f0#,

~5.20!

wherel[2x2L/V2 . Equation~5.20! can be understood as
form of continuity equationas follows. Defining charge den
sity asr5h2 and current density asj5h2

“f0 , it can be
written as

]r

]t
1“•F S 2v2

\
2

8lLh2

\ D j G50, ~5.21!

where the second term in the square bracket of Eq.~5.21! is
due to the electron-phonon interaction and is only nonzer
the superconducting state, whenhÞ0. First, asuperconduct-
ing current is proportional to the charge densityh2 of the
superconducting electrons and acts against the Cooper
formation, eventually destroying it entirely at a critical cu
rent value. Secondly, aphonon drift currentresulting from
electron-phonon coupling~implicitly ! acts in the other direc-
tion enhancing the growth of the superconducting cond
sate.

Now, in order to solve Eq.~5.19! we insertj5h2
“f0 and

find

j•
\v

h
1Eh52v2F¹2h2

j 2

h3G1lLF6h~“h!2

13h2¹2h2
j 2

h G1lh2. ~5.22!

Multiplying through by h3 and introducing, in one-
dimension,x,
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dh

dx
5P

and

d2h

dx25P
dP

dh
, ~5.23!

we find,

@2v2h313lLh5#P
dP

dh
52P2lL6h41@\vh21Eh4

2lh62 j 2v21lLh2 j 2#.

~5.24!
s

e
s o
u-
th

-

is

g

a

x
–

:

This can be put into the form of a first order linear differe
tial equation by defining

Z5P2, ~5.25!

to yield

dZ

dh
1

12lLhZ

@v213lLh2#

5
2@\vh2 j 1Eh42lh62 j 2v21lLh2 j 2#

@2v213lLh2#h3 .

~5.26!

This is solved using the integrating factor method as
Z5
1

~2v213lLh2!2 E dh2$\vh2 j 1Eh42lh62 j 2v21lLh2 j 2%~2v213lLh2!

h3 . ~5.27!
ting

te.
us
be
su-
ars

n
ling
.
n-

s

ies

so-
Thus, we can formally write the solution forh in an implicit
form as

j2j05E dh

AZ~h!
. ~5.28!

As was mentioned earlier, superconductivity correspond
either the existence of a mean field solution~constant in
space and time! or a localized solution which would describ
nucleation of superconducting grains. A graphical analysi
Eq. ~5.28! provides a quantitative criterion for the latter sit
ation. Note here that localized solutions correspond to
existence of at least two different real roots ofZ(h), one of
which mustbe a multiple root.

From Eq.~5.28! the resultant integration constant will de
termine the values of the corresponding roots ofZ(h). Ana-
lyzing the asymptotic behavior ofZ(h) for h→` and h
→0 we find that in both limitsZ(h)→2`. In searching for
localized solutions we must determine whether there ex
more thanone local extremum ofZ(h) for h.0. This leads
us to examine the integrand in Eq.~5.28! for Z. In general,
the situation is very complicated but the followin
asymptotic behavior can be readily found.

Since, for small values ofj , we will have up to two posi-
tive extrema forZ(h), we will not obtain localized solutions
in this regime because a local minimum and a maximum
needed. On the other hand, for large values ofj , the
asymptotic behavior is thatZ(h)→0 for h→` and Z(h)
→2` for h→0. This can be made consistent with the e
istence of a single minimum and a maximum. In Figs. 5
we have shown numerical plots ofZ(h) for various values of
model parameters. We have used the following symbols

a5
l

E
, b5

lL

v2
, g5

lL j 2

E
,

and
to

f

e

ts

re

-
7

d5
\v j

E
. ~5.29!

Horizontal bars in Figs. 5–7 denote nonsingularperiodicso-
lutions corresponding to a highly modulated superconduc
state while horizontal dots represent nonsingularlocalizedso-
lutions which manifest a nucleating superconducting sta
Obviously, a latter possibility is by far more advantageo
energetically and, under normal circumstances, this would
chosen as a manifestation of the system’s transition to a
perconducting phase. From Figs. 5–7 it therefore appe
that one should expect a narrow ‘‘window of opportunity’’ i
terms of model parameters for the electron-phonon coup
to lead to the formation of a superconducting condensate

We wish to make a comment with respect to multidime
sional solutions. We, therefore, reexamine Eq.~5.19! and set
(“f0)25a2 being time independent. Equation~5.20! can be
satisfied by requiring thath and f depend on mutually or-
thogonal variables. Then, rewriting Eq.~5.19! yields

~v223lLh2!¹2h5~2E1v2a2!h16lLh~“h!2

1~l2a2lL!h3. ~5.30!

First of all, Eq.~5.30! may be satisfied by constant solution
given by

h050

or

h0
25

E2v2a2

l~12a2L!
. ~5.31!

and, unlike the one-dimensional case, for positive energ
and sufficiently small values ofa5¹f a nonzeroorder
parameter amplitude can always be found. Nonconstant
lutions are also possible and Eq.~5.30! can be solved in an
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identical manner to that presented earlier@see Eq.~5.19! and
thereafter#. We readily conclude that localized solutions
Eq. ~5.30! exist whenever

E

v2
,a2S 12

lL

2 D1
l

2
. ~5.32!

This imposes anupperbound on the localized superconduc
ing state energy and also gives a possible condition for
destruction of superconductivity. The latter occurs when
phase gradient,a, is large enough so that

~“f!252
l

2S 12
lL

2 D ~5.33!

FIG. 5. Plots ofZ5(dh/dj)2 as a function ofh illustrating
solutions of Eq.~5.26!. Horizontal lines correspond to nonsingul
periodic solutions as the integration constant shifts the coordi
system upwards. Here, we have used the parameter valuesa
50.5, b50.75,g50.25, andd51.0.
e
e

and requires thatlL.2, or in terms of the coupling con
stant, thatuh0u.AV2qc

2, i.e., the localized superconductin
state is destroyed when electron-phonon coupling is str
enough. It doesnot necessarily mean that superconductiv
disappears altogether but that spatial localization may
longer take place. This may be a possible criterion for type
~inhomogeneous! versus type-I~homogeneous! superconduc-
tivity. Obviously, further studies are required to elucida
this question. The truly three-dimensional solutions may
obtained within this procedure and for technical hints on h
this may be done, the reader is referred to Ref.@36#.

A final comment we wish to make in this section regar
the role of temperature in destroying superconductivity. T
method we employed is a zero-temperature formalism a
as such, cannot be used to calculate the critical tempera
However, with upper bound restrictions on the energy of
superconducting state whether localized or spatially
tended, the necessary condition on its existence is that c
to T5Tc the energy of thermal fluctuations per degree
freedomkTc is comparable with the energyE which appears
in Eq. ~5.32!.

VI. CONCLUSIONS

In this paper we have provided a method of analyz
coupled many-body systems of two degrees of freed

te

FIG. 6. Same as in Fig. 5 except the parameters are chose
a50.5, b5

1
3 , g50.25, andd51.0.
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FIG. 7. Same as in Fig. 5 except the param
eters are chosen asa50.5, b50.15, g50.25,
and d51.0. Also note that the dotted line seg
ment in~d! represents a localized nonsingular s
lution ~solitary wave!.
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~critical or noncritical! which occur very frequently in con
densed matter physics and also other branches of phy
relying on many-body formalism. The approach to the pro
lem is an important application to a very general class
problems using the method of coherent structures@9,10#.
Since a growing number of important physical phenome
~superconductivity, metamagnetism, structural phase tra
tions, Mott insulators, etc.! can be adequately described on
in terms of two or more interacting degrees of freedo
which lead to the formation of emergent phenomena suc
superconductivity, we feel that our work represents a sign
cant step forward in unifying these diverse systems withi
single theory. In our paper, a general calculation of the fi
equations has been performed that can be applied to an
trary system with two quantized degrees of freedom p
vided its energy dispersion relations and coupling consta
are known or can be estimated. All four types of tw
component systems, i.e., boson-boson, fermion-fermion~dis-
tinguishable as well as indistinguishable!, and fermion-boson
have been investigated and their field equations of mo
derived. We have also provided the reader with a brief ov
view of mathematical methods required for the solution
the coupled nonlinear differential equations that result. Th
approaches lead directly to a quantitative physical desc
tion of the behavior of a coupled field system. For examp
it is now possible to locate chaotic regimes in the appropr
phase space and a knowledge of localized solutions prov
ics
-
f

a
si-

,
as
-
a
d
bi-
-
ts

n
r-
f
e

p-
,

te
es

a description of particle densities as a function of physi
parameters. The nature of the oscillations about stable eq
bria is another significant outcome of the calculations. Cl
sical solutions to the nonlinear coupled equations make
possible to quantize and investigate the spectrum of ass
ated quantum states.

In addition, we have provided two worked applicatio
sections. The first one, being the simplest, deals with
distinguishable fermion-fermion system~e.g., electron-
proton plasmas! and demonstrates a direct connection b
tween the equations of motion for the fields and the c
ebrated nonlinear Schro¨dinger equation leading to a wealt
of analytical solutions including solitons.

In the second application section of this paper we ha
given a detailed analysis of the Fro¨hlich Hamiltonian for
electron-phonon interactions in a metal which was so cru
in building a modern theory of superconductivity. Our a
proach has been fully nonlinear and analytical solutions h
been found for both the phonon and electron fields under
general conditions of arbitrary dimensionality and t
strength of coupling. The conclusion reached here is tha
order to demonstrate Cooper pair formation in a Fro¨hlich-
like Hamiltonian the electron-phonon coupling coefficie
must be sufficiently strong forq-independent interactions o
must not exceed a critical value forq-dependent couplings
Precise formulas linking the model parameters have b
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obtained as quantitative criteria for superconductivity. If th
are not satisfied, the only solutions which arise are eit
identically zero or singular, both of which exclude the ex
tence of superconductivity.

We intend to carry out further applications to this a
other important systems~structurally unstable crystal lattices
e

y
r

-

Jahn-Teller compounds, magnetoelastically coupled s
systems, etc.! in a future work.
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