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Coherent structures in quantum systems with two coupled types of excitation
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This paper investigates the consequences of coupling two different types of quantum quasiparticle in many-
body systems. It utilizes a nonlinear field theoretical approach. Four main cases have been studied depending
on the statistics of the component quasiparticles and the attendant equations of motion for the quantum fields
have been derived. In each case Poinsaions reveal the presence of chaotic as well as regular behavior in
the phase space. Within the class of regular orbits our interest is focused on separatrices and the appearance
and disappearance of periodic solutions. The general method is illustrated by two exdeglissinguishable
fermion particles andb) an electron-phonon system. In the latter case we derive criteria for the emergence of
localized stateq.51063-651X98)07603-X]

PACS numbd(s): 05.30—-d

I. INTRODUCTION classified by renormalization group theory, appropriate mod-
els to study such coupled-fields phenomena would just need
A large variety of condensed matter systems exhibit propto be field-theory Hamiltonians in generalized Landau-
erties which manifest underlying competition between twoGinzburg form. Some twenty years after this proposal has
distinct types of order or degrees of freedom. Examples obeen made we intend to demonstrate in the present paper
such behavior are numerous within the condensed mattlow a connection can be made between microscopic second-
physics area and include metamagngtd, ferroelectric-  duantized Hamiltonians for coupled systems and Landau-
ferromagnetic systenjg], ferroelectric-piezoelectric crystals Ginzburg order parameter expansions. Furthermore, we in-
[3], crystalline-superfluid systenfid], as well as orientation- €nd to show how in practice the resultant equations of
position ordering phenomena in molecular liquid crysféls m0t|0_n for coupled order parameter f|elds_ may be analyz_ed
to name just a few. Two different types of order may engagé"”dv in many cases, exact_ly solved. _Conmsely, our |nten_t|on
in a competition, e.g., superconductivity and ferromag-S © provide the reader with a practical toolbox for d.e.alln.g
netism, ferromagnetism and antiferromagnetiiy ferro-  With coupled quantum many-body systems close to criticality
magnetism and ferroelectricif]; different lattice deforma- ' One or both variables. Our emphasis will be placed on
tion components give rise to a plethora of ferroelasticeXxtracting nonlinear features of t_he dynam|_c b_ehaV|or with
behaviors[5] and even two-mode lasers should be consid-SU_Ch atfcendant properties as solitons, localization, and cha-
ered to be examples of this complex behavior. It is wellOtic regions of the phase space. , .
known that an interplay between two distinct orders may AS realized early iri8f], a more fundamental microscopic
result in critical temperature shifts as well as crossover phe@PProach to the problem poses a serious difficulty due to
nomena. This can be readily analyzed using the mean fielfpherent nonlmear_ltles in the deS(_:np_tlon._ The objective of
approximatior[5]. In particular, Schulmaf6] used catastro- the present paper is to provide an insight into the problem. of
phe theory to predict the effects of the coupling on the rel-coupled degrees of freedom using a recently developed field
evant phase diagram for systems with several order parantP€oretical techniqugd,10], which applies to systems com-
eters. Specific applications to Landau-type expansions qused of a large number of strongly interacting particles. The
free energies with two coupled order parameters were mad@iginal method, henceforth refe_rred to as the methoq of co-
[7,84 and simple rules were derived for multicritical behav- N€rent structuresMCS) [9,10], is based on a nonlinear
ior of the systems involved. Another situation which is quite @n@lysis of collective modes of behavior in these many-body
prevalent in many-body physics involves the coupling of or-Systems. o . _ _
der parameterécritical degrees of freedoytto nonordering The starting point is the generic second quantized Hamil-
variables such as elastic variablggb] or electromagnetic tonianH of the form
fields [8c] to, for example, spin degrees of freedom. These
poupli_ngs can lead to a rich variety of ppssible pehaviors H=E wkalakJr 2 Aklma;aramakﬂfm (1.1)
including critical crossover effec{8d] creation of Wigner- K Khm
order critical point§8e] and, in addition to these equilibrium
effects, dynamic phenomena such as instabilities or solitonsvhich includes both one- and two-body interaction terms.
Imry [8f] pointed out that in view of the universal behaviors This type of Hamiltonian appears in numerous cases in phys-
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ics such as electrons in metals, superfluidity, the BCS theory iz g,= woy+ipmy - Vit V24— 2(V¢T)¢(V¢)
of superconductivity, anharmonic phonons in crystals, etc. In

each case the annihilators and creators refer to the annihila- + st g+ i (g V) Y+ T (g V) 914}
tion or creation of quasiparticles which may obey either Bo- 2,1 t g2
son or Fermi-Dirac commutation rules and, in nearly all LV bt 4 VY] (1.5
cases in the plane wave representation, the interaction takes
the linear momentum conserving form as in E&.1). The i, the Euclidean case, whepg, and w5 are constant param-
first step c_)f the metho_d is to derive the equations of mo,t'orbters andu, and p, are constant vectors.
for a particular annihilatora,(t) say, using Heisenberg’s  This classical envelope equation can, for example, be
equation of motion solved with the help of recent mathematical discoveries in
the area of nonlinear partial differential equatiqi®DE’s)
iho@,=—[H.a,] . (1.2 [1_3—15. The new powerful mathematical techniqu_es at our
disposal allow us, at the very least, to extract important
physical information about the local geometry of the emerg-
The commutator is readily calculated using Bose or Fermioring coherent structure resulting from many-body interac-
commutation rules and in either case may be cast in the santions. Quite often also the analytical form of these classical
form, i.e., nonlinear fields existing in multidimensional space-time can
be determined. The final stage in this procedMES) is an
analysis of the stability of the classical analytical solutions.
; _ T Once the stable classical solutions are found they provide an
idiy wﬂa”+2§n ApnBiBadicym- (13 effective potential in a linear Schdinger equatior>1/ ?or the
internal quantum oscillations. As an example of this proce-
) dure to a system with spherical symmetry and how the ef-
In a standard way the one-body and two-body matrix elefective potential is provided by the classical field, the reader
ments, w,, and A, m, respectively, in Eq(1.3), are then s referred to Ref[16]. It should be pointed out in this con-
expanded about a particular pointkrspace, f.Ko,Mo) (OF  nection that approaches very similar in spirit were proposed
quantum number spaceThus, when both sides of EQL.39)  aimost simultaneously by other authdsee, e.g., Ref17)).
are multiplied by exp¢in-r)/JQ and summed over aly,  |n the present paper we will not be concerned with quantum
the equation of motion in Eq1.3) may be written entirely in  fluctuations because of the closeness to the correspondence
terms of a quantum fieldy and its derivatives wherg is  [imit.
defined by Apart from the general framework, several specific physi-
cal applications have been recently worked out with the aim
of testing the validity of the method. First, the BCS Hamil-
tonian for superconductivity has been used and a careful
analysis resulted in a remarkable confirmation of earlier stan-
dard scaling laws for the superconducting current and energy
gap[18]. Another application was concerned with the equi-
The point (i5y,ko,mg) is now chosen carefully to be a criti- librium phases of metamagnets, i.e., spin systems with two
cal or fixed point of the system under consideration. Thisor more sublattices. In this case an independent analytical
may also be viewed as an expansion about the corresposupport was providefil9] for a numerical form of the phase
dence principle limit. One reason for this is that close to suctboundaries between the three possible ground s{@@s
a point the fieldy is predominantly classical. Secondly, if Furthermore, new insights have been provided into the
this point corresponds to a second order phase transitiomjaldane gap problem for quantum Heisenberg spin chains
renormalization group ideas may be used to truncate the Tay21] and also the bound states in multielectron atoms have
lor expansion abouts#,,kq,mp). The reason for this is that been investigated16]. Another important observation has
the equation of motion may be shown to be derivable, as abeen recently madg22] in connection with the presence of
Euler-Lagrange equation from a Hamiltonian functional. Un-spin degrees of freedom. This requires the use of a separate
der quite general conditions on the field treated as a classicéield for each spin component. However, it was rigorously
function, the Hamiltonian density can be written in a stan-demonstrated that the inclusion of spin does not alter the
dard ¢"-field theory form[11,12. A particular¢" model is  form of the equations of motion for each individual quantum
well known to be renormalizable when the number of inde-field and hence the basic results of the calculations remain
pendent spacéor space-timgvariablesN, is given byN,  valid. What is affected, however, by the presence of spin is
=2n/(n—2). For a¢* model, the Hamiltonian density is the magnitude of the nonlinear coupling coefficient when the
renormalizable foN.=4 which means that if an expansion spin S>3, in which case it becomes multiplied by the spin
away from (y,ko,mp) is made in the Hamiltonian density degeneracy (8+ 1) (for integer spins only This may also
only terms which deviate away from it t©(k*) need be lend support to the approach described since the critical tem-
retained. Thus in the equation of motion only terms up toperature will be spin dependent and, for example, for super-
O(k®) need be retained, all higher order contributions merelyfluid 3He and“He the transition temperature is much higher
redressing those below those®@tk?®). One finds, after con- in the latter case than in the forma3]. Finally, it has been
siderable algebrgd,10] that for an isotropic or cubic system, demonstrated that the form of the nonlinear field equations,
the most general field equation of motion is provided the field is suitably defined, is exactly the same in

1 .
lﬁ:\/—ﬁ; exp(—ik-r)ay. (1.9
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any orthonormal basis of states not just a plane-wave basis as -
originally used[24]. Hb:; ka&bﬁkz Ay 1, mbibybmbys - m
The motivation for this paper is to extend the MCS be- ' o
yond a single quasiparticle type and include another set of
degrees of freedortcritical or noncritical, which may rep- +k|2m {Akylvmblblbk*ﬁA:,I,mblflbrbk}’ 2.3
resent either another subsystéeng., a heat reservogior a v
different type of quasiparticlé¢electrons and phonons, for gnq
instance, when the two subsystems are coupled together.
This is an importantstep in the direction towards realistic
modeling of complex many-body interacting systems. In
fact, under close scrutu_fly_nearly all many-body structures arg b= 2 {fkalbﬁ & blak}Jr E {nk,lalalbkq
comprised of several distinct subsystems or components. Su- K Kl
perconductivity, for example, involves electrons and
phc_mons dynamica}lly coupled_ vig an eIectron—phono_n inter- + ﬂ’kﬁblqarak“ > {)\k,lblblakfl"')\:,lai—lbrbk}
action[25] and the interaction is, in fact, key to the existence kil
of the emergent phenomena, i.e., superconductivity. The
general situation described here is indeed ubiquitous in con-  + > {uy | wbralama i mt 45 ek - mamabit
densed matter physics with, for example, various phonon k1, m
modes interacting amongst themselves and leading to struc-
tural instabilitieg26]. Practically speaking, any combination + > {yk,|,ma1bfbmbk+|_m+ yﬁyhmblﬂ_mbLb,ak}
of two types of excitation present in a solid may be described klm
in this mannei(electron-plasmon, magnon-phonon, electron-

! . ) tht + t
polaron, photon-electron interactions, &tcThis paper, +k|2m {1, makb P |- m+ @k | mAk+ - mbmbias,
therefore, addresses the significant question of the conse- v
guences of physical coupling between the two subsystems. (2.9

We will demonstrate step by step how these generic many-
body problems can be dealt with using modern tools of nonwhereH, and H;, are the associated Hamiltonians for the
linear analysis. two separate subsystems A and B, atgl, is an operator
providing interactions between them. Each of the lakels
andm denote a set of quantum numbers for a complete set of
states. In view of the fact that spin labels do not alter the
Il. DERIVING THE EQUATIONS OF MOTION form of the MCS equations of motion, provided the interac-
tions themselves are spin independent, and a change of basis
In this section, the MCS is applied to a general Hamil-also leaves the form of the equations invariant, we drop spin
tonian describing two types of particle. Here, the entirelabels and use a plane-wave basis throughout. The interac-
physical system is divided into two parts, denoted A and Bfion terms inH, andH,, are such that linear momentum is a
with strong interactions within each of the systems and couconserved. Thus an assumption about the form of interaction
pling terms between the two subsystems. The form of thd@s been made, but this would cover most examples in phys-
coupling terms in this study is quite general and includedCS: The terms retained i, andH,, represent, respectively,
one- and two-quantum exchanges between systems A and%(gne-partlcle energy of ’Q_k)* two-body mtgrgct_lons
with associated second-quantized operatossal) and (Skin »Axim), as well as scattering processes annihilating two

(b,b"), respectively. The model Hamiltonian will be taken quasiparticles and creating_one. For phonons, for example,
generically as the latter terms would describe umklapp processes. Note that

the interactiorH 5, has to be Hermitian and this is reflected
in the form of Eq.(2.4). Three-body interchanges have been
specifically excluded, i.e., six-legged operators will not ap-
pear in the Hamiltonian. The reader should not presuppose
H=H_,+Hy+H,p, (2. thatin all four cases discussed below, the forntHofin Eq.
(2.1)] is the same but each particular case will never include
terms which do not appear above. Thus, when we consider
where individual cases we can drop terms from KE2.1) as appro-
priate and do away with the need to have a separate Hamil-
tonian in each section.
The first step in this procedure is to calculate the Heisen-
berg equations of motion for the ladder operators of the two
_ T (0) ,tot systems. In general, four cases can be considered depending
Ha %’ wkakaﬁk;m Okl mBHR A1 on the types of statistics obeyed by the quasiparticles, i.e.,
(1) boson-boson(2) indistinguishable fermion-fermiorn(3)
2.2 distinguishable fermion-fermion, and4) boson-fermion

t x ot ot
+ x I marady_+ e mal_alagt, _ . .
k;m{ 1 @R F €l mic 313 cases. We consider each of these cases in turn as, in general,
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they lead to different equations of motion, case three being

the simplest, then case four with the boson-boson situatioriﬁﬂtbfﬂgbg*'IE {A g1 mb/Ombes1—m
the most complex. For the sake of brevity only the first case "

will be shown in all detail; the three remaining cases are

calculated analogously and thus only the main steps will be +A|,§,mbrbmb|+g7m}+§§a§+2l UpITCHEYSY
given.

Case 1. the boson-boson systeRur this situation all .t
terms in Eqs(2.1)—(2.4) are included. Tha andb operators +§|: {?\g,|b|<’i§7|+)\|,§<'31|7gb|}+%:1 {A g mbibg

satisfy Bose-Einstein commutation rules, namely,
; ) +A§+|,|,mbrbg+|+Afg,mbr—gbl}
[ak,a)]-= 6, [bk.b/]1-=6k,, (2.53

+% {Mg,LmarambgH—m}
[ak,a.];[ai,a.*]f=[bk,b.17=[bi,br]7:o,( ) |
25

+% {%,g,marbmng,m%— 7§+mfl,l,mb:nbla§+m—l
and ’
+ ¥ m Dl e Oma} + albpby

(o - =3, bf)- =(a{ b ~[abl)-=0. YimDlem- i+ £ {6 Drre g

2.5
+ i @l - ma}. 2.9

We have specifically excluded interactions or terms interna|

to a subsystem which create one particle from the Vaculum, meq isolated from the environment, momentum conserva-

but have allowed transformation of one pamqle to anotherﬁon requires that the following parameters become diagonal:
and two of one type to scatter off another but in the process ¢

. . . wl 1
linear momentum is conserved. Since there are two-body In order to obtain quantum field equations, two quantum

terms in Eq.(2.4) we |_nclude not only Interactions which fields are defined corresponding to the two sets of operators
preserve different particles separately but incorporate term

where, for example, two B particles are destrqyad par- 8s follows

ticle is created but an A particle also appears to conserve 1
momentum. No processes of the type in whicB particle is d(x)=— >, b, exd—ik-r], (2.9a
destroyed at the expense of creating three A particles have k

been included. Employing Heisenberg’'s equation of motion

in the form and

Egs. (2.7 and (2.9), since the two subsystems are as-

<

ifd@a,=[an,H]-, (2.6 P(X)= Jiv ; a, exy —ik-r], (2.9H

we find . .
whereV is a volume over which the plane waves are nor-

malized. For completeness we give the well-known relations
ifd,a,= wpan+ % (80 i+ 8% Dalamans - m+ &by
‘ f ex —i(ky—kp)-r]dr=V§ i\, (2.108

+§|: {7n1aby— i+ nfnbﬁna|}+2l )\:H,IbITanrl
> exik-(r—r")]=Va(r—r’). (2.10b
k

+ IE: (en,l,malanfl"_ E:Jrl,l,malTanH"_ Elfn,maltnal)
o The procedure outlined earli¢®,10] for a single quantum
N . ‘ field is now followed and the coefficients in each equation of
+|E {410,mby @mai s n-m+ 4hsm—11,m@m@iPn+1-m motion are Taylor expanded about a particular point in re-
o ciprocal or quantum number space. It is assumed that there is
. 1t " at least one such “point” which is common to both sub-
+ im0+ m-n@mbi} IE Ynt,mPy Bmbn - m systems. This point may be chosen as an actual critical point
" of a subsystem with coordinatesg(kq,mp) in “reciprocal”
" space or it may be a point in a regime where the system is
+ |2 {an,1.mby Pmansi-m close to classical from the correspondence prindipig. As
" an example, expanding we find

+a:+mfl,l,mbTmblan+mfl} (27)

©

(2.11

wp= wn0+

and &

[(n—ng)- V,]°wg
1 sl '
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We ex_pand bqtho and(} to second order ?n_deviations from ih0up=wotimy- Vip+ o, V2t 2800 i+ Eod

the critical point and assume the remaining model param-

eters to be “momentum” independent. For more details of +H(agt af) 1Dyt Yo @ TOD — po @ Ty
these expansions see REJ). Having made the appropriate (2.15
Taylor expansions and defined fields for each subsystem we

multiply both sides of Egs. (2.7 and (2.8) by and, for thed field,

V™2 exp(=in-r) and V-2 exp(ié-r), respectively, and

then sum oven and £ We find the following equation of A3, ®=QeP+iQy- VO+Q,V2D+2A,D D+ £5 ¢

motion for the quantum field): (gt @) PO Y— o DD+ oty (2,16

ih0=wop+iwy- Vip+ w,V2i+ 280 p+ £ since for Fermions() = — 5% . Note that two terms ip*
have cancelled out. This is obvious since otherwise we

. * 2, o %t
0P+ g @Yt Ao @D+ €0+ 260 Y would either create or destroy a particle.

+Mo‘DTl//2+2M3 WD + yo® " DD In Egs.(2.195 and (2.16), we have ag.ain gsed the scalar
symbols w, and ,, respectively, to simplify the second
+(agt ad)dTdy, (2.12  order derivatives so that they take the form of a Laplacian.

They can be generalized if need be to give mixed second

, _ _order derivatives.
where the new parameters are related in an obvious fashion ~ace 3: fermion-fermion distinguishable particlétere

to those in the original equation, i.e., BQ.7). In a similar 55 41 example, we might have a plasma made up of electrons

manner we obtain, for the other fiefd, and protons. Unlike case 2, here we must preserve the par-
ticle numbers separately for each type so single annihilators
ih0P=QuP+iQ,- VO+Q,V2D+2A,0TdD+ &5y or creators for either subsystem are not allowed. The second-

quantized operators here satisfy
+ e TP NP Y NE YT D+ A D2+ 2AE DT D

+ pot Yt Yoy OO+ 295 DT DY
+(apgtad)y'dy. (2.13

[a.a/1. =6, [a.al.=[at.a].=0, (2173
and
[by.bl1: =8¢, [bc,bi]s=[bf,b/1,=0, (2.17H

It should be noted thai, and (), in Egs.(2.12 and ¢ hetween subsystems they commirtet anticommute as
(2.13, respectively, are written in this form for convenience j, case 2 ie.

since in general they are second order tensors and the La-
placian is replaced by mixed second order derivatives. How- [a,bl1_=[ay.b]_=[a],b]_=[a},b/]1_=0.
ever, for numerous physical systems they will reduce to a (2.179
Laplacian operator due to their inherent spatial symmetries.
These equations, even when treated classically, are ekor this casee, A, & 7, v, 4, y-type interactions are not
tremely difficult to solve but nevertheless can be analyzed t@resent. The field equations of motion readily become
extract important physical information about the system’s ) ]
behavior. ih o= wob+iom,- Vit o, V2+ 28,0 i

Case 2: fermion-fermion, indistinguish_able_particl@ss _ +(ao+6¥3)q)Tq)$ (218
an example of such systems we might imagine two multi-
electron atoms in a solid each with their own electrf2g) and
that may influence each other through mutual interactions.
As these particles are indistinguishable, the associated anni- 9, d=Q,®+iQ;- VO +Q,V?P +2A,d TP P
hilators and creators satisfy the following Fermi-Dirac com-
mutation rules: +(agtag) Y. (2.19

: ¢t They may, at first, appear complicated but much important
[ak.a/]+= 6, [ax,al+=[ax,a/]+=0, (2.1438  information can be gained from them and will be analyzed in
Sec. lll.

Case 4: fermion (a)-boson (biyor this particular situation
we have in mind the important example of interacting elec-
trons and phonons. Thasoperators for the Fermions satisfy
[ae,b 1, =[ac.bils=[a],by]s=[a] b1, =0. Fermi-Dirac commutation rules

(2.149

[by.b{ 1 =8¢, [be.bil,=[bi,bj1,=0, (2.14h

[a.a/1. =6, [a.al.=[a}.a],=0, (2203

Going through the same procedure as before and noting thathereas the Boson operators satisfy
€, A, ;, \ terms vanish since charge must be conserved, we + M-
find for the field equations of motion [bi.,by]-= 6k, [by,bi]-=[by,b/]-=0, (2.200
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TABLE |. Painlevecase of the system of two quartic anharmonic oscillators in (Be) with u=1y
=€e=0 following Ref.[29] (M is the number of arbitrary constahts

Integrals of motion

Case Parametric restriction M I,(=H), 1,
1() A=B, a=8, §=6a 4 11=1/2(p5+p;) + a(x*+y*+6x%y?) + A(X2+y?),
3 ly=pypy+2[A+ 20 (X2 +y?) IXy
1(i) a=8B, 6=2a 4 1= 1/2(p%+ p7) + Ax+By? + a(x?+y?)?,
3 lo=(Xpy—yPy) 2+ (2/a) (B—A)[1/2p2+ AX?
+ a(x*+y?)x?]
2h(i) A=4B, a=168, 4 11=1/2(p5+p)) + B(4x2+y?) + p(16x* +y*
+12x%y?),
5=128 3 1= (yPx—XPy) Py +2(B+4B8x*+2By?)xy?
3
2h(ii) A=4B, a=88, §=68 4 1= 1/2(p5+p)) +B(4x%+y?) + B(Bx*+y*
+6x%y?),
3 I,=py+4y*(B+68x°+ By?) p;— 168xy°pypy
3 +4By*p2+4B%y*+ 48[ 2B+ B(2x%+y?) ] (23
+y?)y*

and between subsystems the operators commute so that Each time a particular orbit is investigated, compatibility
conditions have to be satisfied and for stationary orbits the
[ag,bl1_=[ac.b]_=[a},b]_=[a},b/]1_=0. condition
(2.200

2
VW2, (3.2

9G|? . Fle]
In this case terms of type, & \, u, and v must be omitted 5| VeI =5y
from the Hamiltonian. This case is relatively straight forward

and we readily derive the equations of motion for the fieldswhich follows from Eqg.(3.1), can be used to effectively
as decouple the two equations. Rather than provide an extensive

general discussion on the applications of this general tech-
ih0=wop+iwy- Vi— w,V2i+ 2800 hip+ noyp® nique we shall refer the reader to the book by Rajaraman
[12] where several cases have been worked out in detail. In
+ 5@ Y+ (apt ad) O Dy (2.2)  principle, depending on the actual form of the systems of
coupled equations, a different approach may have to be taken
and so it is rather hard to provide simple prescriptions for dealing
with them.
ihg®=0qP+iQ,-VO—Q,V2D+2A,D O+ 7 ¢l Limiting our interest to the real and stationary space of

o ot 5 .t solutions maps the problem onto the study of the Hamilto-
T(agtag) ' P+ Ag@+2A5P'®. (222 pjans of the type

11202
Il. ANALYSIS OF THE EQUATIONS H= Z(px+ py) VG, 33

AND THEIR SOLUTIONS where, in general, the potentisl(x,y) is given by

In all the cases above the coupled equations of motion are
each of the nonlinear Schdimger (NLS) type with addi-
tional terms due to the mutual interactions between the + ey xS, (3.9
fields. First, there are cross-terms proportionabty as well
|®|2¥ and |4]?®. Secondly, “source” terms appear pro- A number of papers have used Painlealysis to find con-
portional to the other field and its squared modulus. Theditions for integrability of this type of systef29—34 and a
method for solving these nonlinear coupled differential equasummary of integrable cases is given in Table I. In general,
tions is to first treat the fields as classical and effectivelyhowever, the system is not integrable leading to the coexist-
decouple them by assuming a particular type of analytic orbience of regular and chaotic solutions. For illustration, in

V(X,Y)=AX2+By?+ ax*+ By*+ ox2y%+ uxy+ yxy®

in the phase space given by the general formula Figs. 1-4 we have demonstrated how the shape of the poten-
tial V(x,y) affects the character of the orbits in the phase
G(®,¥)=0. (3.1 space by plotting Poincasections at different energy levels.

In Fig. 1(@ the potential only contains the terms with
Some commonly used examples of this function involve=B=1, a=8=—1, andé=—1. This results in a globally
straight lines, parabolae, ellipses, and hyperbfl@® but it  unbounded situation but with a local minimumaty=0.
is not at all guaranteed that any of these approaches wilConsequently, as shown in Fig(b] there is a small region
actually produce analytical results in all the cases considere@round the origin where regular closed orbits exist. Outside
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vix,y) o cients used ard=B=-1, a=B=6=+1, andu=v=¢€

=1. In addition to the familiar elliptic shaped orbits Figb#
indicates the existence of a separatrix orbit which delineates
the boundary between the regular and stochastic region. The
latter is fully developed at an energy level corresponding to

£
17 7772

- e \ Fig. 4(c).
vy ° e ' '
(arb. wnits) 7 "";"";'.;’:’Q “\“ A more in-depth analysis of the structure of regular and
o "'l','l"q’q\’ ‘ chaotic solutions to the equations of motion discussed here in
P

general can be made for specific cases. For example, the
Frohlich Hamiltonian for electron-phonon systems is dis-
cussed as an illustration in Sec. V. In connection with non-
stationary, complex solutions, Malomg8b| considered two
coupled nonlinear Schdinger equations with incoherent
(a) ‘ 1 and coherent nonlinear couplings and with different group
velocities. He showed that two soliton solutions for these
equations can form a strongly bound state with a single cen-
ter of mass or several weakly bound states with far removed
centers, provided the coherent type of coupling dominates.
06 A final comment we wish to make in this section is with
respect to the relationship between the MCS and the Landau-
Ginzburg theory which makes it very relevant in view of the
comments made by Imr}8f] about the formalism required

to adequately treat couplings between two degrees of free-
dom. In the previous paper on the MQ9] it has been ob-
served that for a single field the equations of motion can be
derived via the Euler-Lagrange equations, from a Hamil-
tonian density of the Landau-Ginzburg form

His= aad v+ Batb T iyt vo(V Y1) - (V). (3.5

It can be readily shown that the corresponding Hamiltonian
density in this problem of two coupled fields can be written
in all the cases above within a Landau-Ginzburg formalism
as

Poincare Section (E = 0.22)

0.4

0.2

dx/dt
©

H=H2(4, Vi) +HP (D, VD) +HE(D, ¥, VD,V ),
(3.6

where HY; is that of Eq.(3.5), HEG is obtained from Eq.
075 0% 02 0 02 050 078 (3.5 by changing¥ to ® and replacinga by b. The last
(0) x term in Eq.(3.6) takes the form(in general

FIG. 1. (a) The potentiaNM(x,y) of Eq. (3.4 with A=B=1, « Hfg=ul|¢>|2|‘1’|2+yz(¢>+<b*)|\If|2+M3(‘I’+‘I’*)|(I>|2
=pB=-1, §=—1, and the remaining coefficients zefb) A Poin-
caresectiondx/dt versusx of the corresponding Hamilton’s equa- + pa(YO* + OWV* )+ pug(D* W2 + O W |2 P *)

tions for the energfe= +0.22.
0F 16 (W* | D20 + W | D[ 2D, 3.7)

this region there are four maxima but the orbits are un- On going to first order in the interactiofthe reader
bounded characteristic of singular solutions. In Fige)2he  should consult the original MCS papers Relff8,10]) the
potential has nonzero terms with=B=—1, a=p=+1, form of H25 would become modified to include terms which
and §=—1 such that the potential is asymptotically large involve a gradient of one field and are proportional to the
and therefore binds the orbits. Figuret)2-2(d) illustrate  square or modulus squared of the other field. Second order
the transition from completely regular to mainly stochasticcorrections will bring in Laplacians of one field and squares
and eventually completely chaotic behavior as the total enef the other. In specific systems, cubic terms such &s (
ergy is gradually raised to correspond to the value of thet ®*)|¥|2 may be excluded on symmetry grounds but often
local maximum at the origin. Figure(& corresponds t&A  are important and, for example, in an electron-phonon sys-
=B=1, a=B=—1, §=1. The situation here resembles that tem,® +®* would denote a displacement of the lattice and
in Fig. 1 since there is a finite region where orbits are|¥|? an electron density distribution. The next section, how-
bounded. However, the presence of three local minima alongver, deals with a significantly simpler example of coupled
each diagonal leads to a different topology of the reguladistinguishable Fermion systems. The presence of specific
orbits in Fig. 3b). Finally in Fig. 4 we have shown the terms above depends on the case considered and for greater
potential that contains also odd power terms and the coeffielarity of exposition is summarized in Table Il. We see from
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FIG. 2. (a) The potentiaV(x,y) of Eq. (3.4 with A=B=—1, a=8+1, §=—1, and the remaining coefficients zefb) A Poincare
sectiondx/dt versusx of the corresponding Hamilton’s equations for the endfgy— 0.5. (c) Same as irfb) exceptE= —0.1.(d) Same as
in (b) exceptE=+0.1.

this table that the term proportional {®|?|¥|? appears in fields " and ¢ as classical scalar fields to first order of

all cases, the one proportional4o®* is only present in the approximation means that there must be a macroscopically

boson-boson and fermion-fermion indistinguishable casesccupied condensate whose density is proportionéi/té.

Terms which are linear in one field and quadratic in the other

are only allowed whenever at least one boson field is present. V. SOLUTIONS FOR THE DISTINGUISHABLE

Finally, terms linear in one field and cubic in the other are FERMION-FERMION CASE (CASE 3)

restricted to the fermion-fermion indistinguishable case. i . , , ,
Before we deal with specific examples presented in the In this case itis rglatwely easy to obtain exact solutions to

sections that follow we should comment on the rationale fot® System of equations of motion férand®, namely, Egs.

treating the field equations as classical to first order of ap(2-18 and(2.19. Itis assumed for simplicity that the coor-

proximation. In this context, recall that the particle numberdinate_system 'is chosen in such a way that-Vy
operator is =€Q,-V®=0. This can be achieved by either a convenient

rotation of the coordinates or the choice of a moving frame

: it of reference. The time dependence of the two fields is taken
N:; akasz A" (X) (%), (3.8 in the form

®— l//eiEzt/ﬁ
so thatN acting on a state will give as its eigenvalue the total

number of particles in the energy level. Thus, treating theand
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FIG. 4. (a) The potentialV(x,y) of Eq. (3.4 with A=B=—1,
a=B8=+1, 6=+1, andu=v=e=+1. (b) A Poincaresection

iEqt/h !
y—ye ' 4. with E=—0.69.(c) A Poincaresection withE=—0.2193.

Then, the two fields are assumed to be linearly dependent

which yields 0=(Qo+Ep) ¢+ QoV2y+[ 280\ + (ot ag) 19" yiup.

4.9

D=\, (4.2 Multiplying Eq. (4.3 on both sides by an arbitrary constant
B and comparing corresponding terms in the two equations
which transforms Eqs(2.18 and (2.19 into two similar  gives
equations. This is certainly the simplest nontrivial type of
interdependence but not necessarily the only one allowed by Bwy=Qy, (4.9
the system. Since the two equations then refer to the same

field, compatibility is then required. The equations take the BlwotEy)=Qo+Ey, (4.6)
form and
0=(wo+E) ¢+ w,V2Y+[280+N*( o+ o) 10"y, BI28,+N2(ag+ al)]=2AoN2+ (ag+al).  (4.7)

4.3
From Eq.(4.5, B is fixed asB=,/w,. Substituting this
and into Eq. (4.6) we may solve forE, to give
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TABLE II. The types of coupling terms present for various sta- N7%
tistics of quasiparticles. My =i \/m 1—K|Vi_, (5.2
Nonvanishing two-field . .
No. Case interaction potential where}/H is the Foungr transform of a sgrgened .Coulomb
potential due to a particular ion at the origin aNdis the
1 BB Yd* + di* number of distinct collective coordinates associated with lat-
(¢+ ") W% (+¢*)|9|? tice displacements. Typically,_, takes the form
|92
2 FF Indistinguishable  ¢¢* + ¢py* 2me?
2 42 Vo= (5.3
|17 4] [k—1|?+q2
U B2+ | Pl B*
* |92 g+ plyly* whereq_ ! is of the order of the interparticle distance and
3  FF Distinguishable | &|?|y|? plasma waves only exist when their wavelength is greater
4 FB |92 than this. In this simple model the ions of the metal are
(W) l2 (ot %) 9l assumed to interact with one another and with conduction

electrons via a short-range screened potential. The conduc-
tion electrons, on the other hand, are considered to be essen-
tially independent Fermions. Note that the “bare” Coulomb
interaction between the ions and the conduction electrons is
not used, and, to incorporate screening repulsive terms have
where, of courseE; is still arbitrary. Then in Eq(4.7), been built in to some extent via the short-range nature of the

Q,
Ezzw—z(wo+E1)—Qoa (4.8

substituting forgB from Eq. (4.5 we obtain effective interaction remaining. The Frich Hamiltonian, in
spite of its approximate nature, played an important role in
w1 Qo(agt ag)—28 the development of the theory of superconductivity by lead-
\?= (4.9  ing directly to the BCS model.

+aj)— '
[(aot ag) = 2(w2/2z) Ac] A fairly up-to-date review of the electron-phonon prob-

lem can be found in Ref37]. In particular, model param-
eters for a number of materials can be obtained. However, in
this review paper, the theoretical approaches to the problem

are predominantly of perturbative type. Our approach em-

phasizes nonlinearity and nonperturbative effects. This type
f procedure for the Fidich problems has been studied be-

The net result is that the two equations in E@s3) and(4.4)
are made compatible and both become a stationanjinear
Schralinger equation There are a number of solutions of
this equation which have been thoroughly investigated in th
past. Suffice it to say that, among the spatially inhomoge

neous solutions one finds elliptic waves of several kinds a: . .
well as hyperbolic localized solutionsolitong and there ore. Eyans[38] found a macroscopic phonorj quefuncﬂon
exist critical currents above which nonsingular solutionsW.hICh is due to the displacement field manifesting the off-
cease to exis{36]. This signifies the onset of dynamical diagonal Iong-rang_e order for sup_erconductors. Ere[ﬁ_@)
symmetry breaking. has re_cently examln.ed the other side of the problem,. i.e., the
behavior of electronic charge. He found charge density wave
equations of nonlinear Schdimger type which is consistent
V. INTERACTING ELECTRONS AND PHONONS with our approach. In what follows, we present the behaviour
A. The Eréhlich Hamiltonian of both electronic and phonon subsystems within a nonlinear

) ) ) framework of the MCS as outlined in Secs. Il and Ill.
To illustrate the general method described in Sec. Il we

will use another specific example in which bosons will be
represented by phonons and fermions by electrons. Interac-
tions between electrons and phonons in a metal were first We proceed by expanding linearly ig® to obtain a
described in a quantum mechanical formal{g8] using the  g-dependent correction to the coupling constant. Thus, we
Frohlich Hamiltonian obtain

B. The MCS analysis

h? 74= 70— MoAG*+" ", (5.4
H=2> >m kzalak+z ﬁwqbgbq e o o
. a whereA = 1/q? and

+; My [bg+b' jlalay, (5.1) [ Ni  oqr2me® [ NAa 2me?
) =1 ~| .
77 N 2Mw(qr) qZ+q2 2M[Q,] g2

whereq=k—I. Here, the operators, , a, refer to the elec- (5.9
trons whilebg , by refer to the phonons. This Hamiltonian is s will result in the following equations of motion for the
apparently one of the simplest possible examples of the geRp gnqd fields:

eral fermion-boson type since only, », and Q) terms are

retained. Its analysis turns out to be quite involved as Wej# 4, ¥ = — w,V2W + 2[ Re( 7,® ) ¥ + 2A V[ Re( 7,® ) ¥ ]
show below. The effective coupling constai | is usually

[25] written as (5.6
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and In order to interpre€ in the definition ofy in Eq. (5.9
_ ) ) ) ) we consider the kinetic energy part of the Lagrangian density
in0®=—Q,V®+ 55| h|*+ Ang V2(|W]?). (5.7 L=T-V which takes the form

To analyze Eq(5.7) we write

T= |§ (POF—T*yy). (5.19
O=Dg+id,, ny=ix, (5.9
Thus, inserting Eq95.8) and(5.9) into Eq.(5.17) gives the
and kinetic energyT as
P = 7]ei ¢>0eiEt/ﬁ’ (59) 772
T=E . (5.18

so that the real and imaginary parts of this equation become,

respectively, Hence, it is clear thaE must be positive since the kinetic
5 energy is proportional t& and the amplitude squared of the
Re: V2hg=—— P, (5.10 field.
Q, Writing « in modulus-argument form and separating real
and imaginary parts yields for E¢6.16

Im: V2(Q,®,+Axn?)=hds—x5?.  (5.11
_ do
We then assume that the argument on the left-hand side of R&" —#fin ——=+En= — o[ V27— 7(V ¢o)?1+ N 7°
Eq. (5.1)) is zero so that

+AA[67(V 9)2+37?V2y
Axn?
o=-—q (5.12 ~7%(V go)?], (5.19
and
and
2 m: 5 2 [ 2V 7V gt 7V
- X7 m: E—_wz[ 7V o+ nV=¢q]

+NA 76V 7V o+ 7V 2 o],
In principle, we could add any harmonic function of space (5.20
and an arbitrary function of time to the right-hand side of Eq.
(5.12 so that the left-hand side of E¢p.11) is still zero but ~ wherex=2y2A/Q,. Equation(5.20 can be understood as a
we draw back at such, possibly unnecessary, complexityform of continuity equatioras follows. Defining charge den-
Next we differentiate Eq(5.10 with respect to time once sity asp=5? and current density as= 7V ¢, it can be
and substitute E¢5.7) for @, to obtain a wave equation in written as

the form
ap 20w, 8AA7R?\
52A E*l‘ . (T_ 7 J}:O, (52])
V27]2=+? t?tt772, (5.19
2 where the second term in the square bracket of(&QJ) is
the solution of which in one dimension may be written as gdue to the electron-phonon interaction and is only nonzero in
wave propagating with velocity so that the superconducting state, wher 0. First, asuperconduct-
ing currentis proportional to the charge density/ of the
7%= 72(&), superconducting electrons and acts against the Cooper pair
formation, eventually destroying it entirely at a critical cur-
where rent value. Secondly, phonon drift currentresulting from
electron-phonon couplingmplicitly) acts in the other direc-
E=x—vt (5.15 tion enhancing the growth of the superconducting conden-
sate.
andv=0,/#%A. Note that the function; in Eq. (5.15 is Now, in order to solve Eq5.19 we insertj = 7%V ¢, and

anarbitrary function of £ and this does not impose any con- find

straints on the procedure to follow. S

We now return to Eq(5.6) with Eq. (5.12 providing a . hv _ ) i 5
link and making full use of Eqg5.8) and(5.9), to obtain I 7+E77— —wy Vi P +AA67(V )
A A? 2y2 j? 2
ihat\lfz—w2V2W+29—X2|\If|2\P+ZQ—X2V2(|\If|2111). +39%V - +A 7 (5.22
2 2
(5.16

Multiplying through by #z® and introducing, in one-
This equation will now be solvedxactly dimension x,
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dy This can be put into the form of a first order linear differen-
X P tial equation by defining
and Z=P?, (5.25
d?y dpP to yield
[T (623 dZ  12AnZ
we find, EJF [wy+3NA 77]

_2lhv ) +En*—An°—jPwt NA 7P

- [~ w2+ 3NA 717

—A5®—j2w,+ NA %%)?]. (5.26
(5.249  This is solved using the integrating factor method as

dP
[— w7+ 3NA7°]P %2 —P2\A67*+[hvp*+Eqn*

1 dn2{fv %] +En*— A 78— 2w+ NA %)%} (— wo+ 3NA 7?)
7= (— @, 3NA 72)2 f o . (5.27
|
Thus, we can formally write the solution farin an implicit fivj
form as o=—F— (5.29
d Horizontal bars in Figs. 5—7 denote nonsinguariodic so-
n
&= &= f Zin (5.28  |utions corresponding to a highly modulated superconducting

state while horizontal dots represent nonsindatalizedso-

lutions which manifest a nucleating superconducting state.
As was mentioned earlier, superconductivity corresponds t@pviously, a latter possibility is by far more advantageous
either the existence of a mean field soluti@onstant in  energetically and, under normal circumstances, this would be
space and timeor a localized solution which would describe chosen as a manifestation of the system’s transition to a su-
nucleation of superconducting grains. A graphical analysis operconducting phase. From Figs. 5-7 it therefore appears
Eqg. (5.28 provides a quantitative criterion for the latter situ- that one should expect a narrow “window of opportunity” in
ation. Note here that localized solutions correspond to th@srms of model parameters for the electron-phonon coupling
existence of at least two different real rootsZffy), one of o |ead to the formation of a superconducting condensate.
which mustbe a multiple root. We wish to make a comment with respect to multidimen-

From Eq.(5.28) the resultant integration constant will de- sjonal solutions. We, therefore, reexamine Bgl19 and set

termine the values of the corresponding root& ;). Ana- (v ¢,)2= a2 being time independent. Equatié®.20 can be
lyzing the asymptotic behavior aZ(7) for 7—c and 7  satisfied by requiring thay and ¢ depend on mutually or-

—0 we find that in both limit&Z(#) — —<. In searching for  thogonal variables. Then, rewriting E(.19 yields
localized solutions we must determine whether there exists

more thanonelocal extremum ofZ( %) for »>0. This leads N 2 2
us to examine the integrand in EG.28 for Z. In general, (02=3NAR)VEn=(—E+ wza%) n+6MA 9(V )

the situation is very complicated but the following +(A—a®\A)7°. (5.30
asymptotic behavior can be readily found.

Since, for small values df, we will have up to two posi- First of all, Eq.(5.30 may be satisfied by constant solutions
tive extrema forZ( »), we will not obtain localized solutions given by
in this regime because a local minimum and a maximum are
needed. On the other hand, for large values jpfthe

=0
asymptotic behavior is thaf(»)—0 for n—« and Z(7%) 0
— —o for »—0. This can be made consistent with the ex-gy
istence of a single minimum and a maximum. In Figs. 5-7
we have shown numerical plots 8¢ ) for various values of E— woa?
model parameters. We have used the following symbols: 2 — %2
N (A= a?A)” ®-30
i2
a= l B= ﬂ y= M ’ and, unlike the one-dimensional case, for positive energies
E w3 E and sufficiently small values o=V ¢ a nonzeroorder

parameter amplitude can always be found. Nonconstant so-
and lutions are also possible and E&.30 can be solved in an
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FIG. 5. Plots ofZ=(d#5/d¢)? as a function ofz illustrating
solutions of Eq.(5.26. Horizontal lines correspond to nonsingular

periodic solutions as the integration constant shifts the coordinat
system upwards. Here, we have used the parameter valuas of

=0.5,3=0.75, y=0.25, ands=1.0.

identical manner to that presented earleze Eq(5.19 and

thereaftel. We readily conclude that localized solutions to

Eq. (5.30 exist whenever

E
—< 012(

w2

A
+=.

1=2*3

2

NA
) (5.32

This imposes ampperbound on the localized superconduct-
ing state energy and also gives a possible condition for th
destruction of superconductivity. The latter occurs when th

phase gradienty, is large enough so that

(5.33

1——

A
(Vo)?=—
2[1-%

o1
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FIG. 6. Same as in Fig. 5 except the parameters are chosen as
«=0.5,B=%, y=0.25, ands=1.0.

and requires thak A>2, or in terms of the coupling con-
stant, that 7;0|>\/Q_2q§, i.e., the localized superconducting
state is destroyed when electron-phonon coupling is strong
gnough. It doesiot necessarily mean that superconductivity
disappears altogether but that spatial localization may no
longer take place. This may be a possible criterion for type-Ii
(inhomogeneoysversus type-lhomogeneoyssuperconduc-
tivity. Obviously, further studies are required to elucidate
this question. The truly three-dimensional solutions may be
obtained within this procedure and for technical hints on how
this may be done, the reader is referred to R86).

A final comment we wish to make in this section regards
the role of temperature in destroying superconductivity. The
method we employed is a zero-temperature formalism and,
as such, cannot be used to calculate the critical temperature.
However, with upper bound restrictions on the energy of the
superconducting state whether localized or spatially ex-

0 T=T, the energy of thermal fluctuations per degree of
reedomk T, is comparable with the enerdy which appears
in Eq. (5.32.

gnded, the necessary condition on its existence is that close

VI. CONCLUSIONS

In this paper we have provided a method of analyzing

coupled many-body systems of two degrees of freedom
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(critical or noncritica) which occur very frequently in con- a description of particle densities as a function of physical
densed matter physics and also other branches of physigarameters. The nature of the oscillations about stable equil-
relying on many-body formalism. The approach to the prob4yria is another significant outcome of the calculations. Clas-
lem is an important application to a very general class okical solutions to the nonlinear coupled equations makes it
problems using the method of coherent structUi®40.  possible to quantize and investigate the spectrum of associ-
Since a growing number of important physical phenomenated quantum states.

(superconductivity, metamagnetism, structural phase transi- |n addition, we have provided two worked application
tions, Mott insulators, etgcan be adequately described only gactions. The first one, being the simplest, deals with the
in terms of two or more interacting degrees of erEdom’distinguishable fermion-fermion systente.q., electron-

which lead to_the formation of emergent phenomena SL_’Ch_ ?ﬁroton plasmasand demonstrates a direct connection be-
superconductivity, we feel that our work represents a signifiz

. - ) > 2. tween the equations of motion for the fields and the cel-
cant step forward in unifying these diverse systems within .

; ) : Zebrated nonlinear Schilinger equation leading to a wealth
single theory. In our paper, a general calculation of the fiel . : . : .
of analytical solutions including solitons.

ions h n perform h n li n arbi- . . .
equations has been performed that can be applied to an arb In the second application section of this paper we have

trary system with two quantized degrees of freedom pro- 3
v Y d d P iven a detailed analysis of the Tlch Hamiltonian for

vided its energy dispersion relations and coupling constantd . X . . .
are known or can be estimated. All four types of two- electron-phonon interactions in a metal which was so crucial

component systems, i.e., boson-boson, fermion-ferrtdis: in building a modern theqry of supercond_uctivity. _Our ap-
tinguishable as well as indistinguishallend fermion-boson proach has been fully nonlinear and analytical .solutlons have
have been investigated and their field equations of motiofPeen found for both the phonon and electron fields under the
derived. We have also provided the reader with a brief overgeneral conditions of arbitrary dimensionality and the
view of mathematical methods required for the solution ofstrength of coupling. The conclusion reached here is that in
the coupled nonlinear differential equations that result. Theserder to demonstrate Cooper pair formation in aHfioh-
approaches lead directly to a quantitative physical descripike Hamiltonian the electron-phonon coupling coefficient
tion of the behavior of a coupled field system. For examplemust be sufficiently strong fay-independent interactions or

it is now possible to locate chaotic regimes in the appropriatenust not exceed a critical value fgrdependent couplings.
phase space and a knowledge of localized solutions providd3recise formulas linking the model parameters have been



2674

DIXON, NIP, TUSZYNSKI, AND VOS

57

obtained as quantitative criteria for superconductivity. If theyJahn-Teller compounds, magnetoelastically coupled spin
are not satisfied, the only solutions which arise are eithesystems, et¢.in a future work.

identically zero or singular, both of which exclude the exis-

tence of superconductivity.
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