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Stability of current filaments in a bistable semiconductor system with global coupling

A. Alekseev
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~Received 1 October 1997!

We study the stability of steady current filaments in a bistable semiconductor system in the presence of
global coupling given by an external circuit. The system is described by a reaction-diffusion model on a
two-dimensional spatial domain with Neumann boundary conditions. We prove generally for the voltage-
driven regime that in a convex domain any filament has at least one unstable linear eigenmode. Introducing a
global coupling may either eliminate the unstable mode with the largest increment or induce oscillatory
instabilities. Filaments with negative differential conductance can be stabilized by strong global coupling.
Stabilization of filaments with positive differential conductance can be achieved only by an active external
circuit with negative resistance and capacitance. We present analytical arguments and numerical simulations
suggesting that the boundary of the domain always attracts current filaments. Our numerical results also show
that seed inhomogeneities may pin current filaments in the center of sufficiently large domains. The competi-
tion between the attractive boundary and pinning by seed inhomogeneities is studied numerically.
@S1063-651X~98!06303-X#
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I. INTRODUCTION

Current filamentation in semiconductor systems w
bistable current-voltage characteristics represents one o
simplest nontrivial examples of pattern formation in acti
spatially extended media@1#. Current filaments are charac
terized by a current density profile, which varies in the pla
perpendicular to the current flow reflecting spatial coex
ence of the two stable phases. According to the concep
pattern formation in activator-inhibitor systems@2–7# current
filamentation may occur due to the competition between
internal mechanism of activation, which provides negat
differential conductivity~NDC! of the semiconductor ele
ment @8#, and an external mechanism of inhibition given
the constraint related to the external circuit. The theoret
description of stationary current filaments, originally dev
oped for semiconductors with an electron overheating in
bility @9–11#, has been later advanced for other semicond
tor systems exhibiting S-shaped negative differentia
conductivity ~SNDC! @12–21#. It was also discovered tha
current filaments can exhibit temporal instabilities that le
to traveling or rocking filaments@22#, and small-amplitude or
relaxation-type oscillations, known as breathing@23,24# and
spiking of a current filament@25–27#, respectively. A well-
known approach is to treat the problem in terms of a o
dimensional reaction-diffusion equation, which results fro
the reduction of two-dimensional transport models, and
integrodifferential equation corresponding to a global co
straint given by the external circuit~e.g., @11,25,28#!. Since
the model equation takes into account only one transve
degree of freedom for the current density distribution suc

*On leave from A. F. Ioffe Physicotechnical Institute, Russi
Academy of Science, 194021 St. Petersburg, Russia.
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theory is adequate only for samples with effectively on
dimensional striplike geometries where the longitudinal c
ordinate parallel to the current flow has been eliminated,
the second transversal dimension is so short that spatia
stabilities cannot develop. The description of real thre
dimensional samples requires models on two-dimensio
~transversal! spatial domains. Up to now most studies
two-dimensional models have either assumed axial sym
try of the current distribution@15,16,23,24#, or have consid-
ered the longitudinal and one transversal coordinate o
@29,30#, which is appropriate for thin semiconductor film
Recent numerical simulations of filament dynamics on q
dratic domains@31# have been performed for an activato
inhibitor model, which takes into account both local inhib
tion processes inside the semiconductor structure and gl
inhibition due to the external circuit.

The purpose of this paper is to develop analytical a
numerical results for bulk samples where both transve
dimensions are of comparable size. We concentrate on
stability of steady current filaments in bistable semicond
tor systems that do not experience local internal inhibit
and present a general approach for arbitrary convex t
dimensional spatial domains with proper account taken
global coupling. A typical sample geometry is shown in F
1. An external circuit with load resistorR and capacitorC is
attached to the top (K) and bottom (A) contacts of the
sample.

We assume that the internal state of the semicondu
system can be characterized by a single spatially distribu
parametera(x,y,t), which corresponds to the internal degr
of freedom relevant to the bistability. The physical meani
of this parameter might be electron temperature@9,10#, con-
centration of excess carriers@16#, bias of one of thepn junc-
tions in a thyristor@12,19#, interface charge density of a he
erostructure hot electron diode@25#, etc., depending upon th
2640 © 1998 The American Physical Society



si
on
l
n

s
c-

ig
al

o
n-

tic

l
-
a-

ies

l-
r

tor

n

-
no

ur

ec

57 2641STABILITY OF CURRENT FILAMENTS IN A . . .
specific transport mechanism. The variablea(x,y,t) and the
voltageu(t) across the sample determine the current den
J(a,u) in a cross section of the device. For various semic
ductor systems@9–13,17,19,22,25,32,33# the spatiotempora
dynamics ofa(x,y,t) is described by a reaction-diffusio
equation of the type

ta

]a~x,y,t !

]t
5 l a

2Da~x,y,t !1 f „a~x,y,t !,u~ t !…. ~1!

Hereta and l a characterize the relaxation time and tran
versal diffusion length, respectively. The local kinetic fun
tion f (a,u) is a nonmonotonic function ofa, which, for fixed
u in a certain range, has three zeroes corresponding to h
conductivity, low-conductivity, and negative differenti
conductivity ~NDC! states@Fig. 2~a!#. Since ] f /]a.0 for
values ofu in the NDC range, the variablea may be re-
garded as an activator. The functionsf (a,u) and J(a,u)
contain all necessary information about vertical transp
along thez direction in the structure shown in Fig. 1. Ge
erally, in the steady state, the local dependencea(u) is cal-

FIG. 1. Schematic sketch of the semiconductor struct
~shaded! and the external circuit attached to its cathode (K) and
anode (A) contacts. The direction of current flowJ(a,u) and a
cylindrical current filament are schematically indicated. The proj
tion onto the (x,y) plane shows the two-dimensional domainG

under study;nW denotes the normal vector at the boundary]G.

FIG. 2. ~a! Local kinetic functionf (a,u) for different values of
u (u1,umin , umin,u2,umax, u3.umax). ~b!,~c! S- and Z-shaped
local current density vs voltage characteristicsj (u), respectively
~schematic!.
ty
-

-

h-

rt

culated from the null-isoclinef (a,u)50 and inserted into
J(a,u) to find the local current density-voltage characteris
j (u)[J„a(u),u… which can be S-shaped @Fig. 2~b!# or
Z-shaped@Fig. 2~c!# ~see@33# for a discussion of the genera
case and some examples!. However, a particular type of non
linearity is not crucial for the present analysis. In our an
lytical considerations we will not specify the dependenc
of f (a,u,),J(a,u), and will only assume the condition
]J/]u.0. In our numerical examples we will use the fo
lowing model functions, which were originally derived fo
the heterostructure hot-electron diode~HHED! but were
shown to hold more generally for layered semiconduc
structures@25#:

f ~a,u!5
u2a

~u2a!211
2Ta, J~a,u!5u2a. ~2!

These functions result in aZ-shapeda(u) dependence and a
S-shapedj (u) dependence~Fig. 3!. Note that dimensionless
variables are used here.

The distributiona(x,y,t) has to satisfy Neumann bound
ary conditions corresponding to a passive boundary with
flux:

]a~x,y,t !

]n U
]G

50. ~3!

Here]/]n is the normal derivative at the boundary]G of the
domainG.

The temporal dynamics of the voltageu(t) is described
by Kirchhoff’s equation for the external circuit:

e

-

FIG. 3. ~a! Local current density-voltage characteristicj (u) and
~b! null-isoclinea(u) given by f (a,u)50 for the model functions
Eq. ~2! with T50.05.
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tu~u!
du~ t !

dt
5g~a,u!, g~a,u![U02u~ t !2RŜ J~a,u!&,

tu~u![RC~u!, C~u![Cext~u!1Cint~u!, ~4!

whereU0 is the applied bias voltage,R is the load resistance
Cint is the internal differential capacitance of the sample,Cext
is the differential capacitance of the external circuit,S is the
cross section of the device, and the angular brackets de
the spatial average over the domainG. Since generally the
derivatives ]g/]a and ] f /]u have different signs in the
NDC range, the variableu acts as inhibitor.~Specifically,
]g/]a.0, ] f /]u,0 hold for the dependencies~2!, ]g/]a
,0, ] f /]u.0 hold for models of overheating instabilitie
@9–11# and multilayered structures@12–14,19,36#.! Equation
~4! represents a global constraint that is imposed on the
namics ofa(x,y,t) and provides global coupling betwee
distant parts of the cross section.

Linearization of the equations~1!,~4! in the vicinity of a
stationary solutiona0(x,y), u0 with respect to the perturba
tion eztda(x,y)5@a(x,y,t)2a0(x,y)#, eztdu5@u(t)2u0#
with ]da(x,y)/]nu]G50 yields

tazda5ĤNda1
] f

]u
du, ĤN5 l a

2D1F~x,y!,

F~x,y![
] f

]a U
a0 ,u0

, ~5!

tuzdu52S 11RSK ]J

]uL D du2RSK ]J

]a
daL , tu5tu~u0!.

~6!

Here and further on the characteristic timetu and partial
derivatives off andJ are computed at the steady statea0 ,u0.
The stationary solution is stable if Rez,0 for all eigenvalues
z.

The self-adjoint operatorĤN acts on the space of func
tions with Neumann boundary conditions. Its eigenfunctio
C i and eigenvaluesl i correspond to eigenmodes and eige
values of the voltage-driven system (R5C50): according
to Eqs.~5! and~6! z5l/ta for du50. So the voltage-driven
system is stable if alll i,0. In the presence of the globa
constraint Eq.~6! mixes the eigenmodesC i . In this case we
should analyze both equations~5! and ~6! simultaneously,
but the knowledge of the spectrum$l i% remains the key to
the stability problem.

Our aim is to establish a link between stability and su
general features of a filamentary state as the location of
extremum and the sign of the differential conductivit
@Whereas in a one-dimensional theory@15,16# the complete
classification of a0(x,y) follows from the phase-portrai
analysis of Eq.~1!, in the two-dimensional case such a cla
sification is not available even for domains of simple shap#
The paper is organized as follows. In Sec. II we study
spectruml i of the operatorĤN related to the spatial domai
G of arbitrary shape. In Sec. III we concentrate on the eff
of the global coupling on filament stability and establish
connection between the number of unstable modes@Re(z)
.0# of the complete stability problem and the number
ote
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positive eigenvaluesl i corresponding to the voltage-drive
system. In Sec. IV we use the results of Secs. II and III
formulate some general criteria of filament stability. Here
also present the results of numerical simulations and disc
the effect of embedded inhomogeneities of the semicond
tor structure on filament stability.

II. EIGENVALUES OF VOLTAGE-DRIVEN SYSTEM

The eigenvalues of the operatorĤN may be ordered by
decreasing size,l1.l2.•••. In this section we study the
sign of the first two eigenvaluesl1 ,l2. The first eigenmode
C1 is strictly positive inside the domainG and hence repre
sents the switching mode, which leads to expansion
shrinking of a filament. The interpretation of the seco
eigenmodeC2 depends on the particular solutiona0(x,y).
For filaments in the interior of the domain it corresponds
the shift of a filament along a certain direction@16#.

To analyze the spectrum of the operatorĤN let us intro-
duce the translation modes~these modes are also known
Goldstone modes@16#!

qG~x,y![
da0~x,y!

dj
, ~7!

where d/dj is the derivative along the directionj on the
(x,y) plane~Fig. 4!. Boundary conditions forqG(x,y) can
be obtained by direct calculation taking into account th
a0(x,y) satisfies Neumann boundary conditions on]G:

qG~ l !5
]a0

] l
sina~ l !,

]qG~ l !

]n
5

1

R~ l !

]a0

] l
sina~ l !1

]2a0

]n2
cosa~ l !. ~8!

Here l is a coordinate along the boundary,a( l ) is an angle
between the directionj and the external normalnW , R( l ) is
the radius of curvature of the domain boundary]G. The
translation modes correspond to zero eigenvalues of the

FIG. 4. DomainG ~schematic!: The directionj corresponds to
the translation modeqG , l is a coordinate along the boundary]G,

nW is the external normal to the boundary.
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57 2643STABILITY OF CURRENT FILAMENTS IN A . . .
eratorĤg( l ) , which is defined by the same expression asĤN
@see Eq.~5!# but acts on the space of functions with line
boundary conditions

S g~ l !C~x,y!1
]C~x,y!

]n D U
]G

50. ~9!

In particular, the functiong( l ) can be chosen in such a wa
thatqG satisfies Eq.~9! ~note that different directionsj cor-
respond to different operatorsĤg( l )):

g~ l !52
1

R~ l !
2S ]2a0

]n2 D S ]a0

] l D 21

cota~ l !. ~10!

The quadratic formH̃g( l ) of the operatorĤg( l ) given by the
scalar product̂CĤg( l )C& can be represented as

H̃g~ l !~C![E
G

CĤg~ l !Cdxdy

52 l a
2E

]G
g~ l !C2dl1E

G
@2 l a

2~¹C!2

1F~x,y!C2#dxdy. ~11!

In order to determine the sign of the first eigenvalue of
operatorĤN we apply the variational principle@35#, which
states that eigenfunctions ofĤN are extrema of its quadrati
form

H̃N~C!5E
G

@2 l a
2~¹C!21F~x,y!C2#dxdy. ~12!

The eigenfunctionC1 corresponding to the largest eige
value ofĤN provides the maximum ofH̃N .

Since the variation of the quadratic form~11! includes the
boundary term*]G(]C/]n)dCdl, which vanishes only if
]C/]n50, H̃N(C) automatically imposes Neumann boun
ary conditions on its extrema. Therefore, if we present a
function C for which H̃N(C).0, then the operatorĤN has
at least one positive eigenvalue. SinceqG is a zero mode of
Ĥg( l ) @H̃g( l )(qG)50# and on account of Eqs.~11!,~12!, we
obtain

H̃N~qG!5 l a
2E

]G
qG

]qG

]n
dl. ~13!

Substituting Eq.~8! into Eq. ~13! leads to

H̃N~qG!5 l a
2E

]G
F 1

RS ]a0

] l D 2

sin2a~ l !

1
1

2

]a0

] l

]2a0

]n2
sin2a~ l !Gdl. ~14!

Now let us choose two translation modesqG
1 and qG

2

corresponding to orthogonal directions. According to E
~14! the sum of their quadratic forms can be represented
e

y

.
s

S[H̃N~qG
1 !1H̃N~qG

2 !5 l a
2E

]G

1

R~ l !S ]a0

] l D 2

dl. ~15!

For any convex domain@R( l ).0# we obtainS>0. Let us
prove that fromS>0 follows l1.0. Indeed, in the caseS
.0 at least one of the quadratic formsH̃N(qG

1 ),H̃N(qG
2 ) is

positive. Then from the variational principle it follows tha
ĤN has at least one positive eigenvalue. The equalitiesS
50 andl150 cannot occur simultaneously because in t
case eitherqG

1 50,qG
2 50 or qG

1 5C1,qG
2 50. In the first

casea05const, in the second casea0 corresponds to a plan
current layer and its translation mode can never coinc
with C1 due to the boundary conditions. Therefore aga
l1.0. Thus, for the operatorĤN defined on any convex
domainl1.0 and the ground state eigenfunctionC1 corre-
sponds to an unstable mode.~A similar but more cumber-
some proof of this fact forn-dimensional domains has bee
presented in@34# in application to dissipative structures i
ecological systems.!

In order to determine the sign of the second eigenva
we should establish some relation betweenĤN andĤg( l ) and
use the fact that the operatorĤg( l ) has a zero eigenmodeqG .
From the theory of operators@35# it follows that ĤN.Ĥg( l )

~i.e., l i.l i
g( l ) for any i ) if H̃N.H̃g( l ) or if H̃N5H̃g( l ) and

the domainD(H̃N) of H̃N @D(H̃N) is a set of functions on
which H̃N is defined# includes the domainD(H̃g( l )) for
H̃g( l ) : D(H̃N).D(H̃g( l )). The difference between the qua
dratic formsH̃N ~12! and H̃g( l ) ~11!

H̃N~C!2H̃g~ l !~C!5 l a
2E

]G
g~ l !C2dl ~16!

is positive wheng( l ).0. However, the conditiong( l ).0 is
violated for any solutiona0 that varies along the boundar
]G. Indeed, at the boundary point wherej andn are parallel
cota(l) changes sign whereas]2a0 /]n2 in general does not
ThereforeĤN andĤg( l ) cannot be compared ifa0( l )Þconst.
When a0( l )5const Eq. ~10! implies that all translation
modes satisfy the Dirichlet boundary conditions@g( l )5`#.
Then the operatorĤg( l ) is a Dirichlet one:Ĥg( l )5ĤD . In this
caseH̃N5H̃D . Since H̃N can be considered on function
with arbitrary boundary condition the domain ofH̃N contains
the domain ofH̃D . Thus,ĤN.ĤD .

Any inhomogeneous statea0 that satisfies the condition
a0( l )5const has an extremum inside the domainG and its
translation modeqG always has zeros. As the ground sta
eigenfunction of the operatorĤD is strictly positive, the ei-
genvaluel i

D50 corresponds toi>2. Taking into account

ĤN.ĤD we conclude thatl2.0.
Thus we have established that for any steady inhomo

neous statea0(x,y) on a convex domainl1.0 holds, and
that for any steady state which satisfies the condit
a0(x,y)u]G5const on an arbitrary domainl1.0,l2.0
hold. Note that the condition of convexity of the domain a
the conditionao(x,y)u]G5const are sufficient but not nece
sary conditions forl1.0 and l1.0,l2.0, respectively.
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Since for one-dimensional domains the translation modeqG
always satisfies Dirichlet boundary conditions, it also f
lows from our analysis thatl1.0 for any one-dimensiona
distribution a0(x) and l1.0,l2.0 for nonmonotonic
a0(x).

III. EFFECT OF THE GLOBAL CONSTRAINT ON
FILAMENT STABILITY

In this section we establish the relation between the nu
ber of unstable modes (Rez.0) in the presence of a globa
constraint and the number of positive eigenvaluesl i corre-
sponding to the voltage-driven regime. We advance the
proach originally suggested for semiconductors with an e
tron overheating instability @11#. Stability of current
filaments in controllable bistable systems with two exter
global constraints have recently been studied in@36#.

Let us expand the eigenmodeda(x,y) in the basis of the
eigenfunctionsC i of the operatorĤN :

da~x,y!5(
m

^da•Cm&Cm . ~17!

From Eq.~5! we obtain the coefficients of this expansion

da~x,y!5(
m

^] f /]uCm&
taz2lm

duCm~x,y!. ~18!

Substituting into Eq.~6! leads to the characteristic equatio

F~z!5F0~z!1F1~z!50,

F0~z!511RSK ]J

]uL 1RS(
m

^] f /]uCm&^]J/]aCm&
taz2lm

,

F1~z!5tuz, ~19!

which determines the complex eigenvaluesz of the linear-
ized system~5!,~6!. We separate the two partsF0(z) and
F1(z) such that the characteristic time of the inhibitortu
enters onlyF1(z). Note that the ground state eigenfunctio
C1 has no zeroes whereas theC i oscillate in space fori
.1. Therefore the first term dominates the others in the s
in the last term ofF0(z).

Taking into account thatz50 for variations da(x,y)
along the steady current-voltage characteristic and appl
Eq. ~18!, we can represent the differential conductance of
inhomogeneous state

sd[S
d^J~a,u!&

du
5SS K ]J

]uL 1 K ]J

]a

da

duL D ~20!

as

sd5su2S(
m

^] f /]uCm&^]J/]aCm&
lm

, su[SK ]J

]uL ,

~21!

wheresu denotes the differential conductance for fixed
ternal parametera(x). Note thatsu.0.

Zeroes of the characteristic functionF(z) are complex
eigenvalues of the stability problem~5!,~6! and its poles are
-

-

p-
c-

l

m

g
e

eigenvaluesl i of the operatorĤN . The number of polesP
and the number of zeroesN located inside any closed con
tour G in the complexz plane are related by the argume
principle:

N5P1
1

2p
DArgF~z!, ~22!

whereDArgF(z) is the variation of the argument ofF(z)
whenz varies along the contourG @37#. As unstable modes
correspond to Rez.0 we choose the contourG encircling
the right half-plane@Fig. 5~a!# in the clockwise direction.
The variationDArgF(z) depends on how many times and
which direction the contourF(G) turns around the origin. In
the case of anticlockwise rotation the number of unsta
eigenmodes is less than the number of positive eigenva
l i by the number of turns, in the case of clockwise rotation
is larger by the same number.N5P holds if F(G) does not
encircle the origin.

First, let us consider the case of fast inhibitiontu!ta
when temporal instabilities are damped out in favor of spa
ones. Then we neglect the termF1 in the characteristic equa
tion. In this case

F~0!511Rsd , F~`!511Rsu , ~23!

Therefore the contourF(G) encircles the origin once if
sgn$F(`)%52sgn$F(0)% and the direction of rotation o
F(G) is anticlockwise@Fig. 5~b!#. This leads to the following
stability criterion:

2su,R21,2sd . ~24!

FIG. 5. Stability analysis using the characteristic equation.~a!
Contour G in the complexz plane encircles the right half-plane
which contains eigenvaluesz with positive real parts.l1 ,l2 ,l3 are
poles corresponding to the eigenvalues for the voltage-driven c
~b! MappingF0(G) of the contourG corresponding to the case o
fast inhibitionta@tu . Contours 1 and 2 correspond to the case
Eqs.~25! and ~26!, respectively.
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57 2645STABILITY OF CURRENT FILAMENTS IN A . . .
When this criterion is met the global constaint reduces
number of unstable modes related to the operatorĤN by one

N5P21, ~25!

otherwise

N5P. ~26!

In the last case the global constraint has no impact on sta
ity, and the system behavior is similar to the voltage-driv
regime. In what follows we refer to the cases~25! and~26! as
to regimes of strong and weak global coupling, respectiv

Therefore in the regime of weak coupling the system
stable if all eigenvaluesl i of the operatorĤN are negative,
whereas in the case of strong coupling the system rem
stable even if the first eigenvaluel1 is positive. For filamen-
tary states with NDC (sd,0) the criterion~24! can be ful-
filled with a linear passive external circuit and it takes t
conventional formR.usdu21. This occurs for a heavily
loaded external circuit and corresponds to the regime
strong global coupling. For filamentary states with posit
differential conductance~PDC! the criterion ~24! demands
R,0. A negative external load resistance can be realized
active circuits: An experimental setup exhibiting an absol
negative resistanceR,0 and a negative~both absolute and
differential! capacitanceC,0 has been reported recent
@38#.

Since forR,0 an instability can also be induced by th
negative load itself, in a valid stability analysis one shou
then properly take into account also the action of the tem
ral degree of freedom related to the external circuit, i.e.,
should treat the casetuÞ0. As we have already shown tha
filamentary states with two or more positive eigenvaluesl1
.0,l2.0 remain unstable if a global constraint is impose
it is sufficient to consider the casel1.0,l2,0. Leaving
only the first term corresponding tol1 in the sum in Eq.
~19!, we write the characteristic equation in the form

Ctaz21@ta~R211su!2Cl1#z2l1~R211sd!50 .
~27!

For l1.0 this equation leads to a modified version of t
stability criterion~24! @takingF1(z) into account one arrives
at similar qualitative conclusions by applying complex-pla
analysis#,

2su1
Cl1

ta
,R21,2sd if C.0, ~28!

2sd,R21,2su1
Cl1

ta
if C,0. ~29!

For the casesC.0 ~28! andC,0 ~29! a Hopf bifurcation,
where a pair of complex conjugate eigenvaluesz crosses the
imaginary axis, occurs at the lower and upper bound, res
tively. This condition shows that oscillatory instabilities a
possible if the total capacitanceuCu exceeds a critical value
Ccrit .

The criteria~28!,~29! allow us to understand how to sta
bilize the filamentary states with PDC. Indeed, forsd.0 the
condition~28! can be met only ifsd,su ~andR,0). Since
e

il-
n

.
s

ns

f

y
e

-
e

,

c-

the main contribution to the differential conductance of
filamentary state usually comes from the shift of the filam
wall @the second term in Eq.~21!#, in most situationsusdu
.usuu. Therefore the condition~28! cannot be met, and fila
ments with PDC can be stable only in the caseR,0,C,0
described by Eq.~29!. The requirement of a negative capac
tance has a simple qualitative explanation: forR,0,C.0
the characteristic timetu5RC becomes negative, which in
dicates an instability induced by the external circuit.

Since we have not specified the type of spatial distribut
ao(x,y) under study, the analysis performed in this section
also valid for homogeneous states. For instance, for unifo
states on the middle branch of anS- or Z-shaped character
istic l15] f /]a.0, l2'] f /]a2(p l a /L)2, whereL is the
largest transverse dimension of the domainG. For the case
of a small domainl1.0,l2,0 our analysis leads to th
results obtained for space-clamped elements in@33#. For a
sufficiently large domain the second eigenvalue is also p
tive (l1.0,l2.0) and a homogeneous state cannot be
bilized by a global constraint.

An oscillatory instability of current filaments might resu
in either homogeneous oscillations or breathing@23# or spik-
ing filaments@26#. It is known from one-dimensional analy
ses that hysteresis between steady current filaments an
spiking mode takes place for the major part of the param
space@27#. Therefore, if a steady filament is already u
stable, the spiking mode is unlikely to appear. As for inh
mogeneous statesl1,] f /]a, according to Eq.~28! a fila-
mentary state is more stable with respect to oscillat
instabilities than homogeneous states with NDC. For t
reason in the simplest case ofS-type NDC a limit cycle cor-
responding to homogeneous oscillations already exists
system parameters at which a Hopf bifurcation of the fi
mentary state occurs, and hence homogeneous self-gene
oscillations rather than breathing filaments emerge as
most probable result of the instability. Obviously, the glob
behavior after the bifurcation also essentially depends on
form and position of the null-isoclinesf (a,u)50 and
g(a,u)50 @or the local current density-voltage characteris
and the load line, which give an equivalent representation
the (j ,u) plane# and, in particular, on the number of the
intersections. This is especially important for systems w
Z-shaped current-voltage characteristics where usually
eral points of intersection exist.

IV. CURRENT FILAMENTS ON TWO-DIMENSIONAL
DOMAINS

General results of the stability analysis performed in Se
II and III are summarized in Table I. In the regime of wea
global coupling~weakly loaded external circuit! any station-
ary filamentary statea0(x,y) on a convex domain is un
stable. The switching mode dominates the growth of per
bations. This leads either to expansion or shrinking of
current filament. In the caseR.0 the stability criterion~28!
is never met for filaments with PDC, and therefore the pr
ence of a global constraint and NDC of the filamentary st
are necessary conditions of stability. Stability of a filame
with PDC requires a negative external loadR,0 in the case
sd,su ~28!, and a negative external loadR,0 together
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TABLE I. Result of the stability analysis of current filaments.

Type of steady current density distribution
Distribution with

Type of global Arbitrary nonuniform an extremum insideG,
coupling distribution, a0u]G5const, arbitrary domain

convex domainG G

No coupling:
~voltage-driven regime! Unstable: Unstable:

R50 l1.0; signl2 undetermined l1.0,l2.0

Weak global
coupling:

R21P” F2su1
Cl1

ta
;2sdG Unstable: Unstable:

for C.0 at least one unstable mode at least two unstable mod

R21P” F2sd ;2su1
Cl1

ta
G

for C,0

Strong global
coupling:

R21PF2su1
Cl1

ta
;2sdG Stable if and only if Always unstable

for C.0 l2,0 against translation mode

R21PF2sd ;2su1
Cl1

ta
G

for C,0
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with negative differential capacitanceC,0 in the case
sd.su ~29!.

For domains that are not convex the sign ofl1 is un-
known in general. It has been shown@34# that l1,0 holds
for a dumbbell-shaped domain, which represents two circ
domains connected by a sufficiently narrow crosspiece. T
domain corresponds to two weakly coupled SNDC eleme
As l1,0, coexistence of high-conductivity and low
conductivity states is possible in such a system even in
voltage-driven regime.

In the case of strong global coupling and NDC of t
filamentary state the number of unstable modesl i.0 asso-
ciated with the voltage-driven system is reduced by o
Therefore the filament stability depends on the sign of
second eigenvaluel2. We have proved thatl2.0 holds for
any distributiona0(x,y) that has a maximum inside the do
main and does not vary along its boundary (a0u]G5const).
Here we do not require convexity of the domain. Accordi
to this conclusion a filament located in the interior of t
domain is unstable and is attracted by the boundary of
domain.

Let us illustrate this statement by the example of radia
symmetrical filaments in circular domains. Assuming rad
symmetry, we write Eq.~1! in the steady state in polar coo
dinates (r ,f) as in @15,16#:

l a
2S ]2a

]r 2
1

1

r

]a

]r D 1 f ~a,u!50, ~30!
ar
is
s.

e

.
e

e

y
l

According to the phase-portrait analysis of Eq.~30! @15,16#
there are two types of current distributions: filaments in
center of the domain and annular current layers attache
the boundary. With increase of the total current a ‘‘ho
central filament~i.e., a filament with high current density i
the center! expands over the domain and becomes a ‘‘col
~i.e., low current! annulus attached to the boundary. In
similar way a cold central filament experiences transform
tion into a hot annulus with decrease of total current. As
conditiona0u]G5const is met, we conclude that all filamen
tary and annular states described above are unstable ag
translation, which breaks the radial symmetry.

On the basis of our analytical considerations we conj
ture that all current distributions that have a maximum in
interior of the domain are unstable against translation reg
less of the conditiona0u]G5const. To check this hypothesi
we have performed numerical simulations for the model E
~2!,~4! for rectangular domains in the current-driven regim
@R→`,U0→`, j 0[U0 /(RS)5const#, which, obviously,
corresponds to the case of strong global coupling. Figur
shows the time evolution of a center filament in a squ
domain. The initial configuration corresponds to the statio
ary solution; the conditiona0u]G5const is slightly violated.
This stationary solution remains stable when perturbati
orthogonal to the translation mode are introduced into
numerical simulation~thereforel3,0). However, the cen-
tral filament becomes unstable for random perturbations
arbitrarily small amplitude when the condition of orthogona
ity is not met (l2.0). This instability results in the eventua
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FIG. 6. Instability of a central filament in a square domain. The temporal evolution of the current densityj (x,y) is shown for the
following dimensionless numerical parameters:j 0[U0 /(RS)51.94, C2150.035, T50.05, ta5 l a51, L540, Lcr511.5, whereLcr

[p l a(] f /]a)21/2 is the minimum system size necessary for filament formation.
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formation of a corner filament, which has its maximum at t
boundary. For other parameters the transient process
also lead to an edge current layer. Hot and cold corner
ments and plane edge current layers parallel to the boun
~Fig. 7! are the only structures that arise from random init
conditions in the regime of strong global coupling and re
resent stable steady states for rectangular domains. S
l1.0,l2,0 their stability depends on the sign of their d
ferential conductance; stability requiressd,0.

Current-voltage characteristics for domains of two diffe
ent sizes are presented in Fig. 8. Generally, with increas
current the differential conductance changes sign when
filament wall reaches the boundary of the domain: start
from this point the main contribution to the differential co
ductance is given not by the shift of the filament wall@the
second term in Eq.~21!# but by the change of current densi
in the homogeneous part of the current distribution@the first
term in Eq.~21!#. Therefore the differential conductance b
comes positive. For edge current layers such a transition
curs for sufficiently thin hot and cold layers. For hot corn
filaments the bottom point of the characteristic where
differential conductance changes sign corresponds to a s
ciently small filament; the change at the top of the charac
istic takes place when the filament has expanded such
the filament boundary reaches the adjacent corners of
domain @at this point a hot filament covers approximate
three-fourth ('p/4) of the domain area#. For cold corner
filaments the top and bottom points are interchanged. Sw
ing up and down the current-voltage characteristic~Fig. 8! in
the current-controlled regime one observes multistability a
e
ay
-
ry
l
-
ce

-
g
e

g

c-
r
e
ffi-
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at
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p-

d

multiple hysteresis cycles between edge current layer
corner filaments. The particular scenario of the transitio
essentially depends on the ratioL/Lcr .

Our overall conclusion is that a boundary attracts fi
ments from the interior of the domain. However, the grow
increment of the unstable mode decreases with increa
system size. Since therefore in sufficiently large domain
filament in the interior of the domain has nearly neutral s
bility it may be pinned by a small embedded inhomogene
of the semiconductor structure. To study the competition
tween the attracting boundary and pinning at inhomoge
ities we have performed the following numerical simul
tions. Inhomogeneities sensitively influence the transp
parameterT ~in the HHED, e.g., this parameter correspon
to a tunneling rate!. We assume thatT becomes a function o
space, andT(x,y) has a localized peak of amplitudedT in
the center of the square domain. Then for a sufficiently la
value ofdT the central filament becomes stabilized; i.e., it
pinned at the inhomogeneity. Figure 9 shows the stability
the (dT,L) diagram: the minimum amplitudedT/T of the
seed inhomogeneity that is necessary to stabilize a ce
filament decreases approximately exponentially with the s
tem sizeL. This results from the asymptotically exponenti
decrease of the eigenvaluel2(L) of the central filament.
Thus, in large domains seed inhomogeneities dominate o
boundary effects.

V. CONCLUSIONS

In bistable semiconductor systems on two-dimensio
spatial domains with convex passive boundary~Neumann
boundary condition! any stationary nonuniform current den
a

e

s

FIG. 7. Stable filament configurations on
square domain:~a! hot and~b! cold corner fila-
ment, ~c! edge current layer. The values of th
average currentj 05U0 /(RS) are 1.5, 3.5, 2.0,
respectively;L530, other numerical parameter
as in Fig. 6.
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sity distribution has at least one unstable model1.0 when
the system is operated in the voltage-driven regime. If
second eigenvalue is negative (l2,0) such a distribution
can be stabilized by global coupling provided by the exter
circuit if the stability criteria~28!,~29! are satisfied. For fila-
ments with negative differential conductance stability can

FIG. 8. Current-voltage characteristics for~a! small (L530
'3Lcr) and ~b! large (L5150'13Lcr) square domains. The thin
line represents homogeneous states, the thick lines depict the
tially averaged current density of inhomogeneous steady sta
Curvesh,c,e correspond to a hot corner filament, a cold corn
filament, and an edge current layer, respectively. These bran
are stable only in the regime of strong global coupling. Numeri
parameters as in Fig. 6.
c

e

l

e

achieved with a passive (R.0) heavily loaded external cir
cuit. Filaments with positive differential conductancesd can
be stabilized only by an active external circuit with negati
resistanceR,0 whensd.su . If sd.su , stabilization of
filaments with positive differential conductance requires a
a negative total differential capacitance of the device a
external circuitC5Cint1Cext,0. We have proved analyti
cally that l2.0 holds for current distributions that have
maximum in the interior of the spatial domain and a const
value at its boundary. Such distributions, corresponding
central current filaments, remain unstable against transla
even if the conditions~28!,~29! are satisfied. Our numerica
simulations suggest that the condition of constant bound
value may even be relaxed and that Neumann bounda
generally attract current filaments. This is in agreement w
numerical results obtained for other reaction-diffusion s
tems@31#. In structurally imperfect systems seed inhomog
neities tend to pin current filaments in the center; thus th
is competition between attractive inhomogeneities and
boundary. In large systems imperfections dominate o
boundary effects: the amplitude of the inhomogeneity tha
sufficient for pinning current filaments decreases expon
tially with increasing transverse dimension of the system
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FIG. 9. Effect of structural imperfections on filament stabilit
The two different regimes are shown in the diagram of the rela
amplitudedT/T of seed inhomogeneities vs the system sizeL. Up-
per regime: stable central filament is pinned by a seed inhomo
neity; lower regime: attractive influence of boundary dominat
Other numerical parameters as in Fig. 6.
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@16# E. Schöll, Nonequilibrium Phase Transitions in Semicondu
tors ~Springer, Berlin, 1987!.
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