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Stability of current filaments in a bistable semiconductor system with global coupling

A. Alekseev
Institute for Theoretical Physics, Uppsala University, Box 803, S-75108 Uppsala, Sweden

S. Bose, P. Rodifi,and E. Schib
Institut fur Theoretische Physik, Technische UniversBarlin, Hardenbergstrasse 36, D-10623, Berlin, Germany
(Received 1 October 1997

We study the stability of steady current filaments in a bistable semiconductor system in the presence of
global coupling given by an external circuit. The system is described by a reaction-diffusion model on a
two-dimensional spatial domain with Neumann boundary conditions. We prove generally for the voltage-
driven regime that in a convex domain any filament has at least one unstable linear eigenmode. Introducing a
global coupling may either eliminate the unstable mode with the largest increment or induce oscillatory
instabilities. Filaments with negative differential conductance can be stabilized by strong global coupling.
Stabilization of filaments with positive differential conductance can be achieved only by an active external
circuit with negative resistance and capacitance. We present analytical arguments and numerical simulations
suggesting that the boundary of the domain always attracts current filaments. Our numerical results also show
that seed inhomogeneities may pin current filaments in the center of sufficiently large domains. The competi-
tion between the attractive boundary and pinning by seed inhomogeneities is studied numerically.
[S1063-651%98)06303-X

PACS numbd(s): 05.70.Ln, 72.20.Ht

I. INTRODUCTION theory is adequate only for samples with effectively one-
dimensional striplike geometries where the longitudinal co-
Current filamentation in semiconductor systems withordinate parallel to the current flow has been eliminated, and
bistable current-voltage characteristics represents one of tithe second transversal dimension is so short that spatial in-
simplest nontrivial examples of pattern formation in activestabilities cannot develop. The description of real three-
spatially extended medigl]. Current filaments are charac- dimensional samples requires models on two-dimensional
terized by a current density profile, which varies in the plangtransversal spatial domains. Up to now most studies of
perpendicular to the current flow reflecting spatial coexisttwo-dimensional models have either assumed axial symme-
ence of the two stable phases. According to the concept dfy of the current distributioh15,16,23,24, or have consid-
pattern formation in activator-inhibitor systeifs-7] current  ered the longitudinal and one transversal coordinate only
filamentation may occur due to the competition between ah29,30, which is appropriate for thin semiconductor films.
internal mechanism of activation, which provides negativeRecent numerical simulations of filament dynamics on qua-
differential conductivity(NDC) of the semiconductor ele- dratic domaing31] have been performed for an activator-
ment[8], and an external mechanism of inhibition given by inhibitor model, which takes into account both local inhibi-
the constraint related to the external circuit. The theoretication processes inside the semiconductor structure and global
description of stationary current filaments, originally devel-inhibition due to the external circuit.
oped for semiconductors with an electron overheating insta- The purpose of this paper is to develop analytical and
bility [9-11], has been later advanced for other semiconduchumerical results for bulk samples where both transversal
tor systems exhibiting s-shaped negative differential dimensions are of comparable size. We concentrate on the
conductivity (SNDO) [12-21]. It was also discovered that stability of steady current filaments in bistable semiconduc-
current filaments can exhibit temporal instabilities that leador systems that do not experience local internal inhibition
to traveling or rocking filament22], and small-amplitude or and present a general approach for arbitrary convex two-
relaxation-type oscillations, known as breath[28,24 and  dimensional spatial domains with proper account taken for
spiking of a current filamenit25—27], respectively. A well- global coupling. A typical sample geometry is shown in Fig.
known approach is to treat the problem in terms of a oned. An external circuit with load resist® and capacitoC is
dimensional reaction-diffusion equation, which results fromattached to the topK) and bottom A) contacts of the
the reduction of two-dimensional transport models, and arsample.
integrodifferential equation corresponding to a global con- We assume that the internal state of the semiconductor
straint given by the external circuie.g.,[11,25,28). Since  system can be characterized by a single spatially distributed
the model equation takes into account only one transversglarametea(x,y,t), which corresponds to the internal degree
degree of freedom for the current density distribution such af freedom relevant to the bistability. The physical meaning
of this parameter might be electron temperaf@d0], con-
centration of excess carriers6], bias of one of the@n junc-
*On leave from A. F. loffe Physicotechnical Institute, Russiantions in a thyristof12,19, interface charge density of a het-
Academy of Science, 194021 St. Petersburg, Russia. erostructure hot electron dio@25], etc., depending upon the
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FIG. 1. Schematic sketch of the semiconductor structure 5

(shadedl and the external circuit attached to its catho#t® @nd

anode Q) contacts. The direction of current flod(a,u) and a 0

cylindrical current filament are schematically indicated. The projec- 0 2 4 & u 8 10 12

tion onto the k,y) plane shows the two-dimensional domai

under studyn denotes the normal vector at the bounda. . .
yn G FIG. 3. (a) Local current density-voltage characterigt{c) and

(b) null-isoclinea(u) given byf(a,u)=0 for the model functions

specific transport mechanism. The variah(,y,t) and the 3I/Eq' (2) with T=0.05,

voltageu(t) across the sample determine the current densit
J(a,u) in a cross section of the device. For various semicon-

) culated from the null-isoclind(a,u)=0 and inserted into
ductor _system$9—13,17,19,22_,25,32,$$he spa_tlotempor_al J(a,u) to find the local current density-voltage characteristic
dynamics ofa(x,y,t) is described by a reaction-diffusion

: j(uy=J(a(u),u) which can bes-shaped[Fig. 2(b)] or
equation of the type z-shapedFig. 2(c)] (se€[33] for a discussion of the general
case and some exampleslowever, a particular type of non-

. =12Aa(x,y, )+ f@x,y,t,ut). (1) linearity is not crucial for the present analysis. In our ana-
ot Iytical considerations we will not specify the dependencies
of f(a,u,),J(a,u), and will only assume the condition
Here 7, andl, characterize the relaxation time and trans-33/9u>0. In our numerical examples we will use the fol-
versal diffusion length, respectively. The local kinetic func- lowing model functions, which were originally derived for
tion f(a,u) is a nonmonotonic function @, which, for fixed  the heterostructure hot-electron diodelHED) but were
u in a certain range, has three zeroes corresponding to higlthown to hold more generally for layered semiconductor
conductivity, low-conductivity, and negative differential structured25]:
conductivity (NDC) states[Fig. 2(@)]. Since ¢f/9a>0 for

da(x,y,t)

values ofu in the NDC range, the variabla may be re- u—a
garded as an activator. The functiohga,u) and J(a,u) f(a,u)= T4, J(a,u)=u—a. 2
contain all necessary information about vertical transport (u—a)°+1

along thez direction in the structure shown in Fig. 1. Gen-

erally, in the steady state, the local dependem@e) is cal-  These functions result inzashapeda(u) dependence and an
s-shapedj (u) dependencéFig. 3). Note that dimensionless
variables are used here.

3, (b)j (C)j The distributiona(x,y,t) has to satisfy Neumann bound-
ary conditions corresponding to a passive boundary with no
N flux:
\/ a
‘ \‘\ — & b LN 3
t 2 U Unnin Untax u UJnin Uniwx u on iG

FIG. 2. (a) Local kinetic functionf(a,u) for different values of ~Hered/dn is the normal derivative at the boundai of the
U (U1<Upin, Unnin<Up<Upaxs U3>Umz). (b),(c) s- andz-shaped ~domainG.
local current density vs voltage characteristj¢s), respectively The temporal dynamics of the voltaggt) is described
(schematig. by Kirchhoff's equation for the external circuit:
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du(t)
(W) —g =9(@u), glauw=Ue—u()- RSJ(a,u)),

7y(W)=RC(u), C(u)=Cq(u)+Cip(u), (4)

whereU is the applied bias voltag® is the load resistance,
Cint is the internal differential capacitance of the samflg,
is the differential capacitance of the external circ8iis the

cross section of the device, and the angular brackets denote

the spatial average over the dom&n Since generally the
derivatives dg/9a and df/ou have different signs in the
NDC range, the variablel acts as inhibitor(Specifically,
dglda>0, af/du<0 hold for the dependencid®), dg/da
<0, df/ou>0 hold for models of overheating instabilities
[9-11] and multilayered structur¢&2—14,19,36) Equation
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(4) represents a global constraint that is imposed on the dy- FIG. 4. DomainG (schematiz: The direction¢ corresponds to
namics ofa(x,y,t) and provides global coupling between tpe translation modé, | is a coordinate along the boundaré,

distant parts of the cross section.

Linearization of the equationd),(4) in the vicinity of a
stationary solutiorag(X,y), Uy with respect to the perturba-
tion e‘tsa(x,y)=[a(x,y,t)—as(x,y)], e‘'su=[u(t)—uo]
with déa(x,y)/an|,c=0 yields

. of .
Ta{da=Hyda+—-ou, Hy=12A+®(x,y),

of
DOy)=o| ©
ag,Ug
B 4J ) EN B
T,{ou=—|1+R u Su—R £5a, 7,= Ty(Up).
(6)

Here and further on the characteristic timg and partial
derivatives off andJ are computed at the steady stageu,.
The stationary solution is stable if R& 0 for all eigenvalues
.

The self-adjoint operatoH, acts on the space of func-

tions with Neumann boundary conditions. Its eigenfunction
V¥, and eigenvaluek; correspond to eigenmodes and eigen

values of the voltage-driven systerR C=0): according
to Egs.(5) and(6) {=\/T, for Su=0. So the voltage-driven
system is stable if al\;<<0. In the presence of the global
constraint Eq(6) mixes the eigenmodeg; . In this case we
should analyze both equatiortS) and (6) simultaneously,
but the knowledge of the spectrufi;} remains the key to
the stability problem.

n is the external normal to the boundary.

positive eigenvalues; corresponding to the voltage-driven
system. In Sec. IV we use the results of Secs. Il and Il to
formulate some general criteria of filament stability. Here we
also present the results of numerical simulations and discuss
the effect of embedded inhomogeneities of the semiconduc-
tor structure on filament stability.

Il. EIGENVALUES OF VOLTAGE-DRIVEN SYSTEM

The eigenvalues of the operatBIrN may be ordered by
decreasing sizeyx;>\,>---. In this section we study the
sign of the first two eigenvalues; ,\,. The first eigenmode
W, is strictly positive inside the domai@ and hence repre-
sents the switching mode, which leads to expansion or
shrinking of a filament. The interpretation of the second
eigenmode¥, depends on the particular soluti@g(x,y).

For filaments in the interior of the domain it corresponds to
the shift of a filament along a certain directigtb].

To analyze the spectrum of the operakty; let us intro-
duce the translation modéthese modes are also known as

SGoldstone modegl6])

_ dag(xy)

ﬂG(le)_ d—gi (7)

where d/d¢ is the derivative along the directioé on the
(x,y) plane(Fig. 4). Boundary conditions fo¢(x,y) can
be obtained by direct calculation taking into account that

Our aim is to establish a link between stability and such@o(X,y) satisfies Neumann boundary conditions as:
general features of a filamentary state as the location of the

extremum and the sign of the differential conductivity.

[Whereas in a one-dimensional thedfy,16 the complete
classification ofag(x,y) follows from the phase-portrait

analysis of Eq(1), in the two-dimensional case such a clas-
sification is not available even for domains of simple shhpe.
The paper is organized as follows. In Sec. Il we study the

spectrum\; of the operatoH  related to the spatial domain

dag .
ﬂG(I)=75|na(l),

avs(l) 1 odag . #%ay
on R 4 o|na(l)+Wcos)z(l).

®

G of arbitrary shape. In Sec. Ill we concentrate on the effectierel is a coordinate along the boundaey(l) is an angle
of the global coupling on filament stability and establish abetween the directio and the external normaid, R(l) is

connection between the number of unstable mdd&=(()

the radius of curvature of the domain bounda®@. The

>0] of the complete stability problem and the number oftranslation modes correspond to zero eigenvalues of the op-
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eratorH ), which is defined by the same expressiorFas
[see Eqg.(5)] but acts on the space of functions with linear
boundary conditions

3

1 (dag
o)+ o2)=12 [ oo 20 a1 s

For any convex domaifiR(l)>0] we obtainX=0. Let us
=0. (9)  prove that from%=0 follows A;>0. Indeed, in the casE

G >0 at least one of the quadratic forﬂ;m(ﬂé),ﬁN(ﬁé) is

In particular, the functiorg(l) can be chosen in such a way Qosﬁwe. Then from the variational principle it follows that

that 9 satisfies Eq(9) (note that different directions cor- ~ Hn has at least one positive eigenvalue. The equalifies
. ~ . =0 and\ ;=0 cannot occur simultaneously because in this
respond to different operatoks,)):

case eitherd3=0,03=0 or 95=V,,95=0. In the first

6"1’(X,y))
on

( g(H¥(x,y)+

1 2a-\ [ gas) 1 caseay=const, in the second casg corresponds to a plane
g(h= ( 0) 70 cota(l). (10)  current layer and its translation mode can never coincide
~R() an? |\ 4l with ¥, due to the boundary conditions. Therefore again

. ~ . ) N1>0. Thus, for the operatoFIN defined on any convex
The quadratic formHg, of the operatoHg given by the  gomaini,>0 and the ground state eigenfunctién corre-

scalar produc(\l’ﬂgm\P) can be represented as sponds to an unstable mod@ similar but more cumber-
some proof of this fact fon-dimensional domains has been
~g(| (\If)EJ wi | dxdy presen.ted if34] in application to dissipative structures in
ecological systems.
In order to determine the sign of the second eigenvalue
- _|§j g(l)\IfzdI—l—f [—I12(VW)? we should establish some [elation betwéﬁmandliigm and
G ¢ use the fact that the operatdyg,, has a zero eigenmod%
+®(x,y)P2]dxdy. (12) From the theory of operato{§5] it follows thatHN>Hg(|)

(i.e., \i>A9" for anyi) if Hy>Hyg, or if Hy=Hg) and
a() a(h)
In order to determine the sign of the first eigenvalue of thethe domamD(HN) of Ay [D(Hy) is a set of functions on
operatorH, we apply the variational principlg35], which which Fi is defined includes the domaer(Hg(|)) for
states that eigenfunctions bffy are extrema of its quadratic H o) D(Hy)DD(A o). The difference between the qua-

form L —~
dratlc formsHy (12) andHg(, (11)

’HN<\P>=j [~ I2(V0)2+ D (xy)¥2ldxdy.  (12) o
G HN(\I’)—Hgm(\lf):IgLGg(l)\Pzdl (16)

The elgenfunctlon\lfl corresponding to the largest eigen-
value ofHN provides the maximum offy, . is positive wherg(l)>0. However, the conditiog(l)>0 is
Since the variation of the quadratic forghl) includes the violated for any solutiora, that varies along the boundary
boundary termf ,g(d¥/dn)s¥dl, which vanishes only if JG. Indeed, at the boundary point whefeandn are parallel
aW/gn=0, Hy(¥) automatically imposes Neumann bound- cota(l) changes S|gn whereada,/dn? in general does not.
ary conditions on its extrema. Therefore, if we present anyl'hereforel-m anng(|) cannot be compared &(l) # const.
function ¥ for which Fy(¥)>0, then the operatdfly has ~ When ap(l)=const Eq.(10) implies that all translation
at least one positive eigenvalue. Sindg is a zero mode of modes satisfy the Dirichlet boundary conditidrg(1) =].
Hga) [Hg(l)(l‘}G) 0] and on account of Eq€11),(12), we Then the operatdflg(|) is a Dirichlet oneHgm—HD In this
obtain caseHN—HD Since HN can be considered on functions
with arbitrary boundary condition the domainidf, contains
An(9a)=I f ,_«}G_d| (13  the domain ofHp. Thus,Hy>Hp.
Any inhomogeneous stai®, that satisfies the condition
ao(l)=const has an extremum inside the dom@irand its

Substituting Eq(8) into Eq. (13) leads to translation modeYs always has zeros. As the ground state
1 eigenfunction of the operatdil, is strictly positive, the ei-
F'N(ﬁe):lif 25 @ sirfa(l) genvaAIue)\iD=0 corresponds te=2. Taking into account
9G Hyn>Hp we conclude thak,>0.
Thus we have established that for any steady inhomoge-
+E @ sza“) (14) neous statey(x,y) on a convex domaim >0 holds, and
2 9l gn? that for any steady state which satisfies the condition

ap(X,y)|,c=const on an arbitrary domain;>0\,>0
Now let us choose two translation modég, and 93  hold. Note that the condition of convexity of the domain and
corresponding to orthogonal directions. According to Eq.the conditiona,(X,Y)|,c=const are sufficient but not neces-
(14) the sum of their quadratic forms can be represented asary conditions forn;>0 and \;>0\,>0, respectively.
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Since for one-dimensional domains the translation mbge (a)

always satisfies Dirichlet boundary conditions, it also fol- Alm(C)
lows from our analysis that,>0 for any one-dimensional
distribution ag(x) and A;>O0\,>0 for nonmonotonic /T

ao(X).

lll. EFFECT OF THE GLOBAL CONSTRAINT ON
FILAMENT STABILITY

In this section we establish the relation between the num-
ber of unstable modes (Re0) in the presence of a global
constraint and the number of positive eigenvalegorre-
sponding to the voltage-driven regime. We advance the ap-
proach originally suggested for semiconductors with an elec-
tron overheating instability[11]. Stability of current
filaments in controllable bistable systems with two external
global constraints have recently been studief3.

Let us expand the eigenmoda(x,y) in the basis of the

eigenfunctions?; of the operatoH :

FIG. 5. Stability analysis using the characteristic equat{an.
5a(x,y)=z (6a- ¥ yV¥n. 17 ContourI" in the complex{ plane encircles the right half-plane,

m which contains eigenvalugswith positive real partsh;,\,,A 3 are
poles corresponding to the eigenvalues for the voltage-driven case.
(b) Mapping Fo(T") of the contour” corresponding to the case of
aflouw ) fast inhibition 7,> 7, . Con_tours 1 and 2 correspond to the case of
SuW (X,Y). (18 Egs.(25) and(26), respectively.

From Eq.(5) we obtain the coefficients of this expansion
da(x,y)=> <
m  Tal—Anm

Substituting into Eq(6) leads to the characteristic equation €igenvalues\; of the operatoiy. The number of pole®
and the number of zerods located inside any closed con-

F({)=Fo(d)+F1(£)=0, tour I in the complex{ plane are related by the argument

‘ ) principle:
aJ aflou¥ )(9dlga¥
F0(§)=1+RS<E>+RSE ( uli il

m Tal—Am ,

N=P+ %AArgF(g), (22
Fi(d)=7ud, 19

which determines the complex eigenvaluesf the linear- where AArgF(¢) is the variation of the argument &¥(¢)
ized system(5),(6). We separate the two pari,({) and when{ varies along the contodr [37]. As unstable modes
F1(£) such that the characteristic time of the inhibitgy ~ correspond to Re>0 we choose the contodrf encircling
enters onlyF,(£). Note that the ground state eigenfunction the right half-plane[Fig. 5@)] in the clockwise direction.
¥, has no zeroes whereas tNg oscillate in space foi ~ The variationAArgF({) depends on how many times and in
>1. Therefore the first term dominates the others in the surihich direction the contouf(I") turns around the origin. In
in the last term ofF (). the case of anticlockwise rotation the number of unstable

Taking into account that=0 for variations da(x,y)  €igenmodes is less than the number of positive eigenvalues
along the steady current-voltage characteristic and applyingi by the number of turns, in the case of clockwise rotation it
Eq.(18), we can represent the differential conductance of thds larger by the same numbed.= P holds if F(I') does not
inhomogeneous state encircle the origin.

First, let us consider the case of fast inhibitiep<7,

~ d{J(a,u)) dJ dJ da when temporal instabilities are damped out in favor of spatial
=S~ S\\au/"\gasu (20 ones. Then we neglect the tef in the characteristic equa-
tion. In this case
as
(3t 9uW )33 daV ) 9J F(O)=1+Roy, F(*)=1+Ray, (23
ey ) 1)
m m 21) Therefore the contouF(I') encircles the origin once if

sg{F(«)}=—sgr{F(0)} and the direction of rotation of
where o, denotes the differential conductance for fixed in- F(I) is anticlockwise[Fig. 5b)]. This leads to the following
ternal parametea(x). Note thato,>0. stability criterion:

Zeroes of the characteristic functidn({) are complex
eigenvalues of the stability proble(®),(6) and its poles are —o, <R l<—o0y. (24
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When this criterion is met the global constaint reduces theéhe main contribution to the differential conductance of a
number of unstable modes related to the oper‘élﬁolby one filamentary state usually comes from the shift of the filament
wall [the second term in Eq21)], in most situationgo |
N=P-1, (259 >|g,|. Therefore the conditiof28) cannot be met, and fila-
ments with PDC can be stable only in the c&€0,C<0
described by Eq(29). The requirement of a negative capaci-
N=P. (26)  tance has a simple qualitative explanation: R+ 0,C>0
the characteristic time,=RC becomes negative, which in-
In the last case the global constraint has no impact on stabillicates an instability induced by the external circuit.
ity, and the system behavior is similar to the voltage-driven  Since we have not specified the type of spatial distribution
regime. In what follows we refer to the cad@$) and(26) as  a,(x,y) under study, the analysis performed in this section is
to regimes of strong and weak global coupling, respectivelyalso valid for homogeneous states. For instance, for uniform
Therefore in the regime of weak coupling the system isstates on the middle branch of anor z-shaped character-
stable if all eigenvaluey; of the operatorﬂN are negative, istic A;=df/9a>0, Np~dflga— (ml,/L)?, wherelL is the
whereas in the case of strong coupling the system remairlargest transverse dimension of the dom@inFor the case
stable even if the first eigenvalug is positive. For filamen- of a small domain\;>0A,<0 our analysis leads to the
tary states with NDC ¢4<0) the criterion(24) can be ful-  results obtained for space-clamped elementg3B]. For a
filled with a linear passive external circuit and it takes thesufficiently large domain the second eigenvalue is also posi-
conventional formR>|ay|~1. This occurs for a heavily tive (A\;>0\,>0) and a homogeneous state cannot be sta-
loaded external circuit and corresponds to the regime obilized by a global constraint.
strong global coupling. For filamentary states with positive An oscillatory instability of current filaments might result
differential conductancéPDC) the criterion(24) demands in either homogeneous oscillations or breatHi2g] or spik-
R<0. A negative external load resistance can be realized bing filaments[26]. It is known from one-dimensional analy-
active circuits: An experimental setup exhibiting an absoluteses that hysteresis between steady current filaments and the
negative resistancR<0 and a negativéboth absolute and spiking mode takes place for the major part of the parameter
differentia) capacitanceC<0 has been reported recently space[27]. Therefore, if a steady filament is already un-
[38]. stable, the spiking mode is unlikely to appear. As for inho-
Since forR<0 an instability can also be induced by the mogeneous states; <Jf/da, according to Eq(28) a fila-
negative load itself, in a valid stability analysis one shouldmentary state is more stable with respect to oscillatory
then properly take into account also the action of the tempoinstabilities than homogeneous states with NDC. For this
ral degree of freedom related to the external circuit, i.e., ongeason in the simplest case ®type NDC a limit cycle cor-
should treat the casg,#0. As we have already shown that responding to homogeneous oscillations already exists for
filamentary states with two or more positive eigenvalngs System parameters at which a Hopf bifurcation of the fila-
>0,\,>0 remain unstable if a global constraint is imposed,mentary state occurs, and hence homogeneous self-generated
it is sufficient to consider the case,>0\,<0. Leaving Oscillations rather than breathing filaments emerge as the
only the first term corresponding to; in the sum in Eq. most probable result of the instability. Obviously, the global

otherwise

(19), we write the characteristic equation in the form behavior after the bifurcation also essentially depends on the
form and position of the null-isoclined(a,u)=0 and
Crol?+[7(R" 1+ 0,) —CN]{— N (R 1+ 04)=0. g(a,u)=0 [or the local current density-voltage characteristic

(27 and the load line, which give an equivalent representation in
. . . ) the (j,u) plang and, in particular, on the number of their
For A,>0 this equation leads to a modified version of thej,arsections. This is especially important for systems with
stability criterion(24) [takingF,(¢) into account one arives ;_shaned current-voltage characteristics where usually sev-
at similar qualitative conclusions by applying complex-planeg 4 points of intersection exist.

analysig,
Chy )
—o,t+ <R *<—-0gy if C>0, (28 IV. CURRENT FILAMENTS ON TWO-DIMENSIONAL
Ta DOMAINS
Chy General results of the stability analysis performed in Secs.

—o0¢<Rl<—o,+ if C<O0. (29

Il and Il are summarized in Table I. In the regime of weak
global coupling(weakly loaded external circyiainy station-
For the case€>0 (28) andC<0 (29) a Hopf bifurcation, ary filamentary stateay(x,y) on a convex domain is un-
where a pair of complex conjugate eigenvaldesosses the stable. The switching mode dominates the growth of pertur-
imaginary axis, occurs at the lower and upper bound, respedations. This leads either to expansion or shrinking of the
tively. This condition shows that oscillatory instabilities are current filament. In the cade>0 the stability criterion28)
possible if the total capacitan¢€| exceeds a critical value is never met for filaments with PDC, and therefore the pres-
Ceit - ence of a global constraint and NDC of the filamentary state
The criteria(28),(29) allow us to understand how to sta- are necessary conditions of stability. Stability of a filament
bilize the filamentary states with PDC. Indeed, fr>0 the  with PDC requires a negative external IdRek0 in the case
condition(28) can be met only iry<o, (andR<0). Since  oy<o, (28), and a negative external lod@<0 together

Ta



2646

A. ALEKSEEV, S. BOSE, P. RODIN, AND E. SCHQ. 57

TABLE I. Result of the stability analysis of current filaments.

Type of global

Type of steady current density distribution

Arbitrary nonuniform

Distribution with
an extremum insi@e

coupling distribution, ag| 5= const, arbitrary domain
convex domairG G
No coupling:
(voltage-driven regime Unstable: Unstable:
R=0 \1>0; sign\, undetermined AN1>0,N\,>0
Weak global
coupling:
C\; Unstable: Unstable:
R |-+ ——0y
Ta
for C>0 at least one unstable mode at least two unstable modes
R_lé —0y ;_0'u+ %
Ta
for C<0

Strong global

coupling:
C\ Stable if and only if Always unstable
1 Y
R 1le —o,t+ 17— 0y
a
for C>0 A,<0 against translation mode
CA
Rle|—oy;—oy+ —l}
Ta
for C<0

with negative differential capacitancE<0 in the case According to the phase-portrait analysis of E§0) [15,16]
oq> oy (29). there are two types of current distributions: filaments in the
For domains that are not convex the signXaf is un-  center of the domain and annular current layers attached to
known in general. It has been shol84] thatA;<<0 holds the boundary. With increase of the total current a “hot”
for a dumbbell-shaped domain, which represents two circulacentral filamenti.e., a filament with high current density in
domains connected by a sufficiently narrow crosspiece. Thithe center expands over the domain and becomes a “cold”
domain corresponds to two weakly coupled SNDC elementdi.e., low current annulus attached to the boundary. In a
As \;<0, coexistence of high-conductivity and low- similar way a cold central filament experiences transforma-
conductivity states is possible in such a system even in thton into a hot annulus with decrease of total current. As the
voltage-driven regime. conditionag| ,c=const is met, we conclude that all filamen-
In the case of strong global coupling and NDC of thetary and annular states described above are unstable against
filamentary state the number of unstable molgs0 asso- translation, which breaks the radial symmetry.
ciated with the voltage-driven system is reduced by one. On the basis of our analytical considerations we conjec-
Therefore the filament stability depends on the sign of thdure that all current distributions that have a maximum in the
second eigenvalug,. We have proved that,>0 holds for interior of the domain are unstable against translation regard-
any distributionag(x,y) that has a maximum inside the do- less of the conditior,|,c = const. To check this hypothesis
main and does not vary along its boundaag|(,c=const). we have performed numerical simulations for the model Egs.
Here we do not require convexity of the domain. According(2),(4) for rectangular domains in the current-driven regime
to this conclusion a filament located in the interior of the[R—,Uy—,jo=Uq/(RS=consi, which, obviously,
domain is unstable and is attracted by the boundary of theorresponds to the case of strong global coupling. Figure 6
domain. shows the time evolution of a center filament in a square
Let us illustrate this statement by the example of radiallydomain. The initial configuration corresponds to the station-
symmetrical filaments in circular domains. Assuming radialary solution; the conditiomg|,c=const is slightly violated.
symmetry, we write Eq(1) in the steady state in polar coor- This stationary solution remains stable when perturbations
dinates ¢, ¢) as in[15,16]: orthogonal to the translation mode are introduced into the
numerical simulationthereforex ;<<0). However, the cen-
2 tral filament becomes unstable for random perturbations of
Iz( dca 1 o9a

2l — 4+ —|+f(a,u)=0, (30)  arbitrarily small amplitude when the condition of orthogonal-

grz ror ity is not met (\,>0). This instability results in the eventual
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FIG. 6. Instability of a central filament in a square domain. The temporal evolution of the current dgmsity is shown for the
following dimensionless numerical parameteig=U,/(R9=1.94, C"1=0.035, T=0.05, 7,=l,=1, L=40, L,=11.5, wherel,
=7l ,(9f/ 9a) ~ 2 is the minimum system size necessary for filament formation.

formation of a corner filament, which has its maximum at themultiple hysteresis cycles between edge current layer and
boundary. For other parameters the transient process m&prner filaments. The particular scenario of the transitions
also lead to an edge current layer. Hot and cold corner filagssentially depends on the ratidlL . _
ments and plane edge current layers parallel to the boundary Our overall conclusion is that a boundary attracts fila-
(Fig. 7) are the only structures that arise from random initialments from the interior of the domain. However, the growth
conditions in the regime of strong global coupling and rep_mcrement of the unstable mode decreases with increasing

resent stable steady states for rectangular domains. Sinﬁ%,(Stem size. Since therefore in sufficiently large domains a

. = . - o0 filament in the interior of the domain has nearly neutral sta-
?elr:r?[iglzjoonétiltrai?gllstégil(-}i?ye?ed;u?rgieoggn of their dif bility it may be pinned by a small embedded inhomogeneity

Current-voltage characteristics for domains of two differ- of the semiconductor structure. To study the competition be-

) - o . tween the attracting boundary and pinning at inhomogene-
ent sizes are presented in Fig. 8. Generally, with increasingieq \ye have performed the following numerical simula-
current the differential conductance changes sign when thg,ns * |nhomogeneities sensitively influence the transport

filament wall reaches the boundary of the domain: Sta”i”‘ibarameteﬂ' (in the HHED, e.g., this parameter corresponds
from this point the main contribution to the differential con- tg 5 tunneling rate We assume thakt becomes a function of
second term in E¢21)] but by the change of current density the center of the square domain. Then for a sufficiently large
in the homogeneous part of the current distribufithe first  value of 5T the central filament becomes stabilized; i.e., it is
term in Eq.(21)]. Therefore the differential conductance be- pinned at the inhomogeneity. Figure 9 shows the stability in
comes positive. For edge current layers such a transition oghe (5T,L) diagram: the minimum amplitudéT/T of the

curs for sufficiently thin hot and cold layers. For hot cornerseed inhomogeneity that is necessary to stabilize a central
filaments the bottom point of the characteristic where thdilament decreases approximately exponentially with the sys-
differential conductance changes sign corresponds to a suffiem sizeL. This results from the asymptotically exponential
ciently small filament; the change at the top of the characterdecrease of the eigenvalug(L) of the central filament.
istic takes place when the filament has expanded such thdhus, in large domains seed inhomogeneities dominate over
the filament boundary reaches the adjacent corners of theoundary effects.

domain[at this point a hot filament covers approximately

three-fourth & w/4) of the domain arda For cold corner V. CONCLUSIONS

filaments the top and bottom points are interchanged. Sweep- In bistable semiconductor systems on two-dimensional
ing up and down the current-voltage characteriffig. 8) in  spatial domains with convex passive boundédeumann

the current-controlled regime one observes multistability andoundary conditionany stationary nonuniform current den-

FIG. 7. Stable filament configurations on a
square domaina) hot and(b) cold corner fila-
ment, (c) edge current layer. The values of the
average currenfo=Uq/(RS are 1.5, 3.5, 2.0,
respectively;L =30, other numerical parameters
as in Fig. 6.
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FIG. 9. Effect of structural imperfections on filament stability.
The two different regimes are shown in the diagram of the relative
amplitudedT/T of seed inhomogeneities vs the system sizé&Jp-
per regime: stable central filament is pinned by a seed inhomoge-
neity; lower regime: attractive influence of boundary dominates.
Other numerical parameters as in Fig. 6.

achieved with a passiveR(>0) heavily loaded external cir-
cuit. Filaments with positive differential conductaneg can
be stabilized only by an active external circuit with negative
resistanceR<0 whenoy>o,. If 04>, stabilization of
filaments with positive differential conductance requires also
a negative total differential capacitance of the device and
external circuitC=C;;+ C,,<0. We have proved analyti-
cally that\,>0 holds for current distributions that have a
maximum in the interior of the spatial domain and a constant
value at its boundary. Such distributions, corresponding to
. , . . central current filaments, remain unstable against translation
85 ) 95 410 105 11 115 even if the condition$28),(29) are satisfied. Our numerical
simulations suggest that the condition of constant boundary
- value may even be relaxed and that Neumann boundaries
%3'36)' ai‘ q &:)Jrlrzgévz_'tzglzgfgicgegztg;sref(gé;;ﬁ! (IT_h_e Sgﬂn genera_llly aftract current filaments. This is i_n agreement with
o o ' numerical results obtained for other reaction-diffusion sys-

line represents homogeneous states, the thick lines depict the spa-

tially averaged current density of inhomogeneous steady stategems[?’l]' In structurally imperfect systems seed inhomoge-

Curvesh,c,e correspond to a hot corner filament, a cold cornerNeities tend to pin current filaments in the center; thus there

filament, and an edge current layer, respectively. These branché’ competition between attractive inhomogeneities and the

are stable only in the regime of strong global coupling. NumericalPoundary. In Iar.ge systems imperfections dominate over
parameters as in Fig. 6. boundary effects: the amplitude of the inhomogeneity that is

sufficient for pinning current filaments decreases exponen-
tially with increasing transverse dimension of the system.

sity distribution has at least one unstable made-0 when

the system is operated in the voltage-driven regime. If the
second eigenvalue is negativie ,0) such a distribution
can be stabilized by global coupling provided by the external P.R. acknowledges financial support from the Alexander
circuit if the stability criteria(28),(29) are satisfied. For fila- von Humboldt Foundation. Part of this work was supported
ments with negative differential conductance stability can beéby the Deutsche Forschungsgemeinschatft.
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