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Critical point shift in a fluid confined between opposing walls
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The properties of a fluid, or Ising magnet, confined inLane geometry with opposing surface fields at the
walls, is studied by density matrix renormalization techniques. In particular we focus on the effect of gravity
on the system, which is modeled by a bulk field whose strength varies linearly with the distance from the walls.
It is well known that, in the absence of gravity, phase coexistence is restricted to temperatures below the
wetting temperature. We find that gravity restores phase coexistence up to the bulk critical temperature, in
agreement with previous mean field results. A detailed study of the scaling to the critical pdint; asis
performed. The temperature shift scales d3'1/while the gravitational constant scales ak t#H, with y;
andyy the bulk thermal and magnetic exponents, respectively. For weak surface fieldshandbo large, we
also observe a regime where the gravitational constant scales 59/174Y7 (A, is the surface gap expo-
nend, with a crossover, for sufficiently larde, to a scaling of type 1/*YH, [S1063-651X98)04703-5

PACS numbgs): 05.50+q, 05.70.Fh, 68.35.Rh, 75.10.Hk

I. INTRODUCTION tem, Rogiers and Indekd@] introduced an extra bulk field
which varies linearly with the distance from the walls, and

The Ising model has played a central role in the theory ofwhich plays the role of gravity in the fluid. They found, in a
critical phenomena. It is simple enough that it can be studiednean field analysis, that the competing effect of opposing
in great detailalthough exact solutions are restricted only tosurface fields and gravity restores phase coexistence up to
a few cases in two dimensionsnd it can be used to model the bulk critical temperature.
many interesting physical situations. Two phases with oppo- |n the present paper we study the model of Rogiers and
site magnetization, which coexist in an infinite system forindekeu at the lower critical dimensioni€ 2) and beyond
temperatures lower than the bulk critical temperafiyecan  the mean field approximation to test the validity of their
be thought of as the two coexisting phageguid and vapor  conclusion when thermal fluctuations are properly taken into
of a simple fluid. Besides bulk critical phenomena, whichaccount. Our results are based on a density matrix renormal-
occur in a system infinitely extended in all directions, muchjzation group(DMRG) calculation, and essentially confirm
interest has been focused on a study of the critical behavighe mean field scenario. We also analyze the exponents de-
of confined systems, which are of finite extensions in one okriping the critical point shift along the thermal and gravi-
more directions. _ _ tational field directions, and compare our findings with some

A few years ago Parry and Evafis 2], using a mean field pregictions due to scaling analy§g—11].
Ginzburg-Landau approach, investigated the phase diagram a prief report of this work was presented in REL2];
of a d-dimensional Ising model in ahx=%"* geometry, here we give a full account of our work, and present a series
i.e., confined between two walls separated by a finite diSpf results concerning in particular the analysis of the finite
tancel. They considered opposing walls, where one wallsjze scaling of the gravitational constant for low surface
favors the “liquid” phase and the other the “vapor” phase; fields, where interesting crossover phenomena take place.
in Ising language this corresponds to introducing surfacerhis paper is organized as follows. In Sec. Il we introduce
magnetic fieldsh; andh, with opposite sign fj;h,<0). It the model, and in Sec. Il briefly review the DMRG tech-
was found[1] that two phase coexistence is restricted tonjque. In Sec. IV we compare DMRG results with exact ones
temperatures below the wetting temperatiiig; Brochard  in the absence of a gravitational field. In Sec.V we present
and de Gennes came to a similar conclusion as V&Il  the phase diagram as derived from DMRG calculations, and
These results were later confirmed by extensive Monte Carlgjscuss its main features. In Sec. VI we show some magne-
simulations, both in two and three dimensid@s-6]. The tization profiles, and compare the DMRG results with those

two-dimensional Ising model with opposing surface fieldspptained by capillary wave theory. In Sec. VII we present
was recently solved exactly by Maciotek and StdaRiusing  some conclusions.

transfer matrices and Pfaffian techniques. The surprising
characteristic of Parry and Evans’ resulis2] is that one

does not seem to recover information about the bulk critical Il. MODEL
point when the limitL —oc is taken: for all values of two
phase coexistence is restrictedTte T, . We consider a ferromagnetic Ising model inlax oo strip

In trying to clarify the remarkable properties of this sys- with the following Hamiltonian:
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whereJ>0, 5 j=*1, —o<j<w, and I<i<L. For sim- S S
plicity we restrict ourselves to the case of surface fields of {:,A A B (::,B

equal magnitud¢h,|. The last term on the right-hand side of
Eq. (1) is a bulk field varying linearly with the distance from FIG. 1. Schematic view of a transfer matrix element of a strip of
the walls, which, for convenience, is chosen to be antisymwidth L generated by DMRG¢ ands label block and spin vari-
metric with respect to the center of the strip. This field mod-ables, respectively, witk=1,2,... m ands==*1. The total di-
els the effect of gravity on a fluid, arglplays the role of the mension of the matrix is #?Xx 4m?. The arrow denotes the transfer
gravitational constant. direction.

In the limit g—O0 one recovers the models studied by
Parry and Evangl]; in two dimensions the wetting tempera- rate numerical results; in a typical DMRG calculation the

ture T,, is known exactly, and satisfies the equatjas] accuracy grows very rapidly wit [14]. In the present case
we found that for strips up th =100 a value oim=40 is
e cosha) —coshb)]=sinh(a), (2 sufficient to guarantee a very high accuracy of the numerical

results. In our calculations we have used the finite system
where a=2J/T,, and b=2h,/T,,. For h;=0 the wetting method described by White in Ref15], a version of the
temperatureT,, is equal to the bulk critical temperatuie,. ~ DMRG algorithm designed to accurately study finite size
=2J/In(1++/2). It decreases monotonically with;, and systems. For more details we refer readers to the existing
vanishes foth;=J. literature(see Refs[14-17).

In the rest of the paper we will be primarily interested in  Note that we use open boundary conditions: the blocks on
the competing effect of surface fields and gravity; it is clearthe left and right side of Fig. 1 are not coupled together.
from Hamiltonian(1) that these occur wheh, andg have  Although it is possible to implement the DMRG method with
the same sign. periodic boundary conditions, it turns out that the accuracy is

lower than in the open boundary condition céB]. There-
IIl. DMRG METHOD fore the method is best suited to study properties of two

_ . o _ dimensional classical systems in contact with walls or with
The density matrix renormalization group was introducedfree surfaces.

by White [14,15 to study the ground state properties of
guantum spin chains. The method is very accurate, and has
been successfully applied to many one-dimensional quantum
problems(for a review, see Ref16]). In the limit g— 0 the model described by Hamiltoni&h)
Exploiting the relation betweendrdimensional quantum has been solved exact[yf]. In this section we summarize
system and ad+ 1)-dimensional classical system, Nishino priefly some known facts and present results obtained from
[17] was able to extend the DMRG to two-dimensional clas-DMRG calculations.
sical systems. In this case White’s algorithm is applied to the  For temperatures below a temperatiliggl ), which Parry
construction of effective transfer matrices of large systems.gnd Evand1] interpreted as the critical temperature of the
In a transfer matrix approach the partition function of aconfined system, two phases coexist. Typical magnetization
system defined on abhX < strip is equal to the largest ei- profiles are shown in Fig.(d). For T4(L)<T<T, the sys-

genvalue of the so-called transfer matfix [18]. Numerical  tem is in a single interfacelike state, as depicted in Fig).2
calculations are restricted to strips of small widthgically

L <20 for an Ising mod¢lsince the dimension of grows m(z) (a) m(z)
exponentially with the strip width.

In a DMRG calculation, one starts from a transfer matrix -/
of a small system that can be handled exactly. Using the mO/
information about the thermodynamics of this system, one
generates an effective transfer matrix of a larger system. The
strip width grows at each DMRG iteration and the spin space
is very efficiently truncated to keep the dimensionality of the
effective transfer matrix controlled.

Figure 1 shows schematically a transfer matrix element -m /]
generated by the DMRG algorithm. The matrix consists of =
block and spin variables indicated in the figure by rectangles
and circles, respectively. A block, whose states are labeled FG. 2. Magnetization profiles for the model in absence of grav-
by a variable¢ which can takem possible values only, de- ity in the two phase coexistence region forT<T4(L) (a) and in
scribes approximately a collection of spins. the single phase region fdiy(L) <T<T, (b). my denotes the bulk

Obviously by allowing largem one obtains more accu- magnetization of the Ising model.

IV. ZERO-GRAVITY CASE

(b)
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The shift of T4(L) as L—«~ was also investigated in

Monte Carlo simulations by Albanet al. [4]. They also

X h, =01 found good agreement witt3).

22t ’\‘\“\*\1\< Table | shows a comparison between the values of the

. wetting temperatures extrapolated from a finite size scaling

of the DMRG data fofT4(L) and the exact values given by

— Eq. (2); the agreement is up to the fourth decimal digit. We
’\‘\‘—\‘\’\< stress that the relevant source of errors Tg(L) is in the

18 | . calculation of the numerical derivative of ,; DMRG cal-

culations provide values daf} , which are very accurate.

1 6 )_ 1 = 0.7 B
: ’\*\*\.\ V. EFFECT OF GRAVITY
b

It is convenient, before discussing the full phase diagram
0.00 0.02 0.04 0.06 0.08 0.10 of the system described by the Hamiltonidn, to focus on
/L its ground state properties. The two states with all spins posi-
FIG. 3. Plot of T4(L) vs 1L for J=1 and various values of the (iV€ Or negative are degenerate, with an energy per spin equal
surface fieldh,. The crosses on the vertical axis are the values offO
the wetting temperatures derived from E®), where the data
points are expected to scale for- . _ ( 1)
€= J. (5)

24 ¢

T L)
=
|
<
wn

=L

For L—o T4(L) scales a$l]

If g is large and positive the ground state configuration is
Ta(L) = Ty~L"YPs, 3) ; ] P ? ’

N

Here B, is the exponent describing the divergence of the +1 if 1<is<
thickness of the wetting layer for a semi-infinite system with
a surface fielch,: | ~(T,,—T) 4. Sij= (6)
Swift and co-worker$19], who analyzed the same system —1 i E fl<i=L
from a different angle, interpretefiy(L) rather as a shifted 2 '
wetting temperature, in contrast with the point of view of
Ref.[1]. We will come back to this point again later. with an energy per spin equal to
We calculatedT4(L) from the correlation function be-
3) 2h; gL

tween two neighboring spins at the center of the strip, o Zlgy St _Z2= @)
L L 2

€, _——

CL=(SL/2 jSL2 +1,j)- (4)
Alternatively, if g is large and negative the ground state has

".1 the two phase _coexistence regan, i_s large and positive, .all spins reversed with respect to configurati@y; in this
since the two spins are preferably aligned. If an interface IXase the energy is

presentc, ,», drops to smaller values, since in many configu-

rations when the interface is located at the center of the strip 3 2h, gL

the two spins tend to have opposite values. We identify €_,4 —(2——)J——+—. (8
T4(L) as the maximum of the temperature derivative g .
There is obviously no sharp phase transition onlLaxoo
system, and in the present ca$g(L) corresponds to a
pseudocritical point.

As L—o, Ty(L) scales as Eq(3) toward the wetting
temperature, with the two-dimensional wetting exponent 4(h,—J) <g< 4(h,+J)
Bs=1 [13]. Figure 3 shows a plot of4(L) vs 1L for vari- L2 Lz
ous values of the surface fieltf. On the vertical axis the
exact values of the wetting temperaturgg(h,), derived At T=0 the two phase coexistence region shrinks &g 1/
from Eqg. (2), are shown. As can be seen from the figure, theoward theg=0 axis. The previous calculation is valid only
scaling behavior of 4(L) is in good agreement with E¢3).  for h;<<J; if the surface field is larger thad (this implies

The ground state is thus doubly degenerate i e, _
and e,<e_ ., which yields the following condition:

9

TABLE I. Comparison between DMRG data and exact values of the wetting temperajpfesdifferent
values of the surface field;. The number between parentheses are the error on the last two digits of the
DMRG results.

h, 0.1 0.5 0.7 0.9 0.99

DMRG 2.2576177) 1.9581477) 1.6353277) 1.1075377) 0.588 4877)
Exact[13] 2.257 10 1.958 45 1.634 96 1.107 45 0.588 45
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FIG. 5. Scaling ofT,,,,{L) —c vs 1L for different surface fields.
FIG. 4. Phase diagram of the model in thg,T) plane. The TO avoid overlapping of data, the values Bf,(L) have been
curves are the phase boundaries between the two phase coexistegbéfted by a constart, with ¢=0 for h;=0.1,c=0.3 forh,=0.5,
and the single phase regions for different values of the strip widthand c=0.6 for h;=0.99. Dotted lines are linear fits of the data
Notice the scaling to the wetting temperatuterizontal arrows  POINts.
and to the critical pointvertical arrows.
where the wetting transition is always critical, but they
alsoT,,=0) the range of values @f for which one has phase should be found in three dimensions where the wetting tri-

coexistence al=0 is given by critical point is atT>0.
Finite size scaling8-11] predicts that the critical point
4(hy+J i :
0<g< ( Ez ). 10 shifts as follows:
. . T L)—T.~L7YT, 11
In the rest of the paper we will consider only the cése mal L)~ Te (1
<J.
The phase diagram of the model in @ T) plane forh; Oma( L)~ L~ YR, (12)

=0.5,J=1 is shown in Fig. 4. The curves indicate the phase
boundaries between the two phase coexistence regi@aa
below the curvesand a single phase regidabove for dif-
ferent values of the strip width [20]. When continued down
to T=0 the phase boundaries meet the horizontal axis at thé"
values ofg equal to the extremes of interved).

The phase boundaries cross the axisO at the interface
delocalization temperatureBy(L) (indicated by horizontal
arrows in Fig. 4, which scale to the wetting temperatdrg,
indicated by a cross on thee=0 axis of Fig. 4. The striking . : . J o
feature of the phase diagraf@] is that for nonzero gravity with the scaling relatior{11), as shown in Fig. 5. Table I

phase coexistence extends at higher temperatures with rébows the values df; extrapolated from the finite size scal-

spect to the casg=0 due to the competing effect of surface Ing analysis off ma{ L) by means of iterated fits. Results are

e : : ..+ in good agreement with the exact value.
2zgegirsa\s/gzgcr)ensaslef}|§ lgts I.oﬁeﬁigﬂggrgirte\;\éotﬁggﬁgcgﬁgzt The finite size scaling along the gravitational field direc-
in this case gravity enhances the effect of the surface fielgd!on IS more Intriguing. Figure 6 shows a plot of (L )] .

The phase boundary mMaxim@ (L), TmadL)), indi- vs In(L) for h1=0.5 andh1=0.99. In both cases there is
cated by the vertical arrows in Fig. 4, shift toward the bulkagreement W'thhthﬁ sc(:jahr;]g (;elllatlajllZ)ththgrows}tehe d?éa
critical pointT=T,, g=0, and can be identified as the finite points approach the dashed lines which have slope8

system(pseudg critical points. AsL—~ the whole critical (the value of the exponent 1—yy for the two-dimensional

region shifts toward thg=0 axis. This is in agreement with
the results of van Leeuwen and SengEr$], Who p0|nted TABLE II. The values of the eXtrapOIated critical temperature
out that in presence of gravity there is no criticality in anfrom the scaling analysis oTna(L) for different values of the
infinitely extended system. surface field h;, when h;<J. The exact value is
The phase diagram of Fig. 4 is in agreement with the¢=2.26918... .
mean field results of Rogiers and IndeK@&], who, in addi- h o1 05 0.99
tion, found tricritical points located in the phase boundaries, L ) ' )
which separate continuous from first order transition lines. pMRrRG 2.2693) 2.2723) 2.2713)
Obviously these features are not found in two dimensions

yt andyy are the thermal and magnetic exponents of the
Ising model, which in two dimensions aygg=1 andyy=
15

In deriving Eqg.(12) one assumes, as done by van Leeu-
wen and Sengeifd 1], that the gravitational constagttimes

a length scales as a bulk constant field. This relates the scal-
ing of g to the bulk magnetic exponest, .

The DMRG data foiT,5,{L) are in very good agreement




2630 ENRICO CARLON AND ANDRZEJ DRZEWINSKI 57

—4 -3
_4 L
-6 1-5
3 3 -6
\-% é
o o5
g =
-8 r 1 =7 -8
-10 |
_10 L L L L L L L L L AN i L L L L L A L
2.5 3.0 3.5 40 45 2.5 30 35 40 45 2.0 2.5 3.0 3.5 4.0 4.5
In(L) In(L) In(L)
FIG. 6. Plot of Ifgna(L)] vs InL for h;=0.5 (left) and h, FIG. 8. Plot of IignaL)] vs InL at constant values ok

=0.99(right). Error bars are smaller than symbol sizes. The dashed=h;L*7. The data correspond @) x= 110 and(b) x=0.4.
lines correspond to a slope2.875, and are drawn as a guide to the Dashed lines have slope2.875.

eye. For L—o, one should recover the scaling relati¢i®),

Ising mode). Notice that forh; =0.99 the asymptotic behav- which implies that

ior sets in already folL=Ly~20, while for h;=0.5 this lim Q(x)=Q.#0. (14)
happens only foL.=Ly~60. X—00
The scaling behavior dimg,(L) for smaller surface fields Whenh, is sufficiently large and for not too small values of

is shown in Fig. 7; in this case the deviation from the ex- . e >
ected exponents is so strong that one concludes that eithL the scaling function in Eq(l}%) can be replaced by its
b ggymptotlc value)., . In this limit, which we refer to as the

(12) does not hold for smalh,, or that asymptotic behavior ; ; ;
sets in only for strip widths much larger than those anaIyzedsz"nrl]J rated regimegma(L) becomes practically independent

Following Fisher and Nakanisfi®,10], who investigated
the critical point shift in an Ising model confined between
identical walls, one expects a scaling@f,,(L) of the type

l.

From the analysis of the numerical data flgr=0.99, one
finds thatQ(x) saturates fox>x,~ \20. Consequently, for
h;=0.5, 0.2, and 0.1, the saturated regime is expected to
occur for L>Ly~80, L>Ly=~500, andL>L,~2000, re-
spectively. Notice that a saturation value lof~80 for h;
=0.5 is in agreement with our numerical data. Strips of
width L=500 or 2000 are beyond the possibilities of our
numerical investigation; actually, calculations far>100
(the largest size analyzed in the present waie feasible,
but for such large systems the valueggf, (L) is very small
and affected by large relative error bars that make the scaling
analysis difficult.

Forh;=0 one hag,{(L) =0 since the phase boundaries
of Fig. 4 become symmetric with respect to the 0 axis.

For very small surface fields one expects that (L) scales
linearly with h; [21]; this implies that

Q(x)~x for x—0. (15

Omad L) =L~ EYWQ (h, LADT), (13

where Q)(x) is a scaling function and; the surface gap
exponenfrecall thatA,;=1/2 for the two-dimensional Ising
mode). The fact that the surface field enters in the form of a
scaling variabléh; LT is a direct consequence of the scal-
ing form of the singular part of the surface free energy
[9,10].

Therefore, in the strongly ‘“undersaturated” regime,
wherex=h,L21Y7< /20, one expects a scaling behaviot.in
of the type

Oma L)~ L~ (HFYHm 807, (16)

In Fig. 7 the dashed-dotted lines have slopes equal to

—2.375, which is the value of the exponentl-—y,

-10 + A,y for the two-dimensional Ising model. As can be
seen from the figure, the numerical data are in good agree-
ment with a scaling of typ€l6).

FIG. 7. As in Fig. 6 forh;=0.1 (left) and h;=0.2 (right). We stress that Eq16) is not the asymptotic behavior of

Dashed and dashed-dotted lines have slop@s875 and—2.375, Omad{ L) asL—, since for sufficiently largé& the scaling is

respectively. of type (12). To verify this we have calculategl,,(L) for

-10

25 3.0 35 40 25 3.0 35 40
In(L) In(L)
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FIG. 9. Magnetization profiles at a fixed temperafiire2.0 and FIG. 10. As in Fig. 9 at higher temperatur@ £2.1). Notice

for three different values of the gravitational constants calculated byhat the discrepancy between the profiles in the interfacial region
DMRG (filled circles. Profile (a) is in two phase coexistence re- [(b) and(c)] and those predicted by the capillary wave theory in-
gion. (b) and (c) are profiles in the single phase region situated tocrease at higher temperatures. Inset: enlargement of the piiofile
the left and right of the two phase coexistence region of Fig. 4in the vicinity of one wall.

respectively. The dashed lines are the result of the capillary wave

theory calculation as given by E€L8). Inset: enlargement of the much smaller than symbol sizes in the scale of the inset of
profile (a) in the center of the strip. Fig. 9.

In the single phase regidifrigs. 9, 1@b), and 1@c)] the
different strip widths at constant valuesxf£h;L22T, The  system develops an interface: gravity has the tendency to
data points are shown in Fig. 8, and are calculated in théocalize the interface at the center of the strip in a configu-
undersaturated regima€ xo~ \/20); the agreement with the ration of minimal energy. The larger the value |gf, the

exponent ¥y, =2.875 is very good. stronger the localization effect, as can be seen in the figures:
To conclude this section, we also point out that for theprofiles (b) correspond to a value of the gravitational con-
temperature one expects a shift of the typel0] stant 7.5 times larger than profilés). Notice also that in
profiles(b) the competing effect of surface fields and gravity
Te—Tmaf L) =L YT (h LA, (17)  Wwhich is visible in the vicinity of the walls.

The dashed lines of Figs. 9 and 10 are the magnetization
Nakanishi and Fishdi0] analyzed the behavior &f(x) ina  Profiles predicted by the capillary wave theory, which are
mean field model confined between identical walls, andglerived in the Appendix and are given by
found thatl"(x) depends very weakly on its argumenfThis
is also found in the present study, as it can be seen from the = ﬂ ”ﬁdt _i2 18
fact that(1) the slopes of the data points of Fig. 5 are almost m(l)= +Jo € (18
equal, i.e., they do not depend sensibly on the value of the

surface field; and(2) the points are very well fitted by Here 2, is the average interfacial width amad, is the bulk

straight lines. magnetization of the Ising model in absence of gravity. Al
the parameters appearing in E8) are known exactly, and
V1. MAGNETIZATION PROFILES the dashed lines of Figs. 9 and 10 are not the results of a
fitting.

Figures 9 and 10 show some examples of magnetization Capillary wave theory profiles agree very well with the
profiles calculated by the DMRG technique for various val-DMRG results especially at low temperatures where the ap-
ues of the gravitational constant and temperatures. The pr@roximations introduced are very good. Equatiti8) is
files (a) refer to points below the phase boundaries of Fig. 4yalid in the limit¢, <L, where the effects of the walls can be
i.e., in the two phase coexistence region. The two coexistingeglected. This condition is satisfied at low temperatures and
phases are expected to have magnetization profiles similar #& not too small values di|. Notice also that ifg| is too
those depicted in Fig.(3); the profiles(a) are actually the |arge the magnetization profikd8) far from the interfacial
result of an average over the two phases. region differs sensibly from the DMRG results, since the

The magnetization in the two phase coexistence regiogffect of gravity in that region has been neglected. This can
does not decay to a bulk constant value far from the walls, age seen more clearly in the inset of Fig. 10.

in Fig. 2(a). The inset of Fig. 9 shows an enlargement of the
profile (a) at the center of the strip: due to the presence of
gravity the profile follows a straight slightly inclined line.
We stress that the accuracy of the DMRG results for the In this paper we studied the critical behavior of an Ising
magnetization profiles is very high, so error bars are alsanodel confined between opposing walls and subject to a bulk

VII. CONCLUSIONS



2632 ENRICO CARLON AND ANDRZEJ DRZEWINSKI 57

“gravitational” field. The competing effects of surface and
bulk fields restore phase coexistence up to the bulk critical
temperature, in agreement with the results of a mean-field
study of the mode[8]. The strong thermal fluctuations in (| /%N NN\ DN ANNANNT L
two dimensions do not affect the mean field results, wiaich
fortiori should also be valid in three dimensions where fluc-
tuation effects are weaker.

Wetting plays an important role in the model, as it was
found in the studies in the absence of graVity-3]. How-
Ever, I|m|t|ng the ane_llyS|s tg=Q causes us to miss ”.‘“Ch of FIG. 11. Example of an interfacial configuration described by a
the Intgrestlng phySlps that a“se.sf When.grawty IS InClqdijontinuous single-valued functidify) as in the solid-on-solid ap-
In particular, Oneé Mmisses .the critical pqlnt of the Conflnecjproximation. All the spins at the two sides of the interface are fixed
system[S], which we identified the maximum of the phase and equal tat my. The arrows denote the elastic force that tends to
boundaries separating the two-phase coexistence from trb(;ing the interface in its equilibrium position.
single phase regions witfdna(L), Tmax{L))-

We performed a detailed analysis of the critical point Shiftdisplacement of the interface from the center of the ssae

asl—e, aqd found that temperature a”_d.gfa‘_’“aﬂona_" CONTEig. 11). This is a solid-on-solid approximation where over-
stant scale in agreement with previous finite size scaling hyhangs are neglectd@s.

pothesig8—11]. Along the gravitational field direction in the The continuum Hamiltonian is given by

limit of small surface fields, a crossover behavior between

two different scaling regimes is found. vo (onld
This limit was considered recently in studies of critical H[I(y)]:J dy[—o _

adsorption22,23. Desai, Peach, and Franf&2], in an ex- —w 2 \dy

periment on a binary liquid mixture, were able to investigate

the weak surface field regime by chemically modifying thewhereo is the surface tension andi(1) the potential acting

surface of the solid substrate which is in contact with theon the interface. The partition function is given by

liquid. They found an unexpected behavior of the adsorption

for small surface fields, in possible disagreement with scal-

ing theory. This issue was also discussed recently in Ref. Z=f Dl(y)e AHIWI, (A2)

[23]. In general we expect interesting physics to arise in the

limit h;—0 due to the interplay between bulk and surface

criticality, as we found in the analysis of the scaling behaviorwhereﬂ denotes the inverse temperature. In £&42) we

of the gravitational constant for the model studied in this"?tegr"’\te over all th? possible interface shapes de_scribed by
paper single valued functions. Due to well-known relations be-

tween path integrals and quantum mechaf2&, the previ-
ous problem can be mapped into a one-dimensional quantum
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2

+U(I)], (A1)

Ul L) =W(l;L)+ V(D). (A4)

HereW(l;L) is the confining potential due to the presence of

the walls:
APPENDIX: CAPILLARY-WAVE THEORY
In capillary-wave theory[24] one assumes that a sharp 0 iffl[sL/2
interface separates two regions of constant magnetization. W(l;L)= _ (AS5)
We take magnetizations equal tom,, the bulk magnetiza- +oo if [l|>L/2.

tion of the Ising model in absence of external fields, which is

known exactly. In this approximation gravity does not affectVy(l) represents the contribution of gravity to the interfacial
the magnetization far from the interfacial region and bulkpotential and can be calculated from the microscopic Hamil-
fluctuations are neglected. In the continuum limit the inter-tonian (1). If the interface is located between th¢h and
face is described by a single valued functi¢y) wherey is  (k+1)th spin of the system gravity gives the following con-
the coordinate along the wallH{ec<y<«) andl denotes the tribution to the energy:
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k L
-
k)= 2i—-1-L)— 2i—1-L =\/——
Q) =gmy) > (2i )= > (2 ) & \/zm (A9)
=2mygk(k—L). (AB)

Here my is the bulk magnetization, and, is the surface

Shifting appropriately the origin of the coordinates, one finds®nsion which are known exactly for tie=2 Ising model at
g=0. The analysis is valid fo£, <L where the probability

Vg(l)=2moglz+ c, (A7) of finding the particle outside the walls is negligible and the
. confining potentiaW(l;L) can be ignored.
wherec is a constant. From Eq.(A8) one can easily calculate the magnetization

Neglecting the effect of the confining potentid5) be-  profile as a function of the distance from the center of the
comes the Schabnger equation for a harmonic oscillator, srip|:
with ground-state wave function equal to

I +o
o 12E) m(l)zmo{ | dsuotsiz- | o %(s)lz}
ol =" (A8) AL0)
¢, denotes the interfacial width: which yields the result given in Eq18).
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