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Critical point shift in a fluid confined between opposing walls
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The properties of a fluid, or Ising magnet, confined in anL3` geometry with opposing surface fields at the
walls, is studied by density matrix renormalization techniques. In particular we focus on the effect of gravity
on the system, which is modeled by a bulk field whose strength varies linearly with the distance from the walls.
It is well known that, in the absence of gravity, phase coexistence is restricted to temperatures below the
wetting temperature. We find that gravity restores phase coexistence up to the bulk critical temperature, in
agreement with previous mean field results. A detailed study of the scaling to the critical point, asL→`, is
performed. The temperature shift scales as 1/LyT, while the gravitational constant scales as 1/L11yH, with yT

andyH the bulk thermal and magnetic exponents, respectively. For weak surface fields andL not too large, we
also observe a regime where the gravitational constant scales as 1/L11yH2D1yT (D1 is the surface gap expo-
nent!, with a crossover, for sufficiently largeL, to a scaling of type 1/L11yH. @S1063-651X~98!04703-5#

PACS number~s!: 05.50.1q, 05.70.Fh, 68.35.Rh, 75.10.Hk
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I. INTRODUCTION

The Ising model has played a central role in the theory
critical phenomena. It is simple enough that it can be stud
in great detail~although exact solutions are restricted only
a few cases in two dimensions!, and it can be used to mode
many interesting physical situations. Two phases with op
site magnetization, which coexist in an infinite system
temperatures lower than the bulk critical temperatureTc , can
be thought of as the two coexisting phases~liquid and vapor!
of a simple fluid. Besides bulk critical phenomena, whi
occur in a system infinitely extended in all directions, mu
interest has been focused on a study of the critical beha
of confined systems, which are of finite extensions in one
more directions.

A few years ago Parry and Evans@1,2#, using a mean field
Ginzburg-Landau approach, investigated the phase diag
of a d-dimensional Ising model in anL3`d21 geometry,
i.e., confined between two walls separated by a finite d
tanceL. They considered opposing walls, where one w
favors the ‘‘liquid’’ phase and the other the ‘‘vapor’’ phas
in Ising language this corresponds to introducing surf
magnetic fieldsh1 and h2 with opposite sign (h1h2,0). It
was found @1# that two phase coexistence is restricted
temperatures below the wetting temperatureTw ; Brochard
and de Gennes came to a similar conclusion as well@3#.
These results were later confirmed by extensive Monte C
simulations, both in two and three dimensions@4–6#. The
two-dimensional Ising model with opposing surface fie
was recently solved exactly by Maciołek and Stecki@7# using
transfer matrices and Pfaffian techniques. The surpris
characteristic of Parry and Evans’ results@1,2# is that one
does not seem to recover information about the bulk crit
point when the limitL→` is taken: for all values ofL two
phase coexistence is restricted toT,Tw .

In trying to clarify the remarkable properties of this sy
571063-651X/98/57~3!/2626~8!/$15.00
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tem, Rogiers and Indekeu@8# introduced an extra bulk field
which varies linearly with the distance from the walls, a
which plays the role of gravity in the fluid. They found, in
mean field analysis, that the competing effect of oppos
surface fields and gravity restores phase coexistence u
the bulk critical temperature.

In the present paper we study the model of Rogiers
Indekeu at the lower critical dimension (d52) and beyond
the mean field approximation to test the validity of the
conclusion when thermal fluctuations are properly taken i
account. Our results are based on a density matrix renorm
ization group~DMRG! calculation, and essentially confirm
the mean field scenario. We also analyze the exponents
scribing the critical point shift along the thermal and gra
tational field directions, and compare our findings with so
predictions due to scaling analysis@8–11#.

A brief report of this work was presented in Ref.@12#;
here we give a full account of our work, and present a se
of results concerning in particular the analysis of the fin
size scaling of the gravitational constant for low surfa
fields, where interesting crossover phenomena take pl
This paper is organized as follows. In Sec. II we introdu
the model, and in Sec. III briefly review the DMRG tec
nique. In Sec. IV we compare DMRG results with exact on
in the absence of a gravitational field. In Sec.V we pres
the phase diagram as derived from DMRG calculations,
discuss its main features. In Sec. VI we show some mag
tization profiles, and compare the DMRG results with tho
obtained by capillary wave theory. In Sec. VII we prese
some conclusions.

II. MODEL

We consider a ferromagnetic Ising model in anL3` strip
with the following Hamiltonian:
2626 © 1998 The American Physical Society
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H52J(
i , j
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si , j si , j 111h1(
j

s1,j2h1(
j

sL, j

1g(
j

(
i 51

L

~2i 212L !si , j , ~1!

whereJ.0, si , j561, 2`, j ,`, and 1< i<L. For sim-
plicity we restrict ourselves to the case of surface fields
equal magnitudeuh1u. The last term on the right-hand side
Eq. ~1! is a bulk field varying linearly with the distance from
the walls, which, for convenience, is chosen to be antisy
metric with respect to the center of the strip. This field mo
els the effect of gravity on a fluid, andg plays the role of the
gravitational constant.

In the limit g→0 one recovers the models studied
Parry and Evans@1#; in two dimensions the wetting tempera
ture Tw is known exactly, and satisfies the equation@13#

ea@cosh~a!2cosh~b!#5sinh~a!, ~2!

where a52J/Tw and b52h1 /Tw . For h150 the wetting
temperatureTw is equal to the bulk critical temperatureTc

52J/ ln(11A2). It decreases monotonically withh1, and
vanishes forh15J.

In the rest of the paper we will be primarily interested
the competing effect of surface fields and gravity; it is cle
from Hamiltonian~1! that these occur whenh1 and g have
the same sign.

III. DMRG METHOD

The density matrix renormalization group was introduc
by White @14,15# to study the ground state properties
quantum spin chains. The method is very accurate, and
been successfully applied to many one-dimensional quan
problems~for a review, see Ref.@16#!.

Exploiting the relation between ad-dimensional quantum
system and a (d11)-dimensional classical system, Nishin
@17# was able to extend the DMRG to two-dimensional cla
sical systems. In this case White’s algorithm is applied to
construction of effective transfer matrices of large system

In a transfer matrix approach the partition function of
system defined on anL3` strip is equal to the largest e
genvalue of the so-called transfer matrixTL @18#. Numerical
calculations are restricted to strips of small widths~typically
L,20 for an Ising model! since the dimension ofTL grows
exponentially with the strip width.

In a DMRG calculation, one starts from a transfer mat
of a small system that can be handled exactly. Using
information about the thermodynamics of this system, o
generates an effective transfer matrix of a larger system.
strip width grows at each DMRG iteration and the spin sp
is very efficiently truncated to keep the dimensionality of t
effective transfer matrix controlled.

Figure 1 shows schematically a transfer matrix elem
generated by the DMRG algorithm. The matrix consists
block and spin variables indicated in the figure by rectang
and circles, respectively. A block, whose states are labe
by a variablej which can takem possible values only, de
scribes approximately a collection of spins.

Obviously by allowing largerm one obtains more accu
f

-
-

r

d

as
m

-
e
.

e
e
he
e

t
f
s
d

rate numerical results; in a typical DMRG calculation t
accuracy grows very rapidly withm @14#. In the present case
we found that for strips up toL5100 a value ofm540 is
sufficient to guarantee a very high accuracy of the numer
results. In our calculations we have used the finite sys
method described by White in Ref.@15#, a version of the
DMRG algorithm designed to accurately study finite si
systems. For more details we refer readers to the exis
literature~see Refs.@14–17#!.

Note that we use open boundary conditions: the blocks
the left and right side of Fig. 1 are not coupled togeth
Although it is possible to implement the DMRG method wi
periodic boundary conditions, it turns out that the accurac
lower than in the open boundary condition case@15#. There-
fore the method is best suited to study properties of t
dimensional classical systems in contact with walls or w
free surfaces.

IV. ZERO-GRAVITY CASE

In the limit g→0 the model described by Hamiltonian~1!
has been solved exactly@7#. In this section we summarize
briefly some known facts and present results obtained fr
DMRG calculations.

For temperatures below a temperatureTd(L), which Parry
and Evans@1# interpreted as the critical temperature of t
confined system, two phases coexist. Typical magnetiza
profiles are shown in Fig. 2~a!. For Td(L)<T,Tc the sys-
tem is in a single interfacelike state, as depicted in Fig. 2~b!.

FIG. 1. Schematic view of a transfer matrix element of a strip
width L generated by DMRG.j and s label block and spin vari-
ables, respectively, withj51,2, . . . ,m and s561. The total di-
mension of the matrix is 4m234m2. The arrow denotes the transfe
direction.

FIG. 2. Magnetization profiles for the model in absence of gr
ity in the two phase coexistence region for 0<T,Td(L) ~a! and in
the single phase region forTd(L)<T,Tc ~b!. m0 denotes the bulk
magnetization of the Ising model.
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For L→` Td(L) scales as@1#

Td~L !2Tw;L21/bs. ~3!

Here bs is the exponent describing the divergence of
thickness of the wetting layer for a semi-infinite system w
a surface fieldh1: l;(Tw2T)2bs.

Swift and co-workers@19#, who analyzed the same syste
from a different angle, interpretedTd(L) rather as a shifted
wetting temperature, in contrast with the point of view
Ref. @1#. We will come back to this point again later.

We calculatedTd(L) from the correlation function be
tween two neighboring spins at the center of the strip,

cL/25^sL/2 ,j sL/2 11, j&. ~4!

In the two phase coexistence regioncL/2 is large and positive,
since the two spins are preferably aligned. If an interface
present,cL/2 drops to smaller values, since in many config
rations when the interface is located at the center of the s
the two spins tend to have opposite values. We iden
Td(L) as the maximum of the temperature derivative ofcL/2 .
There is obviously no sharp phase transition on anL3`
system, and in the present caseTd(L) corresponds to a
pseudocritical point.

As L→`, Td(L) scales as Eq.~3! toward the wetting
temperature, with the two-dimensional wetting expon
bs51 @13#. Figure 3 shows a plot ofTd(L) vs 1/L for vari-
ous values of the surface fieldh1. On the vertical axis the
exact values of the wetting temperaturesTw(h1), derived
from Eq. ~2!, are shown. As can be seen from the figure,
scaling behavior ofTd(L) is in good agreement with Eq.~3!.

FIG. 3. Plot ofTd(L) vs 1/L for J51 and various values of the
surface fieldh1. The crosses on the vertical axis are the values
the wetting temperatures derived from Eq.~2!, where the data
points are expected to scale forL→`.
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The shift of Td(L) as L→` was also investigated in
Monte Carlo simulations by Albanoet al. @4#. They also
found good agreement with~3!.

Table I shows a comparison between the values of
wetting temperatures extrapolated from a finite size sca
of the DMRG data forTd(L) and the exact values given b
Eq. ~2!; the agreement is up to the fourth decimal digit. W
stress that the relevant source of errors forTd(L) is in the
calculation of the numerical derivative ofcL/2 ; DMRG cal-
culations provide values ofcL/2 which are very accurate.

V. EFFECT OF GRAVITY

It is convenient, before discussing the full phase diagr
of the system described by the Hamiltonian~1!, to focus on
its ground state properties. The two states with all spins p
tive or negative are degenerate, with an energy per spin e
to

eo52S 22
1

L D J. ~5!

If g is large and positive the ground state configuration i

si , j55
11 if 1< i<

L

2

21 if
L

2
11< i<L,

~6!

with an energy per spin equal to

e1252S 22
3

L D J1
2h1

L
2

gL

2
. ~7!

Alternatively, if g is large and negative the ground state h
all spins reversed with respect to configuration~6!; in this
case the energy is

e2152S 22
3

L D J2
2h1

L
1

gL

2
. ~8!

The ground state is thus doubly degenerate ifeo,e12

andeo,e21 , which yields the following condition:

4~h12J!

L2
,g,

4~h11J!

L2
. ~9!

At T50 the two phase coexistence region shrinks as 1L2

toward theg50 axis. The previous calculation is valid onl
for h1,J; if the surface field is larger thanJ ~this implies

f

f the

TABLE I. Comparison between DMRG data and exact values of the wetting temperaturesTw for different

values of the surface fieldh1. The number between parentheses are the error on the last two digits o
DMRG results.

h1 0.1 0.5 0.7 0.9 0.99

DMRG 2.257 61~77! 1.958 14~77! 1.635 32~77! 1.107 53~77! 0.588 48~77!

Exact @13# 2.257 10 1.958 45 1.634 96 1.107 45 0.588 45
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57 2629CRITICAL POINT SHIFT IN A FLUID CONFINED . . .
alsoTw50) the range of values ofg for which one has phas
coexistence atT50 is given by

0,g,
4~h11J!

L2
. ~10!

In the rest of the paper we will consider only the caseh1
,J.

The phase diagram of the model in a (g,T) plane forh1
50.5,J51 is shown in Fig. 4. The curves indicate the pha
boundaries between the two phase coexistence region~area
below the curves! and a single phase region~above! for dif-
ferent values of the strip widthL @20#. When continued down
to T50 the phase boundaries meet the horizontal axis at
values ofg equal to the extremes of interval~9!.

The phase boundaries cross the axisg50 at the interface
delocalization temperaturesTd(L) ~indicated by horizontal
arrows in Fig. 4!, which scale to the wetting temperatureTw ,
indicated by a cross on theg50 axis of Fig. 4. The striking
feature of the phase diagram@8# is that for nonzero gravity
phase coexistence extends at higher temperatures with
spect to the caseg50 due to the competing effect of surfac
and gravitational fields. At negativeg the two phase coexist
ence is suppressed at lower temperatures than forg50, since
in this case gravity enhances the effect of the surface fie

The phase boundary maxima„gmax(L),Tmax(L)…, indi-
cated by the vertical arrows in Fig. 4, shift toward the bu
critical pointT5Tc , g50, and can be identified as the fini
system~pseudo! critical points. AsL→` the whole critical
region shifts toward theg50 axis. This is in agreement with
the results of van Leeuwen and Sengers@11#, who pointed
out that in presence of gravity there is no criticality in
infinitely extended system.

The phase diagram of Fig. 4 is in agreement with
mean field results of Rogiers and Indekeu@8#, who, in addi-
tion, found tricritical points located in the phase boundari
which separate continuous from first order transition lin
Obviously these features are not found in two dimensi

FIG. 4. Phase diagram of the model in the (g,T) plane. The
curves are the phase boundaries between the two phase coexis
and the single phase regions for different values of the strip wi
Notice the scaling to the wetting temperature~horizontal arrows!
and to the critical point~vertical arrows!.
e

e

re-
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e

,
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s

where the wetting transition is always critical, but the
should be found in three dimensions where the wetting
critical point is atT.0.

Finite size scaling@8–11# predicts that the critical poin
shifts as follows:

Tmax~L !2Tc;L2yT, ~11!

gmax~L !;L2~11yH!. ~12!

yT and yH are the thermal and magnetic exponents of
Ising model, which in two dimensions areyT51 andyH5
15
8 .

In deriving Eq.~12! one assumes, as done by van Lee
wen and Sengers@11#, that the gravitational constantg times
a length scales as a bulk constant field. This relates the s
ing of g to the bulk magnetic exponentyH .

The DMRG data forTmax(L) are in very good agreemen
with the scaling relation~11!, as shown in Fig. 5. Table II
shows the values ofTc extrapolated from the finite size sca
ing analysis ofTmax(L) by means of iterated fits. Results a
in good agreement with the exact value.

The finite size scaling along the gravitational field dire
tion is more intriguing. Figure 6 shows a plot of ln@gmax(L)#
vs ln(L) for h150.5 andh150.99. In both cases there i
agreement with the scaling relation~12!: asL grows the data
points approach the dashed lines which have slope22.875
~the value of the exponent212yH for the two-dimensional

nce
h.

FIG. 5. Scaling ofTmax(L)2c vs 1/L for different surface fields.
To avoid overlapping of data, the values ofTmax(L) have been
shifted by a constantc, with c50 for h150.1, c50.3 for h150.5,
and c50.6 for h150.99. Dotted lines are linear fits of the da
points.

TABLE II. The values of the extrapolated critical temperatu
from the scaling analysis ofTmax(L) for different values of the
surface field h1, when h1,J. The exact value is
Tc52.269 185 . . . .

h1 0.1 0.5 0.99

DMRG 2.269~3! 2.272~3! 2.271~3!
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Ising model!. Notice that forh150.99 the asymptotic behav
ior sets in already forL>L0'20, while for h150.5 this
happens only forL>L0'60.

The scaling behavior ofgmax(L) for smaller surface fields
is shown in Fig. 7; in this case the deviation from the e
pected exponents is so strong that one concludes that e
~12! does not hold for smallh1, or that asymptotic behavio
sets in only for strip widths much larger than those analyz

Following Fisher and Nakanishi@9,10#, who investigated
the critical point shift in an Ising model confined betwe
identical walls, one expects a scaling ofgmax(L) of the type

gmax~L !5L2~11yH!V~h1LD1yT!, ~13!

where V(x) is a scaling function andD1 the surface gap
exponent~recall thatD151/2 for the two-dimensional Ising
model!. The fact that the surface field enters in the form o
scaling variableh1LD1yT is a direct consequence of the sca
ing form of the singular part of the surface free ener
@9,10#.

FIG. 6. Plot of ln@gmax(L)# vs lnL for h150.5 ~left! and h1

50.99~right!. Error bars are smaller than symbol sizes. The das
lines correspond to a slope22.875, and are drawn as a guide to t
eye.

FIG. 7. As in Fig. 6 for h150.1 ~left! and h150.2 ~right!.
Dashed and dashed-dotted lines have slopes22.875 and22.375,
respectively.
-
er

d.

For L→`, one should recover the scaling relation~12!,
which implies that

lim
x→`

V~x!5V`Þ0. ~14!

Whenh1 is sufficiently large and for not too small values
L, the scaling function in Eq.~13! can be replaced by its
asymptotic valueV` . In this limit, which we refer to as the
saturated regime,gmax(L) becomes practically independe
of h1.

From the analysis of the numerical data forh150.99, one
finds thatV(x) saturates forx.x0'A20. Consequently, for
h150.5, 0.2, and 0.1, the saturated regime is expected
occur for L.L0'80, L.L0'500, andL.L0'2000, re-
spectively. Notice that a saturation value ofL0'80 for h1
50.5 is in agreement with our numerical data. Strips
width L5500 or 2000 are beyond the possibilities of o
numerical investigation; actually, calculations forL.100
~the largest size analyzed in the present work! are feasible,
but for such large systems the value ofgmax(L) is very small
and affected by large relative error bars that make the sca
analysis difficult.

For h150 one hasgmax(L)50 since the phase boundarie
of Fig. 4 become symmetric with respect to theg50 axis.
For very small surface fields one expects thatgmax(L) scales
linearly with h1 @21#; this implies that

V~x!;x for x→0. ~15!

Therefore, in the strongly ‘‘undersaturated’’ regim
wherex5h1LD1yT!A20, one expects a scaling behavior inL
of the type

gmax~L !;L2~11yH2D1yT!. ~16!

In Fig. 7 the dashed-dotted lines have slopes equal
22.375, which is the value of the exponent212yH
1D1yT for the two-dimensional Ising model. As can b
seen from the figure, the numerical data are in good ag
ment with a scaling of type~16!.

We stress that Eq.~16! is not the asymptotic behavior o
gmax(L) asL→`, since for sufficiently largeL the scaling is
of type ~12!. To verify this we have calculatedgmax(L) for

FIG. 8. Plot of ln@gmax(L)# vs lnL at constant values ofx
5h1LD1yT. The data correspond to~a! x5A10 and ~b! x5A0.4.
Dashed lines have slope22.875.
d
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57 2631CRITICAL POINT SHIFT IN A FLUID CONFINED . . .
different strip widths at constant values ofx5h1LD1yT. The
data points are shown in Fig. 8, and are calculated in
undersaturated regime (x,x0'A20); the agreement with th
exponent 11yH52.875 is very good.

To conclude this section, we also point out that for t
temperature one expects a shift of the type@9,10#

Tc2Tmax~L !5L2yTG~h1LD1yT!. ~17!

Nakanishi and Fisher@10# analyzed the behavior ofG(x) in a
mean field model confined between identical walls, a
found thatG(x) depends very weakly on its argumentx. This
is also found in the present study, as it can be seen from
fact that~1! the slopes of the data points of Fig. 5 are alm
equal, i.e., they do not depend sensibly on the value of
surface field; and~2! the points are very well fitted by
straight lines.

VI. MAGNETIZATION PROFILES

Figures 9 and 10 show some examples of magnetiza
profiles calculated by the DMRG technique for various v
ues of the gravitational constant and temperatures. The
files ~a! refer to points below the phase boundaries of Fig
i.e., in the two phase coexistence region. The two coexis
phases are expected to have magnetization profiles simil
those depicted in Fig. 2~a!; the profiles~a! are actually the
result of an average over the two phases.

The magnetization in the two phase coexistence reg
does not decay to a bulk constant value far from the walls
in Fig. 2~a!. The inset of Fig. 9 shows an enlargement of t
profile ~a! at the center of the strip: due to the presence
gravity the profile follows a straight slightly inclined line
We stress that the accuracy of the DMRG results for
magnetization profiles is very high, so error bars are a

FIG. 9. Magnetization profiles at a fixed temperatureT52.0 and
for three different values of the gravitational constants calculated
DMRG ~filled circles!. Profile ~a! is in two phase coexistence re
gion. ~b! and ~c! are profiles in the single phase region situated
the left and right of the two phase coexistence region of Fig
respectively. The dashed lines are the result of the capillary w
theory calculation as given by Eq.~18!. Inset: enlargement of the
profile ~a! in the center of the strip.
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much smaller than symbol sizes in the scale of the inse
Fig. 9.

In the single phase region@Figs. 9, 10~b!, and 10~c!# the
system develops an interface: gravity has the tendenc
localize the interface at the center of the strip in a config
ration of minimal energy. The larger the value ofugu, the
stronger the localization effect, as can be seen in the figu
profiles ~b! correspond to a value of the gravitational co
stant 7.5 times larger than profiles~c!. Notice also that in
profiles~b! the competing effect of surface fields and grav
which is visible in the vicinity of the walls.

The dashed lines of Figs. 9 and 10 are the magnetiza
profiles predicted by the capillary wave theory, which a
derived in the Appendix and are given by

m~ l !5
2m0

Ap
E

0

l /j'

dt e2t2, ~18!

Here 2j' is the average interfacial width andm0 is the bulk
magnetization of the Ising model in absence of gravity. A
the parameters appearing in Eq.~18! are known exactly, and
the dashed lines of Figs. 9 and 10 are not the results
fitting.

Capillary wave theory profiles agree very well with th
DMRG results especially at low temperatures where the
proximations introduced are very good. Equation~18! is
valid in the limit j'!L, where the effects of the walls can b
neglected. This condition is satisfied at low temperatures
at not too small values ofugu. Notice also that ifugu is too
large the magnetization profile~18! far from the interfacial
region differs sensibly from the DMRG results, since t
effect of gravity in that region has been neglected. This c
be seen more clearly in the inset of Fig. 10.

VII. CONCLUSIONS

In this paper we studied the critical behavior of an Isi
model confined between opposing walls and subject to a b

y

,
e

FIG. 10. As in Fig. 9 at higher temperature (T52.1). Notice
that the discrepancy between the profiles in the interfacial reg
@~b! and ~c!# and those predicted by the capillary wave theory
crease at higher temperatures. Inset: enlargement of the profil~b!
in the vicinity of one wall.
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‘‘gravitational’’ field. The competing effects of surface an
bulk fields restore phase coexistence up to the bulk crit
temperature, in agreement with the results of a mean-fi
study of the model@8#. The strong thermal fluctuations i
two dimensions do not affect the mean field results, whica
fortiori should also be valid in three dimensions where flu
tuation effects are weaker.

Wetting plays an important role in the model, as it w
found in the studies in the absence of gravity@1–3#. How-
ever, limiting the analysis tog50 causes us to miss much o
the interesting physics that arises when gravity is includ
In particular, one misses the critical point of the confin
system@8#, which we identified the maximum of the phas
boundaries separating the two-phase coexistence from
single phase regions with„gmax(L),Tmax(L)….

We performed a detailed analysis of the critical point sh
asL→`, and found that temperature and gravitational co
stant scale in agreement with previous finite size scaling
pothesis@8–11#. Along the gravitational field direction in the
limit of small surface fields, a crossover behavior betwe
two different scaling regimes is found.

This limit was considered recently in studies of critic
adsorption@22,23#. Desai, Peach, and Franck@22#, in an ex-
periment on a binary liquid mixture, were able to investiga
the weak surface field regime by chemically modifying t
surface of the solid substrate which is in contact with
liquid. They found an unexpected behavior of the adsorpt
for small surface fields, in possible disagreement with sc
ing theory. This issue was also discussed recently in R
@23#. In general we expect interesting physics to arise in
limit h1→0 due to the interplay between bulk and surfa
criticality, as we found in the analysis of the scaling behav
of the gravitational constant for the model studied in t
paper.
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APPENDIX: CAPILLARY-WAVE THEORY

In capillary-wave theory@24# one assumes that a sha
interface separates two regions of constant magnetiza
We take magnetizations equal to6m0, the bulk magnetiza-
tion of the Ising model in absence of external fields, which
known exactly. In this approximation gravity does not affe
the magnetization far from the interfacial region and bu
fluctuations are neglected. In the continuum limit the int
face is described by a single valued functionl (y) wherey is
the coordinate along the wall (2`,y,`) andl denotes the
al
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displacement of the interface from the center of the strip~see
Fig. 11!. This is a solid-on-solid approximation where ove
hangs are neglected@25#.

The continuum Hamiltonian is given by

H@ l ~y!#5E
2`

1`

dyH s0

2 S dl

dyD
2

1U~ l !J , ~A1!

wheres0 is the surface tension andU( l ) the potential acting
on the interface. The partition function is given by

Z5E Dl ~y!e2bH@ l ~y!#, ~A2!

where b denotes the inverse temperature. In Eq.~A2! we
integrate over all the possible interface shapes describe
single valued functions. Due to well-known relations b
tween path integrals and quantum mechanics@26#, the previ-
ous problem can be mapped into a one-dimensional quan
problem which consists in solving the following Schro¨dinger
equation:

S 2
1

2s0b2

d2

dl2
1U~ l !D cn~ l !5Encn~ l !. ~A3!

The ground state wave function squareduc0( l )u2 denotes the
probability of finding the interface at a positionl . The po-
tential has the following form:

U~ l ;L !5W~ l ;L !1Vg~ l !. ~A4!

HereW( l ;L) is the confining potential due to the presence
the walls:

W~ l ;L !5H 0 if u l u<L/2

1` if u l u.L/2.
~A5!

Vg( l ) represents the contribution of gravity to the interfac
potential and can be calculated from the microscopic Ham
tonian ~1!. If the interface is located between thekth and
(k11)th spin of the system gravity gives the following co
tribution to the energy:

FIG. 11. Example of an interfacial configuration described b
continuous single-valued functionl (y) as in the solid-on-solid ap-
proximation. All the spins at the two sides of the interface are fix
and equal to6m0. The arrows denote the elastic force that tends
bring the interface in its equilibrium position.
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Q~k!5gm0H (
i 51

k

~2i 212L !2 (
i 5k11

L

~2i 212L !J
52m0gk~k2L !. ~A6!

Shifting appropriately the origin of the coordinates, one fin

Vg~ l !52m0gl21c, ~A7!

wherec is a constant.
Neglecting the effect of the confining potential~A5! be-

comes the Schro¨dinger equation for a harmonic oscillato
with ground-state wave function equal to

c0~ l !5
e2 l 2/~2j'

2
!

p1/4Aj'

. ~A8!

j' denotes the interfacial width:
Se

rf.

J.

ev

a
Ge
s

j'5A T

2Augum0s0

. ~A9!

Here m0 is the bulk magnetization, ands0 is the surface
tension which are known exactly for thed52 Ising model at
g50. The analysis is valid forj'!L where the probability
of finding the particle outside the walls is negligible and t
confining potentialW( l ;L) can be ignored.

From Eq.~A8! one can easily calculate the magnetizati
profile as a function of the distance from the center of
strip l :

m~ l !5m0H E
2`

l

dsuc0~s!u22E
l

1`

dsuc0~s!u2J
~A10!

which yields the result given in Eq.~18!.
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