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We examine the phenomenon of nucleation in a two-dimensional phase-field model in order to calculate
guantities associated with a field-theoretic model and to determine the impact of spatially nonlocal interactions
on both droplet morphology and nucleation rate. We use an approximate numerical technique, together with
model A Langevin dynamics, in order to characterize the saddle surface that separates stable and metastable
states in function space. We thus obtain the free energy of formation of a critical droplet as well as the
statistical prefactor, which, except for a dynamical prefactor, determine the nucleation rate. The standard
Ginzburg-Landau energy is employed and, in addition, we consider the role of a short-range, spatially nonlocal
interaction on nucleatioS1063-651X98)04003-3

PACS numbegps): 05.70.Ln, 64.60.Qb

I. INTRODUCTION with long-ranged interactions. There are many reasons for
this, such as the practical experimental difficulties encoun-

A common feature of all metastable systems is that theéered in determining nucleation rates, the interpretation of
decay of the metastable state is brought about by the nucléhese rates near critical points, the difficulty of measuring
ation and subsequent growth of some localized disturbancgurface tensions, the breakdown of the independent droplet
within the systenj1]. One familiar example of this phenom- approximation due to interactions, etc. In the case of binary
enon is the transformation of water, supercooled below itfluids, for example, a typical experimental determination of
thermodynamic freezing temperature, to ice by the formatiomucleation rates as a function of undercooling and supersatu-
of solid droplets of sufficient size within the liquid. Further, ration involves the identification of a cloud point at which a
in some magnetic systems below the Curie temperature, it idetectable number of droplets is formed. Such an identifica-
found that a carefully prepared metastable state in whichion is inherently ambiguous as it depends on the time scale
spins are mostly antialigned with an external field will trans-of experimental observation. Further, in the vicinity of a
form into a more stable state by the formation of “droplets™ critical point, it is necessary to take into account the effect of
of spins aligned with the field. critical slowing down on droplet evolutiofl2]. In the case

Given the importance of describing nucleation and growthof nucleation in solids, while it is known that long-ranged
processes in a variety of systems, there has been a great detdstic interactions can modify the driving force for nucle-
of work in this area. For example, a firm theoretical under-ation, the associated modification of the nucleation rate is not
standing of the decay of metastable states was established tell understood. In addition to experimental tests of nucle-
Becker and Ddng [2] who derived an expression for the ation theory, several workers have recently investigated
nucleation rate by investigating the kinetics of cluster forma-nucleation theoretically in kinetic Ising ferromagnets with
tion using a rate equation formalism. Modern theories ofthe aim of testing the aforementioned field-theoretic models
cluster dynamics are extensions and improvements of thgl3].

Becker-Daing approach, which have established scaling With these limitations in mind, we examine here nucle-
theories of nucleation and led to some understanding of thation in a two-dimensional phase-field model in order to de-
link between nucleation and spinodal decomposifidr5].  termine the impact of spatially nonlocal interactions on drop-
On the semimacroscopic scale, Lan@@} has developed a let morphology and nucleation rate. This will be
field theoretic approach to the description of nucleationaccomplished by using computer simulation in conjunction
based on nonlinear Langevin equations, which correspond twith rate theory to constrain the system to be at a saddle
simple critical dynamics models. This approach has beepoint in function space. The utility of this approach becomes
used to study such problems as liquid-vapor transitigfls apparent when one considers the statistical uncertainties as-
and the nucleation of a crystalline solid from its mggdi. sociated with observing spontaneous droplet nucleation in a
These problems have also been studied by many authordynamic simulation. Indeed, numerical calculations of nucle-
including those using density function®,10] and other ap- ation rates in condensed systems must also account for the
proacheg11]. Indeed the literature in this field is too exten- fact that nucleation is a rare event on the time scale of a
sive to be reviewed in this work. simulation, particularly at small undercoolifg4].

While a theoretical framework for describing both homo-  Now, from the geometric properties of the saddle surface
geneous and heterogeneous nucleation is in place, it is fair twe obtain all but the dynamical part of the nucleation rate,
say that there have been comparatively few definitive tests dfoth with and without nonlocal interactions. It is of interest
the main predictions of these theories, particularly in systemgo determine how such interactions modify the saddle surface
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and under what circumstances it is possible to renormalizeanged elastic and electrostatic Green functions to discuss
the system in order to mimic the interaction-free picture.oxygen ordering in superconducting oxidgsb] and trans-
Specifically, we find that in the presence of a nonlocal interformation strains in ordered intermetalligsg].

action it is possible to describe the formation free energy and It is assumed thai(") evolves according to the phenom-
radius of a critical droplet in terms of standard field-theoreticenological Langevin equation appropriate for a noncon-
expression$6] for sufficiently large droplets as long as the served order parameter given by
range of the interaction is smaller than the approximate .

width of the droplet. Further, by determining the curvature of Ip(rY)

the saddle surface, we are able to predict how the nucleation at SY(r 1)

rate will be altered by the nonlocal interaction. Given this

information, we also determine the magnitude of the appliedvherel’ is a rate constant that sets the time scale for phase
field required to maintain a metastable droplet. Finally, we€Volution,F is a free energy functional to be specified, @nd
consider the case of multiple droplets and assess the domdfha noise term, which represents a heat bath. This equation is
of validity of an independent droplet picture. charactenspc of m_odeﬁk, which is used extensively in criti-

An essential part of our work is an approximate numericaccal dynamics studiel7]. Thus, a free energy functional is
technique that we use to facilitate the calculation of the propf€duired, and we begin by employing
erties of the saddle point. This calculation yields the free 1
energy of formation of the critical droplet and the statistical Fly]= GJ ddr[— (Vi) 2+ V() —hy
prefactor, which, together, determine the nucleation rate to 2
within a dynamical prefactor. It should be emphasized that €
our focus here is on the development of numerical tech- -= f f dr dF'G(F—F") () y(f'), (2
nigues that are applied to a model of nucleation and growth 2
in order to extract important. nuicleation parameters. ThiSyhere the effective double-well potential is given by
model is a practical extension of the simplified sharp-
interface description of a critical nucleus and incorporates T g
the spatial diffuseness of the interface. V(i ==—5 Yo+ 2 a8 3

This paper is organized as follows. In Sec. Il the field-
theoretic model of nucleation and our simulation methodol-r andg are parameters,is an energy coefficieritaken to be
ogy are summarized. In particular, an expression for thainity), h is an applied field an&(f—f') is an interaction
nucleation rate as a function of various model parameters iSreen function to be specified later. The first term in &.
presented. Section Ill contains our basic results and interpras the “Ginzburg-Landauy*” free energy while the second
tations for the standard Ginzburg-Landaiphase-field term models a spatially nonlocal interaction mediated by
model as well as for a short-range model of spatially nonlo-G(r—r). Physically,h would correspond to an undercooling
cal interactions. Section IV consists of a discussion and somg the case of a supercooled liquid or to an external magnetic
conclusions. field in the case of a ferromagnet. With these assumptions

the dynamical equation of motion for this system is

+4(ry), @

Il. NUCLEATION THEORY AND SIMULATION (T )
METHODOLOGY T

V() +h+ 7¢(F) — gp™(F)

Consider a simplified model of a two-phase system
wherein a continuous, nonconserved order parameter field +f di’' G(F—r1") (") |. (4)
(r) distinguishes between these phases. This field embod-
ies a coarse-grained description of the constituent phases in
that it represents a local volume average of an important
slow variable which characterizes the system. The dynamics Before considering a nonlocal interaction it is useful to
of this model is given by the spatial and temporal evolutionfirst consider critical droplet formation in a spatially local
of this field as described by a prescribed equation of motionmodel. It will be seen that the results for the local model will
Further, the system under consideration can be subjected &id in the interpretation of the results for the nonlocal model
an external fieldi.e., driving force, which biases the evolu- over a spatially limited interaction range.
tion and, in effect, determines the relative stability of the The local model[i.e., G(f)=0] supports a time-
phases. independent planar interface given appropriate far-field

It is of interest here to examine nucleation in this systempoundary conditions. So, if one seeks a functigff) that

and, in particular, to determine the impact of spatially non-extremalizes= subject to the conditions that(z— + )=
local interactions on critical droplet shape and the associated ,/7/g one finds that

nucleation rate. While this will not be done in complete gen-
12
r
tank{
g

A. Local interaction

erality, it is possible to quantify the effects of a short-ranged —
interaction and to investigate numerically the importance of 2=~
the range of the interaction in this problem. It is assumed that

these nonlocal interactions are mediated by some GreemhereZ is the location of the front and it has been assumed
function that connects the phase field at different points irthath=0. This interface is, in general, diffuse with a char-
space. For example, others have used appropriate longcteristic width~ 72 Our focus in this work is on the

, ®

|12
5) (z=2)
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formation of droplets, and so we will consider only relatively u(f) = ¢(F) _ﬁf)_ (14)
large droplets for which small interfacial boundary elements
are locally well described by planes. Consequently, in thisOne then finds that
limit, Eq. (5) holds approximately in the radial direction L
upon making the substitutiors—r andZ—R. e T RN R

Now, in order to discuss droplet formation it is helpful to FLy1=FLyl+ 2 f f dr dru(OM(r,FHu(r) +--
calculate the formation free energy of a droplet and other (15
guantities that characterize droplet shape. From a knowledge )
of these droplet properties Langé8] has determined a Where the operatad is

nucleation rate. This was first accomplished by considering S°F
the difference in free energy between a system with and M(F]F’)E(_}—_ﬁ) . (16)
without a droplet defined by SY(N) SY(r') )

AF= F[ﬁ— F[ el (6) Given the quadratic form above, it is clear that the eigen-

value spectrum oM will effectively characterize the saddle

wherey is the spatially uniform field of the reference state. surface in the vicinity of the saddle point. Physically, one
Upon expanding this difference in powers of the fibldone ~ would expect thad of these eigenvalues are zero, corre-

finds to first order that sponding to translations of the critical droplet. These modes
arise from the broken translational symmetry in the problem
T and are not expected to affect the nucleation kinetics. In
AF~-27\/-hVy+oZy, (1) addition, the saddle point implies the existence of one nega-
tive eigenvalue, denoted here ®g. It can be expressed in
where the surface tensianis given by terms of the model parameters by
312 1 9h?
_ 2T No=— o3 =~ 5. 17
U="3g (8 RZ 27%(d-1)

All remaining positive eigenvalues, denoted hy (i

and thed-dimensional volume and surface areas are given b . . ) . ) .
9 gO), are frequencies associated with distortions of the criti-

RU2 d/2 cal droplet. Thus one can regard the prefacthy
dem, 9 =lg(Ng,\i, T,I',V), whereV is the volume of the system.
Langer{1,6] has determinetl, explicitly for this model in
Rd-1p —di2 the Iim_it of a small applied field. In_particular he found
Sy= (10) that this prefactor can be expressed in terms of a product of
I'(dr2) a dynamical prefactors, and a statistical factof),, as
respectively. From these results the radRgsand formation | k|
free energyAF. of a critical droplet can by found be mini- |0=§ Qo, (18
mizing AF with respect toR to obtain
where
R;%ﬁ, (11 B (2kaT)l’Z(de(M0/2kaT) 2 10
g VI el | \demzmkery) ¢ 19
AF.= 479712 [\27\ ¢ (d—1)972 (12) and whereV is proportional to the system volumBl, is a
¢ g¥etlpd-1| 3 dr(dr2) - generalization of Eq(16) in which the derivative is to be

evaluated in the reference state, and the prime indicates that
One goal of the present study is to determine the nucleenly the positive eigenvalues were used to compute the de-

, (13

ation ratel given 7, g, and the applied fielth. As the for-  terminant. The dynamical factor describes the initial rate of
mation of critical droplets is an activated process, this rate iglecay of the metastable state and can be related to the nega-
determined by the attributes of the saddle surface that sepéve eigenvalue\r if the system is maintained at fixed tem-
rates stable and metastables states. It turns out that perature and the nature of the coupling of the system to the
required heat bath is known. For the system under consider-
= exp{ —AF, ation here, the rate constantin the Langevin equatiofEg.
0 kT (1)] sets the time scale for the evolution of a critical droplet.

It should be pointed out that the numerical determination
wherel , depends on the local geometry of the saddle surfacef the spectra oM and M, can be quite computationally
and a kinetic prefactor. The relevant geometrical features ofiemanding in a discretized version of the system considered
the saddle surface are measures of curvature and can be diere as the dimensions of the matrix representations of these
tained by considering small excursions from the saddle poinbperators are often quite large. Thus, it is advantageous to
in function space. That is, one imagines the change in freeonsider projections of these matrices onto subspaces asso-
energy associated with the fluctuation ciated with a region near some real or fictitious interface. It is
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expected that the eigenvalues of these submatrices will corvin equation[Eqg. (1)] without noise. This was accomplished
tain the most relevant information about the interface. Theéby defining the order-parameter fieltr) on a 128<128

practical implementation of this procedure is discussed
Sec. Il

B. Nonlocal interactions

irsquare lattice, with lattice parametyr subjected to periodic
boundary conditions. Given a prescribed initial condition, the
field then evolved according to mod&ldynamics, reaching
a stable or metastable state at long times. In addition, in

The impact of a spatially nonlocal interaction on nucle-SOme cases it was useful to construct the corresponding re-
ation will depend, in general, on the magnitude and range ofiProcal lattice and perform some bookkeeping operations in
the interaction. For simplicity here we consider the effect ofthis Fourier space, back transforming to real space as re-
a prototypical interaction of variable range. Our goal is toquired. In particular, the formulation of the problem in recip-
highlight the generic features of the interaction which alterrocal space is especially well suited to the study of nonlocal
nucleation kinetics rather than to model specific types ofnteractions mediated by a Green function. Finally, it is con-

physical interactions.

venient to introduce the dimensionless time and mesh size

For this purpose it is convenient here to adopt a Greewariablest=T"et and 5=Ax/a, respectively, and to indicate
function of the Yukawa form, which, in reciprocal space, isthat the time step and mesh size used were 0.001 and 0.3 in

given by the Fourier transforirig]

G(k)= (20

Ty’

wherevy is (inversely related to the range of the interaction.

Now, the behavior of5(k) near the center of the first Bril-

these units.

The initial condition in our simulations corresponded to a
nearly circular droplet, the square lattice frustrating circular-
ity, of some stable phase/t +1) embedded in a meta-
stable @/~ —1) background. Given the input parameters
g, andh such a droplet will grow(shrink if it is larger
(smalley than some critical radius. As our goal was to inves-

Green function

G(k)= oL e by (21)
y ¥ Y '

If the interaction range is relatively short or, equivalently, if
v is sufficiently large, it should be possible to use the ap

proximationG(k) ~1/y— (1/y%)k? asK can be restricted to

the first Brillouin zone. Upon substituting the inverse Fourier

transform of this approximate expression into E®). and

using the convolution theorem one finds that the effect of th
interaction when the free energy is extremalized is the a

proximate renormalization of the parameterg, andh de-
fined by

T+ 1y

eI G

T

— )

ST @3

— h

h= 1+—1/’)’2 (24)

droplet of a given radius at zero temperature and varied the
field h until this state wagmetgstable at late times. It was
helpful here to allow the field to correctively adjust within
our algorithm so as to more efficiently generate a critical
droplet. In effect, we induce the system to be at a saddle
point so that we may characterize the local geometry near
‘this region of function spacéin this sense, the calculation
here is reminiscent of the rate-theoretic numerical determi-
nation of diffusion coefficients in solids wherein a diffusing
article is constrained to be at or near a saddle surface sepa-
ating lattice equilibrium statg®0].) The droplet radius, de-
Pfined as the average of the distances between interface points
and droplet center, and formation energy were monitored
over the course of the simulation, and this zero-temperature
metastability requirement implied that these quantities were
nearly constant over a time period of sufficient duration. In
order to minimize the effects of the periodic boundary con-
ditions, the radii selected were such that the associated drop-
let interface profiles did not overlap with the profiles of their
image counterparts.

Ill. RESULTS

We studied the formation of a critical nucleus and the

Thus, in this limit, the equations describing the interface pronucleation rate for a system in the presence of a nonlocal
file and the eigenvalues ®fl also describe the system with interaction. In this problem, our goal was to establish the

nonlocal interactions provided that g, andh are replaced
by their respective counterparts g, andh. It then follows
that the critical radiuR:, the eigenvalues oM, and the
formation energyAF can be determined by replacingg,
andh by their corresponding renormalized values in Bd)

[19]. The range of validity of these approximations will be

investigated in Sec. Ill.

C. Simulation methodology

domain of validity of the renormalized nucleation picture
outlined in Sec. Il B. As discussed above, it is of interest to
determine how a spatial interaction with a finite range modi-
fies the droplet formation energy and the modes associated
with droplet formation. Such information will enhance our
understanding of nucleation in the kinetics of phase forma-
tion in systems with competing interactiofl].

In the following we first discuss the simulations carried
out to test the renormalization of the parameters and estab-
lish a range of validity. Next, we study in detail the proper-

In order to investigate the field-theoretic model, we haveties of the critical nucleus by examining the radial profile for
solved a spatially discretized version of the relevant Langethe order parameter and the behavior of the associated for-
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FIG. 1. The dependence of the renormalized fiblcon the FIG. 2. The critical droplet formation energy, normalized by the

scaled interaction range,= (/)" as determined by a series of theoretical valueAF,, as a function of timgmeasured in itera-
simulations and as predicted by H41). Note the deviation from  tiong) for different interaction ranges. The interaction ranges are
the predicted behavior when the interface width is of the order Obiven by the scaled interaction paramgtgr It should be noted that
the interaction range. for very short-range interactions this normalized formation energy
is nearly unity at long times, as expected.
mation energy. Finally, we calculate the statistical prefacto
Q,, which, along with the formation energy, effectively de-
termines the nucleation rate. In all the above we make
comparison with Langer’s theory of nucleation in the limit of
a short interaction range.

rdius R was also monitored during the simulation and found
to be essentially constant over the course of the run with
?@!/Rcwl. The deviation in the formation energy from its pre-
dicted renormalized value is seen to increase upon increasing
the interaction range, with significant differences occurring
whenr,~1.265 (or y~3). This finding is consistent with

A. Applied field, formation energy, and droplet profile the behavior of the renormalized fieldfor different inter-

i . - ction rangegFig. 1).
We first consider a system consisting of a stable drople? The time evolution of this system can be pictured by first

embedded in a metastable background with the parameter Sr%tcalling that, as noted above, the droplet model predicts a

(7,9,R)=(5.0,100.0,10.56), whete is measured in units of it ;se “as opposed to a sharp, interface profile. Thus, a drop-
the lattice parameter. The field paramétenwhich is varied et with an initially sharp interface must thicken over the

in our model to keep the droplet metastable over a longoyrse of a run, and this relaxation results in a reduction of
period of time, was measured for various interaction rangeshe free energy and the concomitant creation of a transition
the range being governed by our choice of the paramgter region at the droplet interface of a given width. The approxi-
used in the Green functidieq. (20)] [22]. This then permits  mate shape of the interface profile, at least for relatively
us to examine the predictions of the renormalized nucleatiotarge droplets, can be deduced by assuming that a given por-
picture. Figure 1 shows the dependence of the renormalizegibn of the interface is, to some approximation, a planar
field h on the scaled interaction range,=(7/y)*? as de- front, and so the radial profile is essentially given by .
termined from a series of simulations and as predicted by Eq. This characterization is validated in Fig. 3 in which the
(11) upon replacingr andg by their renormalized counter- normalized interface profiles for the two systems with differ-
parts. It can be seen that the data deviates from the theordfld interactions ranges are plotted along with a hyperbolic
ical fit in the regime where the interaction range is of thel@ngent solution corresponding to a short-range interaction

order of the interface width¥=7), as might be expected _(ry=0.2.24) . The agreement between the actual and theoret-
intuitively [23]. ical profiles is seen to be excellent. It should be recalled here

i ; s ~—1/2 )
In the following discussion we consider metastable drop-th"’lt the width of the interface is-7_ " and therefore, re
lacing 7 by its renormalized value leads to a change in

; - PEI p
ls?(tjse\rlvggx({i%é ._2(,5;;10%28}8)oa;r:gedgf;r:g]r‘?]igllueevsoﬁicilog% theyvidth. Indeed, the profile in Fig. 3 with the more diffuse
system containing a droplet witR=24.87, which shows the interface corresponds to a lower value(t=0.7)
normalized droplet formation energ¥ ¢ F.)/AF ., where
F et IS the free energy of the spatially uniform reference state
andAF. is the (renormalized theoretical formation energy, Of particular interest in this study is the calculation of a
as a function of time(i.e., iteration$. Several cases have nucleation raté for a given driving forceh. As discussed in
been simulated corresponding to different interaction rangethe previous section, this calculation can be performed by
as denoted by the scaled interaction range parametefor  determining the formation free energgs in Fig. 2 and the
short-rangglarge y) interactions, it is evident from the fig- eigenvalues of the matrid. Of particular importance is the
ure that the normalized free energy decreases sharply at eadingle negative eigenvalue, in that it characterizes the spe-
times and is approximately unity at late times, as expectedial geometrical features of the saddle surface. As a practical
from the field-theoretic model of nucleation. The droplet ra-matter, however, the diagonalizationMf here is quite com-

B. Nucleation rate—negative eigenvalue
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FIG. 3. The normalized order parameter vs the normalized dis- F!G: 5. The normalized negative eige_nvaluesR_g)\o(y) vs
tance,r (r/2), for metastable critical droplets corresponding to dif- Normalized interaction range, for several different critical droplet
ferent interaction ranges. For comparison with the short-range inradii (in lattice unit3. Note that the normalized eigenvalues deviate
teraction profile, the theoretical tanh solutidy. (5)] is also shown  from unity for an interaction range {f, which is a substantial

and the agreement between these two profiles is seen to be excligction of the interface width and that the renormalized nucleation
lent. picture works best for larger droplets, as expected.

functional form predicted by Eq.17). One can repeat the

. : . rocedure discussed above for systems containing the nonlo-
so we consider a smaller submatrix corresponding to thos

: Lo . 7 al interaction given in Eq20) and examine the dependence
lattice points in a narrow annular region around the interface;

The width of this annulus must be greater than the interfacé)f Ao(y) on the parametey. That is, one can introduce a

width and is therefore determined by the parameteFhe Critical droplet into a system with a given nonlocal interac-

rationale for adopting this approximation is that the eigen—tlon and obtain the negative eigenvalue in the spectrum of

values of interest are likely to be associated with the inter-the corresponding operattd [Eq. (16)] by numerical itera-

face itself, and so a sufficiently wide annulus should capturé'on' The results of these calculations are illustrated in Fig. 5

the essential physics of the problem. The justification for thisWher.e the normalized agenvalul@%)xo(y) IS plotted as a
approximation was establishadposterioriby examining the fungtlon of the (educeq range, for three dn‘fgrent cr|t|call
variation of the results with the size of the annular region.ra_‘d"' Once again we find thl?zt the renormalized nucleation
Further, an iterative search for, obviated the more time picture is valid forry=(7/y) :1.‘0 and therefore bregks
consuming full diagonalization d¥1. down when the interaction range is of the order of the inter-

The negative eigenvalues bf for various radiiRc in the I?ce width. Itl.'s %ISO cllea;.from.Ftlg. 5.th3t the ddew{a\tlondfronr t
limit y—oo obtained with this approach are shown in Fig. 4. € renormalized nucieation picture 1s dependent on drople

As can be seen from the figure, the data fit the expeclléé 1/ Size, with larger deviations occurring fo_r smaller droplets.
As a check of our numerical results, it was found that the

value ofAy was quite insensitive to the width of the annular

putationally intensive, given its size of 16 3846 384, and

0.10 . . ; . region for sufficiently large widths. This was true even for
the longer range interactions considered heeeg., r,
Magnitude of Negative Eigenvalue
Vs Inverse Radius Squared =1.736 or 7”07)

0.08 Finally, an essential feature of Langer’s theory is that the

nucleating droplets are independent of each other. It is worth
investigating the conditions under which the droplets inter-

008 act, causing the theory to break down. To this end, we stud-

2 ied a system of two identical droplets of radieg=10.56 at
il TABLE I. The logarithms of det{ly) and det{1’) and the loga-
rithm of A as a function ofv (in units of the lattice parametey) for
00z | a droplet of radius 10.56. Note the relative insensitivity ofAln{o
w. The parameters andg employed here are 5.0 and 100.0, re-
spectively
0.00 ; L -+ L
0.00 0.02 0.04 1/R: 0.06 0.08 0.10 W In det(Mo) In det(M,) In(A)
FIG. 4. The negative eigenvalues of the matvixfor a series of 21 5312.45 5141.58 170.87
critical droplet radiiR, vs le. The linearity of this plot with 25 7586.07 7415.22 170.85
corresponding unit slope is expected from the field-theoretic nucle30 10911.49 10740.59 170.90

ation model[Eqg. (17)].
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a fixedr distance apart, and varied the parametao as to  eigenvalue, however, one would expect that these other non-
measure the droplet formation energy and the negative ehegative eigenvalues can also be renormalized over some
genvalue as a function of the interaction range Both interaction range.

these quantities show a deviation from the corresponding

independent droplet values wheris sufficiently small[yy IV. DISCUSSION AND CONCLUSIONS

~2 and the normalized distance of separatiof(7/2) The phenomenon of nucleation in a two-dimensional
~15.2]. The negative eigenvalue was slightly more sensitivephase-field model with spatially nonlocal interactions has
to variations in the interaction range, as might be expectedbeen studied by effectively characterizing the saddle surface
that separates stable and metastable states in an abstract
C. Nucleation rate—positive eigenvalues function space. This approach was necessitated by the fact
o . . . that simulations of spontaneous nucleation are essentially
From Eq.(19) it is clear that the remaining positive ei- jnnractical given the time scale of such a simulation. By
genvalues are needed in order to calculate the prefégtor considering an appropriate region that properly incorporates
For the moment we will focus only on the case of a spatiallythe diffuse interface that is characteristic of this system, we
local interaction. have obtained the free energy of formation of a critical drop-
In this calculation we employed a circular calculation re-let as well as the statistical prefactor, which are key ingredi-
gion with a sufficiently large radiusy. In particular, two  ents of the nucleation rate. One perhaps surprising result of
such regions are employed, one in a spatially uniform referthis work is that we have obtained self-consistent results for
ence system and an identical circular area in the correspon@-range of droplet sizes given that the field-theoretic model
ing system containing a critical droplet, and the ratio of prod-assumes a “large” droplet. We have investigated the role of
ucts of positive eigenvaluef.e., A=detMg)/detM’)] is a spatially nonlocal interaction in determining the nucleation
obtained. It is expected that the eigenvalues corresponding f@te and have interpreted the results, over a restricted range
modes not included will not contribute significantly to this Of interaction parameter, in terms of a renormalized nucle-

quotient. This expectation was confirmed by calculatingdtion picture. o , ) ]
In(A) for various region radiiw, for a droplet of radius A complete description of the nucleation rate requires, in
10.56 with the results summarized in Table I. As can be SeeQddmon to the foregoing calculations, a determination of the

from Table | InQ\) is relatively insensitive tav for increas- %/namicaltprefac.ttrc])k in Eq. (1t8). K ldﬁpe?tgstcr)]n tge co;JhpIing
ingly larger regions. It should be noted here that for this?! Our system with some external neat bath. nce this cou-

o . : . pling is specifiedx is given in terms of the negative eigen-
smaller droplet there are deviations in the relative formatior]’ .
energyAF/F-=0.93 from the field-theoretic prediction. value \o [7] and the rate constart, the latter setting the

In ord fth tude of th b time scale for the evolution of the system. Thus, given our
n order to get a sense of the magnitude of these NUMBeI, ¢y jation here, it is possible to calculate the nucleation rate
consider In det{ly). In this case the operatdvly=—V if the coupling to the heat bath is known.

+27, and so one can express In dégf in terms of its spec- Finally, it should be pointed out that the present discus-
trum by the approximate relation sion has focused on homogeneous nucleation in a system
5 21 with an isotropic surface energy. In many realistic cases it is
w (we—=i“) . _
found that the presence of defects limits the supercooling of
In det Mo”izw _ (22 2 Inj 27+ =3 a system as these defects often become catalytic sites for the
=W = —(wi—i

(heterogeneousucleation of a stable phase. Further, in the

case of solid-solid nucleation, the surface energy associated
, (25  with the boundary between a droplet and a metastable back-

ground can be anisotropic depending upon the crystal sym-

where the Fourier transform of the lattice Laplacian operatof€triés of the phases that are involved. Thus, the system
has been employed. Fov=21 the double sum is 5237.6, described in this work is somewhat idealized, and it is our

within about 1% of the calculated value. A more accuratedo@l to extend it to more accurately describe nucleation in

calculation would take into account the small impachain ~ S°lids.
M and the nonperiodicity of the region of calculation. In any

- ; [cogi m/w) +cogj 7/ w)]
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