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Anisotropic multi-phase-field model: Interfaces and junctions
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In this paper we bring together and extend two recent developments in phase-field models, namely, a
phase-field model of a multiphase system@I. Steinbachet al., Physica D94, 135 ~1996!# and the extension of
the Cahn-Hoffmanj-vector theory of anisotropic sharp interfaces to phase-field models@A. A. Wheeler and G.
B. McFadden, Eur. J. Appl. Math.7, 369~1996!; Proc. R. Soc. London, Ser. A453, 1611~1997!#. We develop
the phase-field model of a multiphase system proposed by Steinbachet al. to include both surface energy and
interfacial kinetic anisotropy. We show that this model may be compactly expressed in terms of generalized
Cahn-Hoffmanj vectors. This generalized Cahn-Hoffmanj-vector formalism is subsequently developed to
include the notion of a stress tensor, which is used to succinctly derive the leading-order conditions at both
moving interfaces and stationary multijunctions in the sharp interface limit.@S1063-651X~98!03703-9#

PACS number~s!: 64.60.2i, 68.35.Rh, 81.10.Jt
od
nis
l o
n
s.
o-
a

-
a
d
n

ls
r

d
rg

b

r
ce

ld
ed
e
sy
-

i
er
ai
u

ic
th
e
e

lar

in-
r-

rent
the
w

er-
t
the
an
at a

hat
ot
n-
ly
ce

ur-

of

ing

s,
y
e

I. INTRODUCTION

In this paper we present and analyze a phase-field m
that describes multiphase systems and includes both a
tropic surface energies and mobilities. It provides a mode
a wide variety of different situations such as eutectic a
peritectic alloys as well as the motion of grain boundarie

A phase-field model of a solid-liquid interface was pr
posed by Langer@1# and was subsequently developed by
number of workers@2–5#. Wheeler, Boettinger, and McFad
den @6# provided a phase-field model of a simple isotherm
binary alloy. Subsequently, several authors have exten
their work to model more realistic nonisothermal situatio
@7,8# as well as eutectic alloys@9,10# and solute trapping
@11–14#. Phase-field models of a pure material have a
been extended to include anisotropy of the surface ene
and interface mobility, by@2,15–17#. Recently, Wheeler and
McFadden@18# have developed the notion of a generalizej
vector for phase-field models with anisotropic surface ene
that extends the original idea of aj vector that Cahn and
Hoffman @19,20# developed for sharp interface models. Su
sequently, Wheeler and McFadden@21# extended this idea to
formulate a conservation law in terms of a stress tensor
lated to thej vector, which they used to investigate the for
balance at a multijunction.

Several authors@22–28# have extended the phase-fie
methodology to develop models involving a vector-valu
order parameter in an attempt to consider a wider rang
phase transitions such as multicomponent or multiphase
tems. In particular, Steinbachet al. @27# developed a phase
field model of a multiphase system in which a phase field
associated with each phase present. In this work an und
ing free-energy functional was chosen that involved the p
wise interactions between all the different phases. The res
ing governing equations were used to conduct numer
simulations of a variety of situations and demonstrated
feasibility of this approach, in particular in relation to th
qualitative simulation of a number of important growth ph
nomena in peritectic and eutectic systems@29,30#. In related
work Garcke, Nestler, and Stoth@26# used a formal
571063-651X/98/57~3!/2602~8!/$15.00
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asymptotic analysis to determine the asymptotic singu
limit of a multiphase Allen-Cahn system.

The focus of this paper is to develop the model of Ste
bachet al. to include the effect of anisotropic surface ene
gies associated with the interfaces between the diffe
phases, as well as to include a more general form of
anisotropic mobility of the interfaces. To this end we dra
on the work of Wheeler and McFadden@18,21# to place the
dimensionless form of the model in the setting of the gen
alized Cahn-Hoffmanj vector. This allows us to conduc
succinctly the sharp interface asymptotics and to recover
correct form of the Gibbs-Thomson-Herring equation for
interface in three dimensions as well as the force balance
multijunction between anisotropic interfaces. We show t
the j-vector formalism is a powerful and elegant tool n
only for investigating surface energy anisotropy in the co
text of a sharp interface theory, for which it was original
developed, but also for the complicated diffuse interfa
theory described here.

In the sharp interface theory in which an anisotropic s
face energyg(nW ) is associated with an interfaceS, which
has a unit normalnW , the j vector is defined by

jW5¹W g~rW !, ~1!

whereg(rW) is the homogeneous extension of degree one

g(nW ). In spherical polar coordinatesjW may be expressed as

jW5g~u,f!eW r1
]g~u,f!

]u
eW u1

1

sinu

]g~u,f!

]f
eWf . ~2!

Cahn and Hoffman showed that the Gibbs-Thomson-Herr
equation may be compactly expressed as

TI5TM2
1

L
¹W S•jW, ~3!

whereTI andTM are the interface and melting temperature
respectively, andL is the latent heat per unit volume. The
were able to relate thej vector to the stress in the interfac
2602 © 1998 The American Physical Society
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57 2603ANISOTROPIC MULTI-PHASE-FIELD MODEL: . . .
and showed that at a multijunction, comprising the confl
ence onm interfaces, the equilibrium force balance could
expressed as

lW3 (
k51

m

jW k50W , ~4!

where lW is the unit vector parallel to the junction andjW k , k
51, . . . ,m, are thej vectors associated with each interfac

In Sec. II we develop our anisotropic phase-field mod
derive the governing equations, and express the mode
dimensionless form. In Sec. III we show how generalizej
vectors may be associated with this model. In Sec. IV
exploit this formalism to investigate the sharp interface lim
of interfaces and derive the Gibbs-Thomson-Herring eq
tion. In Sec. V we develop a stress tensor for our model
use it to obtain, in a compact way, the force balance at
equilibrium multijunction.

II. MODEL

We consider an isothermal system in whichN different
bulk phases may exist. Following the approach of Steinb
et al. @27#, we introduceN corresponding phase-field var
ablesf1 ,...,fN with 0<fa<1 for a51, . . . ,N. We as-
sume that the system can reside exclusively in bulk phasn
(1<n<N) at a point in space iffn51 andfa50 for all
aÞn, 1<a<N. We therefore impose the constraint that

(
a51

N

fa51. ~5!

The free-energy functional associated with the system
given by

F5E
V
L~fW ,¹W fW !dV, ~6!

where the Lagrangian energy densityL(fW ,¹W fW ) depends on
the vector fW 5(fW 1 ,...,fN) and its gradients ¹W fW

5(¹W f1 ,...,¹W fN).
In the case when all the interfaces between the differ

bulk phases possess isotropic surface energyL(fW ,¹W fW ) can
be defined by~see Ref.@27#!

Liso~fW ,¹W fW !5 (
b51

N

(
a51

b

@ 1
2 hab

2 urWabu21g̃ab~fW !#

1 (
a51

N

h̃a~fW ,T!, ~7!

wherehab are constant gradient energy coefficients and
vectorrWab appearing in the gradient energy terms is given

rWab5fa¹W fb2fb¹W fa . ~8!

In this model the possibleN!/ @(N22)!2!# interactions be-
tween theN bulk phases are described by a sum over
pairwise intercorrelation energies of the different phase fie
denoted byg̃ab(fW ). Using physical arguments Steinbac
-

.
l,
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et al. @27# assumed that the movement of the two pha
boundaries dominates the adjustment of triple or multi
junctions, which possess a negligible dynamics of their ow
Hence energy terms that depend on more than two phase
neglected. The pairwise intercorrelation energy terms
specified to be double-well potentials of the form

g̃ab~fW !5
1

4aab
gab~fW !5

1

4aab
fa

2fb
2. ~9!

The parameter 1/aab is proportional to the pairwise barrie
height of the double well. The termsh̃a(fW ,T) describe the
free-energy density of each bulk phase and are assumed
given by

h̃a~fW ,T!5b̃a~T!fa . ~10!

The parametershab and 1/aab are defined for each interfac
between bulk phases labeleda andb. They may be related to
measurable, physical quantities~see Ref.@18#! such as the
interface thicknessl ab and surface energygab through the
identities

l ab52&habAaab, gab5
l ab

24aab
. ~11!

From the obvious symmetry requirements thatl ab5l ba
andgab5gba we therefore deduce that

hab5hba , aab5aba . ~12!

The form of the free-energy functional and the symme
properties of the parameters ensure the reproduction of
standard isotropic phase-field model in the case of only
phases in the system, e.g., a liquid and a solid phase@2#.

In an analogous way to the anisotropic phase-field mo
described by Wheeler and McFadden@18# for a solid-liquid
interface, we extend the isotropic Lagrangian density~7! to
the anisotropic situation by writing

L~fW ,¹W fW !5 (
b51

N

(
a51

b

$ 1
2 hab

2 @Gab~rWab!#21g̃ab~fW !%

1 (
a51

N

b̃a~T!fa1l̃F (
a51

N

fa21G , ~13!

where we have invoked the constraint~5! with a Lagrange
multiplier l̃. HereGab(rWab) is defined to be a homogeneou
degree-one function of its argument. It imparts anisotro
surface energy to the interfaces. WhenGab(rWab)5urWabu the
isotropic Lagrangian is recovered; otherwise we anticip
that the surface energy of the interfaces is given by

gab~nW ab!5
habAaab

6&aab

Gab~nW ab!, ~14!



se

rit

s

a

ex

bi
n

ns

ce
e

ion

t
n

ly

and

ith

ne

ree

s

2604 57B. NESTLER AND A. A. WHEELER
wherenW ab is the unit normal to the interface between pha
labeleda andb; see Fig. 1. We note thatgab is a homoge-
neous degree-one function of its argument, which it inhe
from Gab .

To proceed we nondimensionalize the free-energy den
~and l̃! with respect tob1 , length with respect toR, which
represents a typical radius of curvature of the interfaces,
the surface energygab with respect tob1R. Using Eqs.~11!
and ~12!, the dimensionless Lagrangian density may be
pressed as

L~fW ,¹W fW !5 (
b51

N

(
a51

b F36eabgab
2 ~rWab!1

1

4eab
gab~fW !G

1 (
a51

N

ba~T!fa1lF (
a51

N

fa21G , ~15!

whereeab5aabb1 , ba5b̃a /b1 , l5l̃/b1 , and we note that

eab5eba . ~16!

The governing equations are given by the gradient flow

]fm

]t
52M ~¹W fW !

dF
dfm

for m51, . . . ,N, ~17!

whereM (¹W fW ) represents a dimensionless anisotropic mo
ity. These equations may be recast in terms of the Lagra
ian density as

]fm

]t
5M ~¹W fW !H ¹W S ]L

]¹fm
D2

]L
]fm

J . ~18!

It is convenient to choose the mobility to be of the form

FIG. 1. Schematic diagram of a diffuse interface of thickne
l ab between two bulk phases labeleda andb. The orientation of
the two unit normal vectorsnW ab andnW ba is shown.
s
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g-

M ~¹W fW !5

H (
b51

N

(
a51

N

famab~rWab!J
H 72(

b51

N

(
a51

N

eabfagab~rWab!J , ~19!

where mab(rWab) are homogeneous degree-one functio
such thatmab(rWab)5mba(rWba). As shown below, the func-
tion mab(nW ab) may be interpreted, in the sharp interfa
limit, as the dimensionless anisotropic kinetic mobility of th
interface between the bulk phases labeleda andb.

III. THE j-VECTOR FORMULATION

Our next aim is to define thej vector for the multi-phase-
field model described above. Consider the interfacial reg
between two bulk phases labeleda andb. We will assume
that in this regionfa andfb are the only phase fields tha
are nonzero, so thatfa1fb51. We denote the surface i
this interfacial region defined byfa5fb5 1

2 as Sab . The
unit vectors to this surface are denoted bynW ab andnW ba ; see
Fig. 1 for their orientation. As we show in Sec. IV, the on
two nontrivial governing equations, forfa andfb , are both
similar to the phase-field equation discussed by Wheeler
McFadden @18#. Hence, in the sharp interface limiteab
5eba→0, the surface energy of the interface associated w
Sab is described, to leading order, bygab(nW ab) or
gba(nW ba). BecausenW ab52nW ba , we obtain the symmetry
condition

gab~nW ab!5gba~2nW ab!. ~20!

The functionsgab(rWab) have been extended as degree-o
homogeneous functions of their arguments@see Eq.~14!#, so
that

gab~zrWab!5zgab~rWab! for all zPR, ~21!

and hence it follows from Eqs.~20! and ~21! that

gab~rWab!5gba~rWba!. ~22!

In the spirit of Wheeler and McFadden@18#, we define the

set ofj vectorsjWab(rWab) by

jWab~rWab!5
]gab~rWab!

]rWab
5¹W rWab

gab~rWab!, ~23!

which are consequently homogeneous functions of deg
zero. From Eqs.~22! and ~23! it follows that

jWab52jWba . ~24!

We note from the definition ofjWab(rWab) that

gab~rWab!5rWab•jWab , ~25!

s
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which follows from the calculus of degree-one homogeno
functions.

We observe that

]L

]¹W fm

572H (
a,m

eamgam~rWam!
]gam

]¹W fm

1 (
b.m

embgmb~rWmb!
]gmb~rWmb!

]¹W fm
J

572H (
a,m

eamgam~rWam!
]gam

]rWam

]rWam

]¹W fm

1 (
b.m

embgmb~rWmb!
]gmb

]rWmb

]rWmb

]¹W fm
J

572H (
aÞm

N

eamgam~rWam!jWamfaJ , ~26!

where we have used the symmetry relations for Eqs.~16!,
~22!, and~24!. A similar calculation gives that

]L
]fm

5 (
aÞm

N F272eamgam~rWam!jWam•¹W fa1
1

4eam

]gam

]fm
G

1bm~T!1l. ~27!

Hence the governing equations~18! may be written as

1

M ~¹W fW !

]fm

]t
5 (

aÞm

N F72eam{ ¹W •[gam~rWam!jWamfa]

1gam~rWam!jWam•¹W fa} 2
1

4eam

]gam

]fm
G

2bm~T!2l ~28!

for m51, . . . ,N. The Lagrange multiplier may be found
using the constraint~5!, to be

l5 (
m51

N

fmH (
aÞm

N F72eam$¹W •@gam~rWam!jWamfa#

1gam~rWam!jWam•¹W fa%2
1

4eam

]gam

]fm
G

2
1

M ~¹W fW !

]fm

]t
2bm~T!J . ~29!

IV. INTERFACES

We now briefly consider a curved interface between t
bulk phases labeleda and b in the sharp interface limit
s

o

eab5eba→0. Using the symmetry conditions fo
mab ,eab ,gab and the constraintfa1fb51 the two non-
trivial governing equations are

72eba{ ¹W •@gba~rWba!jWbafb] 1gbajWba•¹W fb%2
1

4eba

]gba

]fa

2ba2l572eba

gba~rWba!

mba~rWba!

]fa

]t
, ~30!

72eab{ ¹W •[gab~rWab!jWabfa] 1gabjWab•¹W fa} 2
1

4eab

]gab

]fb

2bb2l572eab

gab~rWab!

mab~rWab!

]fb

]t
. ~31!

We subtract these two equations and use the additional s

metry condition forjWab to obtain

72eba¹W •[gba~¹W fa!jWba] 2
1

eba

fa~12fa!S 1

2
2faD

2Dbba5144eba

gba~¹W fa!

mba~¹W fa!

]fa

]t
, ~32!

whereDbab5bb2ba is the dimensionless bulk free-energ
difference between the two phases and is related to t
mutual latent heatLab by

Dbab5
Lab

b1

T2Tab
M

Tab
M , ~33!

whereTab
M is their melting point, provided the temperatureT

is close toTab
M . A similar equation holds forfb .

This is the same form of the phase-field equation cons
ered by Wheeler and McFadden@21#, who studied its sharp
interface limit. We briefly outline their results and interpr
them in the context of the multi-phase-field model. We
troduce a body-fitted coordinate system in whichr measures
the distance from the surfaceSab and increases towards th
bulk phaseb. To examine the solution in the interface regio
we rescaler to the interface thickness, which isO(eab), and
therefore writer 5eabr, wherer5O(1). Theleading-order
solution forfa , denoted byfa

(0)(r), satisfies

72@gab~nW ab!#2
d2fa

~0!

dr2 2fa
~0!~12fa

~0!!S 1

2
2fa

~0!D50.

~34!

Hence

fa
~0!5

1

2 F12tanhS r

24gab~nW ab! D G ~35!

and we note that the leading-order approximation forfa in
the interfacial layer satisfies the identity
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E
2`

1`Fdfa
~0!

dr G2

dr5
1

72gab~nW ab!
. ~36!

The first integral of Eq.~34! is

36@gab~nW ab!#2Fdfa
~0!

dr G2

2
1

4
@fa

~0!#2~12fa
~0!!250

~37!

and hence the leading-order approximation to the Lagran
density is

L~fW ,¹W fW !5
72

eab
@gab~nW ab!#2Fdfa

~0!

dr G2

. ~38!

Wheeler and McFadden went on to consider the next-o
problem. The solvability condition that arises gives

Dbab52¹W Sab
•jWab2vnab

/mab~nW ab! ~39!

on the sharp interface, given bySab , between the two
phases, wherevnab

is the normal interface velocity~mea-
sured positive when the bulk phasea grows!. The term
mab(nW ab) clearly plays the role of a dimensionless kine
mobility. This is the dimensionless form of the Gibb

Thomson-Herring equation. For this interfacejWab plays the
role of the Cahn-Hoffmanj vector.

V. JUNCTIONS

We now exploit thej-vector formalism to investigate sta
tionary multijunctions wherem (<N) bulk phases meet, to
show that the classical force balance holds in the sharp
terface limit. To this end we first show how a stress ten
may be developed for the multi-phase-field model. The s
tionary form of the governing equations provides the Eul
Lagrange equations for the minimization of the total fr
energyF. Because the Lagrangian density is independen
the spatial coordinates we may appeal to Noether’s theo
@31#, which states that therefore there exists a conserva
law given by

¹W •J50, ~40!

where

J5 (
m51

N

¹W fm ^
]L

]¹W fm

2LI . ~41!

By Eq. ~26! this tensor may be written as

J572(
m51

N

(
aÞm

N

eamgam~rWam!fa¹W fm ^ jWam2LI . ~42!

On applying the symmetry conditions~22! and ~24!, it may
be more compactly expressed as
n

er

n-
r
-
-

of
m
n

J572(
a,b

eabgab~rWab!rWab ^ jWab2LI . ~43!

As discussed by Wheeler and McFadden@21# and in more
detail by Anderson, McFadden, and Wheeler@32#, J may be
shown to form the reversible part of the stress tensor in a
more complete theory that entails deformation of matter.

We consider a multijunction that lies parallel to the unit

vector lW and hence we restrict our discussion to the plane

with normal lW, in which case the surfacesSab may be re-
garded as curves in this plane. We assume thatm (<N) bulk
phases meet at the multijunction and they are labeled in a
counterclockwise fashion about the multijunction bya
50,1,2,...,m21 with corresponding phase fields
f0 ,f1 ,f2 ,...,fm21 . Because the junction is in equilibrium
the bulk phases have equal bulk free-energy densities, which,
without loss of generality, we may choose to be zero so that
bm(T)50 for m50,...,m21. Let C be a closed curve such
that the multijunction lies withinC and, for convenience,
chooseC so that it perpendicularly intersects each of the
phase boundaries emanating from the multijunction; see Fig.
2.

For clarity of exposition we assume all the constantseab
are equal.~The more general case in which all theeab are
different but proportional to a small parametere may be
done in a similar way to the simpler case discussed in detail
here.! We therefore writeeab5e and consider the multijunc-
tion in the sharp interface limite→0, in which case all the
interfaces are of thicknessO(e). Let nW mm11 denote the unit
normal of the curveSmm11 between the phases represented
by the phase fieldsfm and fm11„mod(m)…, where 0<m

<m21. Thus the unit vectortWmm11 is the tangent vector to

the curveSmm11 and is given bytWmm115nW mm113 lW. By con-
struction tWmm11 lies in the direction normal toC. Since the

FIG. 2. Schematic diagram of a junction within a closed curveC
~for the particular case of four bulk phases! indicating the orienta-
tion of the unit tangential and normal vectors associated with each

interface as well as the unit vectorlW that is parallel to the junction
and is directed perpendicular to the plane of the diagram.
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stress tensorJ is divergence-free thej-vector force balance
for a multijunction follows from applying the divergenc
theorem

E
C
J•nW ds50, ~44!

wherenW is the outward unit normal toC. Because the bulk
free-energy density of each phase is zero the only non
contributions to this integral arise from the parts ofC that
t

a

e
as

e
d

ro

intersect the interfacial regions. Hence, from Eq.~44!, we
obtain the force balance

(
m50

m21

FW m50W , ~45!

whereFW m is the total force per unit length acting on the pla
normal to the curveSmm11 in the direction oftWmm11 . We
now take the sharp interface limite→0 and evaluateFW m to
leading order. Integrating through the layer,FW m becomes
FW m5eE
2`

1`

J• tWmm11dr5eE
2`

1`

[72egmm11~rWmm11!rWmm11^ jWmm11~rWmm11!2LI ] • tWmm11dr

5eE
2`

1`

{72egmm11~rWmm11!@jWmm11~rWmm11!• tWmm11#rWmm112LtWmm11} dr,
-
whereer denotes the distance from the interface fromSmm11
in the direction of the unit normal vectornW mm11 , i.e.,
through the interface. The leading-order approximations
the phase fieldsfm ,fm11 in the interfacial layer are given
by Eq. ~34!. Thus we find that the leading-order approxim
tions to rWmm11 andgmm11(rWmm11) are

rWmm11;
1

e

]fm11
~0!

]r
nW mm11 ,

gmm11~rWmm11!;
1

e

]fm11
~0!

]r
gmm11~nW mm11!, ~46!
o

-

wherer 5er. Because thej vector is a zero-degree homo
geneous function, we note that

jWmm11~rWmm11!5jWmm11~nW mm11!. ~47!

From Eq.~25! we find that

gmm11~nW mm11!5nW mm11•jWmm11~nW mm11!. ~48!

Applying these considerations, Eqs.~46!–~48!, and using the
leading-order form for the Lagrangian~38!, we find, to lead-
ing order, that
FW m;E
2`

1`

72gmm11~nW mm11!F ]fm11
~0!

]r G2

[( jWmm11• tWmm11)nW mm112gmm11~nW mm11! tWmm11]dr

5E
2`

1`

72gmm11~nW mm11!F ]fm11
~0!

]r G2

@~jWmm11• tWmm11!nW mm112~jWmm11•nW mm11! tWmm11#dr

5@jWmm113 lW#72gmm11~nW mm11!E
2`

1`F ]fm11
~0!

]r G2

dr

5jWmm113 lW, ~49!
t

n of
where we used the identity~36! in the last step. Hence th
leading-order force balance at the multijunction is given

lW3 (
m50

m21

jWmm1150W . ~50!

We note that if we express the surface energies and thj
vectors in spherical polar coordinates such that the polar
 i-

rection is parallel tolW, then from Eq.~2! the force balance a
the multijunction~50! becomes

(
m50

m21

gmm11~f,u! tWmm112
]gmm11~f,u!

]u
nW mm1150W .

~51!

We observe that the force balance contains the interactio
the m surface tension termsgmm11(f,u) tWmm11 acting tan-
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gentially to each interface. In addition, there arem forces
@]gmm11(f,u)/]u#nW mm11 acting in the directions normal to
each interface, as shown in Fig. 3 for the case of a trijuncti
(m53), which we identify as the so-called Herring torqu
terms. In the case of isotropic surface energies the Herr
torque terms are zero and the conventional Young law
recovered.

VI. CONCLUSIONS

In this paper we have developed a phase-field model p
tinent to multiphase systems, such as grain boundaries
peritectic alloys, which includes anisotropy of both the su
face energy and kinetic mobility of the interfaces. Th
model is a natural extension of an isotropic phase-fie
model originally proposed by Steinbachet al. @27#. A differ-
ent phase field is used to represent each constituent b
phase. The model has the advantage that the functional fo
of the anisotropy of both the surface energy and kinetic c

FIG. 3. Schematic diagram of the forces acting normally an
tangentially to each interface at a trijunction of three phases labe
0, 1, and 2. The normal forces are the so-called Herring torq
terms.
R
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oc
n

g
is

r-
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-

d

lk
rm
-

efficient of the interface between every pair of bulk phas
can be specified independently by a suitable choice of
homogeneous degree-one functionsgab and mab , respec-
tively. The model does not seek to provide a realistic a
detailed description of the internal structure of the interfa
and junctions, but rather provides a formal diffuse interfa
description that in the sharp interface limit provides the c
rect form of the Gibbs-Thomson-Herring equation at int
faces and the force balance at multijunctions. The mode
addition, provides a convenient setting in which to comp
the motion of interfaces and junctions in systems involvi
more than two phases, although it has the disadvantage
the number of associated phase-field equations is pro
tional to the number of phases present, which correspo
ingly increases the computation requirements. We caref
extended the original isotropic model of Steinbachet al. so
that we could exploit the recently generalizedj-vector for-
malism developed by Wheeler and McFadden for diffuse
terface models. This has allowed us to provide relativ
short derivations of the sharp interface limits. It is wor
noting that the divergence-freeJ tensor associated with
time-independent solutions and the integral form of the
sociated conservation law~44! may be interpreted as a forc
balance that holds over any region that existsindependently
of the sharp interface limit. In fact, like the sharp interfa
conditions derived here at a multijunction, an alternat
derivation of the sharp interface limit for an interface is po
sible directly from this force balance@33#. The conservation
law ¹W •J50 itself is a consequence of the translational
variance of the underlying free-energy density of the syste

Finally, it is worth noting that we have also investigate
the unsteady multijunction in the sharp interface limit a
found that, to leading order, the static force balance is rec
ered. This is a consequence of the one-dimensional natu
a junction.
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