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In this paper we bring together and extend two recent developments in phase-field models, namely, a
phase-field model of a multiphase systfimSteinbachet al, Physica D94, 135(1996] and the extension of
the Cahn-Hoffmarg-vector theory of anisotropic sharp interfaces to phase-field mpdels. Wheeler and G.
B. McFadden, Eur. J. Appl. Matfr, 369(1996; Proc. R. Soc. London, Ser. 463 1611(1997]. We develop
the phase-field model of a multiphase system proposed by Steiebatto include both surface energy and
interfacial kinetic anisotropy. We show that this model may be compactly expressed in terms of generalized
Cahn-Hoffmané vectors. This generalized Cahn-Hoffmdgsvector formalism is subsequently developed to
include the notion of a stress tensor, which is used to succinctly derive the leading-order conditions at both
moving interfaces and stationary multijunctions in the sharp interface [81063-651X98)03703-9

PACS numbg(s): 64.60—i, 68.35.Rh, 81.10.Jt

[. INTRODUCTION asymptotic analysis to determine the asymptotic singular
limit of a multiphase Allen-Cahn system.

In this paper we present and analyze a phase-field model The focus of this paper is to develop the model of Stein-
that describes multiphase systems and includes both anisbachet al. to include the effect of anisotropic surface ener-
tropic surface energies and mobilities. It provides a model ofiiés associated with the interfaces between the different
a wide variety of different situations such as eutectic and®hases, as well as to include a more general form of the
peritectic alloys as well as the motion of grain boundaries. anisotropic mobility of the interfaces. To this end we draw

A phase-field model of a solid-liquid interface was pro- on the work of Wheeler and McFaddéng,21] to place the
posed by Lange[l] and was Subsequently developed by adimensionless form of the model in the Setting of the gener-
number of Workeriz_s]_ Whee|er, Boettinger, and McFad- alize.d Cahn-HOﬁmalﬁE vector. This a”c-)WS us to conduct
den[6] provided a phase-field model of a simple isothermalisuccinctly the sharp interface asymptotics and to recover the
binary alloy. Subsequently, several authors have extendegPrrect form of the Gibbs-Thomson-Herring equation for an
their Work to model more rea"stic nonisotherma| Situationsinterface in thl’ee dimenSiOI’lS as We” as the fOI’CG balance ata
[7,8] as well as eutectic alloyf9,10] and solute trapping multijunction between anisotropic interfaces. We show that
[11-14. Phase-field models of a pure material have alsghe é-vector formalism is a powerful and elegant tool not
been extended to include anisotropy of the surface energ9nly for investigating surface energy anisotropy in the con-
and interface mobility, by2,15-17. Recently, Wheeler and text of a sharp interface theory, for which it was originally
McFadder{18] have developed the notion of a generalized developed, t_:)ut also for the complicated diffuse interface
vector for phase-field models with anisotropic surface energjn€ory described here. o _ _
that extends the original idea of @évector that Cahn and  In the sharp interface theory in which an anisotropic sur-
Hoffman[19,20 developed for sharp interface models. Sub-face energyy(ri) is associated with an interfac® which
sequently, Wheeler and McFaddei] extended this idea to has a unit normafi, the £ vector is defined by
formulate a conservation law in terms of a stress tensor re- -
lated to the¢ vector, which they used to investigate the force &=Vy(n), 1)
balance at a multijunction. . ]

Several author§22—29 have extended the phase-field where y(r) is the homogeneous ei<ten3|on of degree one of
methodology to develop models involving a vector-valuedy(i). In spherical polar coordinatésmay be expressed as
order parameter in an attempt to consider a wider range of
phase transitions such as multicomponent or multiphase sys- - . ay(6,¢) . 1 9y(6,9)
tems. In particular, Steinbaddt al. [27] developed a phase- §&=7(0,9)&+ 20 %" Sing EY €. (2
field model of a multiphase system in which a phase field is
associated with each phase present. In this work an underl{zahn and Hoffman showed that the Gibbs-Thomson-Herring
ing free-energy functional was chosen that involved the pairequation may be compactly expressed as
wise interactions between all the different phases. The result-
ing governing equations were used to conduct numerical
simulations of a variety of situations and demonstrated the
feasibility of this approach, in particular in relation to the
qualitative simulation of a number of important growth phe-whereT, andT), are the interface and melting temperatures,
nomena in peritectic and eutectic systefi28,30. In related  respectively, and. is the latent heat per unit volume. They
work Garcke, Nestler, and Stoth26] used a formal were able to relate thé vector to the stress in the interface

1. -
T =Tu— r Vs & (3
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and showed that at a multijunction, comprising the conflu-et al. [27] assumed that the movement of the two phase
ence omm interfaces, the equilibrium force balance could beboundaries dominates the adjustment of triple or multiple
expressed as junctions, which possess a negligible dynamics of their own.
" Hence energy terms that depend on more than two phases are
- s neglected. The pairwise intercorrelation energy terms are
I szl &=0, ) specified to be double-well potentials of the form

wherel is the unit vector parallel to the junction arégl, k . 1 . 1
=1,...m, are the¢ vectors associated with each interface. Uop( D)= T Gup(d) = 7 D25 9)
: . , 4a,p 4a,pz
In Sec. Il we develop our anisotropic phase-field model,
derive the governing equations, and express the model iﬁ‘he parameter

dimensionless form. In Sec. Ill we show how generalized . - .
vectors may be associated with this model. In Sec. IV wd'€/9ht of th% dou_?le ;Ne"'hTQe":erm&z(&L) describe thdet )
exploit this formalism to investigate the sharp interface limit r_ee-er;ergy ensity of each bulk phase and are assumed to be
of interfaces and derive the Gibbs-Thomson-Herring equag'ven y

tion. In Sec. V we develop a stress tensor for our model and

use it to obtain, in a compact way, the force balance at an ha((Z!T):ba(T)d)a' (10)

equilibrium multijunction.

&/, is proportional to the pairwise barrier

The parameters,; and 14,4 are defined for each interface
Il. MODEL between bulk phases labeledind 8. They may be related to
measurable, physical quantitiésee Ref[18]) such as the

We consider an isothermal system in whikhdifferent H’lterface thicknesg ,; and surface energy,; through the

bulk phases may exist. Following the approach of Steinbac

et al. [27], we introduceN corresponding phase-field vari- identities
ables ¢4,...,¢n With 0<¢,<1 for a=1,... N. We as-
sume that the system can reside exclusively in bulk phase ‘ 7 up
(1=<n=<N) at a point in space ifp,=1 and¢,=0 for all 7 ap=2V205\a4p, Yap~ o0g - (13)
a#n, 1<a<N. We therefore impose the constraint that h
N From the obvious symmetry requirements thgfs=/"g,
2 b,=1 (5) and y,z= vg. We therefore deduce that
a=1 “« '
The free-energy functional associated with the system is Nap= Mpar Bap=aga- (12
given by

The form of the free-energy functional and the symmetry
- I properties of the parameters ensure the reproduction of the
F= V£(¢,V¢)dv, (6) standard isotropic phase-field model in the case of only two
phases in the system, e.g., a liquid and a solid phake
; P In an analogous way to the anisotropic phase-field model
here the Lagrangian energy densilys,V ¢) depends on ; R
er1 ¢ q_ g gy d Y:ﬁ ¢) di pt Y described by Wheeler and McFaddei8] for a solid-liquid
e vector ¢=(¢1,....4n) and its gradients V¢ interface, we extend the isotropic Lagrangian den&iyto
=(Voy,...Véy). the anisotropic situation by writing
In the case when all the interfaces between the different
bulk phases possess isotropic surface en@@ﬁ&) can

. N B
be defined bysee Ref[27]) E(@ﬁ&):;l azl {%niﬁ[raB(Faﬁ)]2+§aﬁ($)}

N B
LASVE)= 2 20 37epllapl®+ Tl #)] N N
y + Zl Bu(T) ot ) 21 b1, (13
+ > ho(e.T), (7) _ ,
a=1 where we_have invoked the constrai®) with a Lagrange

where 7,5 are constant gradient energy coefficients and thémJItIpIIer A Hererﬂﬁ(r“?) is defined to b.e a homog_eneou§
degree-one function of its argument. It imparts anisotropic

vectorr ,; appearing in the gradient energy terms is given bysurface energy to the interfaces. WHéDB(FaB)ZWaBl the

R PR isotropic Lagrangian is recovered; otherwise we anticipate
Fap=baV bp= PV ba- ®  ihat the surface energy of the interfaces is given by
In this model the possibl&l!/[ (N—2)!2!] interactions be-
tween theN bulk phases are described by a sum over the Ja
pairwise intercorrelation energies of the different phase fields Yap(ag)= NapN3ap r

—~ - aﬁ(ﬁaﬁ)l (14)
denoted byg,s(¢#). Using physical arguments Steinbach 6v2a,4
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N N
722 2 eaﬁ¢a7aﬁ( Faﬁ)

©) M(V )= . (19
[ B=1 a=1 J
where u,4(F,5) are homogeneous degree-one functions
such thatu ,5(F o) = 1 ga(7ge) - As shown below, the func-
tion w,pg(M,z) mMay be interpreted, in the sharp interface
Bk | limit, as the dimensionless anisotropic kinetic mobility of the
interface between the bulk phases labetednd 5.

________
o L
Bl
T
e

lll. THE &VECTOR FORMULATION

Our next aim is to define thévector for the multi-phase-
field model described above. Consider the interfacial region
between two bulk phases labeledand 8. We will assume

FIG. 1. Schematic diagram of a diffuse interface of thicknessthat in this regione, and ¢, are the only phase fields that
7 o5 between two bulk phases labelacand . The orientation of ~ are nonzero, so thap,+ ¢;=1. We denotia the surface in
the two unit normal vectors,,; andfig, is shown. this interfacial region defined by,=¢z=3 asS,z. The

unit vectors to this surface are denotedyy; andrig, ; see
wherefi,; is the unit normal to the interface between phasedig. 1 for their orientation. As we show in Sec. IV, the only
labeleda and B; see Fig. 1. We note tha,; is a homoge- W0 nontrivial governing equations, faf, and ¢y, are both
neous degree-one function of its argument, which it inherit$imilar to the phase-field equation discussed by Wheeler and
from T 5. McFadden[18]. Hence, in the sharp interface limd,gz

To proceed we nondimensionalize the free-energy density” €s.— 0. the surface energy of the interface associated with
(andX) with respect tcb,, length with respect t®, which ~ S«s IS described, to leading order, bya.s(f.g) or
represents a typical radius of curvature of the interfaces, andisa(Tga) . Becausen,z=—ng,, we obtain the symmetry
the surface energy, with respect td;R. Using Egs(11) condition
and (12), the dimensionless Lagrangian density may be ex-
pressed as

’)/aﬁ( ﬁaB) = ')/ﬁa( - ﬁaﬁ) . (20)

The functionsy,z(7,) have been extended as degree-one
homogeneous functions of their argumelstse Eq(14)], so
that

UL X 1 "
LVh)= 2 2, |3beapYoplTup)t 7 gaﬂw)}

N
2 ¢a_1:|1 (15) Yap({Tap)={Vap(Fap) for all {eR, (21
a=1

and hence it follows from Eq$20) and (21) that
wheree,g=a,gb1, ba=5a/bl, )\=X/bl, and we note that

N
+ 21 bo(T) ot

%zﬁ( Faﬁ) = )’Ba( Fﬂa)- (22

€ap™ €ga- 16 |n the spirit of Wheeler and McFadd¢a8], we define the

The governing equations are given by the gradient flow set of & vectorsgap(Map) by

: (7 _‘Waﬁ(rap)_i R
%=—M(ﬁ$)g for u=1,... N, (17 Eap(Fap)=———=Vi Yap(Fap), (23)
o

. which are consequently homogeneous functions of degree
whereM (V ¢) represents a dimensionless anisotropic mobil-zero. From Eqgs(22) and (23) it follows that
ity. These equations may be recast in terms of the Lagrang-
ian density as

gaﬁz - g,@a : (24)

19, _

T M(ﬁj,)[ﬁ( (18) We note from the definition ofaﬁ(r*aﬁ) that

). o)
Vo, db,)

It is convenient to choose the mobility to be of the form Yap(Fap) =Fap: Ea,;, (25)
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which follows from the calculus of degree-one homogenous ;= €g,—0. Using the symmetry conditions for

functions. Mapi€aprYap @nd the constraint,+ ¢z=1 the two non-
We observe that trivial governing equations are
L J P gﬁa
_)—:72 E ewyaﬂ(FW) 2/ ? 726,8a{v [’YBa(rBa)fﬁa(ﬁB]—i_’YBagﬁa Vd)ﬂ} ad)
Vo, asp Vo, “«
’YBa(FBa) ad)a
(9’)/ ( ) —ba—)\=726ﬁa — > ~ y (30)
+ E elu,ﬁ’y,u,ﬁ(r,uﬁ) MIB oL ] Iu“ﬁa(rﬁa) at
. ig
aB
72€a V (23 o )ga ¢a + [e3 ga V (a3
i &YW&FW 3{ [7,3 B)Sap ]VBB ot — 46'8(9(%
=72 2 ea,u.’)/a/.L(ra,u.) T o N
a<pu &I’aM &V(l) Yaﬁ(raﬁ) &(vbﬁ
s —bg—N=T2¢,5 — = ——. (32
/"Laﬁ(raﬁ) at
+ E €8 up(Tup) ﬁil”ﬁ M] We subtract these two equations and use the additional sym-
B>p N up N ¢, metry condition foré, to obtain
N
=72[ D CanVau(Fap)éa %], (26) . I 1 1
aFu AR 7265V [VpalVba)€pal = —— bal1= $0)| 5=
Ba

where we have used the symmetry relations for Ed6),
(22), and(24). A similar calculation gives that

F),Buz(v) ¢a) %

—Abg,=144ez, - : (32
N Mﬁa(v¢a) Jt
L o L2 = Yau
b, - 1260, Yap(Tap) Sap V bat deo, 09, whereAb,;=bs—b, is the dimensionless bulk free-energy
difference between the two phases and is related to their
+b,(T)+A. (27 mutual latent heat ;5 by
Hence the governing equatiofis8) may be written as M
Log T—Tg
Ab , 33
N ap™ bl T(’l/lﬁ ( )

L W s
M(V§) ot o

72&'&#{ '5) . [ ’)/a#( Fa,u,)g:a/.td)a]

WhereT 5 IS their melting point, provided the temperatdre

is close toT . A similar equation holds fot ;.

1 99,4, This is the same form of the phase-field equation consid-
ered by Wheeler and McFaddé®1], who studied its sharp

+ ‘}/a,u,( I:)cr,u) éa,u' vS‘ﬁa} -

A€an 9w interface limit. We briefly outline their results and interpret
—B,(T)—\ (28) them in the context of the multi-phase-field model. We in-
" troduce a body-fitted coordinate system in whicimeasures
for u=1,... N. The Lagrange multiplier may be found, the distance from the surfathlB and increases towards the
using the constra|r(t5) to be bulk phaseB. To examine the solution in the interface region

we rescale to the interface thickness, which@(e,z), and
therefore writer = €,45p, Wherep=0(1). Theleading-order
solution for ¢,,, denoted byp%)(p), satisfies

7260(”“{6 . [ yaM( rT)cy,u,) ga,u, ¢a]

u=1

203

a4y (0) on[1_ 0
N P = 1 (9goz,u. 72[7aﬁ(ﬁaﬁ)] ¢ (1 ¢ )(__ ¢a ):
+ @ (ra )ga 'V¢a - - dp 2
You e S } A€y, IPy (34)
H
_%ﬂ_w)] g Hence
M(Vg) dt .
=1~ r(*) 35
IV. INTERFACES be tan 24y,5(N4p) @9

We now briefly consider a curved interface between twoand we note that the leading-order approximationdgaqrin
bulk phases labeled and B in the sharp interface limit the interfacial layer satisfies the identity
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J+°° d&OTd ! (36) ':
e dp | T T2y (A
The first integral of Eq(34) is @ //" ," """" N
g : I’ \
/ : N,
4012 Tyt !'I : bN .
36 Yap(Map) | } — 7 [60T(1-97)?=0 S ] : N
FET SGIEER R
(37) ﬁu u+l\/ // 4 /-I‘. % “\_
and hence the leading-order approximation to the Lagrangia { : \,
density is \ /./'
‘\\ 'I' /,/'
\. O e N g
d¢51/0) 2 N :' C

(38) @

Wheeler and McFadden went on to consider the next-order

problem. The solvability condition that arises gives FIG. 2. Schematic diagram of a junction within a closed ci@ve
(for the particular case of four bulk phageésdicating the orienta-
tion of the unit tangential and normal vectors associated with each

Abug==Vs - Eap=Un,,/ Hap(Map) (39 interface as well as the unit vectbrthat is parallel to the junction
and is directed perpendicular to the plane of the diagram.

T2 o
£(¢vv¢):6_/3[7aﬁ(naﬁ)] dp

on the sharp interface, given b§,;, between the two
phases, where, is the normal interface velocitymea-

sured positive when the bulk phase grows. The term .
tap(fiyp) clearly plays the role of a dimensionless kinetic =722 €apVap(Fap)lap®Eap— L. (43
a<f

mobility. This is the dimensionless form of the Gibbs-

Thomson-Herring equation. For this interfaégﬁ plays the ) )
As discussed by Wheeler and McFadd@i] and in more

role of the Cahn-Hoffmar vector.
detail by Anderson, McFadden, and Whed&2], E may be
V. JUNCTIONS shown to form the reversible part of the stress tensor in a
more complete theory that entails deformation of matter.

We now exploit theg-vector formalism to investigate sta-  We consider a multijunction that lies parallel to the unit
tionary multijunctions wheren (<N) bulk phases meet, 10 yector | and hence we restrict our discussion to the plane

show that the classical force balance holds in the sharp in- - )
ith normal I, in which case the surfaces,; may be re-

terface limit. To this end we first show how a stress tenso’ ’ h
may be developed for the multi-phase-field model. The stad@rded as curves in this plane. We assumerth@&N) bulk

tionary form of the governing equations provides the EulerPhases meet at the multijunction and they are labeled in a
Lagrange equations for the minimization of the total freecounteérclockwise fashion about the multijunction ky
energyF. Because the Lagrangian density is independent of 0:12,---m—1 with  corresponding phase fields
the spatial coordinates we may appeal to Noether’s theorerffo>$1:%2,---,¢m-1. Because the junction is in equilibrium
[31], which states that therefore there exists a conservatiol{!® Pulk phases have equal bulk free-energy densities, which,
without loss of generality, we may choose to be zero so that

law given by
b,(T)=0 for u=0,...m—1. LetC be a closed curve such
that the multijunction lies withinC and, for convenience,
V.-E=0, (40 chooseC so that it perpendicularly intersects each of the
phase boundaries emanating from the multijunction; see Fig.
where 2.

For clarity of exposition we assume all the constants
are equal(The more general case in which all teg, are

N
E=> V0 (zﬁ —Ll. (41  different but proportional to a small parametermay be
n=1 Vo, done in a similar way to the simpler case discussed in detail
) _ here) We therefore writee ;= € and consider the multijunc-
By Eg. (26) this tensor may be written as tion in the sharp interface limi¢é—0, in which case all the

interfaces are of thicknes3(e). Letni,, ,, denote the unit
normal of the curveS,, ., between the phases represented
by the phase fieldg, and ¢, 1(mod(m)), where G<pu
<m-—1. Thus the unit vectofmﬁl is the tangent vector to
the curveS,, . ; and is given by, 1=, 1 X I By con-
struction'fw+1 lies in the direction normal t€. Since the

N N
E=7221 ; €anYauTan) DaV @ Eny—L1. (42)
n=1 a#u

On applying the symmetry conditior{22) and (24), it may
be more compactly expressed as
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stress tensog is divergence-free thévector force balance intersect the interfacial regions. Hence, from Edd), we

for a multijunction follows from applying the divergence obtain the force balance

theorem m-1

> F,=0, (45)
J E.7 ds=0, (44) w0
¢ wherelf# is the total force per unit length acting on the plane
where 7 is the outward unit normal t€. Because the bulk Normal to the curves,, ., in the direction oft,,, ... We

free-energy density of each phase is zero the only nonzer@ow take the sharp interface limét—0 a”dﬁevamatfﬁﬂ to
contributions to this integral arise from the parts@fthat  leading order. Integrating through the layer, becomes

+ o0 + oo - -
F,u.zef E'tMM+1dP:€f [7267;L,u+l(r,u/l,+l)f)p,u+l®gp,,qul(F,u,,qul)_‘CI]'t,u,l,ﬁrldp

+o0 R . -
= 6f7 {7267M/L+1(Fﬂﬂ+l)[§ﬂﬂ+ l(l?,u,u+l) : t,u,u+l]r/1,,u+1_ EtM/L+1} dp!

whereep denotes the distance from the interface fr§p, .,  wherer=ep. Because the vector is a zero-degree homo-

in the direction of the unit normal vectofi,,.,, i.e.,  geneous function, we note that
through the interface. The leading-order approximations to
the phase field&SM,¢>#_+l in the interfa_cial layer are giv_en Eupi1(Fups) = Eppra1(Mypuin). 47)
by Eq.(34). Thus we find that the leading-order approxima-
tions tor, 1 andy,, 1 1(F,.+1) are From Eq.(25) we find that
1 ad,(o) A . . .
F[LM‘F]_NZ#H ﬁILM+1' ’)//L}L+l(n/L‘lL+1):nILL/J,+l.g#ﬂ+l(nﬂﬂ+l)' (48)

Applying these considerations, Eq46)—(48), and using the
leading-order form for the Lagrangid88), we find, to lead-
ing order, that

194\,

Yuu+ 1('iu/.t+ l)N Z T Yuu+ l( ﬁ/J,,tL‘F 1)1 (46)

= e opil.]? - > >
F,uN f—w 72’)’,up,+1(ﬁ,u.,u+l) # [(g,u,/.L+l't/.L,u.+1)ﬁ,u/.L+l_ Yﬂu+l(ﬁ#ﬂ+l)tuﬂ+l] dp
0 2
+ee ~ 3‘25;411 > - . > - -
= i 727M/L+1(nﬂﬂ+l) T [(§MM+1.tM/L+1)nMM+l_(§M/L+1.nﬂﬂ+l)tuﬂ+l]dp
- - . +[ 9\ | 2
=[§;f,,u,+l><|]72y”,;l,+l(n,u,u+l) jﬁ # dp
=& ur1 X, (49

where we used the identit§86) in the last step. Hence the rgction is parallel td, then from Eq(2) the force balance at
leading-order force balance at the multijunction is given as the multjjunction(50) becomes

m-1 o 9,10+ 1($.0)
. . R - _ uptl 1 N _ =
| X Eo &uur1=0. (50 MZO Yiuu+1(P O ypia 90 Nup+1=0.
=

(51)

We note that if we express the surface energies and:the We observe that the force balance contains the interaction of
vectors in spherical polar coordinates such that the polar dithe m surface tension termsg,,, . 1(¢, ) fMMH acting tan-
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efficient of the interface between every pair of bulk phases
can be specified independently by a suitable choice of the
homogeneous degree-one functiopg; and u,z, respec-

tively. The model does not seek to provide a realistic and
detailed description of the internal structure of the interfaces
and junctions, but rather provides a formal diffuse interface
description that in the sharp interface limit provides the cor-

Yo1to1 rect form of the Gibbs-Thomson-Herring equation at inter-
faces and the force balance at multijunctions. The model, in

addition, provides a convenient setting in which to compute

So; the motion of interfaces and junctions in systems involving

more than two phases, although it has the disadvantage that
the number of associated phase-field equations is propor-
. tional to the number of phases present, which correspond-
_ﬁmaym/ae Y Sy ingly increases the computation requirements. We carefully
extended the original isotropic model of Steinbaathal. so
that we could exploit the recently generalizédector for-

FIG. 3. Schematic diagram of the forces acting normally andmalism developed by Wheeler and McFadden for diffuse in-
tangentially to each interface at a trijunction of three phases labeleterface models. This has allowed us to provide relatively
0, 1, and 2. The normal forces are the so-called Herring torqughort derivations of the sharp interface limits. It is worth
terms. noting that the divergence-freE tensor associated with

time-independent solutions and the integral form of the as-
gentially to each interface. In addition, there areforces  sociated conservation la@4) may be interpreted as a force
[0Yupu+1(0,0)/ 3610, acting in the directions normal to balance that holds over any region that existiependently
each interface, as shown in Fig. 3 for the case of a trijunctiomf the sharp interface limit. In fact, like the sharp interface
(m=3), which we identify as the so-called Herring torque conditions derived here at a multijunction, an alternative
terms. In the case of isotropic surface energies the Herringerivation of the sharp interface limit for an interface is pos-
torque terms are zero and the conventional Young law isible directly from this force baland@3]. The conservation

recovered. law V.= =0 itself is a consequence of the translational in-
variance of the underlying free-energy density of the system.
VI. CONCLUSIONS Finally, it is worth noting that we have also investigated
the unsteady multijunction in the sharp interface limit and
Found that, to leading order, the static force balance is recov-
ed. This is a consequence of the one-dimensional nature of
a junction.

In this paper we have developed a phase-field model pe
tinent to multiphase systems, such as grain boundaries a
peritectic alloys, which includes anisotropy of both the sur-
face energy and kinetic mobility of the interfaces. This
model is a natural extension of an isotropic phase-field
model originally proposed by Steinbaehal.[27]. A differ- ACKNOWLEDGMENT
ent phase field is used to represent each constituent bulk B.N. gratefully acknowledges the support provided by the
phase. The model has the advantage that the functional for@erman Research FoundatiédBbFG) under Grant No. SA
of the anisotropy of both the surface energy and kinetic co335/25-2.
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