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Correlation length and the scaling parameter in the renormalization group
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The basic procedure of renormalization group theory is used to split the free energy into a Kadanoff block
formation part, and a renormalized block-block interaction part. The study of this redistribution as a function
of the scaling parameter shows that there is stationarity values* of s, which turns out to have the same
critical behavior as the correlation length. It is suggested $hatan be used as an appropriate measure and
definition of the correlation length, even for noncritical regions. The calculaticst aé thereby performed
explicitly for the Gaussian, and numerically for tB& model. A sharp separation between noncorrelated and
correlated regimes is also found for the Gaussian model, well above the critical temperature.?antmel,
the results suggest thatis characterized by a high-temperature Gaussian branch and by a g&fdirench
at low temperatures, connected by a “plateau” in the intermediate repi0163-651X98)03303-(

PACS numbe(s): 05.70.Jk, 64.60.Ak

I. INTRODUCTION lation between the original parameters of the Hamiltonian

On a physical ground, the correlation lendgtfs identified (identified by the VECtOﬁO) and the rescaled paramet¢}§

as the decay scale of the exponential tail of the correlatiorgl]:

function G,(r). However, except for very special cases like - s -

the Ising model in one-dimensiof,(r) develops an expo- #s=F(p0,5). )
nential tail only in the asymptotic regime, that is, only when , o -

¢ is large compared to the ultraviolet cutoff scale. On a moreiccordingly, the original free energy per spifuo) can be

formal ground, the standard definition &fis written as the sum of two termjg]:
- fuy .
f =——+f ,S), 3
fgﬁ‘(rz), (1) (IL'LO) Sd res(lu’O ) ( )

whered is the system’s dimension. In the standard approach,
2\ ; H . . . . . >
where(r<) is the second moment of the normalizéd(r).  one is especially interested in the behavior sf in the

From Eq.(1), the asymptotic meaning gfis recovered, and neighborhood of a fixed point* of transformatior(2). This
the calculation can be extended to any regime. The Standa[fgr?avior is dominated b)? thﬁlevantfields{qbi} and by the

definition &g of correlation length has the advantage of al- di . | h - b
lowing for a direct comparison with experimental data, sincec°Tresponding eigenvaluga;;. The vectorus can be reex-

(r?) can be extracted from scattering measurements througfl){es’s'eoI In terms of th@i},_s’ then ms_erted Into Eq3) in
the structure factor. In the present paper we aim to show thaf"der to determine the scaling properties of sirggular part
by means of renormalization group thedGT), it is pos- | singOf the free energy, close to the fixed poif@3. The next
sible to introduce a further definition of correlation length, in €ONClusive step is to express the scaling relations among the
terms of the scaling parametsrIn practice, we will find a  V&riousphysicalexponents in terms of the eigenvalfas;.
stationarity condition which yields a special valgt of s, A cr_umal point for this purpose is the arbltrarlness_of the
proportional tog in the asymptotic regime. We will us# to scaling pa(amete$: we can _therefore as;ert that the impor-
study the crossover between the Gaussian behavior and tf@'ce Ofs in RGT lies on itsmathematicalrole, and that
S* behavior of¢, under the assumption thais large even in there is no manifest reason _for the Kadanoff blocks to be
the crossover regiofthis means that the quartic coupling anything but a useful mind picture. 'T‘ th_e present work we
constant is to be taken small enougHn the high- syggest.an approach to the renormalizative techniques which
temperature region whexgis small, it is found thas* and aims to impart a morphysm_alro_le tos and_ to the K_adanoff
¢, do behave differently. In particulas® exhibts some ef- Pl0cks as well. A renormalization operati¢RO) will now
fects due to short wavelength features which are absent in tH¥® fégarded to as a way of splitting the available free energy
square rooted second moment@®j. This point will be re-  f(xo) into two components: the first term on the right-hand
considered in Sec. V. We now give a brief description of theSide of Eq.(3) can be interpreted as the part of free energy
asymptotic relationship between the scaling parameterd  coming from the(rescaled block-block interaction,f ()
the correlation length. being the “effective” free energy of the rescaled system; the
In a real-space picturecan be interpreted as the side of a residual termf,. on the right-hand side is thereby the free
Kadanoff block of interacting spingneasured in units of the energy of the noninteracting blocks, that is, the free energy
lattice spacing The renormalization procedure yields a re- of “formation” of the blocks themselvef4]. We stress that
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both f(,&s)/sd andfres(ﬁo,s) do depend on gi.e., on the

Kadanoff block sidg while their sumf(,&o) obviously does
not. We will study redistributior(3) on varyings, and find
that there is a particular valu# of s (i.e., a particular size
of the Kadanoff block which makes the energy redistribu-
tion stationary that is

dfee

ds

s=s*

Such a stationarity poin* turns out to have the same
critical behavior as the correlation length of the system:

f(ss)
d

s=s* —

=0.

(4)

ds| s

s*x¢ (& large). 6)

This relation will be directly proved in Sec. Il for any

kind of Gaussian-like system, and widely generalized in Sec.
lIl for systems located close enough to a Wilsonian fixed

point. So far Eq(5) is nothing but anathematicabutcome.
However, there is ghysical argument suggesting that
should actually play the role of a correlation lengthany
case Indeed we will show that Ed4) is a criterion of ther-
modynamical stability, since* turns out to correspond to

the minimum free energy of formation of the Kadanoff The parameter§rg,ag,bg, - .
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ux(q)
BHN{S3H = =5y > Sil
qEB
Uog
N3- 2 Sq,56,54,54, 054, ,6
qu q4€B
—hoSg-6. )

whereS;=7\BJ2;S;e("@4T is the one-component field
(for simplicity); N is the number of spingj,(q) is an ana-
lytic function of g, whose coefficient ofj? is equal to 1;
uo=U/(7*BJ?) is a dimensionless coupling constant; and
ho=(H/)/B!J is the dimensionless external field.

The Gaussian model is characterized by the absence of
any coupling among th¢S;}'s [u,=0 in Eqg.(7)]. In zero
external field, we have

BH<G)({Sq})_ ®

QEB

Whereuz(d) is a dimensionless regular function, usually de-
pending on even powers of the dimensionless wave vector

(€)

.} are allscaling fieldsthe

Up(q) =To+0a°+a0q*+bog®+ - - .

blocks. Thuss* is a measure of the optimal linear size of the critical surface is characterized ly=0, wherer is asso-
Kadanoff blocks, with respect to the condition of thermalciated to the reduced temperat#e[(T—T.)/T.]. The cal-

equilibrium.

culation of the correlation length for the Gaussian model is a

The technical part of the present paper is mainly constandard exercise:

cerned with the calculation & . In Sec. Il we start with the

Gaussian model. Even in this “elementary” case we find a

nontrivial result, that is, a finite temperatufe above which
s* =1 (the Kadanoff blocks coincide withsinglespin), and

below whichs* start to increase with decreasing tempera-

ture. In Sec. IV we approach ti& model. From the results
obtained we argue that should display, on a log-log plot,
a “plateau” connecting a Gaussian branch to the gengthe
branch at lower temperatures.

IIl. GENERAL FORMALISM AND THE GAUSSIAN
MODEL

Consider a physical system modeled od-dimensional
hypercubic lattice and described by a §8t} of coordinates
associated with the sites of the lattice=(ma, m being a
vector of integers anda the spacing Suppose that the
Hamiltonian of the system is the following:

Ia < R
HV{SH =52 2 (Sres=$)* 52 S+US &

-HY S, (6)

whereU(>0) andR are two independent parameters &d
is a uniform external field. The Hamiltonigmultiplied by

B) in ﬁ—space turns out to be

Vro

Let us now turn to the energy redistributi¢®). We will

examine how the available free enerlg{ylo) shares between
the two components with a varying of the scaling parameter
s. Let us focus, for example, ofi.; the details about this
calculation can be found in Ref4] (see also Refl5]). The
resulting expression is exact and reads

(é>a). (10)

I('eGS)({rOIaO }

KgT

= d+1f d%q In[7u2(q)]—
(11)

wherey=(J/KgT)(7/2) is a dimensionless parameteqt;

is a hypersphericalshell (qeoute1/s<|q|<1); and gy

=[ 7921297 (1+d/2)] is the ratio between the volume of the
cube and the volume of the spheredirdimension. The fac-
tor g4 is due to the change of shapeube — spherg, the
latter being far more pratical for calculations. It is generally
accepted that details about geometrical shapes of the Bril-
louin zone B) do not influence(once the thermodynamic
limit is performed the values ofintensivequantities. Thus
one can usextensivequantities defined either on a hypercu-
bic B or on a hyperspherical one, provided that they are
afterwards divided by the correct number of degrees of free-
dom(DOF) they refer to. That is why, if the Brillouin spac-

ing is 2N, where N=N9 is the number of DOF actu-



2596

f
ﬁ res
0.2-
0,1 ,’I
N r =5.0
/! 0
E e r =4.0
ll 0
s r =2.0
001" - 0
v=0.3
-0,1 4
-0’2_
M 1 " 1 M 1 M 1 " 1 M ]
1 2 3 4 5 6 7

scaling parameter (s)

FIG. 1. Standard Gaussian model: behavioBéf.s as a func-
tion of s.

ally present in a hypercubic zone, a hyperspheric zBne
inscribed in it will containNgy DOF.
Let us start with the standard Gaussian model, that is,

ux(q)=ro+q? (12
in d=3 dimensions one has
fS)(ro:s) 1
B AL RIER VI R R 1—5)
1 2 2
- g{m[v(l”os )1—%
—ro¥%arctans\r,—arctan/ry), (13

whose plot is shown in Fig. 1 as a function of

As long asr is large(high temperaturgsthe curve is an
increasing function as. But, if we lowerr, down to a spe-
cial valuer . = (€% y)— 1, the curve starts displaying a sta-
tionary minimum point, denoted ks/, which depends on,.
In particular,s* diverges for,—07" (i.e., T—TJ). One can
easily calculate the dependencesdfon rg, with the result

(s*>1), (14

wherecy=[(€¥%y)—1]¥2 For c; to be real, the tempera-
ture must be bounded from below, that is,

F. DOLCINI et al.

FIG. 2. Standard Gaussian model: behavios®in any dimen-
sion.

e2/3
7 - 1>0<:>T>Tinf:

o
KB 262/3'

However, asT,=qJ/Kg (g being the number of first neigh-
bors is the critical temperature for a mean-field theory of an
Ising-like systen{cf. Ref.[6]), and asT.=T, for a Gaussian
model , one can argue that

Te>Tins-

Since we explore the range of temperatufesT ., it is clear
thatc; is real for all our purposes. The singular behavior of
s* is characterized by the same exponents) as the cor-
relation length[cf. Eq. (10)]. Quite similar results are ob-
tained in one and two dimensiofsee Fig. 2, with a general
coefficient

Cyq= (

One can also introduce some new parameters intq®g.
such as a quartic coupling constant

e2/d 1/2
— (15)

Y

Up(g)=ro+q*+agq*. (16)
Qualitatively the results fof s are very similar to those in
Fig. 1. In particular, as,—0, the minimum points* be-
haves now in the following manner:
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s with t=Ins and u=p. Let us now expandi(x) about a
fixed pointu* [defined byu(u*)=0],

U =T sptO(lloull®) T=7~ @7
J

where 5,&:,&—,&*. The solution of the linearized flow
1.3 equation is

Sp(t)=2 Y;@geMt, (18)
J

1.2 where the\?j’s are the right eigenvectors of the matrix
with eigenvalueg\}, and thed;’s are the scaling fields at
t=0.

Let us now turn to relatioi3). As the total free energy is
independent o§, the stationary points of the energy redistri-
bution are also found by

f(ps)
Sd

d
ds

=0. (19)

We implicitly assume that Eq19) admits a solution. Our
results on the Gaussian model suggest that this is the case;
, for other specific models this should be directly verifisde,
e for example, Sec. 1Y Recalling that=1In s, Eq.(19) is also

r equivalent to

0 VLA U a(0)]=f[u(0)]d, (20
FIG. 3. Behavior ofs* at high temperatures for the Gaussian -
model in three dimensions: the valug separates theorrelated whereV  f=[(df/duq),(f/dpy), - - 1.

region (ro<r,) from the completely uncorrelated regiorr Let us now take;lo in the neighborhood of a Wilsonian
>ry). fixed point,&*. In this case, one can write
. Caf. o) f(w)=F(a*)+V ;F (%) da+O(||8all), (2D
S* ~ \/—_ 1—- — .
r C s e s s -
° ‘ Vaf )=V i f(u*)+0(|sull) (22)

Now let us turn to Fig. 1; as already noted, the stationary___ .
point s* “vanishes” (i.e., it reaches the minimal valug provided that
=1) at afinite temperatureT , , defined by the equation lim f(ﬁ) and  lim ﬁ;f(ﬁ)

213 o p—p*
¥(T,) —1=ro(T4). are finite. Replacing(21), (22), and(17) into Eq. (20), and
equating powers dfl Su|| we have from Eq(20

This means that the components of the system are com-q 9P offoul a(20
pletely uncorrelated down td, . According to our picture, I ot -
this is just the temperature below which the system starts ; [Vt () ]ax - Yi(Nj—d)Doeti=F(u™)d. (23
getting arranged into Kadanoff blocksee Fig. 3. This be-
havior seems to have the same formal features as a high-
temperature pretransitidmve will come back to this point in
Sec. V.

We cannot be sure that this is always the case, szﬁ*fc'es

a critical point, andf would develop a singularity at some
order; such a hypothesis is to be verified in every single case;
for example, in the usual Gaussian model one has

IIl. NEAR WILSON'’S FIXED POINTS = (ro,ho), KZ* ~(0,0), and
We now wish to study the energy redistributi(8) close .

to a Wilson fixed point. The use of a widely general formal- af . KgTe dx

ism will provide some insights which support the validity of E(“ * gd+1 57'

relation(5) for much more general models than the Gaussian

one. From RGT, one knows that the flow equations in theyhereB is the Brillouin zone. The integral only converges

parameters space have an autonomous foghdt=w(u),  for d>2. However, for any Gaussian-like model we have
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already provedby direct calculationsthat actuallys* ~ £ in
any dimensior(see Sec. )l Introducing the quantities
Li=[V Inlf(u)]1ax- Y}, (24

Eq. (23) reads

> Li(\j—d)dgetit=d. (25)
J

Suppose now that there are only two relevant fields,&ay
and®,. This means

N A2>0, N\<0 Vj=3. (26)

F. DOLCINI et al. 57

IV. S* MODEL
The S* model Hamiltonian is defined through E() as

BH{S3H =BH O ({Sgh +ueVa({Ssh). (32

whereH(® is the standard Gaussian modei. Eq. (8) and
(12], and

1
Vi{Sh==. >

i Salsa S.S;
N®g;.d2.03.04B

27030y

95q,.6- (33

If we (perturbatively apply a RO to the Hamiltonia(82), to

Since the relevant fields measure the distance from the critfirst order inuy we obtain, following Ref[7]:

cal surface, they are usually associated with

T
q)oloc 0= (27)

reduced temperature,
Cc

®o,ch  magnetic field. (289

We are interested in the situation of zero external magnetic

field: ®o,=0; in this case Eq(25) yields
L1(7\1_d)q’015*}‘1+2 Li(\j—d)Dg;s* i=d.
=3

On assuming that,;#0 and\;#d, we obtain

d—2j23Lj()\j—d)(I)0js*>‘J
Li(Ag—d)Po,

s*}\lz

(29

For small enough irrelevant fields}* is an increasing
function ofd)ol‘l. Moreover, as all th¢\;}’s with j=3 are

’ 1 , SZ q2
BH ({S&})=W gB |Sa2§<l’o+§

+3Uo gdf d’q
2d_2 OU% I’0+q2

SdlSd28d38d462di 0

(34

with N’=N/s". The prime in the sums refers to the usual
rescaled spacing in the Brillouin zone. Note that the quartic
coefficient of Hamiltoniar(34) does not contain th&é term,
which leads to the correct fixed point according to the Wil-
son theory{1]. However, the main aim of Wilson’s method

is to prove theuniversality of systems. Hence one usually
applies the ROiteratively, searching for &ixed point In
order for this scheme to be appropriately defined, the param-

negative, the contribution of the right side of the numeratoreter space is to be large enougdctually infinite dimen-

in Eq. (29) becomes negligible with respect tb We thus
obtain, from Eq.(29),

1 14

) &

g 1
(I)Ol

1y

(30

siona): one therefore has to extend the renormalization
transformation to a more general functional form than Eq.
(32), containing all even order tern®" and any momentum
dependence as well. The existence of a nontrivial fixed point
is proved, and the universality follows as a consequence. The
price to be paid for this crucial result is to deal with the

where the second equality follows from the standard relatioffXPansion ¢=4-d).

N1=1/v. The validity of Eq.(5) is thereby extended to all

Wilsonian fixed point. This imparts a wide deal of generality

to the relationship between the stationary pafitand the

correlation length. For the discussions in what follows, it is
useful to express the second derivative of the interaction fre

energy with respect te in s*:

& 1
ds? & o
f(u*)

Z qu)oj()\jz_dz)(s*))\j—dz .
J

(31)

= (S*)d+2

Our purpose is different: once a Hamiltonibhis given,
the renormalization is used here to “create” an effective
system; we then examine how the energy redistribution de-

%ends on the scaling parametemo matter whether the pa-

rameter space is or is not enlarged by the RO itself: our
method requires aingle RO, since our aim is not universal-
ity. In fact, we stick to mode(32), which is described by a
finite number of parameter@ctually twg, and which be-
longs to a discrete-dimensional spack=@3 for example.
The S* model is not considered here as representative of a
universality class, but as an actual mathematical model
whose precritical features are the point of interest which we
address.

Equation(34) leads to a fairly simple expression for the
residual free energy, to first order iy (see Ref[4] and, for
further details, Ref]5]):
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FIG. 4. TheS* model: behavior of3f s as a function ok.

fredoilio;s) _ fied(ro;s) %f ddg \?
KgT KgT %\ 2¢)ouro+q?/)
(39

wheref(&) is given by Eq.(11). In the cased=3, Eq.(35)
becomes
fredr0;Uo;S) _f(reGs)(ro;S)
KeT  KgT

—Jro(arctansyr,— arctanr) )

1
S
2
(36)

where (& in d=3 is given by Eq.(13). The functionf
[Eq. (36)] versuss is plotted in Fig. 4.
From Eq.(36), we obtain the equation f&* :

* 2 1
3 2 i
SIn (14+rys*9)—K+54u 1-
2 0 O(1+ros*2) s*

—Jro(arctans* \r,—arctan/r o) ) =0, (37

where K=1—32Iny is a constant. The functions*

=s*(rg;uUg) was evaluated numerically, using the method of(actually »=0.63L . . .

bisection[8]. We have studied how* depends om, for a

2599
s’ S4
EE R Gaussian
?-.
'l u_=0.01
: 0
WL v=0.3
i
?
-1 ”'o T 2 3 4 5 s
rocrit rO

FIG. 5. Plot of the stationarity poirg* as a function of, at a
fixed uy.

see, the curve of th8* model liesbelowthe Gaussian one,
in agreement with the splitting of the critical point down to
negative values of.

In Fig. 5, rg ranges above a valugy,>0. This lower
bound depends sensitively on the perturbative ordenqof
We wish to consider; for example, if we stop to first order,
for romn We choose a minimal value of, for which theug
contribution in Eq.(36) can be regarded to as an actual first-
order perturbation of the unperturbed Gaussian ﬁég’t. In
practice, this yields gy n=~20/251,. For a given value of
Ug, romn Can be lowered by including higher-order terms
of the expansion. Anyway oun Will always be positive
This is inherent in the perturbative technique of the Gaussian
averages that we used, which only makes sengg>i{O0.
This technique was also used by Wilson in deriving the RGT
equations(cf. Ref.[1]). However, those equations have no
singularities inro=0, and can be extended to the regign
<0. In contrast, our calculations involve expressions con-
taining \r,. So they cannot be straightforwardly extended to
the casea ;<<0. On converting Fig. 5 into a log-log plot, one
obtains the result given in Fig. 6, that displays an interesting
feature: the curve turns out to haveceancaveshape at low
ro- This might look surprising, since we knaiivom Sec. I1)
that in the very neighborhood of§" where s*«(r,
—r1o,"™ 77, the exponenv is greaterthan the Gaussian one
in three-dimensions In a log-log
plot, this means that the ultimate slope of the curve must be

fixed value ofug. The result is plotted in Fig. 5. As we can greater than the Gaussian one. The simplest way to match the
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FIG. 7. The correlation length should exhibit a “plateau” be-

FIG. 6. A log-log plot ofs* as a function of ,—ri™ (the Gauss-  havior before entering the region of the univer§aldivergence,
ian curve is not a straight line here, because the valu§'bfefers ~ marked byr=0.631.
to the S* mode).

that s* is a maximumpoint for the interaction free energy,
curve in Fig. 6 with a larger linear slope at lower tempera-that is, aminimumof f . [see Eq(4)]. Hence, even close to
tures is an inflection point. If so, the actual critical behaviorthe asymptotic region, we can identi§* as the optimal
should appear just after a plateau of the log-log plot of theinear size of the Kadanoff blocks in thermal equilibrium, in
correlation length, as though the correlation length “took aanalogy with the case,>0.
breath” just above th&aussianregion, before approaching
the S* divergence(see Fig. 7.

In order to support this possibility, one needs to enter the
regionr§"<r,<0. However, the preceding expression, ob- The aim of the present paper was to explore the possibil-
tained forry>0, are singular irry=0 [see Eq.(37)], and ity that RGT can be fruitfully used even in regions where the
they cannot be extended to negative values pfas they nonuniversafeatures of the model become important. Hence
stand. Instead, we can use the general results of Sec. Il faur study is intermediate between the “standard” RGT and
which RGT itself provides manageable expressions just closmore sophisticated renormalizative techniques, such as the
to the critical point. In particular, we refer to E@Q9), show-  hierarchical reference theof§0]. At present, we limited our
ing that the corrections to the asymptotic slopesofare due analysis to the correlation length as to the most relevant
to the irrelevant fieldgfor h=0). To first order inug and  quantity for any preliminary approach.
e=4-d, it can be showr{see Ref[4]) that the sign of the It is a mathematical result that the stationarity condition
correction to the asymptotic slope sf is determined by the (4) on the RGT energy redistributiof8) does determine a
sign of the quantity §,—e/144) (the irrelevant fielfl — special values* of the scaling parametes (fixing the
Hence, foru,>e/144, the correction ipositive which sup-  Kadanoff block’s sizg which turns out to have the same
ports the existence of the inflection point as sketched in Figcritical behavior as the correlation lengé{Eq. (5)]. As our
7. In the opposite case, timegativecorrection might prelude study highlighted, the system seems to arrange into blocks
to a more complicated matching. Just to obtain an insight, wavhose size makes their “formation energytiinimal and
have studied the sign ofif—1/144)(@d=3) in the case of an their mutual interaction energyaximal The scaling param-
Ising model on a cubic lattice. By transforming this problemeters might therefore be regarded as a thermodynamic pa-
into aS* model(see Sec. 20 of Ref9]), u, turns out to be  rameter, whose equilibrium valughat is the mean size of
greater thanZ, in the regionr,<0. So we may reasonably the Kadanoff blocKsis s*. As for the thermodynamic fluc-
support the qualitative behavior in Fig. 7 for a wide class oftuations ofs arounds*, we notice(see Fig. 1that the plot of
model systems. In addition, we verified by means of B4) fes SPreads out as the critical conditions are approached. In

V. CONCLUSIONS
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) ) ) ] ] Another unexpected result was obtained just in the
particular, it can be shown that thelative fluctuations di-  «ivial” Gaussian case. In Fig. 3 it is shown that the sta-

verge when the critical temperature is reached. This |°°k§onarity points* reaches the minimal possible valse= 1
reasonable in a statistical thermodynamic picture, becausg g finite temperatureT , . Figure 1 shows that, above.
the number of Kadanoff blocké.e., _the statlst!ca_l popula-  the minimum off .. just corresponds te= 1. According to a
tion) becomes smaller and smaller in such a limit. More de'thermodynamic interpretations* should thereby remain
tails on the fluctuations of will be given in a forthcoming equal to the value 1 for any temperature abdve. The
paper. _ _ . , preceding result suggests that there is a sharp separation be-
The method just outlined was originally developed IN O t\ween correlated and noncorrelated regions, marked by
der to cglculate the correlano_n length for nontnwal It can be also shown that, on mapping an Ising model into a
m_o_dels—llke t_heS4 model—in regions that are not strictly Gaussian modek* decreases witli continuouslydown to
critical. In particular we deal with the crossover between the, | ar limiting values* (T=o)>1. These effects are due
Gaussian and thg* regimes, under the assumption tlgais to the temperature-dependeriactor cy(T) [Eq. (15)], that

sufficiently Iqrge in this region too. A nontrivi'al result is that, marks the difference between the standard definigigfEq.
to first order inug, the correlation length of Ising models that (1)] of the correlation length and the optimal Kadanoff

can be mapped into 8 model is expected to develop an block's size £¢.<S*. In the Gaussian regime, one has, in
inflection point connecting a quasi-Gaussian behavior at higtﬁact £ dOCCd(T?)UZ)l/Z“Cd(T)& The differen,ce betweén

. 1 a st
'::e_mpGeri;lures to thﬁ“ dllve_rgince;lt dlpw temﬁeraﬁu(gee Exag ANd &, is relevant just in the high-temperature regime in
r19. ) oreover, the plotin Fig. 5 indicates that the Gauss, hichy the notion of the correlation length itself becomes
ian critical temperaturerg=0) should be probablincluded | sive. However, if one believes that mhysical length

just into the plateau region around the inflection point. In ag.516 can pe smaller than the lattice paramigteany related
sense, the plateau looks like a “memory” of the Gaussian

) : . - Ce=> N eutoff scale, one should note th fulfills this require-
criticality. This point should deserve further attention in view ent ; ¢ B q
. L X , whileé; does not.
of phenomenological applications. As for the experlmentalm
evidence of the predicted behavior §fsee Fig. 7, encour-
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