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Driven dynamics of periodic elastic media in disorder
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2Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
~Received 29 August 1997!

We analyze the large-scale dynamics of vortex lattices and charge-density waves driven in a disordered
potential. Using a perturbative coarse-graining procedure, we present an explicit derivation of nonequilibrium
terms in the renormalized equation of motion, in particular Kardar-Parisi-Zhang nonlinearities and dynamic
strain terms. We demonstrate the absence of glassy features such as diverging linear friction coefficients and
transverse critical currents in the drifting state. We discuss the structure of the dynamical phase diagram
containing different elastic phases at very small and very large drives, and plastic phases at intermediate
velocity. @S1063-651X~98!02703-2#

PACS number~s!: 05.70.Ln, 71.45.Lr, 74.25.Dw, 74.40.1k
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I. INTRODUCTION

Periodic structures driven through a random environm
have become a paradigm for the statistical mechanics of n
equilibrium processes. The beginning of the study of t
phenomenon in the context of charge-density wave~CDW!
dynamics was marked by the development of several
neering and elegant concepts~see@1# for a review!, in par-
ticular the description of the depinning transition in terms
critical phenomena@2#. Yet it was hard to foresee the subs
quent growth of what seemed to be a simple yet a su
subject into a fascinating multidisciplinary branch of stat
tical physics. The resurgence of interest was related to
discovery of high-temperature superconductors where
motivation was driven also by the technological quest for
description of their transport properties.

The understanding of the remarkable effects displayed
driven vortex lattices involved a diversity of concepts dra
from various branches of contemporary physics ranging fr
polymer physics and spin glasses to nonlinear stocha
equations and turbulence, as well as the invention of n
concepts of nonequilibrium physics of disordered media~see
@3#!. In recent years much theoretical effort has been
pended to advance our knowledge of the driven dynamic
disordered media. Yet in spite of impressive achieveme
there remains a vast number of fundamental open ques
with the depth and subtleties still to be revealed. In this w
we develop a regular approach to the description of perio
media driven through a quenched random environment
will hopefully enable us to put subsequent research end
ors on a firm standard basis.

A. Statics of disordered elastic periodic systems

The subtle dynamic properties of dirty media are go
erned by the interplay among thermal fluctuations, driv
force, and quenched disorder. To gain better insight into
dynamics we first discuss briefly thestaticsof weakly disor-
dered elastic periodic systems. These include CDWs, vo
lattices~VLs!, vortex arrays in Josephson junctions, dom
571063-651X/98/57~3!/2574~20!/$15.00
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walls, dislocations in solids, Wigner crystals, and many o
ers. The common feature of the above systems is that
though the weakness of pinning suggests the purely ela
Hamiltonian as a starting point, the disorder-distorted sys
possesses a huge number of metastable states and the g
state is infinitely degenerate. This dooms to eventual fail
direct attacks on the asymptotic large-scale behavior ba
on a straightforward perturbation theory with respect to d
order.

The first and decisive step for an approach by statist
physics to such systems was made in the remarkable wor
Larkin @4#. The pioneering ideas of this work were later ca
into thecollective pinning theory@5–7# and basically deter-
mined the further development of the field. It was recogniz
in @4# that pinning can be treated perturbatively in the d
main of the distorted lattice belonging to a single metasta
state generated by disorder. Such a coherently pinned
main is called the correlated volume and the pinning ene
stored in such a domain determines the crucial character
of the pinned system: the critical depinning force.

The key quantity characterizing the system is the deg
of distortion of the elastic system by disorder, theroughness
w(r )5^@u(r )2u(0)#2&, whereu(r ) is the displacement of a
vortex from its undistorted positionr . Within the domain
w(r )<j2, wherej is the characteristic spatial scale of vari
tions of the random potential, the pinning forcef has only a
negligible dependence on the displacementsu. This implies
that this domain is pinned coherently and lies in a sin
valley of the effective potential landscape of the system. T
roughness within the correlation volume grows asw(r )
}r 2z with the so-called wandering or roughness exponenz
that takes the valuez5(42d)/2 in the Larkin regime (d is
the dimensionality of the lattice!. Since different Larkin do-
mains are pinned independently one could conclude that
ning, however weak, destroys the long-range order of
lattice for d,4.

As soon as the relative displacement of vortices exce
the disorder correlation length, the spatial variation of t
pinning forces becomes important. The vortices start
2574 © 1998 The American Physical Society
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57 2575DRIVEN DYNAMICS OF PERIODIC ELASTIC MEDIA . . .
‘‘feel’’ that they are in a randompotential having many
metastable states rather than in a random force field. Th
fore the perturbative result would overestimate the ac
roughness of the lattice. On intermediate scales wherej2

<w(r )<a2 and a is the lattice constant the system adju
itself to the multivalley potential relief. This regime is re
ferred to as the random manifold regime@8# and the rough-
ness exponent becomes smaller than in the Larkin reg
On these scales the periodicity of the medium is not ye
significance. The region of the largest scales, where lat
displacements exceed the lattice constanta2<w(r ) and the
periodic nature comes into play, was investigated first
Nattermann@9#, who found, by a scaling approach, that
large distances pinning of the VLs is equivalent to pinning
CDWs and that displacements grow only logarithmica
w(r )} ln(r). The above results were confirmed later by var
tional replica and renormalization-group approaches@10–
13#.

Structures with logarithmic roughness are well known
the physics of surfaces and two-dimensional~2D! crystals.
The logarithmic roughness implies that the system retain
periodic character and Bragg peaks in the structure fa
S(q); the singularities, however, have an algebraic chara
S(q)}uq2Qu2n (Q is a reciprocal lattice vector! rather than
the d-function-like character as in ordinary crystals
Lorentzian character in liquids@14–16#. This algebraic be-
havior is a characteristic feature ofquasi-long-range crystal-
line order.

The roughness of the lattice structure implies a rugg
ness of the potential landscape of the system and the e
tence of infinitely high barriers separating the different me
stable states, which is the characteristic feature of gla
systems~see@3#!. This was realized in a seminal work b
Fisher@17#, who identified the VL distorted by disorder as
glassy structure and called it thevortex glass. It is important
to stress that the derivation of the above features was b
on theelasticnature of disordered lattices.

The stability of the elastic vortex glass with respect to
formation of topological defects~dislocations! was ques-
tioned by Fisher, Fisher, and Huse@18#, who stated that dis-
locations are to be generated at the scales where the ro
ness becomes of order the vortex spacing and that there
the elastic description of the vortex glass fails. In spite of
fact that the correctness of the arguments of@18# was ques-
tioned in turn~the energy of the dislocation formation wa
underestimated and the logarithmic smoothness of the la
on large scales was overlooked!, the image of the vortex
glass as a dislocation saturated medium became widesp
Arguments demonstrating the self-consistency of the ela
vortex glass approach~as long as the disorder is wea
enough! were presented in@13,19,20#. Thus the existence o
a weak disorder-induced elastic vortex glass free of topolo
cal defects can be considered as well established. Reca
that a logarithmically rough medium shows algebraic Bra
peaks, Giamarchi and Le Doussal@13# proposed to call the
vortex lattice deformed by disorder a ‘‘Bragg glass.’’ Th
name gained popularity among the specialists and repla
the somewhat compromised ‘‘vortex glass’’ in their technic
jargon. The latter term is now reserved for the topologica
disordered vortex solid phase.
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B. Dynamics of disordered elastic periodic systems

The main feature of the driven dynamics in a rando
environment is the existence of the pinning threshold:
zero temperature the system remains pinned if the drive d
not exceed a certain threshold valueFc , the critical pinning
force, and slides ifF.Fc . At finite temperatures the shar
transition is rounded by thermal fluctuations and is not v
well defined. Nevertheless, one can keep the notion o
temperature-dependent critical forceFc(T) as the force sepa
rating the pinning dominated regime with slow therma
activated dynamics or creep at low forceF!Fc from the fast
sliding one atF@Fc .

Motion of the system in the creep regime occurs via th
mally activated jumps over energy barriers separating dif
ent metastable states. The size of the typical energy barrie
a function of the driving force can be related by scali
arguments to structural features of the system, in partic
its roughness. This was done in@21# for driven elastic mani-
folds and it was found that the barriers controlling the m
tion diverge algebraically at small driving forces asU(F)
}1/Fm, where m5(2z21)/(22z). The approach of
@21# was extended from continuous media to the creep
vortex lattices in@8,9#. The divergence of the activation ba
riers implies a nonlinear response of the system to sm
forces and leads to the identification of the low-temperat
vortex state as a glassy phase, since such a nonlinea
sponse is a hallmark of the glassy system.

The understanding of the critical behavior at the dep
ning threshold has seen remarkable progress@22–24# since
the work by Fisher@2#.

The high-velocity sliding of the periodic systems w
long considered as the most ‘‘easy-to-understand’’ regim
An outburst of interest in the flow regime at large drivin
forces well above the depinning threshold was triggered
the prediction@25# of dynamic phase transitions betwee
plastic sliding in the nearest vicinity of depinning and coh
ent motion of the crystalline structure at high drives. Alrea
early experiments@26# have shown that a moving vorte
lattice has a higher degree of crystalline order than a pin
vortex lattice. These studies have been refined rece
@27,28# to identify the different dynamical regimes.

The nonequilibrium phase transition predicted in Ref.@25#
is expected to occur in systems with sufficiently strong d
order, where depinning is accompanied by the massive
duction of topological defects@29#. The structural order im-
proves at large driving forces because the system experie
disorder forces that are temporally fluctuating in the mov
frame. In this sense the effect of disorder resembles the t
mal noise of a heat bath. However, this comparison does
carry too far since the quenched nature of the disorder
implies infinite-ranged spatio-temporal correlations of the
fective force in the moving frame.

Balents and Fisher@30# used scaling arguments to exten
the concept of the nonequilibrium ‘‘freezing’’ transition o
Ref. @25# to CDWs and have shown that true long-ran
order is restored at large velocities only ind.3. Thus the
critical dimension is reduced by one in comparison to
static case. Ford<3 the CDW phase, which is the analog
the vortex displacement, is still rough even at the larg
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2576 57STEFAN SCHEIDL AND VALERII M. VINOKUR
velocities, whereas a temporal order resulting in narrow-b
noise may still persist.

Giamarchi and Le Doussal@31# addressed the question o
spatial large-scale order in the driven VL. They argued t
the transverse periodicity of the system leads to glassy
tures of the driven phase. Considering only transverse p
erties, it was argued, in particular, that the driven lattice
tains a logarithmic roughness on the largest scales only
d53, but it acquires an algebraic roughness ford,3. A
similar roughness is expected for displacements in the di
tion parallel to the velocity@32,33#. Thus the large-scale
properties of the driven case are very different from the st
case, where roughness is logarithmic for alld,4. One of the
manifestations of the transverse glassiness suggested ac
ing to Ref.@31# would be the existence of a transverse cr
cal current. This brings to mind the early observation
Schmid and Hauger@34#, who have performed a lowes
order perturbative calculation for the pinning force and n
ticed a discontinuity in the transverseI -V characteristic in a
sliding state.

Notice that in comparison to the equilibrium situation
the absence of driving forces, the approach to the physic
large velocities is even more intricate because of thenon-
equilibrium nature of the driven state. Although importa
predictions about this state have already been formulate
systematic approach is still lacking.

In this paper we develop such a systematic approac
the driven dynamics of dirty periodic media on the basis
the Martin-Siggia-Rose~MSR! formalism. The MSR formal-
ism provides a powerful tool to access the largest scales
to treat the immediate vicinity of the depinning transitio
Focusing on the high-velocity regime, we will show that
number of important conclusions concerning the proper
of the driven state can be successfully achieved even wi
the framework of the dynamic perturbative approach. F
large velocitiesv the small parameter for the expansion
D0 /h2v2jd12, whereD0 is the d-dimensional spatial inte
gral of the potential correlator of a widthj and h is the
friction coefficient.

C. Summary of results

Using a coarse-graining procedure for the dynamics
periodic media, we find that their large-scale behavior
governed by an effective equation of motion

hab* u̇b5Dab* ub1Fa2Fa
fr* 1

1

2
labgab* @]aub#@]bug#1ja*

1 f a* ~r1vt1u!. ~1!

Renormalized parameters carry an asterisk to disting
them later on from the unrenormalized~bare! ones. Under
this procedure the parameters become anisotropic since
velocity identifies a particular spatial direction.

All components of the friction coefficienth* are found to
be finite. Therefore glassy features, which in general app
as a divergence of such coefficients, are absent. The el
dispersion that readsDab* (q)52 ixaba* qa1kabab* qaqb in
Fourier space includes, in addition to elastic constantsk, also
stress termsx after coarsening. Due to pinning and dissip
tive effects on spatial scales smaller than the coarse-gra
d
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cutoff scale~with momenta larger thanL,), the velocity
dependence of the friction forceF fr* becomes nonlinear.

The fourth term in Eq.~1! is a Kardar-Parisi-Zhang~KPZ!
nonlinearity@35# l* , which is absent in the bare dynamic
and is generated by disorder. It is an anisotopic general
tion of the term1

2 l(¹u)2 familiar from surface growth and
Burger’s equation.

The pinning forcef * , which was simply the gradient of a
random potential in the bare case, acquires a more viru
random-force character with a correlator

fab* 5E
R

f a* ~R! f b* ~0!, ~2a!

fxx* '
D0

2

j41dh2v2
, ~2b!

fyy* '
a2D0

2

j31dchv
for d.3, ~2c!

fyy* '
a2D0

2

j31dchv
~aL,!d23 for d,3 ~2d!

for large velocitiesv@cj/ha2 with a typical elastic constan
c. One sees that the variance of the components perpend
lar to the velocitydivergesin d<3 as the coarse-grainin
cutoff L,→0.

The effective thermal noisej* describes in general a
effective heat bath with a temperature that is increased du
shaking effects exerted by the pinning on the mediumq
;T, see below!:

qab* 5E
tr

^ja* ~r ,t !jb* ~0,0!&, ~3a!

qxx* 'q1
D0

j21dh2v2
q, ~3b!

qyy* 'q1
a2D0

j31dchv
q for d.3, ~3c!

qyy* 'q1
a2D0

j31dchv
~aL,!d23q for d,3. ~3d!

In the nonequilibrium case this effective ‘‘temperature’’
defined as the integral over the correlator ofj* that can be
distinguished from pinning forces by the temporal decay
its correlations. The behavior ofq* andf* is very similar;
they show the same type of divergence forL,→0. Since
this divergence comes from small momenta, it is a meas
for the strong fluctuations of the medium onlarge scales
only. The disorder-generated stress couplingsx, the KPZ
nonlinearities, and the random forces are specific nonequ
rium terms that are absent in the equation of motion bef
coarse graining.

From the effective equation of motion~1! the displace-
ment fluctuations are found to roughen the medium in
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57 2577DRIVEN DYNAMICS OF PERIODIC ELASTIC MEDIA . . .
mensionsd<3 with high anisotropy for directions paralle
and perpendicular to the velocity~which we choose to be
parallel to thex axis!. The anisotropy manifests itself in tw
distinct features of the displacement correlations of the e
tic medium: ~i! The components of the displacement fie
perpendicular tov exhibit stronger fluctuations than the com
ponents parallel tov and ~ii ! the relative displacement in
creases faster in perpendicular directions than in the par
direction.

The former feature, obtained below within perturbati
theory for the elastic medium, can be understood qua
tively already from a single-particle picture in analogy to t
consideration that led to the notion of the shaking tempe
ture, describing the disorder-induced increase of the effec
system temperature@25#. To this end we consider a particl
moving in a disorder potentialV with Gaussian correlation
V(R)V(0);D0j2de2R2/(2j2). A particle starting atR(t50)
50 moves with an average velocityv'F5F x̂ following an
overdamped equation of motionhṘ5F2¹V(R)'hv
2¹V(vt). The components of its displacementu(t)5R(t)
2vt parallel and perpendicular tov have a variance tha
grows differently as a function of time. When the effect
the pinning forces is integrated over time~i.e., along the
direction of motion of the particle!, the force component par
allel to the direction of motion is ‘‘recognized’’ as the gra
dient of a random potential, whereas the perpendicular c
ponentscannot be distinguished from a true random forc
since the particle does not explore these directions. Th
fore, ux

2(t)'D0 /h2v2jd saturates for large times, where
uy

2(t)'D0 /h2vjd11utu grows without bounds, like under th
influence of thermal noise. This implies that the shaking te
peratureTsh;D0 /v is associated with theperpendiculardis-
placement components.

The second feature of anisotropy, a more rapid growth
the relative displacementsw(r ) in the direction perpendicu
lar to the motion~i.e., for r'v), is related to the size an
shape of the dynamic Larkin domain, in which the pinni
forces act coherently on the elastic medium. Sinceux has
much weaker fluctuations thanuy the correlation lengths ar
determined by the fluctuations ofuy alone and are found to
be @31#

yc5aS cjd13hv

a2D0
D 1/~32d!

, xc5hvyc
2/c. ~4!

For weak disorder they are finite only in dimensionsd<3
(yc still depends logarithmically onv in d53) and increase
for large velocities much faster parallel than perpendicula
the velocity~see Fig. 1!.

The next important question of the stability of the latti
with respect to plastic relative displacements of vortices
be captured by a phenomenological Lindemann criterion
examines the fluctuations in the relative distance of nei
boring vortices~bond length!. Vortices neighboring in a di-
rection parallel tov have much weaker fluctuations in the
relative position than neighbors in perpendicular directio
When the relative fluctuations of certain bonds exceed a
tain fraction of the vortex spacing, these bonds are expe
to be broken by topological defects. We find that the bon
in directionsperpendicularto the velocity have the stronge
s-
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fluctuations. This consideration therefore supports the s
gestion that above a certain critical value of the velocity
VL moves coherently like a solid and the topological ord
of the lattice may be preserved despite the roughness o
lattice in d<3. Below this critical velocity the motion is
plastic and vortices may move in decoupled channels. I
essentially the anisotropy of the Larkin domain that provid
decoupling of flowing vortex channels.

Figure 2 summarizes our view of the dynamic phase d
gram for the case of sufficiently strong disorder. Starti
from the highest drives we expect acoherentmotion of the
topologically ordered phase. Upon decreasing the driv
force the fluctuations of the bonds between the neighbo
vortices cause a massive production of topological defect
the transition from coherent to incoherent motion marked
the solid line. This line corresponds to the freezing transit
of @25#. The question concerning the nature of the plastica
moving phase still remains. Our analysis suggests that th
is a tendency to channel formation, but at this point we c
not conclude whether these channels remain stable up
further decrease of the applied force and therefore dyna
melting describes the transition from the moving quasicrys
to moving smectic@32# or directly into the fluidlike phase
The possible transition between the smectic and fluidl
phases is denoted by the dotted line. The lower strip be
the critical current~the dashed line! corresponds to the
pinned state where the system moves via thermally activa
jumps between metastable states.

For weak disorder a dynamic transition from the coh
ently pinned phase to a coherently moving phase is poss
without passing through a plastic regime. Plasticity occ
only at sufficiently high temperature and for small enou
velocities. Since the anisotropy of the system decreases
decreasing velocity, the width of the smectic regime shrin
in that direction.

In fact, it also remains a fundamental open question
what extent the creep regime can be considered as coh
in the sense that the topological order persists up to the l
est length scales. The successful description of this reg
by collective pinning requires only the typical distance b
tween free topological defects to increase faster than the
of the largest effective barriers for decreasing creep veloc
In principle, it is possible that only at strictly zero velocit
the coherence of the lattice is restored.

The paper is organized as follows. In Sec. II we spec
the model under consideration. In Sec. III the general per

FIG. 1. Shape of the Larkin domain in the drifting structure. T
domain is much longer in directions parallel (x) than perpendicular
(y,z) to v. Its anisotropy increases with increasing velocity; see
~71!.
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2578 57STEFAN SCHEIDL AND VALERII M. VINOKUR
bative approach is established in a dynamical formalism
scheme for the systematic extraction of coarse-grained
rameters that describe the physics at large scales is prese
These parameters are evaluated in Sec. IV and lead to
conclusions in Sec. VI. The complexity of the problem r
quires a compactified notation, which is summarized in A
pendix A. Intermediate steps of our calculations are sketc
in Appendix B.

II. MODEL FOR DRIVEN VORTEX LATTICES

To be specific we introduce a model of ad-dimensional
vortex lattice. The most common realizations are vortex lin
in a three-dimensional superconductor (di51 andd'52),
point vortices in a film (di50 andd'52), or vortex lines
confined to a plane (di51 andd'51). We use a unifying
description by considering vortices asdi-dimensional objects
that can be displaced ind' directions within a (d5di

FIG. 2. Topology of the generic phase diagram of driven pe
odic media for~a! strong disorder and~b! weak disorder. At larges
velocities the medium moves coherently. At the solid line a melt
occurs into an incoherent phase with massive plasticity. This ph
can display smectic properties and decay at even smaller veloc
~dotted line! into a fluidlike phase. At even smaller velocitie
~dashed line! the creep phase with metastable states is reached
A
a-
ted.
ur

-
-
d

s

1d')-dimensional superconductor.
To every individual vortex we assign a fixed labelr' that

coincides with its position in a perfectly ordered lattice. T
coordinates along the magnetic field are denoted byr i . The
actual position of vortexr' at time t is denoted byR(r ,t),
wherer5(r' ,r i). For a three-dimensional vortex line lattic
r' is a vector in the (x,y) plane andr i5Ri represents the
singlez coordinate; see Fig. 3.

We consider a sliding state where vortices move with
average velocityv. Thenr is viewed as the undistorted vor
tex position in a comoving frame, whereasR is the actual
position in a laboratory frame. To parametrize the fluctu
tions of the vortex lattice, we define vortex displacements

u~r ,t !5R~r ,t !2r2vt. ~5!

The proper choice of the perfect lattice positions and ov
guarantees that these displacements always vanish upo
eraging over thermal fluctuations and disorder.

We restrict ourselves to the elastic lattice, where the
pology of the vortices is fixed and their interactions can
treated in the harmonic approximation. The dynamics of
vortex lattice is governed by the overdamped Langevin eq
tion

hu̇~r ,t !5D–u~r ,t !1F2hv1j~r ,t !1f„r1vt1u~r ,t !…,
~6!

with the Bardeen-Stephen friction coefficienth, the elastic
force D–u;c­2u to be specified below, a driving forceF, a
thermal noisej(r ,t), and a pinning forcef(R)52­V(R).
Both the thermal and pinning forces are supposed to ha
Gaussian distribution with zero average and correlations

^ja~r1 ,t1!jb~r2 ,t2!&5qdabd~r12!d~ t12!, ~7a!

q:52ad'hT, ~7b!

V~R1!V~R2!5D~R12!. ~7c!

To make our formulas comprehensive and transparent,
introduce a shortened notation, where, e.g.,r12:5r12r2 and
t12:5t12t2 ~see also Appendix A for definiteness!. Greek
indices represent components in thed' directions ofr' .

-

g
se
ies

FIG. 3. Geometry of the vortex lattice ind5112. Vortices
carry a fixed labelr' and their fluctuating position isR. Thex axis
is chosen parallel to the average velocityv.
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A. Action formulation

The main difficulty in solving Eq.~6! is the highly non-
linear dependence of the pinning force on the displaceme
We will treat this nonlinearity by a perturbative expansion
1/v. A convenient way to explore dynamics is the stand
field-theoretical representation of Martin, Siggia, and Ro
@36,37#. In this formalism the partition function for the ou
of-equilibrium system is defined as

Z:5E DL@u, ũ#e2A,

DL@u, ũ#:5)
t,q

~L!

dd' ũ~q,t !dd'u~q,t !, ~8!

where the path integral is restricted to modesq<L with the
cutoff L @38#. This scale can be related to the coheren
length as the ‘‘diameter’’ of the vortices. The auxiliary r
sponse fieldũ is introduced in addition to the displaceme
field u.

To every possible configuration of the fields~including
their time dependence! a statistical weighte2A is assigned
with an actionA5A@u, ũ#. The sum over all weights is
normalized to unity and is independent of the random p
ning potential. Therefore disorder averaging can be p
formed straightforwardly, which produces a translatio
invariant effective field theory. We decompose the result
action into the ‘‘pure’’ and the ‘‘pinning’’ parts

A5Apure1Apin,

Apure5E
1
H q

2
ũ1• ũ11 i ũ1•@hu̇12~D–u!12F1hv#J ,

Apin5
1

2E12
ũ1•F~R12!• ũ2 . ~9!

We have introduced further abbreviations in Eq.~9! ~see Ap-
pendix A!: An integer index i stands for (r i ,t i), ui
[u(r i ,t i), R12[r121vt121u12, and the scalar product in
cludes all d space components.* i represents a shorthan
notation for an integration overt i , an integration overr i i ,
and a summation over the vortex labelsr' i . The latter sum-
mation includes the factorad' representing the volume pe
one vortex~for the usual vortex lattice with two displace
ment componentsa25F0 /B with the flux quantumF0 and
the magnetic inductionB) such that the sum would becom
an integral in the continuum limita→0. It is important to
stress that although the discreteness of the lattice does
manifest itself in the notation, thediscrete natureof the sys-
tem is completely accounted for in our description. The p
ning part contains the pinning force correlatorF, which is
related to the pinning potential correlatorD by

F~R![Fab~R!:5 f a~R! f b~0!52]a]bD~R!. ~10!

By a replacementF(R12)→F(r12,R12) the present theory
can be generalized straightforwardly to other problems s
ts.

d
e

e

-
r-
-
g

ot

-

h

as that of interfaces dynamics or randomXY models@39–
41#. The discreteness of the vortex lattice enforces a per
icity in Fourier space

u~q1Q,v!5u~q,v!:5E
tr

eivt2 iq•ru~r ,t ! ~11!

with reciprocal lattice vectors~RLVs! Q.

B. Pure part

The elastic interaction of vortices in the harmonic a
proximation is most conveniently represented in Four
space, where the pure part of the action acquires the for

Apure5E
vq

H 1

2
ũ†

•G̃• ũ1 i ũ†
•G•uJ . ~12!

The symbolu[u(q,v), ũ†[ ũ(2q,2v) ~the dagger stands
for transposition of components and complex conjugation
Fourier-transformed quantities!, and theq integration runs
only over the first Brillouin zone of the lattice. Note that on

can always chooseG̃ †5G̃. In Eq. ~12! we have dropped the
terms linear in the response field. Since the average velo
is defined by the condition that the average displacement
to vanish, these terms actually have to cancel each othe
the absence of disorder. This impliesF5hv.

It is convenient to write the propagators of the pure act
in the normal mode representation. In th
(d'52)-dimensional case these modes are longitudinalL)
or transverse (T) with respect toq' . Using the projectors

PL,ab~q!:5
qaqb

q'
2

, PT,ab~q!:5dab2PL,ab~q!,

~13!

we have (p5L,T)

G̃~q,v!:5(
p

G̃p~q,v!Pp~q! ~14!

and a similar expression forG, where

G̃p~q,v!:5q, ~15a!

Gp~q,v!:52 ihv1Dp~q!. ~15b!

The elastic dispersion relations read

DL~q!5c11q'
2 1c44qi

2 , ~16a!

DT~q!5c66q'
2 1c44qi

2 , ~16b!

where the elastic constants for compressionc11, shearc66,
and tilt c44 of the vortex lattice can have additional implic
dependences onq @3#.

Within the partition sum~8! response and correlatio
functions are defined as

G12[Gab~r12,t12!:5^ua~r1 ,t1!i ũ b~r2 ,t2!&, ~17a!

C12[Cab~r12,t12!:5^ua~r1 ,t1!ub~r2 ,t2!&. ~17b!
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These averages are to be taken with the action~9! for the
disorder averaged effective system. Therefore, no further
order averaging is required in Eqs.~17! and these two-poin
quantities depend only on time and space differenc
Gab(r12,t12)5d^ua(r1 ,t1)&/djb(r2 ,t2) describes the re
sponse of the displacementu to the thermal noisej or some
additional external force acting on the vortices and is the
fore causal, i.e.,G(r ,t)50 for t<0 @42#.

In the sequel the average squared displacement of vor

C0,ab :5^ua~r ,t !ub~r ,t !& ~18!

will play a particular role, as well as the difference corre
tion

Wab~r12,t12!:5
1

2
^@u1a2u2a#@u1b2u2b#&5C0ab

2
1

2
Cab~r12,t12!2

1

2
Cab~r21,t21!.

~19!

For the general pure action~12! the response and correla
tion functions are related to the propagators by

G~q,v!5G21~q,v!, ~20a!

C~q,v!5G~q,v!•G̃~q,v!•G†~q,v!. ~20b!

The last equation impliesC†5C in agreement with the defi
nition ~17b!.

In the special case~15! we have explicitly

Gp~q,v!5
1

Gp~q,v!
5

1

2 ihv1Dp~q!
, ~21a!

Cp~q,v!5
G̃p~q,v!

uGp~q,v!u2
5

q

h2v21Dp
2~q!

. ~21b!

The decomposition~14! into normal modes holds also fo
these matrices.

III. PERTURBATION THEORY: GENERAL SCHEME

In this section we perform a perturbative coarse grain
for the dynamics of the vortex lattice. We find an effecti
dynamics for the fields with wave vectorsq<L, below a
reduced cutoffL,,L by averaging over all modes wit
wave vectorsL,,q<L. This averaging is performed b
integrating out these modes in the partition sum~8!. Due to
the high nonlinearity of the pinning part of the action th
integration cannot be performed exactly. We restrict our p
turbative analysis to the first and second order in the pinn
action.

As usual, we separate the modes with wave vectors be
and above the new cutoff,

u5u,1u., ~22a!

u,~r ,t !5E
q<L,

eiq•ru~q,t !, ~22b!
is-

s.

-

es

-

g

r-
g

w

u.~r ,t !5E
L,,q<L

eiq•ru~q,t !. ~22c!

The response fieldũ is treated analogously. The integratio
over the modesu. and ũ. leads then to an effective actio
for the modes ‘‘,.’’ The effective action can be represente
via a cumulant expansion, which is

Aeff5A1A~1!1A~2!1•••, ~23a!

A~1!@ ũ,,u,#5^Apin@ ũ,1 ũ.,u,1u.#&.2Apin@ ũ,,u,#,
~23b!

A~2!@ ũ,,u,#52
1

2
^Apin@ ũ,1 ũ.,u,1u.#,

Apin@ ũ,1 ũ.,u,1u.#&c
. ~23c!

to the second-order perturbation theory inApin. The averag-
ing is performed over the modesu. and ũ. weighted with
the pure actionApure@ ũ.,u.#. We denote the second cumu
lant by ^A,A&c :5^A2&2^A&2.

Now we turn to a detailed analysis of the above corr
tions and derive new couplings in the effective action for t
large-scale modes.

A. First order

Using Fourier transforms of the disorder correlator

Apin5
1

2E12k
ũ1•F~k!• ũ2eik•R12, ~24!

we shift all the dependences on the displacements to
exponential. Applying Wick’s theorem to the first-order co
rection given in Eq.~23b!, we get

A~1!@ ũ,,u,#5E
12k

eik•R12
,

2k•W12
.

•k

3H 1

2
ũ1

,
•F~k!• ũ2

,1 ũ1
,

•F~k!•G21
. †

•kJ .

~25!

The terms;G12
. G21

. vanish due to causality. In additio
terms;G11

. , etc., vanish in the Ito calculus. As a result a
terms that appear in the correction to the action contain
least one response field. The superscripts ‘‘: ’’ in Eq. ~25!
stand to remind thatR12

, [r121vt121u12
, and thatG. and

W. arise from the averaging over modes ‘‘..’’ To keep the
notation simple, we will hereafter drop these superscripts

The obtained correction to the action has a more com
cated functional dependence on the fields than the orig
actionA. FromA(1) we extract not only corrections to th
parameters of the originalA, but also new couplings such a
a KPZ nonlinearity@35#.

1. Friction force

The conventional approach to the description of driv
disordered dynamics is to fix the external driveF and evalu-
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ate the resulting drift velocityv[v(F) as a response thereo
However, since in the present formulationF appears only at
one position in the action, whereasv appears at many pos
tions, we find it more convenient technically to treat the a
erage velocity as given and to derive the forceF[F(v) nec-
essary to maintain this velocity. The fact thatv is indeed the
average vortex velocity is expressed by the condit
^u(q50,v50)&50. In the presence of disorder this requir
that theeffectiveaction for large-scale modes has no ter
linear in ũ, i.e., no terms ofO( ũ1u0) in the fields. In the
absence of disorder this immediately yields that the driv
force is compensated by the friction forceFfr5hv.

The first-order correction to the friction force is extract
from O( ũ1u0) of Eq. ~25!:

Aũ1u0
~1!

5E
12k

ũ1•F~k!•G†
21•keik•~r121vt12!2k•W12•k.

~26!

Comparing this contribution to the term ofO( ũ1u0) in the
original action, we identify the first-order perturbative co
rection to the pinning force as

Fa
fr~1!52 i E

trk
eik•~r1vt !2k•W~r ,t !•kFab~k!Ggb~r ,t !kg .

~27!

Consequently, the transport characteristics of the super
ductor are given byFfr(v)5hv1Ffr(1)(v). SinceF(1) is in
general a nonlinear function ofv, the characteristics are n
longer linear over the whole current range.

2. Friction coefficient and elastic dispersion

The friction coefficienth and the elastic dispersion rela
tions D parametrize the propagatorG̃ in the original pure
action ~12! in O( ũ1u1). Therefore, corrections to these p
rameters are extracted from Eq.~25! in the same order,

Aũ1u1
~1!

5E
12k

eik•~r121vt12!2k•W12•k@ ũ1•F~k!•G†
21•k#

3@ ik•~u12u2!#. ~28!

The integral kernel now has a finite width in (r12,t12). How-
ever, this width is smaller than that of the response funct
which decays on a characteristic scale 1/L, in space and on
a scaleh/D(L,) in time.

Aiming at the physics at scales much larger than the wi
of the kernel, we consider the displacement fields as ne
constant and approximate

u12u2't12] tu11r 12a]au12
1

2
r 12ar 12b]a]bu11•••.

~29!

~Latin indices also include directions parallel to the vort
lines.! Inserting Eq.~29! into Eq. ~28! we find

Aũ1u1
~1!

5E
vq

i ũ†
•G~1!

•u, ~30!
-

n

s

g

n-

,

h
ly

where the correction to the response propagator can be
ten as

Gab
~1!52 ihab

~1!v1Dab
~1!~q! ~31!

with an elastic dispersion

Dab
~1!~q!52 ixaba

~1! qa1kabab
~1! qaqb . ~32!

Therein new coefficientsx appear. They describe forces ari
ing from a direct coupling to lattice stresses. In addition,
coarse-graining generates elastic constantsk with reduced
symmetries compared to the original constants.

The correction to the friction coefficient is explicitly

hab
~1!5E

trk
eik•~r1vt !2k•W~r ,t !•ktFag~k!Gdg~r ,t !kdkb .

~33!

In general this tensor is nondiagonal and gives rise to H
effects. The stress coefficients are

xaba
~1! 52E

trk
eik•~r1vt !2k•W~r ,t !•kr aFag~k!Gdg~r ,t !kdkb

~34!

and the elastic couplings are corrected by

kabab
~1! 5

1

2Etrk
eik•~r1vt !2k•W~r ,t !•kr ar bFag~k!Gdg~r ,t !kdkb .

~35!

Comparing Eqs.~27! and~33!, one finds straightforwardly
the useful relation

hab
~1!~v!5

]Fa
fr~1!~v!

]vb
. ~36!

In the first-order perturbation theory the friction coefficie
coincides with the differential resistivity.

3. The KPZ term

Action ~25! contains a further contribution inO( ũ1u2):

Aũ1u2
~1!

52
1

2E12k
eik•~r121vt12!2k•W12•k@ ũ1•F~k!•G†

21•k#

3@k•~u12u2!#2. ~37!

As before, we use the approximation~29!, which leads to
~we omit other terms that are less relevant on large scal!

Aũuu
~1!

5E
tr

i ũ a~r ,t !H 2
1

2
labgab

~1! @]aub~r ,t !#@]bug~r ,t !#J
~38!

with

labgab
~1! 52 i E

trk
eik•~r1vt !2k•W~r ,t !•kr ar bkbkgke

3Fad~k!Ged~r ,t !. ~39!
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This means that in the driven state disorder induces a K
term.

4. Disorder correlator

So far we have not consideredO( ũ2) of Eq. ~25!:

Aũ2
~1!

5
1

2E12k
†ũ1•F~k!• ũ2]eik•R12@e2k•W12•k21#.

~40!

Comparing the functional form of this action to Eq.~24!, we
identify a correctionF(1)(k) to the disorder correlator from
the persistentpart of the kernel, i.e., the part that is prese
also for ut12u→`. Using limut12u→`W(r12,t12)5C0 we find

F~1!~k!5F~k!@e2k•C0•k21#. ~41!

Remarkably,F(1) is independent of velocity and vanishes
a perfectly ordered lattice withC050. In the general case
with finite C0 the correction represents a smearing out
disorder by the vortex fluctuations.

5. Temperature

The remainingnonpersistentpart of Eq.~40!, which is not
taken into account by the disorder correction, is

Aũ2
~1!np

5
1

2E12k
eik•R12@e2k•W12•k2e2k•C0•k#@ ũ1•F~k!• ũ2#.

~42!

Now this integrand vanishes forut12u→` and is also local in
r12. Assuming again that the width of this kernel is sm
compared to the scales of variation ofu and ũ, one may
neglectu12u2 @as a zeroth order of approximation~29!# and
approximate

Aũ2
~1!np

5
1

2Etr
ũ~r ,t !•q~1!

• ũ~r ,t !. ~43!

Herein

qab
~1!5E

trk
eik•~r1vt !@e2k•W~r ,t !•k2e2k•C0•k#Fab~k!

~44!

is the correlator of the effective thermal noise~nonpersistent
shaking forces!. Note thatqab

(1)50 for a perfectly ordered
lattice with C050.

B. Second order

The second-order correctionA(2) to the action has to be
calculated according to Eq.~23c!. The result contains a larg
number of terms and the full expression is not display
here. One can easily see, however, thatA(2) contains terms
of O( ũ1), O( ũ2), and O( ũ3). From O( ũ1) corrections to
the pinning force and toG can be extracted. FromO( ũ2) one
derives corrections to the disorder correlator and toG̃. Even-
Z

t

f

l

d

tually, new types of couplings appear inO( ũ3) that repre-
sent higher-order cumulants of the disorder, i.e., deviati
from a Gaussian distribution.

The subsequent analysis is restricted to the evaluatio
the correction to the disorder correlator in order to dem
strate the presence of effective random forces in the coa
grained equation of motion. The second-order correction
the disorder correlatorF(2) is again obtained by identifying
the contributions toO( ũ2) in A(2) that represent persisten
~quenched! forces in the laboratory frame in contrast to tem
porarily fluctuating forces that contribute to the effecti
thermal noise. Due to the complexity of the involved expre
sions the technical details of this procedure are deferre
Appendix B.

1. Random force

Now we determine the coarse-grained disorder correla
The second-order correction is extracted fromA(2) in
O( ũ2). We identify F(2)(k) as the kernel where slowly
varying displacements and response fields enter in exa
the same combination as they appeared in the original
ning action~24!. Therefore,F(2)(k) represents the correlato
of forces that arestationary in the laboratory frame. The
force experienced by a vortex moving in the laborato
frame is nevertheless fluctuating in time.

The calculation of this correlator is performed in Appe
dix B and leads to the somewhat involved expression
F(2)(k) given in Eq. ~B6!. From the large-scale behavio
(k→0)

Fab~k!5fab1fabgkg1
1

2
fabgdkgkd1••• ~45!

one identifies therandom forcecorrelatorfab . This contri-
bution as well as the second term in Eq.~45! emerges only in
the driven stateand in the presence of disorder. The ba
random potential contributes only to the coefficientfabgd
52dagdbdD(k50). Equation~B6! gives explicitly

fab
~2!5E

12k
e2k•@W~r1 ,t1!1W~r2 ,t2!#•k1 ik•R1

~0!
ksGsg~2r2 ,2t2!

3ktGtd~r1 ,t1!$Fab~k!Fgd~k!eik•R2
~0!

2Fag~k!Fbd~k!e2 ik•R2
~0!

% ~46!

with Ri
(0) :5r i1vt i .

2. Other terms

One can also extract coefficientsfabg andfabgd of the
force correlator from Eq.~B6!. However, on large length
scales the corresponding terms in the action are less rele
than the random force and therefore we do not present t
here.

A number of other terms appear in the second order
perturbation theory introducing in particular new types
disorder. For example, taking into account the gradient te
in the expansion~29!, one finds a random correction to th
amplitude of the KPZ nonlinearity as suggested by Kr
@39#. Also, the second-order corrections toF and to the
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propagators appear. Again, these corrections have a com
cated form and are not given here. For weak disorder
second-order corrections are expected to be small comp
to the first-order corrections.

C. Fluctuation-dissipation theorem

In the absence of disorder the system obeys
fluctuation-dissipation theorem~FDT! @43#

22ihvG̃ab~q,v!5q@Gab~q,v!2Gba~2q,2v!#,
~47!

which implies~for tÞ0)

2h] tWab~r ,t !5q@Gab~r ,t !1Gba~r ,t !2Gab~2r ,2t !

2Gba~2r ,2t !#. ~48!

The FDT holds even in the driven state due to the Gal
invariance~the response and correlation functions under c
sideration are defined in the comoving frame!.

In the presence of disorder the validity of the FDT wou
require

22ihvG̃ab
~1!~q,v!5q@Gab

~1!~q,v!2Gba
~1!~2q,2v!#.

~49!

At zero velocity this relation is satisfied even in the prese
of disorder because the termsx vanish andhqab

(1)5qhab
(1) .

However, in thedrivendirty system the FDT is violated. Th
most obvious reason for that is the presence of the st
couplings generated by disorder in the driven system; a
one sees immediately thatq (1) andh (1) no longer satisfy the
aforementioned relation.

IV. EVALUATION OF PERTURBATION THEORY

In the preceding section we have derived the effect
equation of motion~1! for the coarse-grained displacemen
The renormalized parameters~with an asterisk superscript!
are composed of the original values plus perturbative cor
tions,

hab* 5hdab1hab
~1! , ~50a!

Dab* 5Dab1Dab
~1! , ~50b!

Fa
fr* 5hva1Fa

fr~1! , ~50c!

labgab* 5labgab
~1! , ~50d!

^ja* ~r1 ,t1!jb* ~r2 ,t2!&5qab* d~r12!d~ t12!, ~50e!

qab* 5qdab1qab
~1! , ~50f!

f a* ~R1! f b* ~R2!5Fab* ~R12!, ~50g!

Fab* 5Fab1Fab
~1!1Fab

~2! . ~50h!

Now we evaluate the various couplings that appeared u
the coarse-graining procedure. We start with the first-or
li-
e
ed

e

i
-

e

ss
o,

e
.

c-

n
r

perturbative corrections in Secs. IV A–IV G and then deri
the random-force term as the second-order correction in S
IV H.

To simplify the evaluation of the general perturbative r
sults we consider disorder with an isotropic correlati
lengthj,

D~k!5D0e2j2k2/2, ~51!

where we assumej!a, which is typical for superconduct
ors. In addition, we assume the elastic constants to be
form, i.e., Dab(q)5dabcq2 whenever explicit expression
involving elastic constants are given. This simplification
the more realistic dispersion~16a! will not change our results
qualitatively.

As shown by Schmid and Hauger@34#, the lattice prefers
to move along the principal symmetry axes. Hereafter
restrict the analysis to the situation where the velocity
parallel to a high-symmetry direction of the lattice, which w
choose to be thex axis.

A. Random potential

We start with the discussion of the coarse-grained dis
der correlator. The first-order correction~41! preserves the
random-potential nature of the original disorder. Coa
graining smears out the correlation length of the disor
over the typical vortex displacement sinceFab(k)
1Fab

(1)(k)5e2k•C0•kFab(k)5kakbD0e2k•C0•k2j2k2/2. This
means that the disorder correlation lengths is described
the matrix

Jab :5j2dab1C0ab . ~52!

The correctionC0ab diverges in dimensionsd<2 for finite
temperatures if the lower cutoffL, is sent to zero. In this
case it is therefore possible that weak disorder is irrelev
for the large-scale properties of the vortex lattice. As long
L,.0 is finite this correction has only a quantitative effe
in all dimensions.

Focusing ond.2 we will consider in what follows
mainly the case of zero temperature. In most perturba
expressions the exponential factors involving matricesC0 or
W can be ignored since they always enter in a combina
with the disorder correlator and modify the correlatio
lengths only quantitatively. The only exception is provid
by the correction to the temperature.

B. Temperature

We evaluate the effective temperature from Eq.~44!,
where we had observed already that the correction vanis
for the perfectly ordered lattice atT50, whereW5C050.
At finite temperatures one expects a positive correcti
since in generalW,C0 and the difference between the e
ponentials in Eq.~44! will no longer vanish. Considering low
temperatures, one can linearize the exponentials and ob

qab
~1!'E

k
kakbk'

2 D~k!
q

h2v2kx
21c2q4

, ~53!
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where we implicitly decomposek5Q1q into a RLV Q and
a vectorq within the first Brillouin zone. With a random
potential disorder~51! one immediately finds in the limit o
large velocitiesv@jc/ha2:

qxx
~1!'

D0

j21dh2v2
q, ~54a!

qyy
~1!'

a2D0

j31dchv
q for d.3, ~54b!

qyy
~1!'

a2D0

j31dchv
~aL,!d23q for d,3. ~54c!

We have dropped numerical factors of order unity.
For large velocities the result forqxx

(1) is independent of
the elastic constants and finite forL,→0. However, the
integrand ofqyy

(1) has poles neark'Q giving rise to the
divergence ind<3 ~the divergence is logarithmic ind53)
when the coarse-graining cutoffL, is sent to zero. Since th
correlator qyy

(1) decays even for finiteL, with a smaller
power in v than qxx

(1) , the effective noise is stronger in th
directions perpendicular to the velocity.

As only qyy
(1) exhibits this divergence, there is a fund

mental difference between vortices withd'.1 displacement
components and CDWs withd'51. This divergence there
fore doesnot imply that fluctuations, which have an ampl
tude proportional to temperature in the pure case on
scales, would now diverge. Since this divergence of the
fective temperature arises from the large-scale respons
the elastic medium to the pinning force, it indicates that o
has to be cautious, applying naive perturbation theory to
calculation of large-scale properties, which ultimately can
determined only by renormalization-group methods. At fi
sight this divergence suggests that on large scales the
dium is much more rough than in the pure case. Howe
the roughness depends not only on the effective tempera
but also on the effective friction coefficients and elastic co
stants, which we address in the following subsections.

C. Friction force

At T50 and uniform elasticity the evaluation of Eq.~27!
yields

Fa
fr~1!5hvE

k
kxkak'

2 D~k!
1

h2v2kx
21c2q4

. ~55!

The relative correction to the friction force is closely relat
to the relative correction~54! of the effective temperature
We find explicitly for v@jc/ha2

Fx
fr~1!'

D0

jd12hv
, ~56!

where purely numerical prefactors of order unity have be
dropped. This expression is independent of the elastic c
stant for large velocities. In this regime vortices respond
ll
f-
of
e
e
e
t
e-
r,
re,
-

n
n-
-

namically like individual particles. The typical force sca
F0

25D0 /jd12 is set by the spatial average of the pinnin
force.

Equation~56! applies only to velocities parallel to a prin
cipal lattice axis. For other directions the force and veloc
will no longer be parallel to each other@34#: The velocity
will deviate from the force in the direction of the close
principal lattice axis. Thus disorder induces a Hall effe
Instead of evaluating the friction force for arbitrary dire
tions, we will turn to the friction coefficients that describ
the same effect in a differential form. There the presence
the Hall effect shows up as anisotropy of the coefficient m
trix.

At small velocities Eq. ~55! gives Ohmic behavior,
Fx

fr(1);v, only for d.4. In this case the poles of the inte
grand atk5Q with Q•v50 are integrable. This is no longe
true in d<4 and the perturbation theory gives sub-Ohm
transportFx

fr(1);v (d22)/2. In particular, ind52 the effective
friction force is finite for small velocities@34#. The sub-
Ohmic behavior of the effective friction force reflects th
fact that the vortex lattice forms a glassbelow four dimen-
sions and at zero velocity@4#.

D. Friction coefficients

In order to examine to what extent glassy features per
in the driven state at finite velocities, it is necessary to
amine the friction coefficientshab . Since these coefficient
describe the dynamical response of the driven vortex latt
the glassy features, which are in general associated with
vergent relaxation times, must manifest themselves as di
gences in the friction coefficient.

Combining Eq.~55! with Eq. ~36! we find

hab
~1!52hE

k
kakbk'

2 D~k!
h2v2kx

22c2q4

@h2v2kx
21c2q4#2

. ~57!

Note that only the diagonal components of the friction co
ficient do not vanish due to reflection symmetries. In t
limit of large velocities parallel to a principal lattice axis (x
axis! one finds

hxx
~1!'2

D0

jd12h2v2
h, ~58a!

hyy
~1!'

aD0

jd13h2v2
h. ~58b!

The main contributions tohyy
(1) come from the vicinityk

'Q of RLVs with Q•v50, whereas forhxx
(1) all terms

Q•vÞ0 contribute. We find thatuhyy
(1)u@uhxx

(1)u since we have
evaluated Eq.~57! in the limit j!a. Otherwise both correc-
tions would be of the same order of magnitude.

Since Eq.~56! has already been specified to velociti
along a principal lattice axis, onlyhxx

(1) can be derived from
there using the differential relation~36!. Both friction coef-
ficients are again independent of elastic constants.

In their pioneering work Schmid and Hauger@34# dis-
cussed a discontinuity in the relation between the transv
force and velocity@see their Eq.~27! and discussion thereaf
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ter#. However, as they stated, this discontinuity is an artif
due to a neglect of vectorsq. Such a discontinuity, if real
should have appeared as a divergence inhyy

(1) , which is ac-
tually absent@44#.

Glassy features in the dynamical response normal to
velocity, suggested by Giamarchi and Le Doussal@31#,
should manifest themselves as a divergence of the fric
coefficienthyy . At large drive this divergence could emerg
only in higher orders of perturbation theory.

At zero velocity a divergencehab
(1);L,d24 is apparent

for d<4. It arises from the poles of the integrand in Eq.~57!
at k5Q and implies hab

(1);v (d24)/2dab for L,50. This
again signals the glassiness atv50 for d<4.

E. Stress coefficients

For T50 and uniform elasticity Eq.~34! reduces to

xaba
~1! 54hvE

k
kxkakbk'

2 D~k!
c2qaq2

@h2v2kx
21c2q4#2

. ~59!

We again restrict our consideration to the case where
velocity is parallel to a principal lattice axis. For sever
combinations of indices the integrand is odd under an inv
sion ka→2ka . Therefore, we find in particular

xabz
~1! 5xyxx

~1! 5xxyx
~1! 5xxxy

~1! 5xyyy
~1! 50. ~60!

~We would like to remind that greek indices run only ov
the directions perpendicular to the vortex lines, i.e.,x andy
in the usual 3D configuration, whereas the latin indices a
include directions parallel to the vortex lines, i.e.,z in the
usual 3D configuration.! However, for finite velocity there
are also nonvanishing components that decay in the limv
→` like

xxxx
~1! '

D0c2

jd11a3h3v3
, ~61a!

xxyy
~1! 5xyxy

~1! '
D0c

jd11a2h2v2
, ~61b!

xyyx
~1! '

D0c

jd13h2v2
. ~61c!

We have assumedj!a. Then xyyx
(1) is the largest among

these coefficients.
The stress coefficients have a simple physical mean

They express the tendency of vortices to form a homo
neously moving system. In particular the coefficientsxxxx
.0 andxyyx.0 imply that a vortex experiences a dynam
cal force that makes it follow the motion~‘‘footsteps’’! of
the precedent vortex; see Fig. 4. These couplings favor
formation of channels.

The stress coefficients are generated only in a nonequ
rium driven state and in the presence of disorder. At sm
velocity and forL,50 they vanish proportional tov only in
dimensionsd.4, where the integral in Eq.~59! is finite. For
d<4 the stress coefficients vanish sublinearly. Lowest-or
t

e

n

e
l
r-

o

g.
-

e

b-
ll

r

perturbation theory gives, e.g.,xxxx;v (d22)/2. Thus these
coefficients diverge ind,2 only.

F. Elastic constants

Following the same scheme, a correction to the ela
constants

kabab
~1! 52cE

k
kakbk'

2 D~k!H dab

h2v2kx
22c2q4

@h2v2kx
21c2q4#2

24c2qaqbq2
3h2v2kx

22c2q4

@h2v2kx
21c2q4#3J ~62!

can be obtained from Eq.~35!. For symmetry reasons agai
all coefficientskabab

(1) vanish where indices different fromx
appear an odd number of times. Nevertheless,kabab

(1) will no
longer be proportional todabdab and the correction reduce
the symmetry of the original elastic interaction.

The first term in Eq.~62! represents a correction of th
elastic constant proportional to the correction of the fricti
coefficients~57!. This contribution is finite for all dimen-
sions and of the order ofv22 for largev. The second term in
Eq. ~62! can be shown to be finite and of the order ofv24.
Therefore, at large velocities, it can be neglected in comp
son to the first term.

We find thus in the leading order ofv22

kxxab
~1! '2

D0

jd12h2v2
dabc, ~63a!

kyyab
~1! '

aD0

jd13h2v2
dabc. ~63b!

Hence the elastic stiffness of the lattice for displaceme
parallel to the velocity isreduced, whereas the stiffness fo
displacementsperpendicular to the velocity is increased.
The latter effect can be interpreted as a tendency to fo
channels and an increased energy cost for transverse

FIG. 4. Schematic representation of a moving vortex configu
tion. The distance between the solid wiggly line~position of vortex
in perfect lattice! and the dotted straight line~actual vortex position!
represents the componentuy of the displacements field. The dy
namically generated forcef y;xyyx]xuy , visualized by empty ar-
rows at two representative positions, makes a vortex acquire
displacement of the preceding vortex.
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2586 57STEFAN SCHEIDL AND VALERII M. VINOKUR
placements. For small velocities the corrections to the ela
constants are found to divergek (1);v (d24)/2 like the friction
coefficients.

G. KPZ nonlinearity

As before we obtain from Eq.~39!

labgab
~1! 54chvE

k
kxkakbkgk'

2 D~k!H dabcq2

@h2v2kx
21c2q4#2

12cqaqb

h2v2kx
223c2q4

@h2v2kx
21c2q4#3J . ~64!

Many components vanish due to symmetry. All coefficie
that are related by permutations among greek or among
indices are identical. We find in particular

lxxxab
~1! '

c2D0

a2jd12h3v3
dab , ~65a!

lxyyab
~1! '

cD0

jd13h2v2
dab , ~65b!

lyyyyx
~1! '2

c2D0

ajd13h3v3
. ~65c!

All couplings assume finite values and decay at least asv22

in the limit of large driving.
For CDWs, which are included in our analysis by speci

izing all greek indices tox, Chen et al. @45# have found
lxxxab

(1) proportional tov21 in contrast to our result~65a!.
Having no access to their derivation, we were not able
pinpoint the origin of the disagreement.

In the limit of small velocities the KPZ terms coefficien
vanish;v only as long as the integral in Eq.~64! is finite,
i.e., for d.6. For d,6 the coefficients scale likel
;v (d24)/2. One can see that even these coefficients dive
for d,4.

H. Random force

At T50 and uniform elasticity the evaluation of the ra
dom force correlator~46! yields

fab
~2!52E

k
kakbk'

4 D2~k!
h2v2kx

2

@h2v2kx
21c2q4#2

. ~66!

This expression was recently given in@33#, where it appar-
ently was found within a renormalization-group~RG! frame-
work. Here we obtain it as a result of a straightforward p
turbation theory.
tic

s
tin

-

o

e

-

One easily calculates forv@jc/ha2

fxx
~2!'

D0
2

j41dh2v2
, ~67a!

fyy
~2!'

a2D0
2

j31dchv
for d.3, ~67b!

fyy
~2!'

a2D0
2

j31dchv
~aL,!d23 for d,3. ~67c!

For large velocities the result forfxx
(2) is independent of the

elastic constants and finite forL,→0. This random force is
the analog of the random mobility of driven interfaces w
phase disorder@39#. A similar force for CDWs was previ-
ously obtained in@45,32# and predicted for vortex lattice
also in@32,46#. Comparing this result to the noise correlat
~54!, we find exactly the same type of divergences in t
transversecomponents in the limitL,→0.

At small velocities the random force correlator~66! van-
ishes likev2 in d.8 and likev (d24)/2 in lower dimensions,
which again confirms the glassy nature at zero velocity
d<4. The random-force component of the disorder c
relator does not always vanish in the limitv→0, it even
diverges ford,4 in a similar way to the KPZ coefficients

I. Roughening by disorder

In the absence of disorder the displacements of the vo
ces are isotropic and scale likeWxx(r ,t);Wyy(r ,t)
;w(r ,t);b2zw(r /b,t/bz) with a dynamical exponentz52
and a thermal roughness exponentz5(22d)/2. The effect
of disorder on the correlations can be estimated in the m
elementary approximation as follows: Assuming that t
typical displacements are ‘‘small’’ we might simply negle
them in the argument ofF in Eq. ~9!. More precisely, the
validity of this approximation requiresu12u2 to be small in
comparison toR12

(0) :5r121vt12.
In this approximation the action is still bilinear in th

fields and of the same functional form~12! as in the pure
case. FromApin originates an additional contribution

DG̃~q,v!5(
Q

F~k!d~v1k•v!, ~68!

which is the pinning force correlator as ‘‘seen by the p
fectly ordered vortex lattice.’’ Herek is k[Q1q.

The large-scale properties of the vortex lattice are in

good part governed by the behavior ofDG̃ at smallq andv.
Note that there is an important difference between the pr

erties of componentsDG̃xx(q,v) andDG̃yy(q,v). It follows
straightforwardly from Eq.~68! that the correlatorFab(k)
contributes to the asymptotic behavior not only atk50 but at

all RLVs k5Q with Q•v50. ThereforeDG̃yy(q,v) shows
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the same qualitative behavior at smallq andv for both ran-
dom potential~similar to unrenormalized disorder! and ran-
dom force case~appearing upon coarse graining!. In both

casesDG̃yy;d(v1q•v) with a finite prefactor forq,v→0.

In contrast, the behavior of theDG̃xx(q,v) generated by the
random potential is qualitatively different from that of a ra

dom force. Namely, in the random potential caseDG̃xx(q,v)

vanishes asDG̃xx(q,v);qx
2d(v1q•v), whereas for the ran

dom force case thed function again has a finite prefacto
Thus the random-force character of the coarse-grained d
der will change the asymptotic behavior of those quanti

that depend onG̃xx , but will leave intact those depending o

G̃yy only.
In the Gaussian approximation disorder does not mod

the propagatorG and, according to Eq.~20!, leaves also the
response function unchanged. However, the additional c

tribution ~68! to the propagatorG̃ generates an additiona
contribution

DCab~q,v!5(
Q

Fab~k!

h2v2kx
21c2q4

d~v1kxv ! ~69!

to the correlation function.
It is interesting to examine the dependence of correlati

on space and time. Since disorder is fixed in the labora
frame, one might expect thatDC is also stationary in tha
frame, i.e., DCab(r ,t)5Cab(r1vt,0) or Cab(q,v)}d(v
1qxv). An inspection of Eq.~69! immediately reveals tha
only RLVs with Qx50 give such stationary contributions
All other contributions, that reflect the discreteness of
vortex lattice in the direction of the velocity arenot station-
ary either in the laboratory or in the comoving frame.

Using the unrenormalized disorder Fab(k)
5kakbD0e2j2k2/2, Eq. ~69! implies ~in d<3) @31#

DWxx~r ,0!'
D0

jdh2v2
for r @a, ~70a!

DWyy~r ,0!'
a2D0

cjd11hv
S uyu

a D 32d

for hvy2@cuxu,

~70b!

DWyy~r ,0!'
a2D0

cjd11hv
S cuxu

a2hv
D ~32d!/2

for hvy2!cuxu.

~70c!

DWxx has contributions from the vicinity of all RLVs to
orderv22. DWyy is dominated on large scales by contrib
tions with RLVs Qx50, whereas RLVs withQxÞ0 give
only finite contributions as toDWxx . As for C, also only the
or-
s

y

n-

s
ry

e

contributionsQx50 are stationary in the laboratory fram
This includes all contributions that roughen the VLs on lar
scales.

In this perturbative result the transverse displacem
components exhibit much stronger fluctuations than the l
gitudinal component. An anisotropy emerges, requiring th
a distinct scaling for the displacement components para
and perpendicular to the velocity and also a distinct sca
for their dependence on coordinate distances parallel
perpendicular tov. While Wxx does not reveal a well-define
scaling behavior at large scales since finite temperature
disorder give finite contributions~in d.2), the scaling of
Wyy is dominated by the disorder contribution wit
Wyy(x,y,t);b32dWyy„(x1vt)/b2,y/b,0…. The divergence
of Wyy on large scales indicates that the Gaussian appr
mation loses its validity at large scales since the initial n
glect of the dependence of the force correlator on the
placements breaks down. The characteristic length scale

yc5aS cjd13hv

a2D0
D 1/~32d!

, ~71a!

xc5hvyc
2/c ~71b!

that limit the validity range are obtained byw5Waa5j2

~generalizing the static Larkin length! have been introduced
by Giamarchi and Le Doussal@31#.

If one takes into account that a random force is genera
which we may approximate asFab(k)'fab

(2)e2j2k2/2 with
the coefficients from Eq.~67! @an exponential decay for larg
k follows from Eq.~B6!#, then also thex component of the
displacement becomes rough ind<3:

DWxx~r ,0!'
a2fxx

cjd21hv
S uyu

a D 32d

for hvy2@cuxu,

~72a!

DWxx~r ,0!'
a2fxx

cjd21hv
S cuxu

hva2D ~32d!/2

for hvy2!cuxu.

~72b!

However, the fluctuations of the transverse component
eventually more pronounced sincefyy and qyy diverge on
largest scales~for y21;L,→0). This divergence is loga
rithmic in d53 and algebraic ind,3. Because of this di-
vergence renormalization effects are expected to modify
roughness exponents found perturbatively. In addition,
would expect naively thatDWyy increases on large scale
even faster than in Eq.~70!. However, for consistency on
should take into account the one-loop corrections not only
G̃, but also toG. In the static case, where the Gaussian
proximation yields a roughness exponentz05(42d)/2, the
actual roughness is only logarithmic,z50. There the disor-
der contribution to the force correlatorG̃, which tends to
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2588 57STEFAN SCHEIDL AND VALERII M. VINOKUR
increase the roughness, is balanced by the contributionsG,
notably an increase to the elastic constants that increase
stiffness of the lattice.

For many disordered systems different approaches to
a balance between several diverging terms have been fru
One possibility are self-consistent approaches such as th
Sompolinski and Zippelius@47#, which treats the coupling o
modes on a mean-field level. This approach has been
plied, for example, to spin glasses@47# and elastic manifolds
@48#. However, since typically the self-consistency takes i
account only first-order corrections,A(1) to the action, it can
produce only approximate values of scaling exponents. In
present situation these approaches would completely m
the physics arising from the divergence offyy . It would
therefore be necessary to extend this scheme to the sec
order corrections which make a solution of the se
consistency equations even more involved. Another
proach is provided by the RG, which in principle can
extended systematically to arbitrary perturbative order.

A consistent and reliable treatment of the large-sc
properties requires the simultaneous handling of sev
complications.~i! The anisotropies as discussed above s
to interplay under the RG iteration with the anisotropies
the friction coefficient, stress coefficients, elastic consta
and KPZ terms.~ii ! Since disorder roughens the VL, as se
already within the Gaussian approximation, the genera
KPZ terms are more relevant than the elastic couplings
cording to scaling arguments. Therefore,a priori they also
need to be taken into account and are expected to modify
large-scale physics qualitatively as soon as the medium
rough. The relevance of anisotropies in the KPZ terms in
absence of disorder has been studied forsingledriven vortex
lines by Ertas and Kardar@49#, who found a variety of dif-
ferent physical regimes depending on the anisotropy of e
tic constants and KPZ coefficients, and by Hwa@50# for
driven line liquids. For CDWs ind51,2 Chenet al. @45# find
nontrivial scaling exponents~i.e., differing from the scaling
found in the Gaussian approximation! due to the KPZ terms
also in the presence of disorder.

V. DISLOCATIONS

Our discussion has been restricted so far to the ela
approximation, neglecting topological defects~such as dislo-
cations! in the vortex lattice. Upon increasing velocity a
effects of disorder become weaker and we expect also
length beyond which dislocations become relevant to
crease and even to diverge for temperatures below the m
ing temperature of the pure system. Then the interes
question arises, What kind of defects lead at smaller d
velocities to a destruction of the coherence of motion a
what kind of order can survive?

On the basis of the presence of a random force paralle
the velocity, Balents, Marchetti, and Radzihovsky@32# have
proposed the existence of a smectic phase where vortice
correlated over much larger distances parallel to the d
velocity than perpendicular to it. Such a phase has been
served indeed in numerical simulations@51,52# and experi-
ments@53#.

We propose here a picture for the formation of a sme
phase within a phenomenological approach based on a
the
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eralized Lindemann criterion, examining the relative fluctu
tions in the distance of neighboring vortices. Instead of
dressing the topological defects explicitly, we rather focus
their effect, namely, the destruction of the neighborhood
vortices.

Since the positional fluctuations of neighboring vortic
are a small-scale feature, it is sufficient to take into acco
disorder within the Gaussian approximation~i.e., neglecting
the dependence of the pinning force on the vortex displa
ments!, the large-scale properties of which have been exa
ined in Eq.~70! above. The disorder contribution to the rel
tive displacement of two neighbored vorticesr1 and r2
separated by a bond vectora5r12 is given by

Dw~a!5E
vq

~12eiq–a!DCaa~q,v!'
1

2Eq
(
Q

~a•q!2k2D~k!

h2v2kx
21c2q4

~73!

with DC taken from Eq.~69!.
Now one can compare the shaking of a bond paralle

velocity (a5ax̂) and ‘‘perpendicular’’ to the velocity (a
5aŷ). Strictly speaking, there are no bonds witha'v in a
hexagonal lattice; by ‘‘perpendicular’’ we mean the bon
making the 60° and/or 120° angles with the velocity. Th
simplified treatment does not change our qualitative conc
sions altering slightly only the unimportant numerical fa
tors. In the limit of large velocities we find

Dw~ax̂!'
aD0

jd11h2v2
, ~74a!

Dw~aŷ!'
a2D0

cjd11hv
. ~74b!

From this result one sees immediately that in this limit t
bonds perpendicular tov experience much stronger shakin
effects than the bonds parallel to velocity. Consequen
these perpendicular bonds linking different channels are
pected to break more easily than the parallel bonds. T
implies that the vortex structures has much longer corre
tions in the direction parallel to the velocity than in the oth
directions, in agreement with the anisotropy of the dynam
Larkin lengths~71!. This result leads to the phase diagra
depicted in Fig. 2, which has been discussed already in
Introduction.

Ultimately, it is desirable to have a more systematic a
proach to the effects of dislocations in the driven medium
first step in this direction, the study of the dynamics of sing
dislocations, was made in Ref.@54#. In order to decide
whetherfree dislocations destroying the topological order
the lattice are present, it is necessary to study the dyna
stability of dislocation loops~in d53) or of dislocation pairs
~in d52). In particular, ind52 one can expect a descriptio
of the dynamic phase transition in terms of the Kosterli
Thouless transition@55# generalized to nonequilibrium sys
tems.
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VI. CONCLUSIONS

We have constructed a general approach to the dr
dynamics of dirty periodic media based on the MSR te
nique. The developed scheme provides a regular and co
tent derivation of the effects of disorder on the sliding m
tion. At present, however, we have restricted ourselves to
second-order dynamical perturbation theory, which is s
sufficient to draw several fundamental conclusions conce
ing the high-velocity behavior.

We have derived the coarse-grained equation of mo
~1! for periodic media in the presence of disorder. We ha
found a renormalization of the bare system parameters s
as friction coefficients, elastic constants, and the frict
force within the one-loop approximation as well as new co
plings giving rise to the disorder-induced stresses, KPZ n
linearities, and an effective disorder with a random-for
character evolving from the original random potential@30#.
The presence of such terms has been proposed for
component systems such as driven interfaces@39# and CDWs
@30# without analytic derivation.

The appearance of divergent parameters under co
graining is much more subtle in the driven system than in
system in equilibrium. For complete coarse graini
(L,→0) we found a divergence in the correlator of t
transverse components of the effective thermal noisej* and
the random pinning forcef* in d<3. Thus, in the driven
state the upper critical dimension is reduced by one and t
are fewer divergent parameters in comparison to the s
case, where also the friction coefficients and elastic const
diverge already in the first order of perturbation theory
d<4.

The divergences in the correlator of the~persistent and
nonpersistent! random force components perpendicular
the drift velocity appear only for systems with a period
structure transverse to the velocity. Therefore, there is a
damental difference between the dynamic behavior
CDWs, which have only one component, and VLs with mo
than one displacement component.

The standard way to testglassy propertiesof the systems
in question is to examine the large-scale behavior of
disorder-induced corrections to the physical quantities,
most marked of which is the friction coefficient. Its dive
gence is immediately related to an extremely slow dynam
that is dominated by infinitely high barriers. A large-sca
divergence of the perturbative corrections would then in
cate the glassy behavior. However, a divergence of the fi
order correction to the friction coefficient isabsentin the
driven case.

Since the vortex system is already in motion, the fricti
coefficienthxx* , which describes the velocity response for
change of theamplitudeof the driving force, has to be finite
since the drifting lattice already overcomes the potential b
riers in this direction. Nevertheless, one could expect that
friction coefficient hyy* , which describes the velocity re
sponse for a change of thedirection of the driving force,
could still diverge due to infinite barriers for a transver
motion of the lattice. However, sincehyy* is finite, these bar-
riers can only be finite. This implies a linear transverse tra
port characteristic for small transverse forces at finite te
peratures. It is still possible that a true critical force exists
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T50, but this is not a signature of glassy behavior. An
structive comparison is provided by a single particle in
sinusoidal potential, which has no glassy properties@56#. Its
transport characteristics has a finite critical force atT50.
For low temperatures it has an exponentially large but fin
friction coefficient at small velocities~due to thermal activa-
tion! that crosses over to the smaller bare friction coeffici
at large velocities. Despite the absence of generic glassy
tures such as the existence of transverse barriers, we fi
tendency to form channels directly from the presence of
stress coefficients~61! in the coarse-grained equation of m
tion.

To discuss the physical meaning of the effective tempe
tureq* , it seems appropriate to emphasize that it is actua
theweight of the noise correlator. In a system at equilibrium
~and for our bare system!, q is proportional to the product o
the temperatureT and the friction coefficienth. Since we
have found a finite correction to the friction coefficient, th
divergence ofq can be interpreted as a divergence of t
effective temperature. However, in the nonequilibrium si
ation under consideration, there is no well-defined mean
of a ‘‘temperature.’’ One can speak only about a~nonunique!
effective temperature if one specifies what physical prope
of the nonequilibrium system is compared to an equilibriu
system. Since the divergence ofq* arises from fluctuations
on the largest length scales, only the degrees of freedom
an asymptotically large scale can be related to an infin
effective temperature. This means that the driven lattice
the presence of disorder is on large length scales much m
rough than the lattice in the absence of disorder.

In general, divergent parameters signal a breakdown
perturbation theory at large scales. Therefore, the ques
about the asymptotic large-scale behavior of the system
be conclusively addressed only by a systematic RG treatm
that includes implicitly all orders of perturbation theor
which goes beyond the scope of this work.

In the absence of a formal derivation, we propo
the following speculations regarding the existence
~quasi-!long-range order at highest driving forces. It is esse
tial to distinguish between CDW-like systems~having only
one ‘‘displacement’’ component! and VL-like systems~hav-
ing more than one displacement component! because of fluc-
tuations in the displacement components perpendicular to
velocity. In the CDW case, where there is only the comp
nent parallel to the velocity, it has been argued in Ref.@32#
that the random forces along that direction lead to a rou
ness with an exponentz5(32d)/2 that is not reduced by
renormalization effects on the largest scales.

We believe that the situation could be different in the ca
of VLs. We have shown within the perturbative framewo
that the perpendicular displacement components fluctu
much stronger than those of the parallel component and
subject to a diverging random force correlator. In this ca
one has to take into account that the strong perpendic
displacements wash out not only the perpendicular com
nents of the pinning forces but also the parallel compone
and therefore qualitativelyreducethe true large-scale rough
ness in all directions.

This speculation is formally supported by the structure
the perturbative corrections obtained in Sec. III. To be s
cific, we discuss the random force correlator~46!. It contains
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exponential factors exp(2k•W•k) that have been neglecte
in the evaluation in Sec. IV. This is legitimate in lowes
order perturbation theory, where only thermal fluctuatio
contribute toW. However, under iterating the perturbativ
expressions~this is essentially the idea of a RG!, one should
take into account also the disorder contributions toW. Since
we have found that disorder roughens the system,W(r ,t)
diverges on large scales and the exponential factors deca
largek, r , or t, suppressing the corrections in comparison
the lowest-order perturbative results. In this way all corr
tions generated by disorder are suppressed, except from
first-order correction~41! that tends to compensate the d
order itself.

One also immediately recognizes that the roughness o
components perpendicular to the velocity~the large-scale be
havior of Wyy) influence, e.g., the random force correlat
fxx in directions parallel to the velocity and vice versa. Th
mechanism is the same in all perturbative expressions an
we believe, could reduce the true roughness qualitativel
comparison to the perturbative result in 2<d<3 for the
largestvelocities.

In addition to the aspects of the high-velocity phase,
have evaluated the general perturbative results also in
limit of vanishing velocities, where the depinning transitio
is approached. We found disorder to be relevant ind<4, in
agreement with both Larkin’s original static analysis@4# and
dynamic approaches to depinning as a critical phenome
@2,22#. As an additional feature our perturbative analysis
vealed the relevance of the nonequilibrium contributions~di-
vergingKPZ terms and random-force correlator! to the equa-
tion of motion.

To be specific, let us consider the example of the K
couplings as true nonequilibrium couplings. It seems surp
ing that they do not always vanish in the limitv→0, where
one naively expects the FDT to hold and all nonequilibriu
terms to vanish. To resolve this paradox note that the z
velocity limit has to be taken with care since it does n
commute with the limitL,→0. The observed divergenc
occurs only if one takesL,→0 beforev→0 since the di-
vergence arises from the infrared contributions to the in
gration overq. Physically, these contributions are related
the diverging energy barriers on large scales. These div
ing barriers imply a diverging relaxation time and persist
memory effects of the system, which are the origin of t
survival of nonequilibrium terms. In other words, in a glas
system relaxing from a~globally drifting! nonequilibrium
state into its equilibrium state after switching off the curre
there will be regions that are still drifting, their dynamic
being governed by an effective nonequilibrium equation
motion. If, on the other hand, one considers the KPZ c
plings for finite L,, they are finite and vanish like;v for
velocitiesv!cjL,2/h. For this reason these terms have n
been taken into account in the previous studies of the de
ning transition. However, the obervation that these none
librium terms diverge at small velocities forL,50 could
indicate that even for weak disorder the depinning transit
is rounded in a very narrow region by rare plastic effe
@57#, which are not captured by the phenomenological L
demann criterion.

In the final stage of preparing this manuscript we beca
aware of works@58,59# where the authors came to simila
s
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conclusions. In addition to perturbative results, a RG ana
sis of simplified models has been performed, but it does
seem to yield results that differ qualitatively from those o
tained here by perturbation theory.
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APPENDIX A: NOTATION

For the convenience of the reader we summarize here
notation. The total dimension isd5di1d' with the inner
vortex dimensiondi and the numberd' of displacement
components. Latin indices run over alld components,
whereas greek indices run overd' components. We use
summation convention for indices, i.e.,k•k[kaka[(aka

2 .
We present the short notation

r12:5r12r2 , t12:5t12t2,

d12:5d~r12!d~ t12!, d~r !:5a2d'd r'
d~r i!,

E
i
:5E

r i

E
t i

, E
t
:5E dt, E

r
:5a'

d (
r'

E ddir i ,

E
k
:5E ddk

~2p!d
, E

q
:5E

1BZ

ddq

~2p!d
, E

v
:5E dv

2p
.

~A1!

For discrete space components the integration has to be
placed by a sum with a factorad', the ‘‘volume’’ per vortex.
In d'52 one hasa25F0 /B. q integrals run only over the
first Brillouin zone~1BZ! but k runs over whole momentum
space. For two-point quantities a conjugation is defined b

G†
ab~k,v!:5Gba~2k,2v!,G†

i j [G†
ab~r i2r j ,t i2t j !:

5Gba~r j2r i ,t j2t i !. ~A2!

APPENDIX B: SECOND ORDER CORRECTION
TO THE DISORDER CORRELATOR

In order to find the second-order contributions to the d
order correlator, one has to look at terms ofO( ũ2) in Eq.
~23c!, which we separate into two contributions~all super-
scripts ‘‘: ’’ are dropped again!
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Aũ2
~2!

5Aũ2
~2,1!

1Aũ2
~2,2!

~B1!

specified below. A further condensation of the products

F12
k :5F~k!eik•R12 ~B2!

and F†
12ab
k :5F21ba

2k helps us to keep the structure of th
expressions transparent:

Aũ2
~2,1!

52
1

2E1234k8k9
„@ ũ1•F13

k8
•~G†

31•k8

1~G†
322G†

34!•k9!#$@k8•~G142G34!

1k9•G24#•F†
42
2k9

• ũ2%e
2A2@ ũ1•F13

k8
•G†

31•k8#

3@k9•G24•F†
42
2k9

• ũ2#e2k8•W13•k82k9•W24•k9
…,

~B3a!

Aũ2
~2,2!

52
1

4E1234k8k9
@ ũ1•F12

k8
• ũ2#@k8•~G132G23!

2k9•G43#•F34
k9

•@~G†
412G†

42!•k81G†
43•k9#e2B

~B3b!

with the exponentials~generalized Debye-Waller factors!

A[A1234
k8k9 :5

1

2
^@k8•~u12u3!1k9•~u22u4!#2&

5k8•W13•k81k9•W24•k92k8•W12•k91k8•W14•k9

1k8•W32•k92k8•W34•k9, ~B4a!

B[B1234
k8k9 :5A1324

k8k9 . ~B4b!

The second term in the bold parentheses of Eq.~B3a! arises
from the subtraction in the definition of the cumula
^Apin,Apin&c :5^ApinApin&2^Apin&2, which correspond to
‘‘disconnected diagrams’’ in field-theoretical language.
Eq. ~B3b! one further term;G†

34G34 actually vanishes due
to causality, i.e.,G†

34;Q(t4.t3) andG34;Q(t3.t4).
Contributions that represent effective disorder are ide

fied as follows. In Eq.~B3! the response fields are evaluat
at points (r i ,t i) with i 51,2. Disorder contributions are thos
that persist forut12u→`. This requires thatũ1 andũ2 arenot
connected~even indirectly! by response functions. In thi
limit the factorse2A ande2B simplify sinceW i j→C0 if the
i-

points i and j are unconnected. Therefore, we are left wit

Aũ2
~2,1p!

52
1

2E1234k8k9
ũ1•F13

k8
•$~G†

31•k82G†
34•k9!

3~k8•G142k8•G34!

3e2k9•C0•k92k8•W13•k82k8•~W142W34!•k9

1~G†
32•k92G†

34•k9!~k9•G242k8•G34!

3e2k8•C0•k82k9•W24•k92k9•~W232W43!•k8

1G†
32•k9k8•G14

3e2~k82k9!•C0•~k82k9!2k8•~W141W32!•k9%•F†
42
2k9

• ũ2 .

~B5a!

Terms ;G†
31G24 are nonpersistent and therefore do

longer appear inAũ2
(2,1p) . Vanishing terms;G†

34G34 have
been inserted by hand to complete the squares. The se
contribution becomes analogously

Aũ2
~2,2p!

52
1

4E1234k8k9
@ ũ1•F12

k8
• ũ2#$~k8•G13

2k9•G43!•F34
k9

•~G†
41•k8

1G†
43•k9!e2k8•C0•k82k9•W34•k91k8•~W132W14!•k9

1~k8•G231k9•G43!•F34
k9

•~G†
42•k8

2G†
43•k9!e2k8•C0•k82k9•W34•k92k8•~W232W24!•k9

22k8•G23•F34
k9

•G†
41•k8

3e2~k82k9!•C0•~k82k9!2k8•~W231W14!•k9%. ~B5b!

Here the number of terms was reduced using the relabe
symmetry 3↔4 with k9↔2k9.

To identify the corrections to the disorder correlator w
have to analyze the dependence of the functional on the
placement field and the response field. Since we are in
ested in the large-scale physics, we can consider the resp
functions as local in space and time. The labels have b
chosen such thatũ is attached to 1 and 2. Since in all ex
pressions two response functions are involved that con
point 3 and point 4 to point 1 or point 2,u3 andu4 may be
replaced by the correspondingu1 or u2. These replacement
can be considered as the lowest order of the expansion~29!.

To give an example we discuss the first term in the cu
brackets of Eq.~B5a!. There the response function conne
points 3 and 4 with 1, whereas 2 is free. In this case it
convenient to replaceu3 andu4 by u1. The exponential fac-
tors implicit in the factorsFi j

k then can be rewritten as
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eik8•~r131vt13!1 ik9•~r241vt241u21!

5e2 ik9•~r121vt121u12!1 ik8•~r131vt13!1 ik9•~r141vt14!.

Now the integrand has the same functional dependenc
tt.
on

the fields as the original disorder action~24! and a contribu-

tion to the correlator correction can be identified. In the sa

way one can proceed with the other terms of Eq.~B5! and

finds ~abbreviatingRi j
(0) :5r i j 1vt i j )
mmetry

er, along
F~2!~k!52e2k•C0•kE
34k8k9

H F~k8!•@~G†
31•k82G†

34•k9!~k8•G14

2k8•G34!e
2k8•W13•k82k8•~W142W34!•k9eik8•R13

~0!
1 ik9•R14

~0!
d~k1k9!1~G†

32•k92G†
34•k9!~k9•G24

2k8•G34!e
2k9•W24•k92k9•~W232W43!•k8eik8•R23

~0!
1 ik9•R24

~0!
d~k2k8!

1G†
32•k9k8•G14e

2k8•~W141W32!•k9eik8•R23
~0!

1 ik9•R14
~0!

d~k2k81k9!#•F†~2k9!1
1

2
F~k8!@~k8•G13

2k9•G43!•F~k9!•~G†
41•k81G†

43•k9!e2k9•W34•k91k8•~W132W14!•k9eik9•R34
~0!

d~k2k8!1~k8•G23

1k9•G43!•F~k9!•~G†
42•k82G†

43•k9!e2k9•W34•k92k8•~W232W24!•k9eik9•R34
~0!

d~k2k8!

22k8•G23•F~k9!•G†
41•k8e2k8•~W231W14!•k9eik9•~R14

~0!
2R23

~0!
!d~k2k81k9!#J , ~B6!

which in fact does not depend on points 1 or 2, which can be eliminated by substitutions for the points 3 and 4. The sy
F(k)5F†(k) given for the original disorder correlator is preserved after the inclusion of the corrections.

In order to go beyond the locality approximation used above, one could include the derivatives of Eq.~29!. This is not done
here since a scaling analysis shows that the resulting terms will be less relevant than the disorder correlator. Howev
these lines one can straightforwardly derive a random KPZ nonlinearity as postulated by Krug@39#.
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@1# G. Grüner, Rev. Mod. Phys.60, 1129~1988!.
@2# D.S. Fisher, Phys. Rev. Lett.50, 1486 ~1983!; Phys. Rev. B

31, 1396~1985!.
@3# G. Blatteret al., Rev. Mod. Phys.66, 1125~1994!.
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