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Driven dynamics of periodic elastic media in disorder
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We analyze the large-scale dynamics of vortex lattices and charge-density waves driven in a disordered
potential. Using a perturbative coarse-graining procedure, we present an explicit derivation of nonequilibrium
terms in the renormalized equation of motion, in particular Kardar-Parisi-Zhang nonlinearities and dynamic
strain terms. We demonstrate the absence of glassy features such as diverging linear friction coefficients and
transverse critical currents in the drifting state. We discuss the structure of the dynamical phase diagram
containing different elastic phases at very small and very large drives, and plastic phases at intermediate
velocity. [S1063-651X98)02703-2

PACS numbgs): 05.70.Ln, 71.45.Lr, 74.25.Dw, 74.40k

I. INTRODUCTION walls, dislocations in solids, Wigner crystals, and many oth-
rs. The common feature of the above systems is that, al-

nave become & paradign or he stadisioal mechanics of noioudh e Weakness of pinning suggest the purely elasii
b 9 'Hamiltonian as a starting point, the disorder-distorted system

equilibrium processes. The beginning of the study of this
phenomenon in the context of charge-density we@BW) possesses a huge number of metastable states and the ground

dynamics was marked by the development of several pio§tate is infinitely degenerate. This dooms to eventual failure

neering and elegant conceyfee[1] for a review, in par- direct attacks on the asymptotic large-scale behavior based
ticular the description of the depinning transition in terms Ofg?d:rstrmghtforward perturbation theory with respect to dis-
critical phenomeng2]. Yet it was hard to foresee the subse- L - -
quent growth of what seemed to be a simple yet a subtle Th_e first and decisive step for an approach by statistical
subject into a fascinating multidisciplinary branch of statis-PhYSICS {0 such systems was made in the remarkable work of

tical physics. The resurgence of interest was related to thk@rkin [4]. The pioneering ideas of this work were later cast
discovery of high-temperature superconductors where thio thecollective pinning theory5-7] and basically deter-
motivation was driven also by the technological quest for theTined the further development of the field. It was recognized
description of their transport properties. in [4] that pinning can be treated perturbatively in the do-
The understanding of the remarkable effects displayed bynain of the distorted lattice belonging to a single metastable
driven vortex lattices involved a diversity of concepts drawnstate generated by disorder. Such a coherently pinned do-
from various branches of contemporary physics ranging frommnain is called the correlated volume and the pinning energy
polymer physics and spin glasses to nonlinear stochastistored in such a domain determines the crucial characteristic
equations and turbulence, as well as the invention of newef the pinned system: the critical depinning force.
concepts of nonequilibrium physics of disordered medee The key quantity characterizing the system is the degree
[3]). In recent years much theoretical effort has been exef distortion of the elastic system by disorder, toeghness
pended to advance our knowledge of the driven dynamics qf\,(r) =([u(r)— u(O)]Z), whereu(r) is the displacement of a
disordered media. Yet in spite of impressive achievementgortex from its undistorted position. Within the domain
there remains a vast number of fundamental open questiomﬁ(r)$§2, where¢ is the characteristic spatial scale of varia-
with the depth and subtleties still to be revealed. In this workijons of the random potential, the pinning forckas only a
we develop a regular approach to the description of periodigegligible dependence on the displacement3his implies
media driven through a quenched random environment thahat this domain is pinned coherently and lies in a single
will hopefully enable us to put subsequent research endeaysy|ley of the effective potential landscape of the system. The
ors on a firm standard basis. roughness within the correlation volume grows \&$r)
«r2¢ with the so-called wandering or roughness exporient
that takes the valué=(4—d)/2 in the Larkin regime q is
the dimensionality of the lattigeSince different Larkin do-
The subtle dynamic properties of dirty media are gov-mains are pinned independently one could conclude that pin-
erned by the interplay among thermal fluctuations, drivingning, however weak, destroys the long-range order of the
force, and quenched disorder. To gain better insight into théattice ford<4.
dynamics we first discuss briefly thstaticsof weakly disor- As soon as the relative displacement of vortices exceeds
dered elastic periodic systems. These include CDWSs, vortethe disorder correlation length, the spatial variation of the
lattices(VLs), vortex arrays in Josephson junctions, domainpinning forces becomes important. The vortices start to

A. Statics of disordered elastic periodic systems
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“feel” that they are in a randompotential having many B. Dynamics of disordered elastic periodic systems
metastable states rather than in a random force field. There- 1o main feature of the driven dynamics in a random

fore the perturbative result would overestimate the actualnyironment is the existence of the pinning threshold: At

roughness2 of the lattice. On intermediate scales wh{é_re zero temperature the system remains pinned if the drive does
<w(r)=<a” anda is the lattice constant the system adjusts,q exceed a certain threshold valgg, the critical pinning

itself to the multivalley poten_tial reIief. This regime is re- force, and slides iF>F.. At finite temperatures the sharp
ferred to as the random manifold regirf& and the rough-  ansition is rounded by thermal fluctuations and is not very
ness exponent becomes smaller than in the Larkin regimgye|| gefined. Nevertheless, one can keep the notion of a
On these scales the periodicity of the medium is not yet otemperature-dependent critical forgg(T) as the force sepa-

si_gnificance. The region of the_: largest scales, where Iattic*aating the pinning dominated regime with slow thermally
displacements exceed the lattice constfew(r) and the iy ated dynamics or creep at low forge<F . from the fast
periodic nature comes into play, was investigated first bysliding one atF>F

-

Nattermann[9], who found, by a scaling approach, that at  \1qtion of the system in the creep regime occurs via ther-

large d|sta(rj1cehs p'?jf“”? of the VLs is equw:I;lIeInt to pir:mi_ng Ofmally activated jumps over energy barriers separating differ-
CDWs and that displacements grow only logarithmically oy yetastable states. The size of the typical energy barrier as
w(r)eIn(r). The above results were confirmed later by varia-, nction of the driving force can be related by scaling
tional replica and renormalization-group approach®8—  4rguments to structural features of the system, in particular

13]. ) . . . its roughness. This was done[i21] for driven elastic mani-
Structures with logarithmic roughness are well known Nfolds and it was found that the barriers controlling the mo-

the physics of surfaces and two-dimensiof@D) crystals. o diverge algebraically at small driving forces ds(F)
The logarithmic roughness implies that the system retains its. UF*, where w=(2¢{—1)/(2—¢). The approach of

periodic characte_r_and Bragg peaks in the strupture father] was extended from continuous media to the creep of
S(q); the singularities, however, have an algebraic charact€jq ey |attices i{8,9]. The divergence of the activation bar-
S(a)>=|q—Q[™" (Qis a reciprocal lattice vectprather than ;0. implies a nonlinear response of the system to small
the S-function-like character as in ordinary crystals or ¢yrceq and leads to the identification of the low-temperature
Lorentzian character in liquidsl4-16. This algebraic be- vortex state as a glassy phase, since such a nonlinear re-
havior is a characteristic feature gfiasi-long-range crystal- sponse is a hallmark of the glassy system.

line order. , o The understanding of the critical behavior at the depin-
The roughness of the lattice structure implies a rugged-

, ‘ning threshold has seen remarkable progi@&s-24 since
ness of the potential landscape of the system and the eXi§e \work by Fishef2].
tence of infinitely high barriers separating the different meta-
stable states, which is the characteristic feature of glass
systems(see[3]). This was realized in a seminal work by
Fisher[17], who identified the VL distorted by disorder as a
glassy structure and called it tertex glasslt is important
to stress that the derivation of the above features was bas

on theelasticnature of disordered lattices.

The high-velocity sliding of the periodic systems was
ang considered as the most “easy-to-understand” regime.
An outburst of interest in the flow regime at large driving
forces well above the depinning threshold was triggered by
él%e prediction[25] of dynamic phase transitions between
plastic sliding in the nearest vicinity of depinning and coher-

The stability of the elastic vortex glass with respect to the€Nt motion of the crystalline structure at high drives. Already

formation of topological defectddislocations was ques- €&y experiment§26] have shown that a moving vortex
tioned by Fisher, Fisher, and HUEES], who stated that dis- lattice has a higher degree _of crystalline order t_han a pinned
locations are to be generated at the scales where the rougfrtex lattice. These studies have been refined recently
ness becomes of order the vortex spacing and that therefol@7,28 to identify the different dynamical regimes.

the elastic description of the vortex glass fails. In spite of the  The nonequilibrium phase transition predicted in RR28]

fact that the correctness of the argument$id| was ques- IS expected to occur in systems with sufficiently strong dis-
tioned in turn(the energy of the dislocation formation was order, where depinning is accompanied by the massive pro-
underestimated and the logarithmic smoothness of the latticduction of topological defect9]. The structural order im-

on large scales was overlookedhe image of the vortex proves at large driving forces because the system experiences
glass as a dislocation saturated medium became widespreatisorder forces that are temporally fluctuating in the moving
Arguments demonstrating the self-consistency of the elastirame. In this sense the effect of disorder resembles the ther-
vortex glass approaclias long as the disorder is weak mal noise of a heat bath. However, this comparison does not
enough were presented ifi13,19,2Q. Thus the existence of carry too far since the quenched nature of the disorder still
a weak disorder-induced elastic vortex glass free of topologiimplies infinite-ranged spatio-temporal correlations of the ef-
cal defects can be considered as well established. Recallirfgctive force in the moving frame.

that a logarithmically rough medium shows algebraic Bragg Balents and Fish€i30] used scaling arguments to extend
peaks, Giamarchi and Le Dous$4B] proposed to call the the concept of the nonequilibrium “freezing” transition of
vortex lattice deformed by disorder a “Bragg glass.” This Ref. [25] to CDWs and have shown that true long-range
name gained popularity among the specialists and replacestder is restored at large velocities only dn-3. Thus the

the somewhat compromised “vortex glass” in their technicalcritical dimension is reduced by one in comparison to the
jargon. The latter term is now reserved for the topologicallystatic case. Fod=<3 the CDW phase, which is the analog of
disordered vortex solid phase. the vortex displacement, is still rough even at the largest
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velocities, whereas a temporal order resulting in narrow-bandutoff scale(with momenta larger tharh <), the velocity
noise may still persist. dependence of the friction forde™ becomes nonlinear.
Giamarchi and Le DoussgB1] addressed the question of ~ The fourth term in Eq(1) is a Kardar-Parisi-ZhantKPZ)
spatial large-scale order in the driven VL. They argued thahonlinearity[35] A*, which is absent in the bare dynamics
the transverse periodicity of the system leads to glassy feaand is generated by disorder. It is an anisotopic generaliza-
tures of the driven phase. Considering only transverse propion of the term3\(Vu)? familiar from surface growth and
erties, it was argued, in particular, that the driven lattice reBurger’s equation.
tains a logarithmic roughness on the largest scales only for The pinning forcef*, which was simply the gradient of a
d=3, but it acquires an algebraic roughness dr3. A random potential in the bare case, acquires a more virulent
similar roughness is expected for displacements in the direaandom-force character with a correlator
tion parallel to the velocity{32,33. Thus the large-scale
properties of the driven case are very different from the static
case, where roughness is logarithmic fordat 4. One of the
manifestations of the transverse glassiness suggested accord-
ing to Ref.[31] would be the existence of a transverse criti- A(Z)

bup= fRfﬁ(R)fZ(O), (2a)

cal current. This brings to mind the early observation of Pr~———, (2b)
Schmid and Haugef34], who have performed a lowest- grdp?y?

order perturbative calculation for the pinning force and no-

ticed a discontinuity in the transverse/ characteristic in a azAg

sliding state. ¢§y~m for d>3, (20

Notice that in comparison to the equilibrium situation in
the absence of driving forces, the approach to the physics at
large velocities is even more intricate because of nba-
equilibrium nature of the driven state. Although important
predictions about this state have already been formulated, a
systematic approach is still lacking. for large velocities > c&/ na? with a typical elastic constant

In this paper we develop such a systematic approach tg. One sees that the variance of the components perpendicu-

the driven dynamics of dirty periodic media on the basis ofjar to the velocitydivergesin d<3 as the coarse-graining
the Martin-Siggia-RoséMSR) formalism. The MSR formal-  cytoff A<—0.

ism provides a powerful tool to access the largest scales and The effective thermal noisé* describes in general an
to treat the immediate vicinity of the depinning transition. effective heat bath with a temperature that is increased due to

Focusing on the high-velocity regime, we will show that ashaking effects exerted by the pinning on the mediudn (
number of important conclusions concerning the properties_ T see below

of the driven state can be successfully achieved even within
the framework of the dynamic perturbative approach. For . . .

large velocitiesy the small parameter for the expansion is aﬁ:ft (€5(r,1)§5(0,0), (33
Ao/ n?v?E972, whereA, is the d-dimensional spatial inte- '
gral of the potential correlator of a width and » is the

a2A?2
* 0 <\d-3
(ﬁyy% —§3+dc (aA™) for d<3 (2d)
nv

Ao

friction coefficient. Fr~ I+ (3b)
& v
C. Summary of results
. .. . aZA
l_Jsmg a coarse-graining proce_dure for the dynaml_cs _of 9% ~ 9+ ° 9 for d>3 (30)

periodic media, we find that their large-scale behavior is vy Ee

governed by an effective equation of motion
2
Ao

a
~gy_ 70 <\d-3
ﬁ;y~ﬁ+§3+d U(aA) g for d<3. (30

. 1
f
MapUp=DoglptFo—F"+ 5 \%g anl daliglldpu, ]+ & ¢

2 a
+f%(r+vt+u). (1)  In the nonequilibrium case this effective “temperature” is

defined as the integral over the correlatorédfthat can be

Renormalized parameters carry an asterisk to distinguististinguished from pinning forces by the temporal decay of
them later on from the unrenormalizébare ones. Under its correlations. The behavior @&f* and ¢* is very similar;
this procedure the parameters become anisotropic since thigey show the same type of divergence for —0. Since

velocity identifies a particular spatial direction. this divergence comes from small momenta, it is a measure
All components of the friction coefficieny* are foundto for the strong fluctuations of the medium darge scales
be finite. Therefore glassy features, which in general appeaonly. The disorder-generated stress couplingsthe KPZ

as a divergence of such coefficients, are absent. The elast@nlinearities, and the random forces are specific nonequilib-

dispersion that read@’;ﬁ(q): —iXZﬁaQa+ K’;Babqaqb in rium terms that are absent in the equation of motion before

Fourier space includes, in addition to elastic constaniso  coarse graining.

stress termg after coarsening. Due to pinning and dissipa- From the effective equation of motiofl) the displace-

tive effects on spatial scales smaller than the coarse-graingdent fluctuations are found to roughen the medium in di-
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mensionsd<3 with high anisotropy for directions parallel Y,Z
and perpendicular to the velocifyhich we choose to be
parallel to thex axis). The anisotropy manifests itself in two

distinct features of the displacement correlations of the elas X
tic medium: (i) The components of the displacement field t \
perpendicular ta exhibit stronger fluctuations than the com- 13-

ponents parallel tov and (ii) the relative displacement in- ~y

creases faster in perpendicular directions than in the paralle

direction. 142/(3-d)
The former feature, obtained below within perturbation ~v

theory for the elastic medium, can be understood qualita- F|G. 1. Shape of the Larkin domain in the drifting structure. The
tively already from a single-particle picture in analogy to thedomain is much longer in directions paralled) (than perpendicular
consideration that led to the notion of the shaking temperag¢y,z) tov. Its anisotropy increases with increasing velocity; see Eq.
ture, describing the disorder-induced increase of the effectiver).

system temperaturf@5]. To this end we consider a particle

moving in a disorder potential with Gaussian correlations  f,ctyations. This consideration therefore supports the sug-
V(R)V(0)~Agé % R7(2€)_ A particle starting aR(t=0)  gestion that above a certain critical value of the velocity the
=0 moves with an average velocity=F= EX following an VL moves coherently like a solid and the topological order
overdamped equation of motionyR=F—VV(R)~ pv of t_he I_attice may be preserveq despite 'ghe roughngss c_)f the
—VV(vt). The components of its displacemar(t)=R(t) Iatncz_a ind<=3. .Below this cr|t|c.al velocity the motion is .
—vt parallel and perpendicular te have a variance that plastlc.and vortices may move in de_coupleq channels.llt is
grows differently as a function of time. When the effect of essenthlly the anisotropy of the Larkin domain that provides
the pinning forces is integrated over tinee., along the decoupling of flowing vortex channels. _ _
direction of motion of the particlethe force component par-  Figure 2 summarizes our view of the dynamic phase dia-
allel to the direction of motion is “recognized” as the gra- 9ram for t.he case.of sufficiently strong dlsor_der. Starting
dient of a random potential, whereas the perpendicular condf®Mm the highest drives we expectcaherentmotion of the
ponentscannotbe distinguished from a true random force (0Pologically ordered phase. Upon decreasing the driving
since the particle does not explore these directions. Therdorce the fluctuations of the bonds between the neighboring
fore, ui(t)~Ao/n202§d saturates for large times, whereas vortices cause a massive prodL_Jctlon of topolo_g|cal defects at
~ o di1 . ) the transition from coherent to incoherent motion marked by
Uy (t)~Ao/7°v &7 t] grows without bounds, like under the 6 5o1iq line. This line corresponds to the freezing transition
influence of therma] noise. ThIS |mpI|es that the .shakln_g temy¢ [25]. The question concerning the nature of the plastically
peratureTs~ A, /v is associated with thperpendiculardis-  y6ying phase still remains. Our analysis suggests that there
placement components. , is a tendency to channel formation, but at this point we can-
The sgconpl feature of anisotropy, a more rapid QVOYVth Ohot conclude whether these channels remain stable upon a
the relative displacements(r) in the direction perpendicu- fyrther decrease of the applied force and therefore dynamic
lar to the motion(i.e., forrLv), is related to the size and melting describes the transition from the moving quasicrystal
shape of the dynamic Larkin domain, in which the pinningio moving smectid32] or directly into the fluidlike phase.
forces act coherently on the elastic medium. Siogehas  The possible transition between the smectic and fluidlike
much weaker fluctuations thar the correlation lengths are  phases is denoted by the dotted line. The lower strip below
determined by the fluctuations of, alone and are found to tne critical current(the dashed line corresponds to the

be [31] pinned state where the system moves via thermally activated
d+3 1U(3—d) jumps between metastable states.
y.=a 05_77“ X = vy2/c 4) For weak disorder a dynamic transition from the coher-
¢ a’A, o e MY ently pinned phase to a coherently moving phase is possible

without passing through a plastic regime. Plasticity occurs
For weak disorder they are finite only in dimensiais 3 only at sufficiently high temperature and for small enough
(y. still depends logarithmically on in d=3) and increase velocities. Since the anisotropy of the system decreases with
for large velocities much faster parallel than perpendicular talecreasing velocity, the width of the smectic regime shrinks
the velocity(see Fig. 1 in that direction.

The next important question of the stability of the lattice In fact, it also remains a fundamental open question to
with respect to plastic relative displacements of vortices camvhat extent the creep regime can be considered as coherent
be captured by a phenomenological Lindemann criterion thaih the sense that the topological order persists up to the larg-
examines the fluctuations in the relative distance of neighest length scales. The successful description of this regime
boring vortices(bond length. Vortices neighboring in a di- by collective pinning requires only the typical distance be-
rection parallel tov have much weaker fluctuations in their tween free topological defects to increase faster than the size
relative position than neighbors in perpendicular directionsof the largest effective barriers for decreasing creep velocity.
When the relative fluctuations of certain bonds exceed a cetn principle, it is possible that only at strictly zero velocity
tain fraction of the vortex spacing, these bonds are expectetthe coherence of the lattice is restored.
to be broken by topological defects. We find that the bonds The paper is organized as follows. In Sec. Il we specify
in directionsperpendicularto the velocity have the strongest the model under consideration. In Sec. Il the general pertur-
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F ' line r,
: (a) Zj '
coherent phase : !
(topological order) /l
R !
decoupled channels _ \\
' /\\
----- fluid phase
T Tt - Ll - FIG. 3. Geometry of the vortex lattice id=1+2. Vortices
pinned phase Tl carry a fixed labet, and their fluctuating position i8. Thex axis
= is chosen parallel to the average velooity
T
+d, )-dimensional superconductor.
F . To every individual vortex we assign a fixed labelthat
(b) coincides with its position in a perfectly ordered lattice. The

coherent phase coordinates along the magnetic field are denoted,byrhe
actual position of vortex, at timet is denoted byR(r,t),
wherer =(r, ,r). For a three-dimensional vortex line lattice
r, is a vector in the X,y) plane andr=R, represents the
singlez coordinate; see Fig. 3.
We consider a sliding state where vortices move with the
, average velocity. Thenr is viewed as the undistorted vor-
fluid phase tex position in a comoving frame, whereRsis the actual
position in a laboratory frame. To parametrize the fluctua-
tions of the vortex lattice, we define vortex displacements as

(topological order)

decoupled channels

-~ u(r,t)=R(r,t)—r—vt. (5

pinned phase ~ -

T The proper choice of the perfect lattice positions ands of
guarantees that these displacements always vanish upon av-

FIG. 2. Topology of the generic phase diagram of driven peri-eraging over thermal fluctuations and disorder.
odic media for(a) strong disorder an¢b) weak disorder. At largest We restrict ourselves to the elastic lattice, where the to-
velocities the medium moves coherently. At the solid line a meltingpology of the vortices is fixed and their interactions can be
occurs into an incoherent phase with massive plasticity. This phasgeated in the harmonic approximation. The dynamics of the
can display smectic properties and decay at even smaller velocitiagortex lattice is governed by the overdamped Langevin equa-
(dotted ling into a fluidlike phase. At even smaller velocities tijgn
(dashed lingthe creep phase with metastable states is reached.

u(r,t)=D-u(r,t)+F— pv+ &(r,t) +f(r +vt+u(r,t)),

bative approach is established in a dynamical formalism. A (6)

scheme for the systematic extraction of coarse-grained pa-
rameters that describe the physics at large scales is presentedth the Bardeen-Stephen friction coefficient the elastic

These parameters are evaluated in Sec. IV and lead to ofwrce D-u~cé?u to be specified below, a driving fordg a
conclusions in Sec. VI. The complexity of the problem re-thermal noise&(r,t), and a pinning forcd(R)=— dV(R).
quires a compactified notation, which is summarized in Ap-Both the thermal and pinning forces are supposed to have a
pendix A. Intermediate steps of our calculations are sketche@aussian distribution with zero average and correlations

in Appendix B.
(6a(r1,t)€p(12,12)) = 98058112 S(tsz), (78

II. MODEL FOR DRIVEN VORTEX LATTICES 9 =23 7T, (7b)

To be specific we introduce a model ofdadimensional
vortex lattice. The most common realizations are vortex lines V(R)V(R,)=A(Ryy). (70

in a three-dimensional superconductalj<1 andd, =2),
point vortices in a film =0 andd, =2), or vortex lines To make our formulas comprehensive and transparent, we

confined to a planedj=1 andd, =1). We use a unifying introduce a shortened notation, where, &.gs;=r;—r, and
description by considering vortices dsdimensional objects t;,:=t;—t, (see also Appendix A for definitengsGreek
that can be displaced i, directions within a @=d, indices represent components in the directions ofr, .



57 DRIVEN DYNAMICS OF PERIODIC ELASTIC MEDA . .. 2579

A. Action formulation as that of interfaces dynamics or randoflY models[39—
The main difficulty in solving Eq(6) is the highly non- 41]. The discreteness of the vortex lattice enforces a period-

linear dependence of the pinning force on the displacement{City in Fourier space

We will treat this nonlinearity by a perturbative expansion in

1lv. A convenient way to explore dynamics is the standard u(g+ Q,w)zu(q,w):zj’ elet=iary(r t) (11
field-theoretical representation of Martin, Siggia, and Rose tr

[36,37]. In this formalism the partition function for the out-

of-equilibrium system is defined as with reciprocal lattice vectoréRLVs) Q.

B. Pure part

Z:=f Dylu,ule 4, o _ S _

The elastic interaction of vortices in the harmonic ap-

proximation is most conveniently represented in Fourier

W ~ space, where the pure part of the action acquires the form

Dylu,ul:=]1 d*u(q,td"u(q,), ®)
t.q

1., -~ -
APUre= [zuT-r.quiu*-r-u : (12)
where the path integral is restricted to modesA with the “q

cutoff A [38]. This scale can be related to the coherencel.he symbolu=u(q, ), U'=U(—q,— ) (the dagger stands
length as_ thf . d_|ameter Of_ the V(.).rt|ces. The guxmary "€ for transposition of components and complex conjugation of
sponse fieldl is introduced in addition to the displacement Foyrier-transformed quantitiesand theq integration runs
field u. _ o _ _ only over the first Brillouin zone of the lattice. Note that one
TO every possible conf|g.urgt|0n OT the 29."6”“3'“.0“”9 can always choosE'=T. In Eg. (12 we have dropped the
th.e|r time d_ependen¢ea3taﬂsﬂcal weighte ™ is as_slgne(_j terms linear in the response field. Since the average velocity
with an action A=A[u,u]. The sum over all weights is s gefined by the condition that the average displacement has

normalized to unity and is independent of the random pinyg yanish, these terms actually have to cancel each other in
ning potential. Therefore disorder averaging can be perihe absence of disorder. This impliEs- V.

formed straightforwardly, which produces a translation- s convenient to write the propagators of the pure action
invariant effective field theory. We decompose the resulting, the normal mode representation.  In  the

action into the “pure” and the “pinning” parts (d, =2)-dimensional case these modes are longitudibyl (
or transverse ) with respect tag, . Using the projectors

A:Apure_FApin,
anB
e f|ﬁ~ - - : PLap(q):= q_z Pr.ap(Q):= 8,5~ PL op(q),
= —=Uq-Us+iuqg-[pu—(D-u),—F+ pv]y, n
1211 1-[mus—( 1 7v] (13)
1 we have p=L,T)
w0=3 [ G @Ry B ©
2)12 - ~
F(q,w):=§ Tp(0,0)Py(q) (14
We have introduced further abbreviations in E®).(see Ap-
pendix A: An integer indexi stands for ¢,t), u;  and a similar expression fd?, where
=u(r;,t;)), Ryp=ri,t+Vvtio+us,, and the scalar product in- ~
cludes alld space componentd,, represents a shorthand Ip(g,w):=17, (1539
notation for an integration ovet, an integration overy;, _
and a summation over the vortex labels. The latter sum- Fp(g,0):=—ingw+Dy(q). (15b)
mation includes the factaa®: representing the volume per he elastic di . lati d
one vortex(for the usual vortex lattice with two displace- 1h€ €lastic dispersion relations rea
ment componenta®=®,/B with the flux quantumd, and _ 2, 2
the magnetic inductioB) such that the sum would become Du(a)=C10L + Casd (163
an integral in the continuum limia—0. It is important to
J . ' Dr(Q)=Cesd” + Caddlf (16b)

stress that although the discreteness of the lattice does not

manifest itself in the notation, thdiscrete natureof the sys-  \\here the elastic constants for compressigp, shearcs,

tem is completely accounted for in our description. The pin-5nq it ¢, of the vortex lattice can have additional implicit
ning part contains the pinning force correlatr which is

S . dependences on [3].
related to the pinning potential correlatarby Within the partition sum(8) response and correlation

functions are defined as
®(R)=D ,4(R):=f,(R)f5(0)=—3,9zA(R). (10) _
G12=GCup(r12,t12): =(Ua(r1,t1)iug(ra,tz)), (179
By a replacementb(R;,) —®(r12,R15) the present theory
can be generalized straightforwardly to other problems such C12=Cp(ri2,t12):=(Uy(ry,tug(ro,t2)).  (17b
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These averages are to be taken with the act@®rfor the _ )
disorder averaged effective system. Therefore, no further dis- u=(r,t)= fA<< <Ae'q"u(q,t). (229
order averaging is required in Eq4.7) and these two-point a=

quantities depend only on time and space differencesrhe response field is treated analogously. The integration

S“cfr(];lez ,c:fl?hz iﬁsal(a:éétnlq)gﬁgﬁtgé 'tthzgrrgzlsggig%sorﬂ;%mr:- over the modesi” andu” leads then to an effective action
agditional externefl force acting on the vortices and is there]jor the modes " The effective action can be represented
fore causal, i.e.5(r,t)=0 for t=0 [42]. via a cumulant expansion, which is

In the sequel the average squared displacement of vortices A= A+ AD+ A@ 4 .. (23a

CO,aﬁ'::<ua(rat)u,8(r!t)> (18) A(l)[a<,u<]:<Apin[a<+a>,u<+U>]>>_Apin[ﬁ<,u<],

will play a particular role, as well as the difference correla- (23b
tion

_ 1 e~
1 A(z)[u<,u<]=—E(Ap'“[u<+u>,u<+u>],
W, p5(riz,t1p): = E([ula_u2a][u1,8_u2,8]>:C0a,8
APTU=+0~,u+u”1)g (230

- Qcaﬁ(rlz-tlz)_ ECaB(rZLtZl)' to the second-order perturbation theoryAR". The averag-
(19 ing is performed over the modes” andu~ weighted with

the pure action4®{u~,u”]. We denote the second cumu-
For the general pure actida2) the response and correla- lant by (A, A): = (A% —(A)2.

tion functions are related to the propagators by Now we turn to a detailed analysis of the above correc-
1 tions and derive new couplings in the effective action for the
G(g,0)=I""(q,w), (208 |arge-scale modes.

C(q,0)=G(q,0)-T(q,0)-G'(qw). (200 A. First order
The last equation implie€"=C in agreement with the defi- Using Fourier transforms of the disorder correlator
nition (17b). 1

In the special cas€l5) we have explicitly Apinzif Uy - D(K) - ue’ Rz, (24)
12k
1
Gy(g,w)= =— , 21 ' i
p(Q,0) T,(q@)  —i7e+Dyq) (218 we shift all the dependences on the displacements to the

exponential. Applying Wick’s theorem to the first-order cor-

Tp(qyw) _ 9 rection given in Eq(23h), we get

Tyq0)?  re*+Di(g)’

Cpl(0,®) (21b)

A(l)[a<,u<]:f elk Ry~ k-Wiyk

1%

The decompositior{14) into normal modes holds also for

these matrices. 1. ~ ~
x:Euf-(b(k)-u2<+u1<-<l>(k)~G2>1T~k .

I1l. PERTURBATION THEORY: GENERAL SCHEME (25)

In this section we perform a perturbative coarse grainin - > _ . .

for the dynamics of the vortex lattice. We find an effectivegThe term§~612621 vanish due to causality. In addition

dynamics for the fields with wave vectogs=A < below a terms~ Gy, etc., vanish in the Ito calculus. As a result all

reduced cutoffA<<A by averaging over all modes with terms that appear in the correction to the action contain at

wave vectorsA<<qg<A. This averaging is performed by €ast one response fie;ld. The supers<crip%”“in Eq.> (25

integrating out these modes in the partition s(8n Due to sta>nd to remind thaR,;=r,+Vvty,+ Uy, and thatG™ and

the high nonlinearity of the pinning part of the action this W~ arise from the averaging over modes-'" To keep the

integration cannot be performed exactly. We restrict our perhotation simple, we will hereafter drop these superscripts.

turbative analysis to the first and second order in the pinning The obtained correction to the action has a more compli-

action. cated functional dependence on the fields than the original

As usual, we separate the modes with wave vectors belo@ction A. From A we extract not only corrections to the

and above the new cutoff, parameters of the originad, but also new couplings such as

a KPZ nonlinearity[ 35].
u=u<+u-, (224
1. Friction force
us(r t):f 9 Tu(g,t) (22b) The conventional approach to the description of driven
' q=A< e disordered dynamics is to fix the external driveand evalu-
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ate the resulting drift velocity=v(F) as a response thereof. Where the correction to the response propagator can be writ-
However, since in the present formulatiBrappears only at ten as
one position in the action, whereasappears at many posi- W 1) 1)
tions, we find it more convenient technically to treat the av- Uop=~17m,30+Dgp(q) (3D
erage velocity as given and to derive the foFse F(v) nec-
essary to maintain this velocity. The fact thails indeed the
average vortex velocity is expressed by the condition Dy — —i (D) (1)
(u(q=0,w=0))=0. In the presence of disorder this requires Dap(®)=~1Xupaba™ Kapardads (32
that theeffectiveaction for large-scale modes has no termsTherein new coefficientg appear. They describe forces aris-
linear inu, i.e., no terms of0(u'u®) in the fields. In the ing from a direct coupling to lattice stresses. In addition, the
absence of disorder this immediately yields that the drivingcoarse-graining generates elastic constantsith reduced
force is compensated by the friction forE&= yv. symmetries compared to the original constants.

The first-order correction to the friction force is extracted The correction to the friction coefficient is explicitly

from O(u*u®) of Eq. (25):

with an elastic dispersion

n%&zﬁkeW%””U—KW“JWMQQAk)Gﬁ¢rJ)Kgﬁ.
r

. u ik- —k- .
A%l)uoz LZkul.q)(k) .GT,,- kelk (Tzr Vg =k Wk, -

(26) In general this tensor is nondiagonal and gives rise to Hall

Comparing this contribution to the term Gf('ﬁluo) in the effects. The stress coefficients are

original action, we identify the first-order perturbative cor- _
rection to the pinning force as Xoga=— ft ke""“*V‘)‘k'w(r")'kraCDM(k)Gay(r,t)kng
I

. (34)
Fz(l):_iJ elk-(r+vt)—k-W(r,t)-kq)alg(k)Gyﬂ(r't)ky_ . '
trk and the elastic couplings are corrected by

1 )
Consequently, the transport characteristics of the supercom%abzzf el (r =k WD -k rp® o (K)G sy (1, 1)K K5 .
ductor are given byF"(v)= v+ F™)(v). SinceF) is in trk
general a nonlinear function of, the characteristics are no (35

longer linear over the whole current range. Comparing Eqs(27) and(33), one finds straightforwardly

2. Friction coefficient and elastic dispersion the useful relation

The friction coefficienty and the elastic dispersion rela- W aFZ(l)(v)
tions D parametrize the propagatdt in the original pure Nap(V)= g (36
action (12) in O(u'u'). Therefore, corrections to these pa- _ _ o N
rameters are extracted from E@5) in the same order, In the first-order perturbation theory the friction coefficient
coincides with the differential resistivity.
A(ﬁll)ulzf e'k (M2t =k Wiz k', (k) - G'5y- k] 3. The KPZ term
12k
_ Action (25) contains a further contribution i®(u'u?):
X[ik-(u;—uy)]. (28 ( )
. - o 1 ‘ ~
The integral kernel now has a finite width in§,t;,). How- A%ll)uzz — _f gik (it vt~k Wi k[ (k) - GTyy- K]
ever, this width is smaller than that of the response function, 2 )12
which decays on a characteristic scald 1/in space and on X[K- (Ug—Uy)]2. (37)

a scalen/D(A <) in time.

Aiming at the physics at scales much larger than the width\g pefore, we use the approximati¢9), which leads to

constant and approximate

D— iU (rt [—Ex(“ Faug(r,t)][dpu,(r,t
ul_UZ%tlZatul_Frlza(?aul_%rlmrlmaaﬁbul+'". Alu ftr o1 2 apyatl Jallp(F D 1L 9pU,(1,1)]
29 (39
L ) o with
(Latin indices also include directions parallel to the vortex
lines) Inserting Eq.(29) into Eq. (28) we find ,
)\(ailgyab: —j Jtrk e'k'(r+"t)_k'w("”'krarbkﬁkyke

@G igt.- . 30
At qu'“ a 30 XD oo (K)G oofF ). (39)
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This means that in the driven state disorder induces a Kpa_ja”y, new types of Coup"ngs appear @(’J3) that repre-

term. sent higher-order cumulants of the disorder, i.e., deviations
_ from a Gaussian distribution.
4. Disorder correlator The subsequent analysis is restricted to the evaluation of

the correction to the disorder correlator in order to demon-
strate the presence of effective random forces in the coarse-
1 grained equation of motion. The second-order correction to
AG) = EJ [Us-@(k)- Uyl ek R e k-Wizk—17, the disorder correlato®(® is again obtained by identifying
1 (ap)  the contributions tO(u?) in A® that represent persistent
(quenchegforces in the laboratory frame in contrast to tem-
porarily fluctuating forces that contribute to the effective
thermal noise. Due to the complexity of the involved expres-
sions the technical details of this procedure are deferred to
Appendix B.

So far we have not consider€{u?) of Eq. (25):

Comparing the functional form of this action to E§4), we
identify a correctiond®® (k) to the disorder correlator from
the persistentpart of the kernel, i.e., the part that is present
also for|t;5 — . Using lime, = W(ri2,t10) = Co we find
1. Random force
®V(k)=d(k)[e K Cok—1]. (41 _ _ _
Now we determine the coarse-grained disorder correlator.
.. . . . - i i 2)

Remarkably ®*) is independent of velocity and vanishes in Th'evzsecond. ordgr corzrectlon is extracted frad?) in
a perfectly ordered lattice witl,=0. In the general case O(U?). We identify ®?(k) as the kemel where slowly
with finite C, the correction represents a smearing out ofvarying displacements and response fields enter in exactly

disorder by the vortex fluctuations. the same combination as they appeared in the original pin-
ning action(24). Therefore ®?)(k) represents the correlator
5. Temperature of forces that arestationary in the laboratory frameThe

force experienced by a vortex moving in the laboratory
frame is nevertheless fluctuating in time.
The calculation of this correlator is performed in Appen-
1 dix B and leads to the somewhat involved expression for
AL EJ ek Riy gk Wizk_g=k-Coky[T . (k). U,].  ®P(K) given in Eq.(B6). From the large-scale behavior
12 (k—0)

The remaininghonpersistenpart of Eq.(40), which is not
taken into account by the disorder correction, is

(42

1
Now this integrand vanishes fétr; ] — and is also local in Pop(K)=dapt bapKyT 5 bapyskyKst - (49
r». Assuming again that the width of this kernel is small
compared to the scales of variation ofand u, one may one identifies theandom forcecorrelatoré,z. This contri-

neglectu; — u, [as a zeroth order of approximati¢®9)] and  bution as well as the second term in £45) emerges only in
approximate the driven stateand in the presence of disorder. The bare
random potential contributes only to the coefficiehts, s
wp_ L[ ~ = =26,,055A(k=0). Equation(B6) gives explicitly
A%z =5 u(r,t)- 9. u(r,t). (43
. ke k+ik.R©
¢(C(2/;: fl&e K-[W(rq,t1) +W(rp,ty)]-k+ik-Ry ko-Gu-y(_r21_t2)

Herein

X K,Gro(F D oK) D oK) R
(1) ik-(r+vt)r o—k-W(r,t)-k_ 5—k-Cq-k
Vap Lke [e € 1P ap(k) — @, (K)D5k)e kR (46)
(44)
with RO =r;+vt; .
is the correlator of the effective thermal nois®mnpersistent
shaking forces Note that9{)=0 for a perfectly ordered 2. Other terms

lattice with Co=0. One can also extract coefficients, ., and ¢z, of the

force correlator from Eq(B6). However, on large length

B. Second order scales the corresponding terms in the action are less relevant
The second-order correctiod® to the action has to be than the random force and therefore we do not present them
here

calculated according to ER3¢). The result contains a large :
number of terms and the full expression is not displayed A number of othe_r terms appear m_the second order of
here. One can easily see, however, tH& contains terms p_erturbat|on theory 'erdl.JC'n.g in particular new t_ypes of
~ ~ 3 ~1 ) disorder. For example, taking into account the gradient term
of O(u), O(u?), andO(u~). From O(u”) corrections 10, the expansion29), one finds a random correction to the
the pinning force and tb' can be extracted. Fro@(u?) one  amplitude of the KPZ nonlinearity as suggested by Krug

derives corrections to the disorder correlator anfit&Even-  [39]. Also, the second-order corrections B and to the
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propagators appear. Again, these corrections have a compfperturbative corrections in Secs. IV A—IV G and then derive
cated form and are not given here. For weak disorder théhe random-force term as the second-order correction in Sec.
second-order corrections are expected to be small compardd H.

to the first-order corrections. To simplify the evaluation of the general perturbative re-
sults we consider disorder with an isotropic correlation
C. Fluctuation-dissipation theorem length§,
In the absence of disorder the system obeys the A
fluctuation-dissipation theoreFDT) [43] A(k)=Aqe : (51)
—2ipoT 45(0,0) =T 4p(00) —T g (—0,— )], where we assumé<a, which is typical for superconduct-

(47)  ors. In addition, we assume the elastic constants to be uni-
form, i.e., Daﬁ(q)zﬁaﬁcq2 whenever explicit expressions
involving elastic constants are given. This simplification of
270 W,5(1,1) = DG 41 1)+ G g1 1)~ G 1, — 1) ;huealrirggtri(\e/ergéhstlc dispersiqi6a will not change our results
—Gga(—1,—D]. (48) As shown by Schmid and HaugE34], the lattice prefers
to move along the principal symmetry axes. Hereafter we

The FDT holds even in the driven state due to the Galileirestrict the analysis to the situation where the velocity is
invariance(the response and correlation functions under conparallel to a high-symmetry direction of the lattice, which we
sideration are defined in the comoving frame choose to be th& axis.

In the presence of disorder the validity of the FDT would
require

which implies(for t#0)

A. Random potential

—9j nw'fi}/;(q,w)=19[Ff11,§(q,w)—1“§31;(—q,—w)]. We start with the discussion of the coarse-grained disor-
(49)  der correlator. The first-order correctigl) preserves the
random-potential nature of the original disorder. Coarse

At zero velocity this relation is satisfied even in the presenceraining smears out the correlation length of the disorder
of disorder because the ternysvanish andyd{)=97{}).  over the typical vortex displacement sincé s(k)
However, in thedrivendirty system the FDT is violated. The +¢&1ﬁ)(k):e—k-co~kq>aﬁ(k):kakﬁAOe—k-Co‘k—fzkzﬁl This
most obvious reason for that is the presence of the stresfeans that the disorder correlation lengths is described by
couplings generated by disorder in the driven system; alsghe matrix
one sees immediately that") and *) no longer satisfy the
aforementioned relation. Eab:=&*0ap" Coap- (52

IV. EVALUATION OF PERTURBATION THEORY The correctionC,, diverges in dimensiond=<2 for finite
) . . . temperatures if the lower cutoff < is sent to zero. In this
In the preceding section we have derived the effectiveage it is therefore possible that weak disorder is irrelevant
equation of motion(1) for the coarse-grained displacement. ¢q the |arge-scale properties of the vortex lattice. As long as

The renormalized parametef@ith an asterisk superscript  \ <~ g s finite this correction has only a quantitative effect
are composed of the original values plus perturbative corregy, 41 dimensions.

tions, Focusing ond>2 we will consider in what follows
X _ s () (508 mainly the case of zero temperature. In most perturbative
Nap= N0ap™ Nap expressions the exponential factors involving matricgor
. (1) W can be ignored since they always enter in a combination
Dop=DaptDag: (50D with the disorder correlator and modify the correlation
e (D) lengths only quantitatively. The only exception is provided
Fa =nu.tF,", (500 by the correction to the temperature.
* Y
Naprab=Napap: (509 B. Temperature
<§Z(f1.t1)§§(rz,tz)>:192,35012)5('(12). (500 We evaluate the effective temperature from_ Eiq.4),_
where we had observed already that the correction vanishes
192/3: 98,5+ ﬁglﬂ)' (50) for t_hg perfectly ordered lattice dt=0, whergW=C0=O. _
At finite temperatures one expects a positive correction,
o D T ax since in generalW<C, and the difference between the ex-
fa(R1)T5(R2) = D3p(R12), (509 ponentials in Eq(44) will no longer vanish. Considering low
1) 2 temperatures, one can linearize the exponentials and obtain
Q=D gt Dty (50h)
Now we evaluate the various couplings that appeared upon 3~ | k kzk?A(K)———"—, (53
- . . N R 2,212+ c2g*
the coarse-graining procedure. We start with the first-order UK T Coq
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where we implicitly decompose=Q+q into a RLVQ and  namically like individual particles. The typical force scale
a vectorq within the first Brillouin zone. With a random- F3=A,/£972 is set by the spatial average of the pinning
potential disordef51) one immediately finds in the limit of force.

large velocities > &éc/ pa?: Equation(56) applies only to velocities parallel to a prin-
cipal lattice axis. For other directions the force and velocity
" Ag will no longer be parallel to each othg84]: The velocity
Tyx “mﬁ, (548 will deviate from the force in the direction of the closest

principal lattice axis. Thus disorder induces a Hall effect.
Instead of evaluating the friction force for arbitrary direc-

a“A Il turn to the frict fficients that describ
(1) 0 tions, we will turn to the friction coefficients that describe
Dyy PR ¥ for d>3, (54D the same effect in a differential form. There the presence of
the Hall effect shows up as anisotropy of the coefficient ma-
trix.
2
a“A - . . .
ﬁilly)%%(a/\ﬂd—sﬂ for d<3. (540 fr(,01\)t small velocities Eq.(5§) gives Ohmic behav!or,
& %o F,"’~uv, only for d>4. In this case the poles of the inte-

_ . grand atk=Q with Q-v=0 are integrable. This is no longer
We have dropped numerical factors of order unity. true in d<4 and the perturbation theory gives sub-Ohmic
For large velocities the result fa#) is independent of transportF ")~ (4=2)2 |n particular, ind= 2 the effective
the elastic constants and finite fdr=—0. However, the friction force is finite for small velocitie§34]. The sub-

integrand ofﬂ%’ has poles neak~Q giving rise to the Ohmic behavior of the effective friction force reflects the
divergence ind<3 (the divergence is logarithmic id=3)  fact that the vortex lattice forms a glabslow four dimen-
when the coarse-graining cutoff* is sent to zero. Since the sions and at zero velocify].

correlator ﬁw decays even for finiteA = with a smaller

power inv than 9, the effective noise is stronger in the D. Friction coefficients

directions pe(r{))endu.:ullar to the velocity. _ In order to examine to what extent glassy features persist
As only 9y exhibits this divergence, there is a funda- iy the driven state at finite velocities, it is necessary to ex-
mental difference between vortices widh>1 displacement  amine the friction coefficients;, ;. Since these coefficients
components and CDWs witth, =1. This divergence there- describe the dynamical response of the driven vortex lattice,
fore doesnot imply that fluctuations, which have an ampli- the glassy features, which are in general associated with di-

tude proportional to temperature in the pure case on alergent relaxation times, must manifest themselves as diver-
scales, would now diverge. Since this divergence of the efyences in the friction coefficient.
fective temperature arises from the large-scale response of combining Eq.(55) with Eq. (36) we find
the elastic medium to the pinning force, it indicates that one
has to be cautious, applying naive perturbation theory to the
calculation of large-scale properties, which ultimately can be 775},5); - nf kakﬁka(k)
determined only by renormalization-group methods. At first k
S'.ght Fh|s divergence suggests t_hat on large scales the MRjote that only the diagonal components of the friction coef-
dium is much more rough than in the pure case. Howeverf. . d ish d flecti . h
the roughness depends not only on the effective temperatur'C'.ent 0 not vanish due to re ect|o.n gymmet.rles. I.n the
. " - : fiinit of large velocities parallel to a principal lattice axis (

but also on the effective friction coefficients and elastic con-__. .

: : : : axis) one finds
stants, which we address in the following subsections.

7]202k>2<— C2q4

[772U2k)2(+ C2q4]2 '

(57)

L (1) AO
C. Friction force Mk == — W 7, (583
. .. . nv
At T=0 and uniform elasticity the evaluation of EQ7)
yields aA
0
”glly)%gmsnzvz - (580)
FZ(l)znvkakaka(k) 575 (55
k vk +cq The main contributions tap}) come from the vicinityk

~Q of RLVs with Q-v=0, whereas forp? all terms
Q-v#0 contribute. We find thaty{})|>| »{Y)| since we have
evaluated Eq(57) in the limit £<a. Otherwise both correc-
tions would be of the same order of magnitude.
Since Eq.(56) has already been specified to velocities
FIrL) Ao , (56)  @long a principal lattice axis, only{Y can be derived from
X &2 there using the differential relatio{36). Both friction coef-
ficients are again independent of elastic constants.

where purely numerical prefactors of order unity have been In their pioneering work Schmid and Haugg34] dis-
dropped. This expression is independent of the elastic corsussed a discontinuity in the relation between the transverse
stant for large velocities. In this regime vortices respond dyforce and velocitysee their Eq(27) and discussion thereaf-

The relative correction to the friction force is closely related
to the relative correctiort54) of the effective temperature.
We find explicitly forv> &c/ pa2
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ter]. However, as they stated, this discontinuity is an artifact
due to a neglect of vectoig. Such a discontinuity, if real,
should have appeared as a divergenceygj’d, which is ac-
tually absent44].

Glassy features in the dynamical response normal to the
velocity, suggested by Giamarchi and Le Douskal],
should manifest themselves as a divergence of the friction
coefficientz,, . At large drive this divergence could emerge

dynamic force

only in higher orders of perturbation theory. y v
At zero velocity a divergence)[J~A=9"* is apparent T_)
for d=4. It arises from the poles of the integrand in Eaj/) X
at k=Q and implies ﬂ(otl,(ng(d%)/zfsaﬁ for A==0. This FIG. 4. Schematic representation of a moving vortex configura-
again signals the glassinessvat0 for d<4. tion. The distance between the solid wiggly ligmosition of vortex
in perfect latticg and the dotted straight lin@ctual vortex position
E. Stress coefficients represents the componeny of the displacements field. The dy-

namically generated forcg,~ x,,xJxUy, visualized by empty ar-
rows at two representative positions, makes a vortex acquire the
displacement of the preceding vortex.

For T=0 and uniform elasticity Eq34) reduces to

c?qa0°
5 . (59 . . (d—2)i2
[ 7%v2k5+ c2q*]? perturbation theory gives, €.Qxyxx~v . Thus these
coefficients diverge id<<2 only.
We again restrict our consideration to the case where the
velocity is parallel to a principal lattice axis. For several
combinations of indices the integrand is odd under an inver-

Ka=amo [ Kk kA K
k

F. Elastic constants

sionk,— —k, . Therefore, we find in particular Following the same scheme, a correction to the elastic
constants
1) _ 1) _ 1) _ 1) _ 1) _
X(aﬁ)z_ X§/x)x_ X§<y)x_ X;x)y_ Xi/y)y_ 0. (60)

2,22 _ 2qt
(C)— K K.k2A(KY 8 u
(We would like to remind that greek indices run only over Kapap™ ~C K COBRL (k) ab[7]202|(2+C2q4]2
the directions perpendicular to the vortex lines, ixeandy X

in the usual 3D configuration, whereas the latin indices also 37%v%kZ—c?q*
include directions parallel to the vortex lines, i.e.jn the —4czqaqbq2m (62
usual 3D configuration.However, for finite velocity there [77v7k+c°q7]
are also nonvanishing components that decay in the bmit
— o like can be obtained from E¢35). For symmetry reasons again
all coefficientsk{}},, vanish where indices different from
" Agc? appear an odd number of times. Neverthela$,,,, will no
Xooxx™ W' (613 longer be proportional t@,z6,, and the correction reduces

the symmetry of the original elastic interaction.
The first term in Eq.(62) represents a correction of the

X(l) =y~ AqC (61b) elastic constant proportional to the correction of the friction
WYV pdr1g2,2,2° coefficients(57). This contribution is finite for all dimen-
sions and of the order af 2 for largev. The second term in
AnC Eq. (62) can be shown to be finite and of the ordervof*.
YW= (619  Therefore, at large velocities, it can be neglected in compari-
yyXx §d+3 2.2 .
nv son to the first term.

We find thus in the leading order of 2
We have assumed<a. Then y{%) is the largest among

X
these coefficients. 7

The stress coefficients have a simple physical meaning. e o
They express the tendency of vortices to form a homoge-
neously moving system. In particular the coefficiemts,
>0 andyxyy,>0 imply that a vortex experiences a dynami-
cal force that makes it follow the motiof‘footsteps”) of
the precedent vortex; see Fig. 4. These couplings favor the
formation of channels.

The stress coefficients are generated only in a nonequilib-lence the elastic stiffness of the lattice for displacements
rium driven state and in the presence of disorder. At smalparallel to the velocity isreduced whereas the stiffness for
velocity and forA ==0 they vanish proportional to only in  displacementgperpendicularto the velocity isincreased
dimensiongd>4, where the integral in Eq59) is finite. For ~ The latter effect can be interpreted as a tendency to form
d=<4 the stress coefficients vanish sublinearly. Lowest-ordechannels and an increased energy cost for transverse dis-

0anC, (633
v

(b 8B
yyab §d+3

o2 SapC. (63b
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placements. For small velocities the corrections to the elastic One easily calculates far> £c/ na?

constants are found to divergé?~v(@~4)2ike the friction
coefficients.

G. KPZ nonlinearity
As before we obtain from Eq39)

N —acqu | Kk Kk k2A(K) SarCd”
aByab™ LTV xSkt [n2v2k§+c2q4]2
2..21,2 2~4
n°vky—3coq
+2c — . 64

Qaqb[nzvzk>2(+czq4]3] ( )

57
AZ
(2 "0
XX §4+d 7721) 27 (678)
A}
(2
yy~§3+dc7]v for d>3, (67b
272
acA
= e (@AD? for d<3. (679

Many components vanish due to symmetry. All coefficients . 2) i
that are related by permutations among greek or among latifie" 1arge velocities the result fap;’ is independent of the

indices are identical. We find in particular

AW ~£ S 65
xxxab aZ§d+21731)3 abs (653
cA
1 o
Myyan™ 43722 dab: (65b)
2
c°A
1 0
Nyyyyt™ agd 3,33 (650

All couplings assume finite values and decay at least &s
in the limit of large driving.

elastic constants and finite foar=— 0. This random force is
the analog of the random mobility of driven interfaces with
phase disordef39]. A similar force for CDWs was previ-
ously obtained in45,32] and predicted for vortex lattices
also in[32,46. Comparing this result to the noise correlator
(54), we find exactly the same type of divergences in the
transversecomponents in the limit\<—0.

At small velocities the random force correlai@6) van-
ishes likev? in d>8 and likev(“~4”2in lower dimensions,
which again confirms the glassy nature at zero velocity in
d=4. The random-force component of the disorder cor-
relator does not always vanish in the limit=0, it even
diverges ford<<4 in a similar way to the KPZ coefficients.

I. Roughening by disorder

In the absence of disorder the displacements of the vorti-
ces are isotropic and scale [lik&V,,(r,t)~W,(r,t)
~w(r,t)~b?w(r/b,t/b? with a dynamical exponerg=2

For CDWs, which are included in our analysis by special-and a thermal roughness exponént(2—d)/2. The effect

izing all greek indices tax, Chenet al. [45] have found

A} ., proportional tov ~* in contrast to our result65a.

of disorder on the correlations can be estimated in the most
elementary approximation as follows: Assuming that the

Having no access to their derivation, we were not able tdypical displacements are “small” we might simply neglect

pinpoint the origin of the disagreement.

In the limit of small velocities the KPZ terms coefficients
vanish~uv only as long as the integral in E4) is finite,
i.e., for d>6. For d<6 the coefficients scale likex

them in the argument of in Eq. (9). More precisely, the
validity of this approximation requires; — u, to be small in
comparison taR{) :=r 1+ vty,.

In this approximation the action is still bilinear in the

~v(@=9”2 One can see that even these coefficients divergéields and of the same functional forfa2) as in the pure

for d<4.

H. Random force

At T=0 and uniform elasticity the evaluation of the ran-
dom force correlato(46) yields

7ok

[77v2G+c?q")

¢a§;=2fkkakﬁij2(k) (66)

This expression was recently given [iB3], where it appar-
ently was found within a renormalization-groltRG) frame-

case. From4P" originates an additional contribution

A’f(q,w):% D(K)S(w+k-V), (68)

which is the pinning force correlator as “seen by the per-
fectly ordered vortex lattice.” Herk& is k=Q+q.
The large-scale properties of the vortex lattice are in a

good part governed by the behavior®F at smallg and w.
Note that there is an important difference between the prop-

erties of componentAfXX(q,w) andAfyy(q,w). It follows
straightforwardly from Eq(68) that the correlatorP , (k)

work. Here we obtain it as a result of a straightforward per-contributes to the asymptotic behavior not onlkat0 but at

turbation theory.

all RLVs k=Q with Q-v=0. ThereforeAfyy(q,w) shows
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the same qualitative behavior at smaland  for both ran-  contributionsQ,=0 are stationary in the laboratory frame.
dom potential(similar to unrenormalized disordeand ran- ~ This includes all contributions that roughen the VLs on large
dom force casdappearing upon coarse grainjndgn both  scales. _ _ _
casesAT,,~ 8(w+q-v) with a finite prefactor forg,w—0. In this pertur!oa_mve result the transverse dlsplacemenf

i ~ components exhibit much stronger fluctuations than the lon
In contrast, the behavior of thel',,(q,w) generated by the

. e X gitudinal component. An anisotropy emerges, requiring thus
random potential is qualitatively different from that of a ran-  jistinct scaling for the displacement components parallel

dom force. Namely, in the random potential cadé,,(q,0)  and perpendicular to the velocity and also a distinct scaling
vanishes aﬁfxx(q,w)~q§5(w+q-v),Whereas for the ran- for their dependence on coordinate distances parallel and
dom force case thé function again has a finite prefactor. Perpendicular tor. While W,, does not reveal a well-defined
Thus the random-force character of the coarse-grained disogcaling behavior at large scales since finite temperature and
der will change the asymptotic behavior of those quantitieglisorder give finite contributiongin d>2), the scaling of
that depend oﬁxx, but will leave intact those depending on W,y s dominated Dby the disorder contribution with

yy
Iy, only.

W,y(X,y,t) ~ b3 W, ((x+vt)/b?,y/b,0). The divergence
of W,,, on large scales indicates that the Gaussian approxi-
In the Gaussian approximation disorder does not modify., ko4 g bb
the propagatol” and, according to Eq20), leaves also the

ation loses its validity at large scales since the initial ne-
) - glect of the dependence of the force correlator on the dis-
response function unchanged. However, the additional corjjacements breaks down. The characteristic length scales
tribution (68) to the propagatol’ generates an additional
contribution

d+3 1/(3—d)
Cc v
c=a(—§2 U ) , (713
o (k) a“Ag
afB
AC yW)= —————— 6(w+Kk 69
«p(0®) % oAt o7 (0+keo) (69
Xe=nvy?lc (71b

to the correlation function.

It is interesting to examine the dependence of correlationig
on space and time. Since disorder is fixed in the laborator - .
frame, one might expect thatC is also stationary in that PY Giamarchi and Le DoussgB1]. .
frame, i.e., AC5(r,t)=C,4(r+Vt,0) or Cos(q,0)* 8w !f one takes into accgunt that a random:orfezgzger.\erated,
+q,0). An inspection of Eq(69) immediately reveals that Which we may approximate a® (k)= ¢{Je <72 with
only RLVs with Q,=0 give such stationary contributions. the coefficients from Eq67) [an exponential decay for large
All other contributions, that reflect the discreteness of thek follows from Eq.(B6)], then also thex component of the
vortex lattice in the direction of the velocity amet station-  displacement becomes roughdr=3:
ary either in the laboratory or in the comoving frame.

Using the  unrenormalized  disorder @ ,4(k)

at limit the validity range are obtained =W, = &2
eneralizing the static Larkin lengtihave been introduced

_ ) . . . a2 3—d
Kok A o€ , Eq. (69) implies (in d<3) [31] AW, (1.0 ~ dixx Iyl for yoy?>clx|,
c& vl a
(723
AW, (r,0)~ " 2 5 for r>a, (70a
& nv 2 (3-d)/2
a“dux [ clx| »
AW, (1,0)~——— > for puy*<c|x|.
céd v\ pua
_ (72b
azAO |y| 3-d 2
AWyy(r,O)~T - for nvy >C|X|, )
c& gl @ However, the fluctuations of the transverse component are
(70b eventually more pronounced singg, and i, diverge on
largest scalegfor y~1~A~—0). This divergence is loga-
rithmic in d=3 and algebraic ird<3. Because of this di-
a2A c|x| (3-d)i2 vergence renormalization effects are expected to modify the
AWyy(ryo)”(H—lo( > ) for puy?<clx|. roughness exponents found perturbatively. In addition, one
c& vl atp would expect naively thaAW,, increases on large scales

(700 even faster than in Eq70). However, for consistency one
should take into account the one-loop corrections not only to

AW, has contributions from the vicinity of all RLVs to I, but also tol. In the static case, where the Gaussian ap-
orderv 2. AW,, is dominated on large scales by contribu- Proximation yields a roughness expongpt=(4—d)/2, the

tions with RLVs Q,=0, whereas RLVs withQ,#0 give actual roughness is only logarithmic= 9 There the disor-
only finite contributions as taW,,. As for C, also only the  der contribution to the force correlatdt, which tends to
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increase the roughness, is balanced by the contributioRis to €ralized Lindemann criterion, examining the relative fluctua-
notably an increase to the elastic constants that increases thens in the distance of neighboring vortices. Instead of ad-
stiffness of the lattice. dressing the topological defects explicitly, we rather focus on

For many disordered systems different approaches to trefeir effect, namely, the destruction of the neighborhood of
a balance between several diverging terms have been fruitfuyortices.
One possibility are self-consistent approaches such as that of Since the positional fluctuations of neighboring vortices
Sompolinski and Zippeliug47], which treats the coupling of are a small-scale feature, it is sufficient to take into account
modes on a mean-field level. This approach has been aglisorder within the Gaussian approximatiore., neglecting
plied, for example, to spin glassp$7] and elastic manifolds the dependence of the pinning force on the vortex displace-
[48]. However, since typically the self-consistency takes intoments, the large-scale properties of which have been exam-
account only first-order correctiong(!) to the action, it can ined in Eq.(70) above. The disorder contribution to the rela-
produce only approximate values of scaling exponents. In théve displacement of two neighbored vortices and r,
present situation these approaches would completely misigparated by a bond vectarr, is given by
the physics arising from the divergence ¢f,. It would
therefore be necessary to extend this scheme to the second-
order corrections which make a solution of the self- iqa (a-q)*k*A(k)
consistency equations even more involved. Another apAW(a) f (1-€THAC(G )~ _f 2,2

aQ 72v3ki+c’g*

proach is provided by the RG, which in principle can be (73)
extended systematically to arbitrary perturbative order.

A consistent and reliable treatment of the large-scale .
properties requires the simultaneous handling of sever ith AC taken from Eq(69). .
complications.(i) The anisotropies as discussed above start Now one can compare the shaking of a bond parallel to
to interplay under the RG iteration with the anisotropies ofvelocity (a= ax) and “perpendicular” to the velocity §
the friction coefficient, stress coefficients, elastic constants+ ay) Strictly speaking, there are no bonds wihv in a
and KPZ terms(ii) Since disorder roughens the VL, as seenhexagonal lattice; by “perpendicular” we mean the bonds
already within the Gaussian approximation, the generatechaking the 60° and/or 120° angles with the velocity. This
KPZ terms are more relevant than the elastic couplings acsimplified treatment does not change our qualitative conclu-
cording to scaling arguments. Therefoeepriori they also  sions altering slightly only the unimportant numerical fac-
need to be taken into account and are expected to modify thers. In the limit of large velocities we find
large-scale physics qualitatively as soon as the medium is
rough. The relevance of anisotropies in the KPZ terms in the
absence of disorder has been studiedsfogledriven vortex R aj,
lines by Ertas and Kardd#9], who found a variety of dif- Aw(ax)~————, (743
ferent physical regimes depending on the anisotropy of elas- &
tic constants and KPZ coefficients, and by HyW&0| for
driven line liquids. For CDWs i = 1,2 Cheret al.[45] find 5
nontrivial scaling exponent§.e., differing from the scaling Aw(ay)~ a“Ag
found in the Gaussian approximatjotue to the KPZ terms ced iny
also in the presence of disorder.

(74b)

From this result one sees immediately that in this limit the
bonds perpendicular te experience much stronger shaking
effects than the bonds parallel to velocity. Consequently,
Our discussion has been restricted so far to the elastithese perpendicular bonds linking different channels are ex-
approximation, neglecting topological defe¢ssich as dislo- pected to break more easily than the parallel bonds. This
cationg in the vortex lattice. Upon increasing velocity all implies that the vortex structures has much longer correla-
effects of disorder become weaker and we expect also thigons in the direction parallel to the velocity than in the other
length beyond which dislocations become relevant to indirections, in agreement with the anisotropy of the dynamic
crease and even to diverge for temperatures below the meltarkin lengths(71). This result leads to the phase diagram
ing temperature of the pure system. Then the interestingepicted in Fig. 2, which has been discussed already in the
guestion arises, What kind of defects lead at smaller drifintroduction.
velocities to a destruction of the coherence of motion and Ultimately, it is desirable to have a more systematic ap-
what kind of order can survive? proach to the effects of dislocations in the driven medium. A
On the basis of the presence of a random force parallel téirst step in this direction, the study of the dynamics of single
the velocity, Balents, Marchetti, and Radzihovg§@p] have dislocations, was made in Ref54]. In order to decide
proposed the existence of a smectic phase where vortices andetherfree dislocations destroying the topological order of
correlated over much larger distances parallel to the drifthe lattice are present, it is necessary to study the dynamic
velocity than perpendicular to it. Such a phase has been olstability of dislocation loop$in d=3) or of dislocation pairs
served indeed in numerical simulatiof1,52 and experi- (in d=2). In particular, ind=2 one can expect a description
ments[53]. of the dynamic phase transition in terms of the Kosterlitz-
We propose here a picture for the formation of a smecticThouless transitioi55] generalized to nonequilibrium sys-
phase within a phenomenological approach based on a getems.

V. DISLOCATIONS
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VI. CONCLUSIONS T=0, but this is not a signature of glassy behavior. An in-
We have constructed a general approach to the driveérr?ljgcl)\i/c?aforgtzi;i\?nwﬁicar%\ggi% b{asssmgcl)ee?ﬁaf%dﬁsm a
dynamics of dirty periodic media based on the MSR tech- P ! glassy prop :

: . transport characteristics has a finite critical forceTatO.
nique. The developed scheme provides a regular and ConSIEbr low temperatures it has an exponentially large but finite
tent derivation of the effects of disorder on the sliding mo- P P ylarg

) . friction coefficient at small velocitie&ue to thermal activa-
tion. At present, however, we have restricted ourselves to the L L

: . S .fion) that crosses over to the smaller bare friction coefficient
second-order dynamical perturbation theory, which is still

sufficient to draw several fundamental conclusions concer at large velocities. Despite the absence of generic glassy fea-
) . : : Mures such as the existence of transverse barriers, we find a
ing the high-velocity behavior.

: . . . _tendency to form channels directly from the presence of the
We have derived the coarse-grained equation of MotioRyass coefficientésl) in the coarse-grained equation of mo-
(1) for periodic media in the presence of disorder. We havg;y,

found a renormalization of the bare system parameters such Tq giscuss the physical meaning of the effective tempera-

as friction coefficients, elastic constants, and the frictionyre 9* it seems appropriate to emphasize that it is actually
force within the one-loop approximation as well as new cou-he weight of the noise correlatotn a system at equilibrium
plings giving rise to the disorder-induced stresses, KPZ nongand for our bare systemd is proportional to the product of
linearities, and an effective disorder with a random-forceine temperaturd and the friction coefficient;. Since we
character evolving from the original random potenf@0].  hayve found a finite correction to the friction coefficient, the
The presence of such terms has been proposed for ongivergence ofd can be interpreted as a divergence of the
component systems such as driven interfg88sand CDWs  effective temperature. However, in the nonequilibrium situ-
[30] without analytic derivation. ation under consideration, there is no well-defined meaning
The appearance of divergent parameters under coargg a “temperature.” One can speak only aboutanunique
graining is much more subtle in the driven system than in thgtfective temperature if one specifies what physical property
system in equilibrium.  For complete coarse grainingof the nonequilibrium system is compared to an equilibrium
(A=—0) we found a divergence in the correlator of the system. Since the divergence @t arises from fluctuations
transverse components of the effective thermal ngfsand o, the largest length scales, only the degrees of freedom on
the random pinning forcé” in d<3. Thus, in the driven an asymptotically large scale can be related to an infinite
state the upper critical dimension is reduced by one and thetgfective temperature. This means that the driven lattice in
are fewer divergent parameters in comparison to the statighe presence of disorder is on large length scales much more
case, where also the friction coefficients and elastic constanigugh than the lattice in the absence of disorder.
diverge already in the first order of perturbation theory for | general, divergent parameters signal a breakdown of
d<4. perturbation theory at large scales. Therefore, the question
The divergences in the correlator of tigersistent and apout the asymptotic large-scale behavior of the system can
nonpersistentrandom force components perpendicular tope conclusively addressed only by a systematic RG treatment

the drift velocity appear only for systems with a periodic that includes implicitly all orders of perturbation theory,
structure transverse to the velocity. Therefore, there is a funyhich goes beyond the scope of this work.

damental difference between the dynamic behavior of |5 the absence of a formal derivation, we propose
CDWs, which have only one component, and VLs with morethe following speculations regarding the existence of
than one displacement component. (quasijlong-range order at highest driving forces. It is essen-
The standard way to tegtassy propertiesf the systems  tja| to distinguish between CDW-like systertisaving only
in question is to examine the large-scale behavior of thgne “displacement” componenand VL-like systemghav-
disorder-induced corrections to the physical quantities, thqang more than one displacement compondetcause of fluc-
most marked of which is the friction coefficient. Its diver- tyations in the displacement components perpendicular to the
gence is immediately related to an extremely slow dynamicgelocity. In the CDW case, where there is only the compo-
that is dominated by infinitely high barriers. A large-scalenent parallel to the velocity, it has been argued in [R&2]
divergence of the perturbative corrections would then indithat the random forces along that direction lead to a rough-
cate the glassy behavior. However, a divergence of the firsiness with an exponent=(3—d)/2 that is not reduced by
order correction to the friction coefficient sbsentin the  renormalization effects on the largest scales.
driven case. We believe that the situation could be different in the case
Since the vortex system is already in motion, the frictiongf \/Ls. We have shown within the perturbative framework
coefficient 7, , which describes the velocity response for athat the perpendicular displacement components fluctuate
change of theamplitudeof the driving force, has to be finitt much stronger than those of the parallel component and are
since the drifting lattice already overcomes the potential barsubject to a diverging random force correlator. In this case
riers in this direction. Nevertheless, one could expect that thene has to take into account that the strong perpendicular
friction coefficient »y,, which describes the velocity re- displacements wash out not only the perpendicular compo-
sponse for a change of ttdirection of the driving force, nents of the pinning forces but also the parallel components
could still diverge due to infinite barriers for a transverseand therefore qualitativelseducethe true large-scale rough-
motion of the lattice. However, sinoe;,‘y is finite, these bar- ness in all directions.
riers can only be finite. This implies a linear transverse trans- This speculation is formally supported by the structure of
port characteristic for small transverse forces at finite temthe perturbative corrections obtained in Sec. Ill. To be spe-
peratures. It is still possible that a true critical force exists atific, we discuss the random force correlat). It contains
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exponential factors exp(k-W-k) that have been neglected conclusions. In addition to perturbative results, a RG analy-
in the evaluation in Sec. IV. This is legitimate in lowest- Sis of simplified models has been performed, but it does not
order perturbation theory, where only thermal fluctuationsseem to yield results that differ qualitatively from those ob-

contribute toW. However, under iterating the perturbative tained here by perturbation theory.

expressiongthis is essentially the idea of a RGne should

take into account also the disorder contribution¥\toSince ACKNOWLEDGMENTS
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mechanism is the same in all perturbative expressions and, as

we believe, could reduce the true roughness qualitatively in
comparison to the perturbative result in<B<3 for the

largestvelocities. For the convenience of the reader we summarize here our
In addition to the aspects of the high-velocity phase, wenotation. The total dimension ig=d;+d, with the inner
have evaluated the general perturbative results also in thgyrtex dimensiond; and the numbed, of displacement
limit of Vanishing Velocities, where the depinning transition Components_ Latin indices run over adl ComponentS,
is approached. We found disorder to be relevard#4, in  \yhereas greek indices run over, components. We use
agreement with both Larkin’s original static analysl$ and  smmation convention for indices, I8 k=Kaka=3 k2.
dynamic approaches to depinning as a critical phenomenon y/q present the short notation
[2,22]. As an additional feature our perturbative analysis re-
vealed the relevance of the nonequilibrium contributitdis
vergingKPZ terms and random-force correlgtto the equa- F1p:=r1—T5, ti=t;—t,,
tion of motion.
To be specific, let us consider the example of the KPZ
couplings as true nonequilibrium couplings. It seems surpris- 8512:=08(r1p)8(typ), &(r):=a % & a(ry),
ing that they do not always vanish in the linsit>0, where
one naively expects the FDT to hold and all nonequilibrium

terms to vanish. To resolve this paradox note that the zero-
velocity limit has to be taken with care since it does not f_:=f f , J':zf dt, f:zafE Jdd\lr",
commute with the limitA=~—0. The observed divergence R t ' L

occurs only if one taked =—0 beforev—0 since the di- g d

vergence arises from the infrared contributions to the inte- J_J' d’k J_J d%q J _Jd_w

gration overg. Physically, these contributions are related to v L emt Jo Jiezemd Joo ) 2w

the diverging energy barriers on large scales. These diverg- (A1)

ing barriers imply a diverging relaxation time and persistent

memory effects of the system, which are the origin of thegq, giscrete space components the integration has to be re-
survival of nonequilibrium terms. In other words, in a glassyp|aced by a sum with a factad:, the “volume” per vortex.
system relaxing from dglobally drifting) nonequilibrium |, d, =2 one hasa?=d,/B. q integrals run only over the
state into its equilibrium state after switching off the current, ¢ <t Brillouin zone(1BZ) butk runs over whole momentum

there will be regions that are still drifting, their dynamics gnace For two-point quantities a conjugation is defined by
being governed by an effective nonequilibrium equation of

motion. If, on the other hand, one considers the KPZ cou-
pIings_, _forfinite Azé they are _finite and vanish like-v for GTaﬁ(klw)::G,Ba(_kv_w)uGTijEGTaB(ri_rj ti—t):
velocitiesv <céA =4/ . For this reason these terms have not

APPENDIX A: NOTATION

been taken into account in the previous studies of the depin- =Gpu(rj=ri,tj—t)). (A2)
ning transition. However, the obervation that these nonequi-

librium terms diverge at small velocities fox <=0 could APPENDIX B: SECOND ORDER CORRECTION
indicate that even for weak disorder the depinning transition TO THE DISORDER CORRELATOR

is rounded in a very narrow region by rare plastic effects ) o )
[57], which are not Captured by the phenomen0|ogica| Lin- In order to find the second-order contributions to the dis-
demann criterion. order correlator, one has to look at terms@fu?) in Eq.

In the final stage of preparing this manuscript we becamé230), which we separate into two contributiofall super-
aware of works[58,59 where the authors came to similar scripts “=" are dropped again
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A%Zg: A(Ezil)“L A%Zzﬂ (B1) pointsi andj are unconnected. Therefore, we are left with

specified below. A further condensation of the products 1

2, ~ ! ' ”

A%le): - EJ , ,,Ul“l’lis'{(GTsl'k —G'3 k")
1234k

X(K"-Gy—k' -Gz

@K Co K"k -Wg k! =k’ (W4~ Wgg) K"

@, : =d(k)e' R (B2)

) ) +(G'gp k"= G35 K")(K"- Gos— k' - Gga)
and (DJrlZa,B::q)Z_lﬂa helps us to keep the structure of the

: —k"-Cq k" —K" Wy K" —K"- (Woyz—Wyq) -k’
expressions transparent: xXe 0 2 (Wag~Wa

+Gh, kK- Gyy

1 _ —(k’—k")-C -(k'—k”)_k,-(W +W )_ku T*k” ~
2,1 ' , Xe 0 14 32 (I) Us.
A(EZ = Ef ) ([Uy- iz (GTark @, Uy
1234/ K" (854
+(G'3= G0 - k") {[K' - (G14— G3a)
" —k" =~ - ~ k' ' .
+K"- Gyl @, - Ugke A= [Uy- B3 GTyy k'] Terms ~G'3,G,, are nonpersistent and therefore do no

longer appear inA%zz’]’o). Vanishing terms~G'3,G, have
been inserted by hand to complete the squares. The second
(B3a contribution becomes analogously

e o~ ! ! . K"
X[k”'G24'(I)T42k 'Uz]e k"-Wqg-k"—k"-Woy k )'

1 —~ ] o~
A(“zz'z)z——f [ul'¢§2'u2][k,'(Gl3_G23) 1 - )~
u 4 J 1234k A%i’zm: - Zf1234<’k”[ul.q)§2' uxJ{(k"-Gy3

—K"-Gya]- @, [(GT43— G4p) k' + Gl yg k"1™ B ,
—K"-Gyg)- @3- (GTay- K’

(B3b)
+ Gl k)oK Cork/ =K' Wag k" +k' (W5 Wi K"
with the exponential§égeneralized Debye-Waller factors +(k"-Gogt+ k" Gyg) - <I>'§2- (G4 k'
_GT43' kl/)e—k/'Co-k/_k”-W34'k”—k/~(W23—W24)~k"
_ Ak'K". 1 ’ ” 2 ’ k" T ’
A=A1234-:§<[k (U= Ug) +K"- (U3 —Uy)]%) —2K"-Gy3 ®3,-G'yp- K
— (k' —K"- (k' =K"=k’ K"
=K' Wyg k' +K"- Wy K" —K"-Wio- K"K’ - W, K" X @~ (K =KD Co-(kT=k) k- (Wagt Wag) kL (BB
+k'-Wap k"—k" - W3, K", (B4a)

Here the number of terms was reduced using the relabeling
. . symmetry 3-4 with k"~ —Kk".

B=BK X, =AkX,. (B4b) To identify the corrections to the disorder correlator we
have to analyze the dependence of the functional on the dis-
placement field and the response field. Since we are inter-

The second term in the bold parentheses of (B§a) arises  ested in the large-scale physics, we can consider the response
from the subtraction in the definition of the cumulant functions as local in space and time. The labels have been
(AP, AP = (AP AP — ( AP™M)2, which correspond to chosen such thdi is attached to 1 and 2. Since in all ex-
“disconnected diagrams” in field-theoretical language. Inpressions two response functions are involved that connect
Eq. (B3b) one further term~G'3,G3, actually vanishes due point 3 and point 4 to point 1 or point 2z andu, may be
to causality, i.e.G"34~0(t,>t3) andGas~ O (t3>1,). replaced by the corresponding or u,. These replacements
Contributions that represent effective disorder are identican be considered as the lowest order of the expar@@n
fied as follows. In Eq(B3) the response fields are evaluated To give an example we discuss the first term in the curly
at points €;,t;) with i=1,2. Disorder contributions are those brackets of Eq(B5a). There the response function connect
that persist fott,,]—o. This requires thai; andu, arenot  points 3 and 4 with 1, whereas 2 is free. In this case it is
connected(even indirectly by response functions. In this convenient to replace; andu, by u;. The exponential fac-
limit the factorse™* ande™ 8 simplify sinceW;;—Cg if the  tors implicit in the factorsI)!‘j then can be rewritten as
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ek (rigt vty +ik" (rpgtvigg+uzy)

— efik”»(r12+v112+u12)+ik’ -(r13+vtl3)+ik”»(r14+vtl4)'

Now the integrand has the same functional dependence dinds (abbreviatingR{”:

(I)(Z)(k): _e—k~C0‘kJ‘
34k/k//
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the fields as the original disorder acti®¥) and a contribu-
tion to the correlator correction can be identified. In the same
way one can proceed with the other terms of E8f) and

:rij +Vtij)

[‘I)(k’) [(GTg1 k' =GTaa k") (k' Gyg

! r_ ! _ n it w0 i »(0)
—k’-G34)e kK" Wiz-k" —k"-(Wy4—W3y -k eIk ‘Rz +ik"-Riy 5(k+k")+(GT32- k”—GT34~ k”)(k”-G24

; (0) ; (0)
—k'. 634)e—k"~W24.k"—k”'(W23—W43)~k'elk'~R23 +|k"~R24 5('(— kl)

0)

r ”no! L 1
+GT32. knkr_G]Aefk (Wt Wgp)-k eIk ‘Ry3 +ik -R(la)é\(k_k/+kr/)]_(I)T(_kN)+ E‘D(k,)[(k,GlB

—k"'G43)'q)(k,’)'(GT41'k’+GT43' k/r)efk”.W34-k"+k'.(W137Wl4).k"eik"~R(33)5(k_k/)+(k/.GZS

+K". G43) . (D(kr/) . (GT42' k' — GT43- k/l)e—k”.W34A K" =k’ ‘(W23_W24)‘k”eik”'Rg?‘.)5(k— kl)

K G DK Gy W0 K -8 51 iy

which in fact does not depend on points 1 or 2, which can be eliminated by substitutions for the points 3 and 4. The symmetry

(B6)

®(k)=®'(k) given for the original disorder correlator is preserved after the inclusion of the corrections.
In order to go beyond the locality approximation used above, one could include the derivativeg28)Eghis is not done

here since a scaling analysis shows that the resulting terms will be less relevant than the disorder correlator. However, along

these lines one can straightforwardly derive a random KPZ nonlinearity as postulated bj3&ug
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