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Number of distinct sites visited by Levy flights injected into a d-dimensional lattice
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We study the average number of distinct snﬁﬁo(t» visited by Levy flights injected in the center of a
lattice: Ny new particles appear in the center of the lattice at each time stey.flights are particles which
have the probabilitp(/)=A/"1"® 0<a<2 of making an/-length jump. We show analytically that the
asymptotic form o(SNO(t)> is related to that of the case of constant initial nunidesf particles. We find that
different ranges ofx correspond to different limitd,—c andN—oo, in the behavior of the number of sites
visited by constantnumber of particles. The results obtained analytically are in good agreement with Monte
Carlo simulations. We also discuss possible resultsvfer2. [S1063-651X98)03002-5

PACS numbeps): 05.40:+j

[. INTRODUCTION Stable lawdistributions possess the characteristic property
of retaining their form under summation. This means that

Lévy flight distributions have been found recently in vari- distribution of random particles after time has different
ous areas of sciendd—3]. Laboratory experiments in fluid scale but the same functional form. The highest term of the

flows reveal anomalous diffusion as a result ofyelistri-  €xpansion of thestable lawdistribution with infinite second
bution [4,5], different species of animals searching for food moment isA/~(* %, where 6<a<2 [29-31.
have been found to follow the pattern of\yeflights [6,7], We study the problem of calculation of territory covered

and surface diffusion and turbulence are among the ared8 number of sites visitgdusing the approach presented by
where scientists meet this distributif®,9]. Mathematically ~ Larraldeet al.[26] and further developed ifiL6]. Let p(r)

it is expressed by a random walk model with sizes of stepd® the probability that a random walker is at sitat time
taken from the distributiom(/) =A/~(* which is char- sFe_pt, _and fi(r) be the pro_bab!llty that a ran_dom walker
acterized by the high probability of large values/6fcom- visits siter at stept for the first time. The function

pared to Gaussian distributipand by the divergence of the n

second. moment of single disp_lapeméﬁuir a< 2)'. _ r(n=1- E f(r) (1)

In this work we study a statistical property ofeflight, =1
the average number of sites visited by random particles. This
quantity is widely used in the Smoluchowski model for is the probability that a random walker hast visited r by
chemical reactiongl0,11], in ecology, and in spreading phe- the timet. SinceN, particles appear each time step in the
nomeng 12—15. Thus the problem of calculating this quan- ©figin we can write down an expression for the expected
tity is of great interesf16—27. In our earlier wor16] we  number of distinct sites visited in the form
studied the number of distinct sites visited Byparticles,
each having Ley probability p(/)=A/~1%%) to perform
an /-length jump. The particles are initially in the center of
the lattice. We considered a constant numideof particles
performing at-step Levy flight. Here we consider the case
where the number of particles increases each time step witr
the constant ratél,.

It has been foun@B] that there exists anomalous diffusion  2°
at liquid surfaces, i.e., molecules execute excursions on the &
surface with displacements obeyingwyedistribution. The o
model where reactar is injected at the rat®l, (see also
[28]) and diffuses over the surface of the substBjgroduc-
ing the reactionA(diffusing)+ B(substrate}» A(diffusing)

+ C(inert) corresponds to the problem of distinct sites vis- 10’
ited by an increasing number of particles.

A similar problem was studied recently by Berezhkovskii t
and Weisg[27] for the case of Gaussian random walks in
continuous time. Here we study the problem in discrete time FIG. 1. Plot of the normalized functioSy (t))/No for «

10 100 1000

for the case where a single jump has/alistribution or, to  =0.4. Different symbols correspond to values W§=1(0), 5
be more exact, atable lawdistribution with infinite second (¢), 10 (+), and 20 (*). Theslope of the fitted line is 2.017
moment. which is to be compared to the predicted value 2.0.

1063-651X/98/5{3)/25494)/$15.00 57 2549 © 1998 The American Physical Society



2550 G. BERKOLAIKO AND S. HAVLIN 57

100000

100 |

10000 -

1000

-
o

VN —

<S N5t)>/(|n(N0t))"2

<S Nst)>/N0”(M)

-
i=3
1=3

10 100 1000

t

10 100 1000

t

FIG. 3. Simulations fora=1.5 (empty symbols and a«=1.8
(filled symbolg illustrate the results of Eq12). Studied values of
No areNg=10 (O), 50 (¢), 100 (+). The slopes of fitted lines
g’re 1.067 and 0.920, respectively, which corresponds to the pre-
dicted values (2+1)/a(1+a)=1.067 and 0.913.

FIG. 2. Results of MC simulations faz= 0.65 (filled symbols
and o= 0.8 (empty symbols show good agreement with the pre-
dicted behavior. The fitted slopes are 1.807 and 1.607, respectivel
which are to be compared with the values 3/d)=1.818 and
1.667. The plotted data correspondNg=10 (O), 50 (¢ ), and
100 (+).

(S ()= 2

[r|=tHe

t No
1—(I[1 FT(r)) } (6)

The number of sites visited inside the sphéme<t', de-
noted by(SNO(t)>‘, is naturally bounded by the number of

where the sum is over all lattice sites. For the funcligr)  all sites in the sphere and will be shown to be asymptotically

t Ng
<sN0<t)>=Er {1—(7111 Ff(r)) } 2

one has the following approximatiof$6]: less than(Sy (1)) *.
0
,
t2 Il. THE ONE-DIMENSIONAL CASE
ex —Km ,  a<d 3
Ir| We approximate the summation in E®) by an integral
t2 and get
Fy(r)={ exp ~L————/, a=1, d=1
oF) In(t)|r|2 4 ) t No
t1+1/a <SN0(t)> %Lrlétlla 1- 'r1:[1 FT(r) dr. (7)
exp —M | a>1, d=1.
\ I (5  We begin with the case<1. Substitution of the expression
from Eq. (3) and introduction of the change of variables
:(Not3)l/(d+a) yleId
t3
These approximations are valid for the largé, |r|>tYe. (Sy(1))=~ 1-exp —K'Ng——| |dr
o . —tlla d+a
However, as we shall see, it is enough to get the leading term Ir|=t Ir|
of the asymptotic expansion ¢Sy (t)). We restrict our at- _ 3yd/(d+a)
_ _ 0 = (Not?)
tention to the regiorjr|=t"* and denote by Sy (t))" the
average number of sites visited in this area. The analog of Xf [1—exp(—K'|g @t ]dr, (8)
Eq. (2) reads =>o(t)
TABLE |. Asymptotic results for different dimensions aadregimes.
a<l/2 l2<a<1l a=1 1<a<3/2 < a<?
d=1 Notz (N0t3)1/(1+a) (N0t3/|nt)1/2 N(J)./(1+a)t(2a+l)/a(l+a)
d=2 Not? (Not3)2(2+a)
d=3 Not? (Ngt3)33+a)
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TABLE II. Asymptotic results obtained ifiL6] for the number of distinct sites visited By Lévy flights
without injection,(Sy(t)).

a<l a=1 I<a<?2 a=2 a>2
N—s o0 (NnZ)l/(l+a) Nl/Zn(Inn)*l/Z Nl/(l+a)n1/a Nl/3nl/2 Nl/(l+a)nl/a
n—oo Nn Nl/2n(|nn)fll2 Nl/(l+a)n1/a N1I3nl/2(|nn)fl (nInN)lIZ

whereg(t) =N, Y@+ dtld-2a)/a(d+a) One can note that as  section leads to the following conclusions. The result, Eq.
increases to infinity three cases can be distinguished0 9),

for @>1/2, o is fixed fora=1/2, ando—« for a<1/2. In

the first two casesy=1/2, we immediately get (Sng(D) T (Ngt?) ¥

<SNo(t)>+°‘(N0t3)d/(d+a)a a=1/2. ©) is valid ford—2a=<2, i.e.,ind=2 for a=1 and ind=3 for
a=3/2. Approximation, Eq(10),
In the last caseqg<<1/2, we decompose the exponent in Eq.
(8) as expt|g 9" *)~1—|9 9" and explicit integration (Sy. (1)) TNt
implies 0
is valid ind=2 for a<1, ind=3 for «<2/3 and ind=3

+ 2
(Sn (D) T Not%, <172, (20 ¢or all values ofa.

In Figs. 1 and 2 we show that the results of Monte Carlo
(MC) simulations for the casea=0.4, «=0.65, and« IV. FINAL RESULTS AND CONCLUDING REMARKS

=0.8 are in a good agreement with the predictions of the Eq. ag noted in Sec. | the average number of distinct sites

(9)22;1'0'5%'&150;”6“ sis for the cage=1 vields visited inside the spherie| <t'*, (Sy(t)) ", is bounded by

9 Y y the numberCt¥® of all sites in the sphere, whel@ is a

N3\ 12 dimension dependent constant. It is easy to see thatfor
(S0 (%) ., a=1 (1) >d/2 the term(SNO(t)>+ is dominant in the sum
t o
0
U1+ a)s(2a+ 1) a(l+ a) _
(No)™ 7 el (12 (Sny(1))=(Sny (1))~ +(Sy (D).

Thus final results foKSNO(t)) are presented by the corre-
MC simulations presented in Fig. 3 support these results. sponding equations fcfSy ()"
To get results fow<<d/2 we note that the maximum pos-

Ill. ASYMPTOTIC RESULTS FOR HIGHER DIMENSIONS sible number of sites visited iblot(t—1)/2 (each particle
) ) ) ] . . finds a new site each time spegnd this upper bound on the
Equation(8) remains valid for higher dimensions for all order of magnitude is already reached by the corresponding

values ofar (<2). The same reasoning as in the precedingapproximations fox Sy (t))*. Thus it cannot be increased
by adding the term fo(SNO(t))*.

> /N°1/(1+a)

<S
Ny

<SN(t)>/[In(N0t)]1/2

10 100 1000

1 . .
t 10 100 1000

1
FIG. 4. Results of MC simulations fat=2.5 (empty symbols
and o=3.0 (filled symbols support predictions of Eq13). The FIG. 5. Plot of the normalized functiofSy(t))/ VIn(Not) sup-
fitted slopes are 0.72 and 0.59, respectively, which are to be conports prediction of Eq(14). The slope of the fitted line is 0.51,
pared to the predictions @2+ 1)/a(1+ «)=0.685 and 0.583. which is to be compared to the prediction of 0.5.
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We summarize all results of the present work in Table |
We discuss these results in detail b1, while extension
of this discussion can be easily made.
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. The substitution of the overall number of partichgt to

the appropriate term produces correct results not only in the
case of Ley flights; in the case of Gaussian random walk

It should be noted that the results in Table | have a funcwith injection Berezhkovskii and Weig®7] found analo-

tional form similar to those of16], see Table Il, subject to

gous behavior. Thus it is natural to assume that substitution

substitutionN = Nyt, but to produce the present results in theN=Ngt leads to the correct results for the case 2, where
limit t—o one has to make use of the results of Table Il forthe second moment becomes finite. Again we have to study

both limits,t—o andN—oo. It is interesting to note that for
a<1/2 the functional form ofSy (t)) coincides with that of
(Sn(1)) in the limit t—o, while for 1/2<a<2 the func-
tional form for the limitN—« is used. To understand this

behavior we recollect the condition of crossover between

these two limitst—o andN—o [Eq. (25) in [16] ],
t<NY(1-),
To make use of this condition we substitiMe= Nyt, as be-
fore, and get
t(l—2a>/<1—a)$Ng/(1—a),
whereNjy is fixed. It is thus clear that in the limtt— o the

inequality holds fora>1/2, which explains the change in the
functional form of(SNO(t)> at a=1/2.

the condition of crossover betwedh— o andt— « regimes
for «=2. This leads to the transcendental inequality

21+ )
_ (Not)

t(a*Z)/a/
IN(Ngt) ’

which produces the following asymptotic results.
The critical value ofa is now the positive root of the
equationa®—3a—2=0, a.=(3+/17)/2,

Nl/(l+ a’)t(2a+l)/a(l+a)’ 2Sa<ac (13)

Sy ()=
(Sny(1)) 14

(tIn(Not))*?,

a>ag.

This result is supported by MC simulations fex «, Fig.
4, anda> «a,, Fig. 5.
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