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Number of distinct sites visited by Lévy flights injected into a d-dimensional lattice
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We study the average number of distinct sites^SN0
(t)& visited by Lévy flights injected in the center of a

lattice: N0 new particles appear in the center of the lattice at each time step. Le´vy flights are particles which
have the probabilityp(l )5Al 2(11a),0,a,2 of making anl -length jump. We show analytically that the
asymptotic form of̂ SN0

(t)& is related to that of the case of constant initial numberN of particles. We find that
different ranges ofa correspond to different limits,t→` andN→`, in the behavior of the number of sites
visited byconstantnumber of particles. The results obtained analytically are in good agreement with Monte
Carlo simulations. We also discuss possible results fora>2. @S1063-651X~98!03002-5#

PACS number~s!: 05.40.1j
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I. INTRODUCTION

Lévy flight distributions have been found recently in va
ous areas of science@1–3#. Laboratory experiments in fluid
flows reveal anomalous diffusion as a result of Le´vy distri-
bution @4,5#, different species of animals searching for fo
have been found to follow the pattern of Le´vy flights @6,7#,
and surface diffusion and turbulence are among the a
where scientists meet this distribution@8,9#. Mathematically
it is expressed by a random walk model with sizes of st
taken from the distributionp(l )5Al 2(11a) which is char-
acterized by the high probability of large values ofl ~com-
pared to Gaussian distribution! and by the divergence of th
second moment of single displacement~for a<2).

In this work we study a statistical property of Le´vy flight,
the average number of sites visited by random particles. T
quantity is widely used in the Smoluchowski model f
chemical reactions@10,11#, in ecology, and in spreading phe
nomena@12–15#. Thus the problem of calculating this qua
tity is of great interest@16–27#. In our earlier work@16# we
studied the number of distinct sites visited byN particles,
each having Le´vy probability p(l )5Al 2(11a) to perform
an l -length jump. The particles are initially in the center
the lattice. We considered a constant numberN of particles
performing at-step Lévy flight. Here we consider the cas
where the number of particles increases each time step
the constant rateN0.

It has been found@8# that there exists anomalous diffusio
at liquid surfaces, i.e., molecules execute excursions on
surface with displacements obeying Le´vy distribution. The
model where reactantA is injected at the rateN0 ~see also
@28#! and diffuses over the surface of the substrateB produc-
ing the reactionA(diffusing)1B(substrate)→A(diffusing)
1C(inert) corresponds to the problem of distinct sites v
ited by an increasing number of particles.

A similar problem was studied recently by Berezhkovs
and Weiss@27# for the case of Gaussian random walks
continuous time. Here we study the problem in discrete ti
for the case where a single jump has Le´vy distribution or, to
be more exact, astable lawdistribution with infinite second
moment.
571063-651X/98/57~3!/2549~4!/$15.00
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Stable lawdistributions possess the characteristic prope
of retaining their form under summation. This means th
distribution of random particles after timet has different
scale but the same functional form. The highest term of
expansion of thestable lawdistribution with infinite second
moment isAl 2(11a), where 0,a,2 @29–31#.

We study the problem of calculation of territory covere
~or number of sites visited! using the approach presented b
Larraldeet al. @26# and further developed in@16#. Let pt(r )
be the probability that a random walker is at siter at time
step t, and f t(r ) be the probability that a random walke
visits siter at stept for the first time. The function

G t~r !512 (
t51

n

f t~r ! ~1!

is the probability that a random walker hasnot visited r by
the time t. SinceN0 particles appear each time step in t
origin we can write down an expression for the expec
number of distinct sites visited in the form

FIG. 1. Plot of the normalized function̂SN0
(t)&/N0 for a

50.4. Different symbols correspond to values ofN051(s), 5
(L), 10 ~1!, and 20 (*). Theslope of the fitted line is 2.017
which is to be compared to the predicted value 2.0.
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^SN0
~ t !&5(

r
F12S )

t51

t

Gt~r !D N0G , ~2!

where the sum is over all lattice sites. For the functionG t(r )
one has the following approximations@16#:

G t~r !'5
expS 2K

t2

ur u11aD , a,d

expS 2L
t2

ln~ t !ur u2D , a51, d51

expS 2M
t111/a

ur u11aD , a.1, d51.

~3!

~4!

~5!

These approximations are valid for the largeur u, ur u@t1/a.
However, as we shall see, it is enough to get the leading t
of the asymptotic expansion of^SN0

(t)&. We restrict our at-

tention to the regionur u>t1/a and denote bŷSN0
(t)&1 the

average number of sites visited in this area. The analog
Eq. ~2! reads

FIG. 2. Results of MC simulations fora50.65 ~filled symbols!
and a50.8 ~empty symbols! show good agreement with the pre
dicted behavior. The fitted slopes are 1.807 and 1.607, respecti
which are to be compared with the values 3/(11a)51.818 and
1.667. The plotted data correspond toN0510 (s), 50 (L), and
100 (1).
m

of

^SN0
~ t !&15 (

ur u>t1/a
F12S )

t51

t

Gt~r !D N0G . ~6!

The number of sites visited inside the sphereur u<t1/a, de-
noted by^SN0

(t)&2, is naturally bounded by the number o
all sites in the sphere and will be shown to be asymptotica
less than̂ SN0

(t)&1.

II. THE ONE-DIMENSIONAL CASE

We approximate the summation in Eq.~2! by an integral
and get

^SN0
~ t !&1'E

ur u>t1/aF12S )
t51

t

Gt~r !D N0Gdr . ~7!

We begin with the casea,1. Substitution of the expressio
from Eq. ~3! and introduction of the change of variablesr
5(N0t3)1/(d1a) yield

^SN~ t !&'E
ur u>t1/aF12expS 2K8N0

t3

ur ud1aD Gdr

5~N0t3!d/~d1a!

3E
usu>s~ t !

@12exp~2K8usu2~d1a!!#dr , ~8!

ly,

FIG. 3. Simulations fora51.5 ~empty symbols! and a51.8
~filled symbols! illustrate the results of Eq.~12!. Studied values of
N0 are N0510 (s), 50 (L), 100 (1). The slopes of fitted lines
are 1.067 and 0.920, respectively, which corresponds to the
dicted values (2a11)/a(11a)51.067 and 0.913.
TABLE I. Asymptotic results for different dimensions anda regimes.

a,1/2 1/2<a,1 a51 1,a,3/2 3/2,a,2

d51 N0t2 (N0t3)1/(11a) (N0t3/lnt)1/2 N0
1/(11a)t (2a11)/a(11a)

d52 N0t2 (N0t3)2/(21a)

d53 N0t2 (N0t3)3/(31a)

d>4 N0t2
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TABLE II. Asymptotic results obtained in@16# for the number of distinct sites visited byN Lévy flights
without injection,^SN(t)&.

a,1 a51 1,a,2 a52 a.2

N→` (Nn2)1/(11a) N1/2n(lnn)21/2 N1/(11a)n1/a N1/3n1/2 N1/(11a)n1/a

n→` Nn N1/2n(lnn)21/2 N1/(11a)n1/a N1/3n1/2(lnn)21 (nlnN)1/2
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wheres(t)5N0
21/(d1a)t (d22a)/a(d1a). One can note that ast

increases to infinity three cases can be distinguished:s→0
for a.1/2, s is fixed for a51/2, ands→` for a,1/2. In
the first two cases,a>1/2, we immediately get

^SN0
~ t !&1}~N0t3!d/~d1a!, a>1/2. ~9!

In the last case,a,1/2, we decompose the exponent in E
~8! as exp(2usu2d2a)'12usu2d2a and explicit integration
implies

^SN0
~ t !&1}N0t2, a,1/2. ~10!

In Figs. 1 and 2 we show that the results of Monte Ca
~MC! simulations for the casesa50.4, a50.65, anda
50.8 are in a good agreement with the predictions of the
~9! and Eq.~10!.

Analogous analysis for the casea>1 yields

^SN0
~ t !&1}H S N0t3

ln~ t ! D
1/2

, a51

~N0!1/~11a!t ~2a11!/a~11a!, a.1.

~11!

~12!

MC simulations presented in Fig. 3 support these results

III. ASYMPTOTIC RESULTS FOR HIGHER DIMENSIONS

Equation~8! remains valid for higher dimensions for a
values ofa (a,2). The same reasoning as in the preced

FIG. 4. Results of MC simulations fora52.5 ~empty symbols!
and a53.0 ~filled symbols! support predictions of Eq.~13!. The
fitted slopes are 0.72 and 0.59, respectively, which are to be c
pared to the predictions (2a11)/a(11a)50.685 and 0.583.
.

o
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g

section leads to the following conclusions. The result, E
~9!,

^SN0
~ t !&1}~N0t3!d/~d1a!

is valid for d22a<2, i.e., ind52 for a>1 and ind53 for
a>3/2. Approximation, Eq.~10!,

^SN0
~ t !&1}Nt2

is valid in d52 for a,1, in d53 for a,2/3 and ind>3
for all values ofa.

IV. FINAL RESULTS AND CONCLUDING REMARKS

As noted in Sec. I the average number of distinct si
visited inside the sphereur u,t1/a, ^SN0

(t)&2, is bounded by

the numberCtd/a of all sites in the sphere, whereC is a
dimension dependent constant. It is easy to see that foa
.d/2 the term^SN0

(t)&1 is dominant in the sum

^SN0
~ t !&5^SN0

~ t !&21^SN0
~ t !&1.

Thus final results for̂ SN0
(t)& are presented by the corre

sponding equations for̂SN0
(t)&1.

To get results fora,d/2 we note that the maximum pos
sible number of sites visited isN0t(t21)/2 ~each particle
finds a new site each time step! and this upper bound on th
order of magnitude is already reached by the correspond
approximations for̂ SN0

(t)&1. Thus it cannot be increase

by adding the term for̂SN0
(t)&2.

-
FIG. 5. Plot of the normalized function̂SN0

(t)&/Aln(N0t) sup-
ports prediction of Eq.~14!. The slope of the fitted line is 0.51
which is to be compared to the prediction of 0.5.
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We summarize all results of the present work in Table
We discuss these results in detail ford51, while extension
of this discussion can be easily made.

It should be noted that the results in Table I have a fu
tional form similar to those of@16#, see Table II, subject to
substitutionN5N0t, but to produce the present results in t
limit t→` one has to make use of the results of Table II
both limits, t→` andN→`. It is interesting to note that fo
a,1/2 the functional form of̂SN0

(t)& coincides with that of

^SN(t)& in the limit t→`, while for 1/2<a,2 the func-
tional form for the limit N→` is used. To understand thi
behavior we recollect the condition of crossover betwe
these two limits,t→` andN→` †Eq. ~25! in @16# ‡,

t<Na/~12a!.

To make use of this condition we substituteN5N0t, as be-
fore, and get

t ~122a!/~12a!<N0
a/~12a! ,

whereN0 is fixed. It is thus clear that in the limitt→` the
inequality holds fora.1/2, which explains the change in th
functional form of^SN (t)& at a51/2.
0
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The substitution of the overall number of particlesN0t to
the appropriate term produces correct results not only in
case of Le´vy flights; in the case of Gaussian random wa
with injection Berezhkovskii and Weiss@27# found analo-
gous behavior. Thus it is natural to assume that substitu
N5N0t leads to the correct results for the casea>2, where
the second moment becomes finite. Again we have to st
the condition of crossover betweenN→` andt→` regimes
for a>2. This leads to the transcendental inequality

t ~a22!/a>
~N0t !2/~11a!

ln~N0t !
,

which produces the following asymptotic results.
The critical value ofa is now the positive root of the

equationa223a2250, ac5(31A17)/2,

^SN0
~ t !&5H N0

1/~11a!t ~2a11!/a~11a!, 2<a,ac

„t ln~N0t !…1/2, a.ac .

~13!

~14!

This result is supported by MC simulations fora,ac , Fig.
4, anda.ac , Fig. 5.
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