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Unification of one-dimensional Fokker-Planck equations beyond hypergeometrics:
Factorizer solution method and eigenvalue schemes

A. Debosscher
Centre for Plasma Astrophysics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Heverlee, Belgium

~Received 22 April 1997; revised manuscript received 3 September 1997!

A one-dimensional Fokker-Planck equation with nonmonotonic exponentially dependent drift and diffusion
coefficients is defined by further generalizing a previously studied ‘‘unifying stochastic Markov process.’’ The
equation, which has six essential parameters, defines and unifies a large class of interdisciplinary relevant
stochastic processes, many of them being ‘‘embedded’’ as limiting cases. In addition to several known pro-
cesses that previously have been solved independently, the equation also covers a wide ‘‘interpolating’’ variety
of different, more general stochastic systems that are characterized by a more complex state dependence of the
stochastic forces determining the process. The systems can be driven by additive and/or multiplicative noises.
They can have saturating or nonsaturating characteristics and they can have unimodal or bimodal equilibrium
distributions. Mathematically, the generalization considered parallels the extension from the Gauss hypergeo-
metric to the Heun differential equation, by adding one more finite regular singularity and its associated
confluence possibilities. A previously developed constructive solution method, based upon double integral
transforms and contour integral representation, is extended for the actual equation by introducing ‘‘factorizers’’
and by using a few of their fundamental properties~compiled in Appendix A!. In addition, the equivalent
Schrödinger equation and the reflection symmetry principle prove to be important tools for analysis. Fully
analytical results including normalization are obtained for the discrete part of the generally mixed spectrum.
Only the eigenvalues have to be numerically determined as zeros of a spectral kernel. This kernel generally is
unknown, but its zeros are accessible via appropriate, infinite continued fraction based search schemes. The
basic role of ‘‘congruence’’ in this context is highlighted. For clarity, the simpler standard case corresponding
to directly accessible zeros is elaborated first in sufficient detail and the necessary extensions are gradually
introduced afterward. The different types of solutions known to exist for Heun’s equation eigenvalue problems
are identified and are seen to have a ‘‘unified’’ structure as well. A small selection of case studies proves
‘‘downward’’ compatibility with the previous hypergeometric case and sketches the principles for deriving the
limiting results in confluent cases with fully discrete spectra. Possible fields of application are, e.g., population
dynamics in biology, noise in nonlinear electronic circuits, chemical and nuclear reaction kinetics, systems
with noise-induced transitions or transitions to bimodality, genetics, and neural network stochastics.
@S1063-651X~98!08001-5#

PACS number~s!: 02.50.2r, 05.40.1j, 03.65.Ge, 03.65.Db
th

r
E

wn

of
r

ddi-
th-
ent

are

tion
tly,
een
-
In

the

tic

h as
now

d/or
rce
e

I. INTRODUCTION

There are several good reasons for considering and
tempting to solve the Fokker-Planck equation~FPE!

]w~y,t!

]t
5

]2

]y2 S du21 f u1g

au21bu1c
wD

2
]

]y S hu21mu1n

au21bu1c
wD , u~y!5 exp~ry!,

yP@2`,1`#, tP@0,1`#, a,b,c,d, f ,g>0. ~1!

First, the equation is a straightforward generalization of
FPE for a ‘‘unifying’’ stochastic Markov process@1# by the
addition ofu2(y) terms in the numerators and denominato
of the drift and the diffusion coefficients. This unifying FP
has been solved in terms of hypergeometric~Jacobi! func-
tions and was shown to unify a large class of well-kno
and more recent stochastic processes@1#. In the present ex-
tension drift and diffusion still remain bounded functions
y ~for finite nonzero parameters!, but nonmonotonic behavio
571063-651X/98/57~1!/252~24!/$15.00
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now becomes possible and the existence~for specific param-
eter combinations! of bimodal equilibrium distributions can
be anticipated. The generalization considered aims at a
tionally embedding a number of physically relevant or ma
ematically important cases as special, limiting, or conflu
cases into one single equation. Some known examples
the laser FPE@2#, the hyperbolic sine model@3#, the FPE for
neutron thermalization in a heavy gas moderator@4#, and a
theoretical stochastic process with spectral accumula
point @5#. Although these cases were solved independen
they all formally belong to the present class, as can be s
either directly as for@3# or after a simple exponential trans
formation of the state variable for the other examples.
addition to these known cases, which in fact inspired
present extension, the FPE~1! also unifies an impressive
variety of generalizations of them and of different, stochas
processes for multidisciplinary use. By comparison with@3#,
e.g., it can be seen that basic birth-death processes suc
the Verhulst process or the hyperbolic sine process can
be extended to account for nonlinear~instead of just linear!
population-dependent feedback upon the net birthrate an
for a state-dependent or even a noisy immigration sou
~instead of just a constant one!. Also, some state dependenc
252 © 1998 The American Physical Society
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57 253UNIFICATION OF ONE-DIMENSIONAL FOKKER- . . .
of the net birthrate fluctuations can now be modeled.
discussed in@3#, the above processes are of multidisciplina
significance and the use of population dynamics terminol
is only incidental. In more general terms, because of
structure and parameters, the FPE~1! has the following ca-
pabilities. It allows for the modeling of stochastic system
with either additive or multiplicative noise or both~Sec. II!.
The systems may have saturating~bounded! characteristics
or nonsaturating ones if some parameters are allowed to
ish or become infinite~Sec. V!. Those systems that are st
chastically stable can have a unimodal or a bimodal equ
rium distribution ~Sec. III!. In view of these possibilities
further applications of Eq.~1! can be anticipated in suc
domains as noisy nonlinear circuits, neural network stoch
tics, systems with noise-induced transitions or transitions
bimodality, and reaction kinetics, among many others.

A unifying Green’s-function solution for Eq.~1! is natu-
rally expected to have continued fraction building block
Examples in@2–4# have indeed been solved using some v
sion of the~scalar or matrix! continued fraction method@2#,
starting with a judicious but somewhat arbitrary choice
base functions. On the other hand, a close connection to
pergeometric functions is expected too because Eq.~1! re-
duces to the unifying FPE of@1# whenever one power o
u(y) ~i.e., 0, 1, or 2! is absent everywhere. In a sense, Eq.~1!
interpolates between these three hypergeometric cases
enhanced unification of the FPE~1! carries over to the clas
of equivalent Schro¨dinger equations@2#. This equivalence
will briefly be discussed in Sec. II, highlighting the type
potentials and the spectral structure for the extended unify
class.

A second reason for considering Eq.~1! is methodologi-
cal. In order of increasing complexity, the equation is t
next test case for a constructive solution method that
used in@6# and further developed in@1#. The method uses
double integral transforms and tools from complex analy
for direct construction of the exact analytical Green’s fun
tion ~i.e., the transition probability density function!. From
this representation, the complete ‘‘spectral package’’ c
easily be extracted: the discrete eigenvalues and the
tinua, the eigenfunctions with their normalizing constan
and the weight function~i.e., the normalized steady-sta
probability density!. Because this time the peculiarities
second-order recurrences~or difference equations! come into
play, the question to answer is how far analyticity can still
pushed. It will appear that analytical bivariate continu
fractions~or more generally ‘‘factorizers’’!, emerging quite
naturally from operator factorization, will extend the app
cability of the solution method. The use of the method is
restricted to the actual FPE. It can be succesfully applied
other problems of mathematical or statistical physics, suc
wave propagation in nonhomogeneous media, linear ma
tohydrodynamic waves in plasma astrophysics, Schro¨dinger
equations, and some higher-dimensional FPE’s.

A third aspect of Eq.~1! is the expected spin-off in the
field of applied mathematics. The eigenfunctions obtain
will realize a unification beyond and including hypergeom
ric special functions. The ordinary second-order differen
equation resulting from classical separation of variables
Eq. ~1! and thus defining the eigenvalue problem is reduci
to Heun’s equation~see Appendix C!, which generalizes
s
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Gauss’s hypergeometric equation by having one more re
lar singularity. This equation as such never became v
popular in mathematical physics, although particular v
sions of it ~mainly confluent, biconfluent, double-confluen
triconfluent, and Lame´’s equations! have been considered i
several applications. The existing literature is rather old,
complete, or unreliable~see, e.g., comments in@7#! and only
recently@8# became available. In the present paper the so
tions are produced in an alternative way, without expli
reference to and even without ‘‘solving’’ Heun’s equatio
Comparison with@8# will allow one to identify the results
obtained with known special solutions of Heun’s equatio
such as Heun’s functions and Heun’s polynomials. The
of analytical continued fractions in the context of a we
posed physical problem and in the framework of the pres
solution method will reveal further properties of these int
esting mathematical objects.

The contents of the paper are as follows. Section II p
sents the Fokker-Planck problem in a suitably parametri
form and with reference to the equivalent Schro¨dinger prob-
lem. In Sec. III the FPE is solved by the method of@1#. This
necessitates the introduction of factorizers, whose prope
are discussed in Appendix A. In their simplest form the fa
torizers just reduce to forward infinite continued fraction
This ‘‘standard case’’ is assumed for simplicity througho
the solution procedure in Sec. III. Section IV discusses
necessary extensions to general factorizers. A small selec
of examples is introduced in Sec. V. Section VI summariz
and concludes.

II. THE FPE, STOCHASTIC PROCESS, AND EQUIVALENT
SCHRÖDINGER PROBLEM

The fully parametrized form of Eq.~1! with ten param-
eters is most useful in matching particular applications a
especially for deriving limiting cases with zero or infinit
parameter values. However, for convenience, the follow
minimal parametric version with six essential parameters
adopted for the subsequent analysis:

]w~x,t !

]t
5

]2

]x2 S v21bv1a

av21gv11
wD

22
]

]x S dv21bev1am

av21gv11
wD , v~x!5 exp~x!.

~2!

This version is arrived at by scaling and translation of t
independent variables in Eq.~1!:

x5ry1
1

4
lnS ad

cgD , xP@2`,1`#

t5S dg

acD
1/2

r2t, tP@0,1`# ~3!

and the parameters are given by
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254 57A. DEBOSSCHER
a5S ag

cdD 1/2

, b5
f

d S ad

cgD 1/4

, g5
b

c S ad

cgD 21/4

,

d5
h

2rd
, e5

m

2r f
, m5

n

2rg
. ~4!

One notes the important reflection symmetry of Eq.~2!:

w~x,t;a,b,g,d,e,m!5wS 2x,t;
1

a
,
b

a
,
g

a
,2m,2e,2d D .

~5!

The~Stratonovich! stochastic differential equation~SDE! un-
derlying the FPE~2! is given by

ẋ5 f ~x!1g~x!j~ t !, ~6!

where the functionsf (x) and g(x) are related to the diffu-
sion and drift of Eq.~2!, respectively, by@2,9#

g2~x!5
v21bv1a

av21gv11
, v~x!5 exp~x!,

f ~x!52
dv21bev1am

av21gv11
2g

dg

dx

5
1

2
@4adv41~4gd14abe1ab2g!v3

12~2a2m12bge1a212d21!v2

1~4agm14be1ag2b!v14am#

3~av21gv11!22 ~7!

andj(t) represents normalized white noise

^j~ t !&50, ^j~ t1t!j~ t !&52d~t!. ~8!

The stochastic Markov process$x(t)% modeled by Eq.~6! is
completely characterized by its transition probability dens
function ~PDF! w(x,tux0), which is the Green’s-function so
lution of the FPE~2!, with

w~x,0ux0!5d~x2x0! ~9!

and subject to natural boundary conditions

w~x,tux0!,
]w

]x
→0 for uxu→`. ~10!

A usual representation ofw is in terms of an eigenfunction
expansion@2,9,10#

w~x,tux0!5wS~x!F( E Gwk~x!wk~x0!e2lkt, ~11!

where wS(x) is the steady-state or first-order PDF~which
exists in the stochastically stable case! and the bracketed
sum-integral symbol points to the possible existence o
mixed ~discrete plus continuous! spectrum of eigenvalueslk
in general. Some restrictions upon the parameters of Eq~2!
y

a

will now be introduced from physical arguments. An unco
ditionally non-negative diffusion coefficient overxP@2`,
1`# is ensured by taking

a,b,g>0. ~12!

The existence ofwS(x) in Eq. ~11!, i.e., the stochastic sta
bility in probability, additionally demands that

d,0, m.0, ~13!

which follows by inspection of the limit valuesf (6`) in
Eq. ~7!.

The constant diffusion version of the FPE~2!

]w~z,t !

]t
5

]2w

]z2
2

]

]z
@F~z!w# ~14!

and, correspondingly, the additive noise version of the S
~6!

ż~ t !5
f „x~z!…

g„x~z!…
1j~ t ! ~15!

are obtained by the transformation

z~x!5E
2`

x

dx8g21~x8!. ~16!

These versions are rather academic, as the transforma
~16! is noninvertible in general. The drift function in Eq
~14!, however, which now is given by

F~z!5
f „x~z!…

g„x~z!…
, ~17!

directly allows for the formal construction of the equivale
Schrödinger potentialVS ,

VS~z!5
1

4
F21

1

2

dF

dz
5F1

4 S f

gD 2

1
g

2

d

dx S f

gD G
x5x~z!

.

~18!

As a ratio of two polynomials of degree eight in exp@x(z)#,
VS generally is a bounded potential with asymptotic ene
levels

VS„z~1`!…5d2/a, VS„z~2`!…5am2. ~19!

Between the energy levels~19!, there is a continuum of re
flecting states. For higher energies there is a second ‘‘fre
continuum and below these continua at least one bound s
exists @if Eq. ~13! is satisfied#. Although there are only six
essential parameters,VS models an interesting variety of es
sentially single-well, double-well, and barrier-well config
rations, as appears from a numerical exploration of Eq.~18!.
Quantitatively, well depths, barrier heights, widths, and re
tive positions can be varied parametrically over wide rang
Confining potentials arise for limiting parameter values~see
Sec. V D!. Quasibound states inside the continuum may e
if a potential well develops between the levels~19! or when
a high interwell barrier extends into the continua. For a
parameter combination, a plot ofVS @Eq. ~18!# as a function
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57 255UNIFICATION OF ONE-DIMENSIONAL FOKKER- . . .
of x is a good indicator of the spectral structure to expe
Such a plot is qualitatively similar to a plot ofVS(z), be-
causez(x) is a monotonic function ofx for parameters sat
isfying Eq. ~12!.

III. SOLUTION OF THE FPE

The solution method of@1# basically consisted in the al
gebraic construction of a contour integral representation
the Green’s-function solution. The classical spectral rep
sentation~11! was then obtained by an appropriate conto
deformation, which simultaneously generated all com
nents. Application of the same method in the present c
seems to be hampered by the peculiarities of second-o
recurrences, for which closed-form solutions generally
difficult or impossible to find. With some restrictions, the
difficulties can be avoided by the use of factorizers~with
continued fractions as a special case!. For this and other
reasons it seems useful to elaborate the solution procedu
sufficient detail. By twofold transformation of Eq.~2!, sub-
ject to the initial condition~9! and boundary conditions~10!,
it is seen that the Fourier-Laplace transform

h̄ ~z,p!5E
2`

`

dx ezxE
0

`

dt e2ptF w~x,tux0!

ae2x1gex11
G ,

z5 iv, vP@2`,1`#, ~20!

satisfies the functional recurrence equation~FRE! of second
order

A0~z,p!h̄~z,p!1B0~z,p!h̄~z11,p!1C0~z,p!h̄~z12,p!

5ezx0, ~21!

with coefficients

A0~z,p!5p2ap0~z!, p0~z!5z212mz,

B0~z,p!5gp2bv0~z!, v0~z!5z212ez,

C0~z,p!5ap2s0~z!, s0~z!5z212dz. ~22!

Using the shift operatorD, defined by

DkG~z!5G~z1k!5D~Dk21G!, ~23!

Eq. ~21! becomes

~A01B0D1C0D2!h̄~z,p!5ezx0 ~24!

and is formally solved as

h̄ ~z,p!5S 11
B0

A0
D1

C0

A0
D2D 21S ezx0

A0
D . ~25!

A. Direct inversion

One possible representation forh̄ results from direct ex-
pansion of the inverse operator
t.

r
-

r
-

se
er
e

in

h̄ ~z,p!5 (
k50

`

~21!kS B0

A0
D1

C0

A0
D2D kS ezx0

A0
D

5
ezx0

A0
c~z,p;x0!, ~26!

wherec is a formal power series inex0,

c~z,p;x0!5 (
k50

`

~2ex0!kS )
j 50

k21
Bj

Aj 11
DT~k!~z,p!. ~27!

The following subscript convention is used

Fk~z,p!5F0~z1k,p!5DkF0 ,

F ~k!~z,p!ÞF ~0!~z1k,p!. ~28!

CoefficientsT(k) in Eq. ~27! follow from the homogeneous
second-order FRE inz:

T~k!~z!5T~k21!~z11!2H0T~k22!~z12!,

H0~z,p!5
C0A1

B0B1
, T~21!5T~0!51. ~29!

The first fewT(k)’s

T~0!5T~1!51,

T~2!512H0 ,

T~3!512H02H1 ,

T~4!512H02H12H21H0H2 ,

T~5!512H02H12H22H31H0H21H0H31H1H3
~30!

illustrate the Euler-Minding sum structure@11# of these co-
efficients. As such, they are obtainable from the correspo
ing products

S~k!5)
j 50

k22

~12H j ! ~31!

by deleting all terms containing at least one pair of conse
tive subscripts~e.g., H0H1 , H1H2 , and 2H0H1H2 for
T(4)). The denominators of the surviving terms are produ
of distinctBj ( j 50,1,...,k21) and hence () j 50

k21Bj )T(k) is an

entire function ofz andp. It follows that h̄ (z,p) @Eqs.~26!–
~27!# is meromorphic inp, having an infinity of simple poles
whereAk50, i.e., for

p5apk~z!5ap0~z1k!, k50,1,...,`. ~32!

As, moreover,h̄ vanishes forupu→`, a partial fraction~or
‘‘critical parts’’ ! representation preparing for Laplace inve
sion is possible@12#:

h̄ ~z,p!5 (
k50

`
r ~k!~z!

p2apk~z!
. ~33!
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256 57A. DEBOSSCHER
Residuesr (k) can be obtained according to their definition

r ~k!~z!5 lim
p→apk

@Ak~z,p!h̄~z,p!#, ~34!

but they also satisfy the recurrence

r ~k!~z!1FB0

A0
G

k

r ~k21!~z11!1FC0

A0
G

k

r ~k22!~z12!50,

~35!

following from substitution of Eq.~33! in Eq. ~24! and ap-
plication of Eq. ~34!. The @ #k notation is used to indicate
that p5apk(z) has been substituted throughout. Equat
~35! is solved in terms of theT(k)’s of Eq. ~29!:

r ~k!~z!5~21!kFT~k!)
j 50

k21
Bj

Aj
G

k

r ~0!~z1k!, k51,2,...,̀ ,

~36!

which starts up from

r ~0!~z!5 lim
p→ap0

~A0h̄ !5ezx0c@z,ap0~z!;x0#. ~37!

Laplace inversion of Eq.~33!, using Eqs.~36! and ~37!,
yields

h~z,t !5L21@ h̄~z,p!;p→t#

5 (
k50

`

~21!keapk~z!t1~z1k!x0

3FT~k!)
j 50

k21
Bj

Aj
G

k

c@z1k,apk~z!;x0#. ~38!

Up to this point the track of@1# has been closely followed
For the next step, i.e., the transition from the sum~38! to a
contour integral representation, the dependence ofT(k) upon
k must be explicited. The Euler-Minding sum gives just
recipe, but no closed analytical form. Additional tools a
necessary, and these can be introduced most naturall
restarting the analysis from an alternative inversion of
operator in Eq.~25!.

B. Factorized inversion: Continued fractions

The operator in Eqs.~24! or ~25! can be factorized

S 11
B0

A0
D1

C0

A0
D2D5S 11

R0

A0
D D S 11

S0

A0
D D , ~39!

where the factorizersR0(z,p) andS0(z,p) solve the pair of
coupled nonlinear first-order FRE’s

R01S05B0 ,

R0S15C0A15D0 . ~40!

The solutions that will be retained in this section are direc
obtained by forward iteration of Eq.~40!. They are the bi-
variate infinite continued fractions~ICF’s!
n

by
e

y

R05P0~z,p!5
D0

B12P1
5

D0u
uB1

2
D1u
uB2

2••• 2
Dku

uBk11
2•••

5
D0

B12
D1

B22
D2

B32•••
,

S05Q0~z,p!5B02P05B02
D0u
uB1

2••• 2
Dku

uBk11
2•••,

~41!

where the notational convention of@11# is used. These func
tions exist and are computable under the simple conditio

b2.4a, ~42!

which is derived from Perron’s more general convergen
criterion @11#, and henceforth will be accepted as an ad
tional parameter constraint. Useful properties of factoriz
~ICF’s and others! can be found in Appendix A and the us
of factorizers other thanP0 ,Q0 will be discussed in Sec. IV
Inversion of the operator~39! now proceeds in two steps

h̄ ~z,p!5S 11
Q0

A0
D D 21S 11

P0

A0
D D 21S ezx0

A0
D

5S 11
Q0

A0
D D 21Fezx0

A0
x0~z,p;x0!G , ~43!

wherex0 generalizes the hypergeometric3F2 expression ob-
tained by inversion of the first-order shift operator in@1#,

x0~z,p;x0!5 (
k50

`

~2ex0!k)
j 50

k21
Pj

Aj 11

5 (
k50

`

~2ex0!k)
j 50

k21
Cj

Qj 11
. ~44!

Further, withxk5x0(z1k),

h̄ ~z,p!5
ezx0

A0
(
k50

`

~2ex0!kxk)
j 50

k21
Qj

Aj 11
, ~45!

where the sum gives an alternative representation ofc @Eq.
~27!#. By equating like powers ofex0 in both series, a sym-
metrical form for theT(k)’s is obtained:

U ~k!5S )
j 50

k21

Bj D T~k!5 (
m50

k S )
j 50

m-1

Qj D S )
j 5m

k21

Pj D . ~46!

In the residues~36! or in h(z,t) @Eq. ~38!# the above expres
sion is needed only forp5apk(z) and thereby reduces to
simple product

@U ~k!#k5F S )
j 50

k21

Bj D T~k!G
k

5F )
j 50

k21

Qj G
k

~47!

because@see Eq.~41!#
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Pk21~z,apk!5FDk21

Qk
G

k

5FCk21Ak

Qk
G

k

50 ~48!

since@see Eq.~22!#

Ak~z,apk![0. ~49!

Hereby, it is tacitly assumed that the zerop5ap1 of D0 in
Eq. ~41! is a zero of the ICFP0 indeed, i.e.,Q1(z,ap1)
Þ0 ~see, however, Appendix A and Sec. III J 2 for a discu
sion on ‘‘congruence’’!.

C. Explicit k dependence

The k dependence of the term in large square bracket
h(z,t) @Eq. ~38!# can now be made explicit. For the produ
of Aj ’s one has, using Eqs.~22! and ~32!,

F )
j 50

k21

Aj G
k

5)
j 50

k21

Aj@z,apk~z!#5akk!
G~2z12m12k!

G~2z12m1k!
.

~50!

For the other factors there is a formal representation, us
Eq. ~47! and the result~A21! of Appendix A:

@U ~k!#k5)
j 50

k21

Qj„z,apk~z!…5
M „z,apk~z!…

M „z1k,apk~z!…
. ~51!

Some properties of the generally unknown functionM (z,p)
are discussed in Appendix A. Here it suffices to mention
following. ~i! M is entire inz and basically has exactly th
zeros z5rm(p), m50,1,..., of the factorizerQ0. If these
where known, thenM could be constructed, using wel
known theorems of complex function theory~e.g., Hada-
mard’s infinite product representation@13#!. ~ii ! M solves a
homogeneous second-order difference equation and hen
only determined up to a period-1 function.~iii ! M general-
izes the product of inverseG functions occurring in@1,6#,
where the structure~51! was self-evident however. Exactl
this structure is the essential point and, even withM unavail-
able, further progress becomes possible.

D. Contour integral representation

Considering Eq.~38! as a sum of residues generated by
appropriately chosen function, the following integral rep
sentation is arrived at:

h~z,t !5
1

2p i EC
dq eap0~q!t1qx0az2qG~z2q!

G~z1q12m!

G~2q12m!

3
M „z,ap0~q!…

M „q,ap0~q!…
H~q,z!c„q,ap0~q!;x0…. ~52!

The complex integration variable

q5z1k ~53!

replaces the integer summation indexk in Eq. ~38!, and Eqs.
~50! and ~51! have been substituted. ContourC in the com-
plex q plane runs clockwise around the poles of the summ
tor functionG(z2q) @see Eq.~59!# without enclosing other
-

in

g

e

is

n
-

-

singularities of the integrand. As in@1#, the functionH(q,z)
is introduced as a degree of freedom in the integral repre
tation. Other than some analyticity demands, it should o
satisfy the condition

H~z1k,z!51, k50,1,...,̀ , ~54!

in order to preserve the equivalence of Eqs.~52! and ~38!.
Clearly, an expression like

H~q,z!5
m„q, f ~q!…

m„z, f ~q!…
, ~55!

wherem is of period 1 in its first argument, satisfies Eq.~54!
and is a possible choice. Equivalently,H may be taken as
unity and them’s can be considered as originating from th
indeterminacy ofM . In order to obtain now a Fourier
transformed eigenfunction expansion from Eq.~52!, the ‘‘ei-
genvalue’’@2ap0(q)# figuring in the time exponential mus
take real non-negative values, as the problem formulated
Eqs.~2! and~10! is Hermitian@2#. To achieve this, the origi-
nal contourC must move towards the eigenvalue locusL,
which is found from :

ap0~q!5a@~q1m!22m2#52l, Im~l!50, l>0
~56!

and consists of a cross shape in theq plane: a vertical line

Re~q!52m ~57!

and a horizontal segment

Im~q!50, 22m<Re~q!<0. ~58!

The intended contour deformation is possible if the integra
of Eq. ~52! is free of singularities betweenC andL.

E. Singularity analysis

By construction of Eq.~52!, the poles of the summato
G(z2q), i.e., the points

qk5z1k, k50,1,...,̀ , ~59!

are all to the right ofC. Similarly, the poles ofG(z1q
12m), i.e.,

qk52z22m2k, z5 iv, k50,1,...,̀ , ~60!

are all to the left ofL @Eqs.~57! and~58!#. These pole series
do not interfere with the contour deformation. Other sing
larities of the integrand in Eq.~52! only originate fromM ,
which thus contains complete information about the spec
structure of the solution and hence could be termed a ‘‘sp
tral kernel’’ ~SK!. As M is generally unknown, analyticity
seems to cease here. However, the physical context of
problem and especially the strong analogy with the fully a
lytically developed solution in@1# allow one to anticipate and
even prove a few essential properties ofM . Although the
subsequent analysis necessarily is of a formal and abs
nature, conclusive results will eventually be obtained.

First, it should be noted that thep dependence ofM (z,p)
exclusively enters via the zerosa6(p), b6(p), and c6(p)
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258 57A. DEBOSSCHER
of the quadratic polynomials inz ~see Appendix B!. These
‘‘parameters’’ have branch points inp and so generally do
M and itsz-wise zerosrm(p) ~althoughM may be single
valued if the different branches of the multivalued zero fun
tions are symmetrically represented; see further!. Therefore,
in the q plane, the set of zeros of

M „q,ap0~q!…50 ~61!

can be thought of as being partitionable into subsets, acc
ing to the branch of therm’s where they originate from. The
SK M must have at least one ‘‘good’’ or ‘‘physical’’ branc
of zeros qk that will produce the discrete eigenvalues
poles of the integrand, with the discrete eigenfunctions
residues~see Sec. III F!. These zeros result from a forma
‘‘good’’ branch equation such as

q5rg„ap0~q!… ~62!

and must lie on the discrete spectrum part of the eigenv
locus L (2m<q<0) or to the left of it. In the presently
assumed standard case@where the ICF’sP0 ,Q0 ~41! are the
appropriate factorizers and Eq.~48! holds# all zeros ofM
nicely show up inQ0 ~see Appendix A! and the goodqk
values can be found by a numerical search for the zeros

Q0„q,ap0~q!…50 ~63!

on the real axis interval~67! ~see further!.
The SK must have branch points on the locusL, acting as

separation points between the different parts of the spectr
As shown in Appendix B, these branch points are

qA
652m, qC

652m6S m22
d2

a2D 1/2

, ~64!

where the locus intersectionq52m appears as a degenera
pair of coinciding branch points. In the present case,M (z,p)
is single valued inp becauseP0 and Q0 are. The branch
points ~64! are latent and must be activated by annihilati
of ‘‘bad’’ zero branches.

The SK must have such ‘‘bad’’ or nonphysical zeros, w
some of them lying betweenC andL ~incidentally uponL).
These obstruct the contour unfolding fromC to L and they
must be annihilated by incorporating suitable periodicm fac-
tors intoM @or by H ~55!#. If bad zerosqk originate from a
nonphysical branchrb(p) of the zero functions, say,

qk5rb„ap0~qk!…, ~65!

then one can formally take

m~z,p!5e2p i @z2rb~p!#21. ~66!

This function is periodic inz and m„q,ap0(q)… has simple
zeros at theqk of the bad branch~65!. Inclusion of thism not
only annihilates the bad zeros ofM but also destroys the
original symmetry ofM with respect to the distinct zer
function branches. Branch points~64! on locusL get acti-
vated and the new ‘‘cleaned’’ SK,M „q,ap0(q)… ~the same
symbol is kept!, is multivalued inq. Branch cuts must be
introduced to isolate a single-valued branch ofM in the q
plane, which now becomes the principal, or physical, R
mann sheet in which the contour can be unfolded.
-

d-

s

e

f

m.

-

In summary, one expects on physical grounds the fi
true SK to have a numberN11 of good zerosqk ~at least
q050) on the discrete spectrum section ofL,

Re~qc
6!<qk<0; ~67!

no other zeros in the half plane Re(q)>2m, i.e., to the right
of L; the branch points~64!; and appropriate asymptotics fo
largeq @Re(q)>2m# such that distant contour integral con
tributions vanish. It is further assumed that thisM exists and
that its physical zerosqk have been obtained numerically v
the ICF equation~63!.

F. Contour deformation: Spectral structure

Rewriting the integral representation~52! compactly as

h~z,t !5
1

2p i EC
dq U~q,z,t,x0! ~68!

and deformingC so as to cover the locusL @Eqs. ~57! and
~58!#, one obtains

h~z,t !5 (
k50

N

Resq5qk
~U !1

1

2p i EB
dq U1

1

2p i EV
dq U.

~69!

The sum of residues originates from the good po
q0 ,q1 ,...,qN of the integrand that cross the contour duri
unfolding. TheB integral runs either around the right half o
a horizontal branch cut (a2m2.d2) or adjacent to a vertica
cut (a2m2<d2). Accordingly, theV integral covers the en
tire vertical locus line or the remaining part of it. The sam
qualitative figures as in@1# apply. As in@1#, a spectral struc-
ture with bound states, a ‘‘reflecting’’ continuum and
‘‘free’’ continuum is apparent. The discrete spectrum will b
calculated in the following subsection. Continuum contrib
tions will not be further elaborated.

G. Discrete spectrum results: Steady-state PDF

The discrete spectrum contribution is obtained by cal
lation of the residues at the poles ofU in Eq. ~68!; the sum in
Eq. ~69! becomes

@h~z,t !#discrete5 (
k50

N

e2lktaz2qk
G~z1qk12m!G~z2qk!

G~2qk12m!

3R~k!M ~z,2lk!e
qkx0c~qk ,2lk ;x0!,

~70!

where

lk52ap0~qk!52a@~qk1m!22m2# ~71!

and R(k) formally denotes the residue at the poleqk of the
inverse SK,

R~k!5 lim
q→qk

q2qk

M „q,ap0~q!…
5S dM„q,ap0~q!…

dq D
q5qk

21

5F]M ~z,p!

]z
1

]M

]p

]p

]zG
p5ap0~z!,z5qk

21

. ~72!
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Using the symbolic eigenfunction expansion~11! for the
Green’s function and the definition~20! of h̄ (z,p), it is seen
that thekth term of the sum~70! corresponds to the Fourie
transform

FS wS~x!wk~x!

ae2x1gex11
wk~x0!e2lkt,x→zD 5e2lktFk~z!wk~x0!.

~73!

By identifying the t, x0 , and z dependences, one finds th
following results.

~i! The lk as given by Eq.~71! are the discrete eigenva
ues indeed.

~ii ! The eigenfunctionswk are given by

wk~x!5Nke
qkxc~qk ,2lk ;x!. ~74!

Nk is an unknown normalization constant andc is given by
Eq. ~27! or, alternatively, by the sum in Eq.~45!:

c~z,p;x!5 (
m50

`

~2ex!mxm~z,p;x!S )
j 50

m-1
Qj

Aj 11
D , ~75!

with x0 from Eq. ~44! andxm5x0(z1m). For the presently
assumed standard case, whereqk solves Eq.~63!, the eigen-
functions simply reduce to

wk~x!5Nke
qkxx0~qk ,2lk ;x!

5Nke
qkx (

m50

`

~2ex!mF)
j 50

m-1
Cj~qk ,2lk!

Qj 11~qk ,2lk!
G .

~76!

This type of eigenfunction can be identified with the spec
‘‘Heun function’’ solution of the Heun equation@8#. The
necessary analytic continuation for these functions will
derived in Sec. III H.

~iii ! The z-dependent factor gives forFk the equation

Fk~z!5FS ws~x!wk~x!

ae2x1gex11
,x→zD

5az2qk
G~z1qk12m!G~z2qk!

G~2qk12m!

R~k!

Nk
M ~z,2lk!.

~77!

First using Eq.~77! for k50 @i.e., q050,w0(x)5N051],
one has

F0~z!5FS ws~x!

ae2x1gex11
,x→zD

5R~0!a
z
G~z12m!G~z!

G~2m!
M ~z,0!, ~78!

which basically would allow for the determination of th
steady-state PDFwS(x) if M (z,0) andR(0) were available. It
is possible to solve the reduced version (p50) of the general
equation~A22! for M (z,0):
l

e

az~z11!~z12d!~z12m11!M ~z12,0!

1bz~z12e!M ~z11,0!1M ~z,0!50, ~79!

but it is easier to solve directly the time-independent F
@i.e., Eq.~2! with ]w/]t50# for wS(x). The results are

ws~x!5Ns~ae2x1gex11!e2mx~ex2r1!n121

3~ex2r2!n221, ~80!

with

r65
1

2
@2b6~b224a!1/2# ~81!

being the roots of the quadratic equation

r21br1a50 ~82!

that determines two of the four singularities of the FPE~in
theex plane!. These roots are seen to be real under the sa
condition ~42! that ensures convergence of the ICF’s. Th
are negative andur1u,ur2u. The exponentsn6 are given by

n65
2

12a61
@d1a61m2~11a61!e#, a5

r2

r1 ~83!

and satisfy the simple relations

n11n252~d2m!, an11n252~a11!~e2m!.
~84!

Under conditions~13!, wS(6`)50 and can be normalized
For calculatingNS , the Fourier-transform~78! is a useful
intermediate result

F0~z!5NSE
2`

1`

dx e~z12m!x~ex2r1!n121~ex2r2!n221

5NSL~z!, ~85!

with, from @14,15# and Appendix D,

L~z!5~2r1!z12m1n121

3~2r2!n221
G~z12m!G~222d2z!

G~2m22d12!

3 2F1S z12m,12n2;2~m2d11!;12
r1

r2D . ~86!

From F0(z) one builds the steady-state characteristic fu
tion

uS~z!5F„wS~x!,x→z…5aF0~z12!1gF0~z11!1F0~z!
~87!

and normalization ofuS yields NS ,

uS~0!515NS@aL~2!1gL~1!1L~0!#. ~88!

Subsequently,us(z) can be used, e.g., to calculate stead
state moments such as
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mk5^ekx&5uS~k!. ~89!

It is straightforward to verify that the ‘‘equivalent Fokke
Planck potential’’@i.e., minus the logarithm ofwS(x) ~80!# is
either a monostable or a bistable potential well, with line
asymptotes. A mathematical side result from Eq.~78! is
on
t

le
r

M ~z,0!5
NS

R~0!
L~z!a2z

G~2m!

G~z12m!G~z!
, ~90!

which solves Eq.~79! indeed and yields a closed form~ap-
parently uncatalogued in@16#! for the univariate ICF
Q0(z,0):
Q0~z,0!5
M ~z,0!

M ~z11,0!
5~2r2!z~122d2z!

2F1S z12m,12n2;2~m2d11!;12
r1

r2D
2F1S z12m11,12n2;2~m2d11!;12

r1

r2D . ~91!
the

de-
lar

-

e

:

e

H. Analytic continuation of the discrete eigenfunctions

The present solution method delivers the eigenfuncti
as power series inex, converging around the singularity a
ex50, up to the nearest singular point atex5r1. @Actually,
according to@8#, the eigenvalue condition~63! implies ‘‘su-
perconvergence’’ up toex5r2. This does not invalidate the
following analysis where it is allowed to replacer1 by r2

throughout.# One has in general@see Eqs.~74!–~76!#

w~x!5Nke
qkx (

m50

`

am~qk!~2ex!m, uexu,ur1u, ~92!

with specifically for the standard case

am~qk!5)
j 50

m-1
Cj~qk ,2lk!

Qj 11~qk ,2lk!
5)

j 50

m-1
Pj~qk ,2lk!

Aj 11~qk ,2lk!
,

a051. ~93!

Generalizing Euler’s transformation@17,18#, one looks for a
series in the new variable

X~x!5
ex

ex2r1 , ~94!

which results in the analytic continuation

wk~x!5Nke
qkxS 12

ex

r1D 2s

(
m50

`

bm~qk!X
m,

bm~qk!5~s!m(
l 50

m
~r1! lal~qk!

~m2 l !! ~s! l
, b051, ~95!

wheres can be chosen for convenience. The simple Eu
transformation is obtained fors51:

bm5(
j 50

m

~ j
m!~r1! jaj , ~96!

but another obvious choice is to identifys with one of the
factors ofC0(qk ,2lk) @see Eq.~B8!#,
s

r

s5s6~qk!5qk2c6~2lk!5qk1d7~d22alk!
1/2

~97!

such that thebm’s in Eq. ~95! reduce to

bm5~s6!m(
l 50

m
~2r1! l~s7! l

~m2 l !!P j 51
l Qj

. ~98!

This yields the Euler continuations that are usual in
theory of Heun’s differential equation@8,19# and thesebm’s
satisfy a certain second-order recurrence that will not be
rived here. Observing the transformation of the singu
points atex50, r6, and` under Eq.~94!, it follows that
the series in Eq.~95! converges foruXu,1, i.e., for

Re~ex!.
r1

2
, ~99!

such that this representation ofwk is appropriate for the en
tire physical domainxP@2`,1`#. Other continuations will
be derived in Sec. IV C.

Returning to Eq.~77!, the Fourier transform can now b
evaluated by use ofwS(x) @Eq. ~80!# and the continuation
~95! for wk(x), all integrals being of the type in Appendix D

Fk~z!5NSNk~2r1!z12m1qk1n121~2r2!n221

3G~s1222d2qk2z!S~z,qk!, ~100!

where

S~z,qk!5 (
m50

`

bm

G~z12m1qk1m!

G~s22d12m121m!2F1S z12m1qk

1m,12n2;s1222d12m1m;12
r1

r2D . ~101!

This result will allow for the analytical calculation of th
normalizationNk of the eigenfunctionswk(x).

I. Normalization of the discrete eigenfunctions

Substitution of the result~100! into Eq. ~77! and solving
for Nk yields
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Nk
25

~2r1!12z22m2qk2n1
~2r2!12n2

az2qkG~z1qk12m!G~z2qk!

NSS~z,qk!G~s1222d2qk2z!G~2qk12m!
R~k!M ~z,2lk!, ~102!

whereR(k)M (z,2lk) is still unknown. The right-hand side of Eq.~102! must bez independent. It may be evaluated by takin
z5qk and resolving the resulting indeterminacy as follows. In the neighborhood ofz5qk one has

M ~z,2lk!5~z2qk!S ]M

]z D
z5qk ,p52lk

1O~z2qk!
2 ~103!

such that, withR(k) from Eq. ~72!,

R~k!M ~z,2lk!5
~z2qk!@11O~z2qk!#

112a~qk1m!S ]M

]p Y ]M

]z D
z5qk ,p52lk

; ~104!

The ratio of unknown partial derivatives in Eq.~104! is expressible in terms of the known ICFQ0(z,p):

V~qk ,2lk!5S ]M

]p Y ]M

]z D
z5qk ,p52lk

5S ]Q0

]p Y ]Q0

]z D
z5qk ,p52lk

, ~105!

as easily follows from partial differentiation of Eq.~A21!. Derivatives ofQ0 are fully analytically determined by recurrenc
e.g.,@see Eq.~A18!#,

]Q0

]p
5

]B0

]p
2

1

Q1

]D0

]p
1

D0

Q1
2

]Q1

]p
5S g2

aA11C0

Q1
D1

D0

Q1
2 F S g2

aA21C1

Q2
D1•••, ~106!

and similarly for]Q0 /]z. They may, however, be obtained numerically as well, e.g., during the numerical search forqk
values in Eq.~63!. Setting nowz5qk in Eq. ~102!, the normalization is obtained

Nk
25

~2r1!122qk22m2n1
~2r2!12n2

NS@112a~qk1m!V~qk ,2lk!#G~s1222d22qk!S~qk ,qk!
, ~107!
a

s

x
n
or
os

e

er

ue

A.

ot
r,
with NS from Eq.~88! andS from Eq.~101!. This completes
the discrete spectrum results.

J. Searching for physical eigenvalues

The indirect access to the physical zeros of the gener
unknown SK function M „q,ap0(q)… via the ICF
Q0„q,ap0(q)… may be hampered by some specific problem

1. Bad zeros

Even if the search is restricted to the negative real a
segment~67! in the q plane, bad zeros incidentally lying o
this part of the locus may be picked up too. A criterion f
acceptance or rejection of the zeros is necessary. One p
bility is to write Eq. ~63! as

Q0„q,ap0~q!…5B0„q,ap0~q!…2P0„q,ap0~q!…50
~108!

and to solve this ‘‘quadratic’’ equation forqk , which yields
a semiexplicit formula
lly

.

is

si-

qk5
1

b2ag
$~agm2be!6@~agm2be!2

1~ag2b!P0„qk ,ap0~qk!…#
1/2%,

Re@ #1/2>0. ~109!

Preliminary numerical evidence shows that physicalqk val-
ues satisfy Eq.~109! taken with the same sign as the on
necessary forq050 to be a root~the physical zeroq050
selects the physical branch, as in@1#!. A more substantial
criterion, however, follows from spectral invariance und
reflection, i.e., under the ‘‘overbar’’ transformation~B5!. A
physical zero qk must have a partnerq̄ k solving
Q̄0„q̄ k ,ā p̄0( q̄ k)…50 and generating the same eigenval
@see Eq.~B7!#. It appears~again there is no proof! that a
nonphysicalqk ~or q̄ k) does not have such a partner.

2. Congruent zeros

The basics of congruence are discussed in Appendix
For some values of the second variablep, thez-wise zeros of
M (z,p) may become left congruent and as such will n
show up in the ICFQ0 anymore. Their existence, howeve
is still signaled by the vanishing ofQ0 at the starting zero of
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262 57A. DEBOSSCHER
the congruent series, which is a ‘‘moved’’ free zero@for the
free zerosdi see Eqs.~A2! and~B8!#. Hence one has to look
for l values in the discrete spectrum range

0<l<min~am2,d2/a! ~110!

for which

Q0„di~2l!11,2l…50. ~111!

If this condition for ‘‘left congruence with respect todi ’’ is
satisfied, thenM vanishes at all left-congruent positions

M „di~2l!112k,2l…50; k50,1,...,̀ . ~112!

This equation coincides with the eigenvalue condition~61! if
for somek5Nc

di~2l!112Nc5q, ~113!

whereq corresponds tol as usual via Eq.~71!. It is seen that
congruence defines a two-parameter (l,Nc) @or (q,Nc)# ei-
genvalue problem. Because of Eqs.~113! and ~111! it fol-
lows that for a congruentq value

DNc21~q,2l!50, QNc
~q,2l!50 ~114!

such that all ICF’sPj andQj for j ,Nc become indetermi-
nate. This breakdown in the calculation ofQ0(q,2l) ~dur-
ing the standard case search e.g.! may be used as an inciden
tal congruence detector, but the better strategy is firs
calculate explicitly analytically the candidateq(Nc) values
from Eq.~113!, and then to check theQNc

50 condition. For
the eigenfunctions corresponding to congruent eigenval
one may envisage a complicated de l’Hoˆpital limit for
DNc21 /QNc

, but a direct recurrent calculation of their coe
ficients by Eq.~29! is more appropriate. One notes the use
equivalents for Eqs.~29! or ~46!:

T~k!~z!5T~k21!~z!2Hk22T~k22!~z!, ~115a!

U ~k!~z!5Bk21U ~k21!~z!2Dk22U ~k22!~z!, ~115b!

U ~k!~z!5U ~k21!~z!Pk211)
j 50

k21

Qj . ~115c!

Equation ~115c! can be used fromk5Nc11 on and then
simply reduces to

U ~k!5U ~k21!Pk21 , ~116!

showing the corresponding coefficients to have the sa
pure product structure as in the standard case Heun func
This type of solution could be termed ‘‘semiminimal.’’

On substitution of the free zeros, one finds the followin
~i! For di(p)[a1(p)21, Eq. ~113! explicitly becomes

a1
„2l~q!…2Nc5q2Nc5q, ~117!

which is identically satisfied for allq if Nc50. As, more-
over, Eq.~114! reduces to Eq.~63!, one just retrieves theq
values of the standard case, which thus appears as a ‘‘de
to

s,

l

e
n.

.

en-

erate’’ congruent case. All theseq values are acceptable wit
Nc50 and the problem effectively becomes a one-param
problem.

~ii ! With di(p)[c2(p), Eq. ~113! can be written as

c2
„2l~q!…2q5c2~2l!2a1~2l!52~ q̄1q!5Nc21

~118!

and solved forq(Nc),

q~Nc!5
1

12a2 $~a2m2d2Nc11!6@~a2m2d2Nc11!2

1~Nc21!~2d1Nc21!~a221!#1/2%,

Re~q1d1Nc21!,0. ~119!

If such a q satisfiesQNc
„q,2l(q)…50, then a congruen

eigenvalue has been found. To be a physical eigenvalue
samel must be retrievable from the overbar transform
@see Eq.~B5!# search procedure. Because only Eq.~118! is
invariant under this transformation, left congruence with
spect toc2 is the only nondegenerate congruence sche
that can produce physical eigenvalues and the optionsdi
[a221 or di[c1 need not be considered anymore. T
overbar version of Eq.~114! becomes@see Eq.~160!#

Q̄Nc
~ q̄ ,2l!5

1

a
P2Nc

* ~2 q̄ ,2l!5
1

a
P0* ~q21,2l!50,

~120!

which shows a physical congruentl also to cause right con
gruence with respect toa121. Although Eq.~118! coincides
with the necessary condition~upon the Frobenius exponen
at `; see Appendic C! for the existence of Heun’s ‘‘polyno-
mials’’ @8#, the additional transcendental equationQNc

50
seems to be just a condition for extended convergence@8#
and not for truncation of the solution series. This genera
yields ‘‘transcendental Heun functions’’ for the congrue
eigenfunctions and these need to be analytically contin
~see Sec. III H!. Incidentally, however, the solution serie
may truncate to a Heun polynomial, converging over t
entire ex plane. The exact condition for this to occur is n
further investigated here~classically@8#, this is anNcth de-
gree polynomial equation for the accessory parameterb de-
fined in Appendix C!.

3. Close-to-congruent cases

The possibility of congruent zero series, as well as
existence of three hypergeometric limiting cases~see Secs. I
and V! implies that many FPE parameter combinations g
rise to a close-to-congruent situation, where at least two
ros of M become almost unitarily spaced. When this ha
pens, theqk zero values can get extremely close to poles
Q0 and when the zero-pole separation falls below numer
resolution both disappear, even when theoretically cong
ence is not perfect. To remedy this problem, one may acc
the zeros ofM via the product of ICF’s

)
j 50

N

Qj5
M0

MN11
~121!
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instead of just viaQ05M0 /M1 . By taking for N a suffi-
ciently large positive integer, the ‘‘shadowing’’ poles a
shifted and the ‘‘hidden’’ zeros can be resolved. Altern
tively, the expression

)
j 50

N S 12
Pj

Bj
D 5S )

j 50

N

Bj D 21
M0

MN11
~122!

having the same zeros as Eq.~121! can be used and is ofte
much better conditioned from a numerical point of vie
Basically, usefulN values must be determined by trial an
error. As such, the eigenvalue problem appears as a ‘‘we
version of the strictly two-parameter (q,Nc) eigenvalue
problem arising in the case of exact congruence~see Sec.
III J 2!.

4. Failure of the standard case approach

A simple numerical exploration of Eq.~63! and/or Eq.
~111! reveals that for some parameter sets no eigenva
can be found at all~exceptl050), although the equivalen
Schrödinger potential~18! is strongly confining or very close
to a potential that is known to have bound states~e.g., the
case in@3#!. This is not unexpected, as it is known@2,20# that
sometimes a dominant solution of the recurrence is neces
for constructing the physical eigenfunctions, while the fo
ward ICF Q0 only gives access to the minimal solutionM .
Moreover, backward ICF’s may be necessary for genera
the eigenvalues. This opens the gate for the general fact
ers derived in Appendix A and for some related extensio

IV. EXTENSIONS

A. Introducing general factorizers

The developments in the present section strongly dep
upon the material introduced in Appendix A, to which th
reader is referred for more details. Replacing the forw
ICF’s P0 andQ0, as special solutions of Eq.~40!, by general
factorizersR0 andS0 , Eq. ~46! for the coefficients become

U ~k!5 (
m50

k S )
j 50

m-1

Sj D S )
j 5m

k21

Rj D ~123!

or after factorizing out the first term of the sum

U ~k!5S )
j 50

k21

Rj D (
m50

k S )
j 50

m-1
Sj

Rj
D . ~124!

The infinite sum

L~z!5 (
m50

` S )
j 50

m-1
Sj

Rj
D ~125!

converges under the condition

lim
k→`

U Sk

Rk
U,1, ~126!

which can be shown to hold if theK0 function composingR0
and S0 behaves asymptotically dominant in the right halfz
plane. When satisfied, one has
-

.

’’

es

ary
-

g
iz-
.

nd

d

U ~k!5S )
j 50

k21

Rj D L~z!2S )
j 50

k21

Sj D Sk

Rk
L~z1k11!

~127!

and, in addition, an ICF representation for the series@11,16#

L~z!5
1u
u1

2

S0

R0
U

U11
S0

R0

2

S1

R1
U

U11
S1

R1

2••• . ~128!

By an obvious equivalence transformation and the use of
~40!, this reduces to

L~z!5
Q0

Q02S0
~129!

such that

U ~k!5S )
j 50

k21

Rj D Q0

Q02S0
2S )

j 50

k21

Sj D Sk

Qk2Sk
; ~130!

Substitution herein of Eq.~A10! for the general factorizers
R0 ,S0, Eq. ~A26! for K0, Eq. ~A21! for P0 ,Q0, and use of
the zero mover properties~A27! and~A28! gives, after some
algebra,

U ~k!5

M0Mk11* 2S )
j 50

k

D j 21D M0* Mk11

M0M1* 2D21M0* M1

. ~131!

Property~A25!, also used in the above calculation, states t
the denominator of Eq.~131! is periodic inz:

D0~z,p!5M0M1* 2D21M0* M15D1~z,p!5D0~z11,p!
~132!

such that many alternative forms in terms of the ICF’s b
come possible, e.g.,

U ~k!5

Q0S )
j 50

k21

Pj* D 2Q0* S )
j 50

k21

Pj D
Q02Q0*

5

)
j 50

k

Qj2)
j 50

k

Qj*

Qk2Qk*
.

~133!

It is seen that the use of general factorizers reduces, at
level of the coefficientsU (k) , to the combined use of for
ward and backward ICF’s or their associated minimal so
tions M0 andM0* . This result is completely independent o
any specific choice related toR0 ,S0 ,K0. All free zerosdi
have an equivalent role and the constant distribution factof
@see Eqs.~A4! and ~A5!# drops out as well as all arbitrar
periodicsv(z). The alternative of a left dominantK0, i.e.,

lim
k→2`

URk

Sk
U,1, ~134!

instead of Eq.~126!, of course leads to the same result via
formal interchange of forward and backward ICF’s. Proce
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ing further as in the standard case, it is seen that the rati
M functions in the contour integral representation~52! is
now replaced by

T~z,q,l!5
M0~z,2l!M1* ~q,2l!

D0~z,2l!
, ~135!

with l5l(q)52ap0(q) as in Eq.~71!.

B. Eigenvalues

The result~135! as a spectral kernel is puzzling, as
seems to imply the eigenvalue equation

D0~z,2l!50, ~136!

which normally should producez-dependent eigenvalues
AgainD0 is unknown, but at least its noncongruent zeros
accessible via the ICF’s

Q02Q0* 5P0* 2P05
M0

M1
2D21

M0*

M1*
5
D0

M1M1*
~137!

such that a numerical exploration of Eq.~136! is possible.
This has revealed the following facts.

~a! For certain FPE parameter sets,lk values can be
found in the physical range~110! that satisfy Eq.~136! in-
dependently of the value ofz. The latter, however, sensibl
determines the numerical resolvability of these zeros and
be optimized to avoid congruence.

~b! Otherlk values for the same parameter set, orlk’s for
other parameter combinations, exhibit a cyclic behavior
deed whenz is gradually varied toz11. The observed be
havior may be just a back and forth movement along the
l axis or even a disappearance~possibly becoming complex
or obscured by congruence! during part of the cycle.

The above phenomena can be understood from the s
ture

D0~z,p!5F~p!$e2p i @z2p1~p!#21%$e2p i @z2p2~p!#21%,
~138!

which can be derived by a tedious asymptotic analysis ofD0
@Eq. ~132!# at the upper and lower ends of a fundamen
period strip in thez plane, using the technique described
@21,22#. Unfortunately, thep-dependent functionsF andp6

remain unknown and there seems to be no possibility to
termine them. The present context, however, allows one
conclude that thep6(p) must be the branches of a two
valued function, having known branch points~see Sec. III E
and Appendix B!. They are determined up to an additiv
integer only. Thelk values of type~a! result fromF(2l)
50 and necessarily are physical eigenvalues as they ca
be suppressed. Type~b! lk(z) values manifestly are non
physical, but because they originate from a periodical fac
in Eq. ~138! their annihilation is possible. It suffices to red
fine theH function @see Eqs.~52!, ~54!, ~55!# as

H~q,z!5
m„z,2l~q!…

m„q,2l~q!…
, ~139!
of

e

an

-

al

c-

l

e-
to

not

r

wherem(z,p) is a suitable entire periodic function ofz hav-
ing the bad zero branch ofD0(z,p) @say p1(p)#. Starting
with the simplest possible choice

m~z,p!5e2p i @z2p1~p!#21, ~140!

it is seen that the nonphysicalz-dependent poles of the inte
grand are destroyed, the integrand gets activated bra
points ~as in Sec. III E!, and, moreover, the eigenvalue co
dition now effectively becomes

m„q,2l~q!…50 ~141!

or, in view of Eq.~140! and withN any integer,

q2p1@2l~q!#52N. ~142!

If p1 were known, then this equation could be solved for t
physically possible (qk ,Nk) combinations~note that gener-
ally NkÞk; k just labels the eigenvalues!. With unknown
p1, solutions of Eq.~142! have to be found as solutions o

D0„q1N,2l~q!…50 ~143!

via the ICF’s@see Eq.~137!# and again one has to be awa
of bad, congruent, and close-to-congruent zeros. This eig
value equation could have been obtained also by form
using D0(z1k1N,2l) instead ofD0(z,2l) in deriving
Eq. ~135! and by substitution ofz1k5q here as well when
switching to the integral representation. This procedu
however, is less general than the annihilation scheme, as
be seen further.

On settingN50, the standard case search of Sec. III
reproduced because Eq.~135! reduces to

T~z,q,l!5
M0„z,2l~q!…

M0„q,2l~q!…
. ~144!

If this search fails to yield the complete discrete spectr
~see Sec. III J! then otherN values may be considered, a
cessing Eq.~143! via

Q0„q1N,2l~q!…2Q0* „q1N,2l~q!…

5QN~q,2l!2QN* ~q,2l!50, ~145!

where eitherQN ~for N,0) or QN* ~for N>0) truncates to a
finite continued fraction becauseD2(N11)„q1N,2l(q)…
[0.

From Eq.~137! it easily follows that, e.g., forN>0,

QN2QN* 5~Q02Q0* !)
j 51

N
Qj

Pj 21*
, ~146!

which already shows that searching with Eq.~145! gives a
superior resolution of close-to-congruent cases in much
same way as the heuristically introduced formulas~121! or
~122!. The full power of the extension to general factorize
however, becomes clear when dealing with exact cong
ences. One observes the following facts.

~i! In addition to left congruence in the forward ICF’s a
discussed in Sec. III J 2 and detected by
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Q0„c2~2l!11,2l…50, ~147!

there now also is the possibility for right congruence~with
respect todj[c2) in the backward ICF’s, detectable by

P0* „c2~2l!,2l…50. ~148!

~ii ! In any case of congruence,D0 acquires the full infinite
series of zeros

D0„c2~2l!1k,2l…50, k52`,...,21,0,1,...,1`,
~149!

as follows from the periodicity~132!.
~iii ! A l value causing congruence is an eigenvalue i

falls in the physical range~110! for discrete eigenvalues an
if its correspondingq value @see Eq.~71!# satisfies

c2
„2l~q!…112Nc5q ~150!

for some integerNc such that Eq.~149! coincides with the
eigenvalue condition~143!. In contrast to Eq.~113!, Nc is
not restricted here to non-negative values. The analytical
lution of Eq. ~150! for q(Nc) is still given by Eq.~119!. For
eigenvalues resulting from left congruence~147! in position
Nc , Eq. ~114! and the resulting indeterminacy ofPj ,Qj for
j ,Nc still apply. Similarly, for a right congruence~148! one
hasDNc21(q,2l)50, PNc21* (q,2l)50, andPj* ,Qj* in-

determinate forj >Nc .
~iv! Also in contrast to the standard case, ‘‘congruent’’q

values generally do not require special treatment. They
show up as zeros in searches~145! with QN2QN* 50, just as
standard caseq values in Eq.~63!, providedN is properly
chosen. This can be understood from Eq.~137!. When, e.g.,
M is left congruent, thenQ02Q0* still displays the rightmost
zerosc21k for k>1 of the fully infinite series~149! and so
doesQN2QN* for k>2N11. Likewise, on right congruenc
in M* , QN2QN* displays the leftmost zeros fork,2N
11. Substitutingk512Nc in the above inequalities define
the values ofN that ensure visibility of a zero inQN2QN* ,
whenever the candidateq(Nc) truly becomes a congruentq
value. These values ofN also are the appropriate ones f
avoiding the indeterminate ICF’s on congruence.

~v! The simultaneous occurrence of left and right cong
ence@conditions~147! and ~148!# cannot be excludeda pri-
ori. The q values resulting from such a double congruen
would stay invisible for anyN and in fact the access toD0

via QN2QN* even fails because there is always one inde
minate ICF. The valuesq(Nc), however, are known from
Eq. ~119!.

One further generalization of the above eigenvalue sea
scheme is obtained if in Eq.~140! the bad (z-dependent! zero
annihilator period is reduced toNp

21 :

m~z,p!5e2p iNp@z2p1~p!#21, Np51,2,... . ~151!

This eventually leads to a search procedure for the zero
t

o-

o

-

e

r-

ch

of

D0S q1
N

Np
,2l~q! D5Dm„q1nn ,2l~q!…50,

N

Np
5m1nn , m5 intS N

Np
D ,

nn5
n

Np
, n50,1,...,Np21 ~152!

via the appropriate ICF differences

Qj~q1nn ,2l!2Qj* ~q1nn ,2l!50, j 5...,21,0,1,...,
~153!

as can easily be verified. This procedure covers the stan
case (N50 or m5nn50), the previous extension (N
5mNp or nn50), andNp21 additional eigenvalue scheme
corresponding to the possible~nonzero! values of the rational
number nn . Schemes withnn and 2nNp2n5nn21 are

equivalent. The integerm ~or j ) is physically irrelevant and
just determines the numerical accessibility of the eigenv
ues. The parameternn , however, codetermines their ver
existence and their value. Parallel to Eq.~152!, the congru-
ence relation generalizes to

c2
„2l~q!…112Nc5q1nn ~154!

such that

DNc21~q1nn ,2l!50,

Q0~c211,2l!5QNc
~q1nn ,2l!50

or

P0* ~c2,2l!5PNc21* ~q1nn ,2l!50 ~155!

Again, Eq.~155! causes indeterminacy of some ICF’s, but
ICF’s figuring in the eigenfunctions have the argumentsq,
2l) and stay perfectly determinate when the eigenva
originates from annÞ0 scheme. BecauseNp explicitly en-
ters into the solution, it must be uniquely assignable for a
given FPE parameter set. A decisive method has not b
found yet, and further research is guided by some facts
conjectures.

~i! The coexistence of two distinct eigenvalue schem
one for even and one for odd eigenfunctions, is not unco
mon ~see examples in@20#!. The valueNp52 ~with n050
and n151/2, respectively! is the minimum value allowing
for this configuration. The schemes effectively are selec
by assigningnn values, which are, as in@20#, related to pos-
sible values of the Frobenius exponent at infinity@see Eqs.
~C8! and ~154!#.

~ii ! If Np grows large, then thenn values become densel
spaced on the interval@0,1@ and, given al value that causes
congruence, Eq.~154! can be satisfied to any degree of a
curacy desired. This would allow one to validate all suchl ’s
as physical eigenvalues. It is an open question whetherNp ,
in its dependence on the FPE parameters, must stay bou
or is indeed allowed to grow ‘‘sufficiently’’ large.

~iii ! Eigenfunctions corresponding to eigenvalues from
nnÞ0 scheme are of a different type. They are entirely co
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266 57A. DEBOSSCHER
putable in terms of forward and backward ICF’s without
need for recurrent calculation as in Eq.~115!. It is conjec-
tured that they are related to the so-called path multiplica
solutions of Heun’s equation@8#. The parameternn ~which in
fact is only determined up to an integer! seems to fulfill the
role of ‘‘path index’’ ~or ‘‘Floquet exponent’’!.

~iv! Likewise, it is conjectured that the enhanced sche
might be the appropriate one for dealing with spectral ac
mulation points for the discrete eigenvalues~see the example
in @5# mentioned in Sec. I!.

C. Continuation by symmetry

The reflection symmetry~5! allows one to define addi
tional representations for the eigenfunctions. The presen
lution method produces the basic power series~92!, which
essentially is a Frobenius expansion about the singularit
ex50:

wk~x!5Nke
qkxc~qk ,2lk ;x!

5Nke
qkx (

m50

`

am~qk!~2ex!m,

~156!

where theam are given by Eq.~93! for the minimal solutions
of the standard case, and by the general formula:

am5FT~k!)
j 50

m-1
Bj

Aj 11
G

z5qk ,p52lk

~157!

in other cases. TheT(k) follow from Eq. ~29! or ~115!, or
alternatively, via theU (k) @see, e.g., Eqs.~46!, ~115!, and
~133! and equivalents#. An expansion about the singularity a
ex5` is directly obtainable by applying the symmetry~5! to
Eq. ~156!. This gives

w̄ k~x!5N̄ke
2 q̄ kx (

m50

`

ām~ q̄ k!~2e2x!m, ~158!

where all overbar quantities follow from the original ones
application of the transformation~B5!. One notes thatl̄ k5

lk and q̄ k is given by the appropriate branch of Eq.~B7!:

q̄ k5d1@d21a2~qk
212mqk!#

1/25d1@d22alk#
1/2.

~159!

It is easily verified that

Āk~z,p!5 Ā0~z1k,p!5a21C0~2z2k,p!

5a21C2k~2z,p!,

B̄k~z,p!5a21B2k~2z,p!,

C̄k~z,p!5a21A2k~2z,p!,

D̄k~z,p!5a22D2k21~2z,p!,

Q̄k~z,p!5a21P2k* ~2z,p!,

P̄k~z,p!5a21Q2k* ~2z,p!, ~160!
e

e
-

o-

at

which completely definew̄ k(x). By extended convergenc
@8#, Eq. ~158! is valid for uexu.ur1u. In their common do-
main of convergence

ur1u,uexu,ur2u, ~161!

wk and w̄ k are equal, while outside this ring they are analy
cal continuations of each other. Analytical continuation
Eq. ~158! by Euler’s transformation gives the overbar ve
sion of Eqs.~94! and ~95!, useful for the entire physica
rangexP@2`,1`#:

w̄ k~x!5N̄ke
2 q̄ kx~12r2e2x!2 s̄ (

m50

`

b̄m~ q̄ k!X̄m,

X̄~x!5
e2x

e2x2 r̄ 1
5

r2

r22ex . ~162!

It must be remarked that the power series ine2x ~158! would
emerge as a direct result if the operator equation~24! would
have been rearranged and factorized as

S 11
B0

C0
D211

A0

C0
D22DD2h̄

5S 11
Q0*

C0
D21D S 11

P0*

C0
D21DD2h̄5

ezx0

C0
~163!

and then solved forD2h̄ .
A third alternative is solving

S 11
C0

Q0
D D S 11

A0

Q0
D21DDh̄5

ezx0

Q0
~164!

for Dh̄ , which generates a Laurent series inex,

Dh̄5
ezx0

Q02Q0*
c̃~z,p;x0!,

c̃~z,p;x!5 (
m50

`

~2ex!mS )
j 50

m-1
Cj

Qj 11
D

1 (
m51

`

~2e2x!mS )
j 50

m-1
A2 j

P2~ j 11!
* D , ~165!

after a straightforward but rather tedious calculation, us
tools from Sec. IV A and Eq.~146!. The corresponding
eigenfunction representation

w̃k~x!5Ñke
qkxc̃~qk ,2lk ;x! ~166!

converges in the ring~161! and is particularly useful for
deriving the limiting form in the double confluent case@8#
where simultaneouslyur1u→0 andur2u→` in such a way
that the merged singularities atex50 and ex5` become
irregular ~see the example in Sec. V D!.
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V. CASE STUDIES

Relative to the numerous cases included in the pre
class of FPE’s, the number of case studies discussed he
by necessity very limited. Rather than fully elaborating so
general numerical examples~which is almost a straightfor
ward exercise!, a brief analytical overview of a few selecte
cases has been preferred. One reason for this option is
many physically important models happen to be specia
limiting cases~most often confluent, double confluent, bico
fluent, or triconfluent! of Heun’s equation. The limiting pro
cedures necessary to extract such a particular case r
from the general solution are not always obvious and of
have anad hoccharacter. The selected examples will conta
some additional analytical material related to this proble
Another reason is that the present study generalizes the ‘‘
fying stochastic process’’ FPE~see Sec. I and@1#!. It is in-
structive to verify the ‘‘downward’’ compatibility of the ac
tual results by retrieval of the three hypergeometric lim
cases that are apparent from Eq.~1!.

A. First hypergeometric case

A first hypergeometric case is obtained parametrically
settingb5g50 in Eq.~2!. The resulting FPE, devoid of firs
powers ofex, is identical in structure to the unifying FPE o
@1# @except for an inessential scale factor 2 inx, which can be
removed by a trivial reparametrization withr51/2 in Eqs.
~3! and~4!#. With b50, condition~42! for ICF convergence
is violated, but the factorizersP0 andQ0 remain defined by
Eq. ~A21! ~with a nonminimalM ), while Eq. ~A22! with
B0[0 basically reduces to a solvable first-order differen
equation forM . One has

Q0~z,p!52P0~z,p!5
M0~z,p!

M1
52C0A1

M2

M1
,

M ~z,p!

5
~eip/16a!z/2

GS z2c1

2 DGS z2c2

2 DGS z2a111

2 DGS z2a211

2 D ,

~167!

with a6(p),c6(p) from Eq.~B8!. The physical branch equa
tion for theqk values can be identified as

qk2c2
„ap0~qk!…5qk1d1@d21a~qk

212mqk!#
1/2522k,

k50,1,..., ~168!

and the hypergeometric results of@1# can be directly recon-
structed. This example clearly illustrates that knowledge
theM function becomes essential whenever the ICF’s do
exist. The above hypergeometric case result may be take
a zeroth-order approximation forM in the analysis of close
to-hypergeometric cases with small but nonzerob and g,
where the ICF’s do not exist. Finally, it should be mention
that the present case is not documented as a known hy
geometric limit of Heun’s equation@8,19#. It may be ex-
tracted from Eq.~C6! by taking the fourth singularitya521,
nt
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the accessory parameterb50, and a quadratic transforma
tion y85y2 of the independent variable.

B. Second and third hypergeometric cases

The second hypergeometric case corresponds to Eq~2!
without e2x terms. Their annihilation has to proceed via t
fully parametrized FPE~1! by zeroinga, b, andh in a con-
sistent way. Eventually, the following procedure results. R
place

x→x1 lnv, v.0

b→b/v, g→g/v ~169!

in Eq. ~2! and in all quantities of the general case solutio
By letting now v→0, Eq. ~2! acquires the structure of th
unifying FPE, while the solution components behave as
lows. The convergence condition~42! for the ICF’s obvi-
ously is satisfied for sufficiently smallv and Q0 is seen to
behave asymptotically as

Q0~z,p!5
M0

M1
;

1

v
B0~z,p!, ~170!

with B0 as originally in Eq.~22!, such that theM function
‘‘degenerates’’ to@see Eq.~B8! for b6(p)#

M ~z,p!5M05
~2v/b!z

G~z2b1!G~z2b2!
. ~171!

For a stochastically stable limit process (e,0) the zeros of
the physical branch ofM „q,ap0(q)…50 are given by

qk2b2
„ap0~qk!…5qk1e1S e21

ag

b
~qk

212mqk! D 1/2

52k, k50,1,..., ~172!

which, as in@1#, can be explicitly solved for theqk . Eigen-
functions are retrieved most simply by starting from the ge
eral expression~27! for c, in which ex andBj are replaced
by vex andBj /v, respectively. One gets

lim
v→0

c~z,p;x!5 (
m50

`

~2ex!mS )
j 50

m-1
Bj

Aj 11
D , ~173!

which, when inserted into Eq.~74!, nicely truncates to the
expected polynomials of@1#. The limiting normalization
limv→0(Nkv

qk) will not be calculated here. Referring t
@19#, the above case corresponds to the hypergeometric l
of Heun’s equation fora→`, b→`, andb/a5c.

The third hypergeometric case, with allex-independent
terms in Eq.~2! suppressed, is equivalent to a second cas
terms ofy52x and parameters 1/a, b/a, g/a, 2m, 2e,
2d, by virtue of the reflection symmetry~5!.

C. More hypergeometrics

There are many more instances in which Heun’s equa
~C6! reduces to the Gauss hypergeometric equation@17#.
Only the most obvious ones, following by mere inspection
the equation, have been listed in@8#. Reference@19# men-
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tions two nontrivial cases where a transformation of va
ables together with particular parameters perform the red
tion ~the case in Sec. V A above is of a similar type!. It can
be shown that whenever a singular point of Eq.~C6!, say, the
point a, merges with one of the others (0,1,`) while keeping
the exponents (A,B,...) finite, an equation results that gen
erally is not identical but reducible to the Gauss hyperg
metric equation by a simple transformation of the typeF*
5zpF or F* 5(z21)pF. The identification of possible sub
classes of the FPE~2! corresponding to these configuratio
is easy and will not be pursued here. The marginal caseb2

54a ~or r15r252b/2), where the ICF’s cease to exi
and with d1m52e to keepn6 finite, is a noteworthy ex-
ample.

D. Fully discrete spectra

The analytical results of Sec. III and the extensions
Sec. IV have been fully elaborated for the discrete part of
spectrum only. Cases with entirely discrete spectra bec
particularly interesting as their analysis is completely co
ered by the presently available material. A fully discre
spectrum is obtained when the equivalent Schro¨dinger poten-
tial ~18! becomes confining, i.e., when the asymptotic ene
levelsam2 andd2/a @Eq. ~19!# grow to infinity. The corre-
sponding limiting procedure must be such that the FPE
sulting from Eq.~2! stays meaningful, and that the spect
representation in at least one of theq or q̄ planes survives
with an infinite discrete spectrum locus~intersection and
branch points being moved to infinity!. In a first example, the
option is

m→`, a5
a*

m
, a* ,d finite. ~174!

The FPE reduces to

]w~x,t !

]t
5

]2

]x2 F ~ex1b!ex

gex11
wG22

]

]x Fde2x1beex1a*

gex11
wG ,

~175!

for which obviously the reflection symmetry is broke
Equation~175! actually defines a four-parameter subclass
Eq. ~2!. One parameter in Eq.~175! is redundant, but its
elimination by translation ofx, scaling oft, and reparametri-
zation is not essential for the subsequent discussion.
limiting form of the steady-state PDF~80! is easily obtained

wS~x!5ÑS~11gex!~11be2x!n221

3 expF2~d21!x2
2a*

b
e2xG , ~176!

with n2 from Eq. ~83!:

n252Fa*

b2 1d2e G . ~177!

In the q plane, the branch points~64!

qC
65mH 216F12S d

a* D 2G1/2J ~178!
-
c-

-

n
e
e

-

y

-
l

f

he

and the locus intersectionq52m are seen to move to infin
ity with m, irrespective of whether theqC

6 are real or com-
plex. Because the convergence condition~42! is always sat-
isfied, the complete subclass~175! is solvable in terms of the
ICF’s, which have a well-defined finite limiting form. Som
of the components simplify, e.g.,

l~q!5 lim
m→`

@2ap0~q!#522a* q,

A0~z,p!5p22a* z, ~179!

C0~z,p!52~z212dz!.

In the limit r150 andr252b, such that Eq.~175! can be
related to the~simply! confluent Heun equation@8#. For the
eigenfunctionswk(x), an appropriate form must be chose
that survives the limiting operations. A first candidate is t
continuation~94! and ~95! with r1 replaced byr252b
~see remark preceding those equations!:

wk~x!5Nke
qkxS 11

ex

b D 2s

(
m50

`

bm~qk!S ex

ex1b D m

,

~180!

with the bm according to Eq.~95! ~with also r1→r2

52b!. Theam figuring in Eq.~95! are given by the limiting
form of Eqs.~93! or ~157! according to whether the eigen
values result from a standard, a nonstandard, or a congr
search. Alternatively, the limiting form of continuation~162!
can be used, where it should be noted that@see Eq.~159!#
limm→` q̄ k50. ~In the limit, the broken reflection symmetr
invalidates the analysis in theq̄ plane, where the intersectio
q̄5d and the branch points remain unchanged. This sugg
that for large but finitem and small but nonzeroa, an accu-
mulation of discrete eigenvalues nearq̄50 takes place in the
q̄ plane.! The present subclass has only three free zeros

a1~p!215
p

2a*
21, c1~p!522d, c2~p!50

~181!

and the candidatec2-congruentq values have the simple
expression@from Eq. ~113!#

q~Nc!512Nc ~182!

such that condition~114! reduces to

Q0~1,2l!50, l52a* ~Nc21!. ~183!

It is an open question whetherc1 congruence should be
considered too in this limiting case, as there are strictly
symmetry arguments anymore to forbid this~see, however,
the following subclass!. A further detailed treatment includ
ing the relation to the confluent Heun equation, the ident
cation of confluent hypergeometric cases, and other to
clearly is a vast subject in its own that falls outside the sco
of this preliminary case study.

A second discrete spectrum subclass is obtained from
~2! by
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a→`, d5ad* , d* ,m finite. ~184!

To yield again a meaningful FPE with a maximal number
parameters~four plus one redundant parameter! and suitable
for ICF treatment, one can set also

b5ab* , g5ag* ~185!

such that the limiting equation becomes

]w~x,t !

]t
5

]2

]x2 F b* ex11

~ex1g* !ex wG
22

]

]x Fd* e2x1b* eex1m

~ex1g* !ex
wG . ~186!

This equation exactly has the structure of the reflec
(x→2x) version of Eq.~175! and hence needs no separa
discussion. When identity with this version is achieved b
suitable choice of the parameters, Eqs.~175! and ~186! de-
fine two problems that are mutually conjugate under refl
tion and hence isospectral. This property can be used to
velop adapted criteria for physicality of the eigenvalues
both problems.

For a third and essentially different discrete spectrum s
class, confinement is attained via

v→`, m5vm* , d5vd* , a,m* ,d* finite.
~187!

To keep a meaningful diffusion equation, one may additio
ally scaleb and the time variablet,

b5vb* , t5
t*

v
, ~188!

such that the limit of Eq.~2! becomes~dropping the aster-
isks!

]w~x,t !

]t
5

]2

]x2 S bex

ae2x1gex11
wD

22
]

]x S de2x1beex1am

ae2x1gex11
wD . ~189!

The equation has two redundant parameters and the re
tion symmetry~5! is conserved. The steady-state PDF~80!
reduces to

wS~x!5ÑS~aex1g1e2x! exp@2ex12b21~dex2ae2x!#
~190!

and the other solution ingredients behave as follows for la
v.

~i! The singularitiesr6 @Eq. ~81!# simultaneously move

r1;2
a

b

1

v
→0, r2;2bv→` ~191!
f

d

a

-
e-

-

-

c-

e

such that the present class can be related to Heun’s do
confluent equation@8#, and the Laurent series~165! gives the
appropriate representation for deriving the limiting form
the eigenfunctions.

~ii ! Becauseb→`, the ICF’s stay convergent and the
asymptotics for largev can be derived. A sensitive poin
hereby is that the actual arguments have to be substit
@e.g., as inQ0„q,ap0(q)… or in Q0„di(2l),2l…] before the
asymptotics are determined because these arguments
depend onv as well. Starting with the eigenvalue expressi

l~q!52ap0~q!;22amqv5l̃~q!v, ~192!

it is seen thatlt stays finite, as it should~asterisks removed
in the right equality!:

lt52ap0~q!t;22amqvS t

v D5l̃t. ~193!

Hereby, it is tacitly assumed that theq values, ifv depen-
dent at all, stay bounded whenv→`. The elements of the
ICF’s Q0 and Q0* , with arguments as in the most gener
eigenvalue search procedure~153!, behave as

Ak„q1nn ,2l~q!…;@2l̃~q!22am~q1k1nn!#v5Ãkv,

Bk„q1nn ,2l~q!…;$2gl̃~q!2b@~q1k1nn!2

12e~q1k1nn!#%v5B̃kv,

Ck„q1nn ,2l~q!…;@2al̃~q!22d~q1k1nn!#v5C̃kv,

l̃~q!522amq ~194!

such that forQn , e.g., it follows that

Qn;Q̃nv, ~195!

whereQ̃n is anv-independent ICF in terms ofÃk ,B̃k ,C̃k :

Q̃n5B̃n2
C̃nÃn11u

uB̃n11

2
C̃n11Ãn12u

uB̃n12

2•••. ~196!

Note thatÃk is q independent, whileC̃k is linear inq. It is
assumed thatnn can be assigned independently ofv or at
least stays bounded whenv→`. In this case theq values
obtained fromQ̃n2Q̃n* 50 @as a limiting version of Eq.
~153!# will be v independent indeed.

~iii ! The free zeros behave for largev as

a1~2l!21;2
l

2am

1

v
2152S 11

l̃

2am
D 5q21,

a2~2l!21;22mv,

c1~2l!;22dv,

c2~2l!;2
al

2d

1

v
52

al̃

2d
5

a2mq

d
~197!
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270 57A. DEBOSSCHER
and only the two useful zerosa121 and c2 are seen to
survive. Again, candidatec2-congruent q values get a
simplev-independent expression@e.g., from Eq.~154!#

q~Nc1nn!5
Nc211nn

a2m

d
21

~198!

and congruence detection@see Eq.~155!# can be expressed i
terms of the asymptotic ICF’s such as, e.g., Eq.~195!.

A final remarkable discrete spectrum example is obtai
from the same confinement principle~187!, but instead of
time scaling as in Eq.~188!, the growth ofb, d, andm is
compensated by the growth ofg. The overall procedure ca
be tuned so as to avoid redundancies

g→`, d52sg, m5sg, a51, b5g, s.0,
~199!

yielding the equation

]w~x,t !

]t
5

]2w

]x2
22

]

]x
@~e22ssinh x!w#. ~200!

This is the FPE for the hyperbolic sine model, whose ana
sis in @3,20# significantly inspired the present research.
particularity for this limiting case is the necessity to scale
q values during the limiting process. As time does not sc
the eigenvaluesl must stay finite. They are given by

l~q!52~q212sgq! ~201!

such that the scaling law forq is

q5
q̃

g
, q̃52

l

2s
. ~202!

Becausea51 andm52d, theq and q̄ planes are identica
and both show accumulation ofq values at zero~to be ob-
served for large but finiteg). In the limit, the analysis sur
vives, however, in theq̃ plane. The following asymptotics
for largeg are easily obtained

r1;2g21, r2;2g,

a1~2l!; q̃g21, a2;22sg,

c1;2sg, c2~2l!;2 q̃g21, ~203!

showing a double confluence and yielding the asympt
congruence condition~154!

c2~2l!2q;2
2 q̃

g
5Nc211nn , ~204!

which is identically satisfied for all congruence generatingq̃
values in the limit, withNc51 andnn50. The ICF building
blocks behave as
d

-

e
,

ic

Ak„q1nn ,2l~q!…;22s~k1nn!g5Ãkg,

Bk„q1nn ,2l~q!…;@2l2~k1nn!222e~k1nn!#g5B̃kg,

Ck„q1nn ,2l~q!…;2s~k1nn!g5C̃kg ~205!

such that the asymptotics of the ICF’s are similar to E
~195! and ~196!. The ICF’s for congruence detection~147!
and ~148! can be constructed similarly from the expressio
~205!, by formally settingnn51 and nn50, respectively.
Finally, the steady-state PDF becomes

wS~x!5ÑS exp@2ex24s coshx#, ~206!

whereÑS is expressible in terms of a modified Bessel fun
tion @3#.

VI. SUMMARY AND CONCLUSIONS

The one-dimensional FPE~2! studied in this paper gener
alizes the FPE for a unifying stochastic Markov process@1#
by allowing for nonmonotonic drift and diffusion coeffi
cients. As a consequence, the equation not only unifie
large number of known stochastic processes from differ
branches of physics, which previously had been solved in
pendently, but it also covers a wide variety of different, mo
general stochastic systems. These systems are characte
by a more complex~e.g., saturating! state dependence of th
stochastic forces determining the process, and a subcla
them even exhibits bimodality of its equilibrium distribution
The equation basically introduces the general, i.e., the n
confluent, Heun equation into the domain of diffusio
theory. By having one more finite singular point, it gener
izes the Gauss hypergeometric equation, to which it redu
in several instances.

The constructive solution method@6,1# has been extende
successfully for the present problem by factorization of
Laplace-Fourier transformed FPE operator. The neces
theory about factorizers has been developed in Appendix
with the entire function representation and the principles
congruence as main results.

Under the restrictionb2.4a, which ensures the exis
tence of ICF factorizers, fully analytical results have be
obtained, except for the eigenvalues. These have to be fo
from ICF equations that allow for numerical access to
zeros of a generally unknown spectral kernel function. It h
been shown that if the most general factorizers are used,
eventually both forward and backward ICF’s are invoked
define the solution structure and the eigenvalue scheme.
casionally, the general solution may reduce to the stand
case, which, for tutorial reasons, has been fully elabora
first and where forward ICF’s alone can do the job.

The present solution method does not explicitly refer
Heun’s equation for its development. It has been thou
useful, however, to identify the results obtained with the d
ferent known types of solutions that are listed in Ref.@8#.
Hereby, it appears that the present study not only unifie
significant number of physically important stochastic pr
cesses but also achieves a unification of the distinct type
Heun’s equation eigenvalue problems. The important role
congruence should be clear in this respect, as consider
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enlarging the scope of continued fraction solution metho
The preliminary results in the case studies indicate t

also solutions for at least some of the confluent versions
Heun’s equation are obtainable by appropriate limiting p
cesses upon the general solution. As already observed in@1#,
this embedding procedure stays possible even if the limi
FPE itself cannot be solved anymore by the present met
At this stage it should be clear that the solution method a
applies to stochastically unstable cases where of course
normalization has to be reconsidered. Without claiming co
pleteness, it may safely be concluded that the FPE~2! can be
solved in all cases of physical interest. Finally, a short list
possible future research topics can be given: other singula
configurations, such asr6 complex conjugate~for b2,4a
and the ICF’s nonexisting!, or r1 and/orr2 real and posi-
tive and thus defining finiteex-interval problems for the
same equation; analytical prediction of the number of eig
values from the FPE parameter set$a,b,g,d,e,m%; identifi-
cation of other physically relevant special or limiting cas
~e.g., with bimodal steady-state PDF’s!; adaptation of the
actual solution method to generate the known@8# hypergeo-
metric function series solutions for Heun’s equation, wh
may have superior convergence properties; and derivatio
additional properties of ICF’s, considered as special fac
izers.
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APPENDIX A: FACTORIZERS

The factorization of the operator~39! supposes the exis
tence of a pair of functionsR0(z,p) andS0(z,p) solving the
set of nonlinear first-order FRE’s~or difference equations!

R01S05B0 ,

R0S15D05C0A1 . ~A1!

Here A0 ,B0 ,C0 are given polynomials inz and p @see Eq.
~22!# and Fk(z)5DkF0(z)5F0(z1k) as usual. For conve
nience, the fourth-order polynomialD0 will be denoted as

D0~z,p!5a~z2d1!~z2d2!~z2d3!~z2d4!, ~A2!

where$d1 ,d2 ,d3 ,d4% stands for any permutation of the z
ros of C0 andA1 , i.e., c6(p) anda6(p)21 @see Appendix
B, Eq. ~B8!#. The p dependence ofR0 and S0 exclusively
comes in via thesedi(p) and via b6(p). It will be sup-
pressed in the notation whenever it is less essential.
system~A1! can be split up in two separate equations
R0 ,S0 :

R05
D0

B12R1
, S05B02

D0

S1
. ~A3!
.
t
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1. General properties

It is assumed~in fact, suggested by the structure of th
directly emerging infinite continued fraction solutions; s
Sec. III and Sec. 3 below! that solutions of Eq.~A1! are
meromorphic functions ofz, having in general an infinite
number of poles and zeros. From Eq.~A1! it appears thatR0
and S0 must have the same poles with opposite princi
parts~residues, if the poles are simple! becauseB0 is entire.
Poles ofR0 must be zeros ofS1 and poles ofS1 @i.e., of
S0(z11)# must be zeros ofR0 becauseD0 is entire. In ad-
dition to these mutually compensating poles and zeros,R0
andS1 must have the free zeros ofD0 and the constanta in
some way distributed between them. Without loss of gen
ality d1 ,d2 , f a1/2 can be assigned toR0 andd3 ,d4 , f 21a1/2

to S1 , with f an arbitrary constant. Let now$pk(p)% be the
set of poles ofR0 andS0 . By well-known theorems of com-
plex function theory@12,13#, there exists an entire functio
N(z,p) that has exactly all the zerosz5pk with correct mul-
tiplicity and no others. If$pk% were known, thenN could be
constructed, e.g., as an infinite product of monomials
2z/pk) and appropriate but not uniquely determined co
vergence factors~Hadamard’s theorem!. Now R0N(z) is free
of poles andR0 /N(z11) has only the assigned free zerosd1
andd2 . It follows that

R0

N0

N1
5E0~z!ek~z!, E052 f a1/2~z2d1!~z2d2!,

~A4!

wherek(z) is entire and thusek is entire without zeros. Simi-
larly, for S0 and withh(z) entire,

S0

N0

N21
5F21~z!eh~z!, F052 f 21a1/2~z2d3!~z2d4!.

~A5!

Note thatE0F05D0. Substitution of Eqs.~A4! and~A5! into
Eq. ~A1! yields

k~z!52h~z11!,

E0ek~z!
N1

N0
1F21e2k~z21!

N21

N0
5B0 . ~A6!

A simple asymptotic analysis shows thatk(z) must be con-
stant~say, zero! while N0(z) behaves asymptotically as

N0~z!;r zzvF11OS 1

zD G , ~A7!

with @see Eq.~81! for r6#

r 5r 65 f 21S r6

r7D 1/2

,

v5v65
r6~d11d2!1r7~d31d412!22be

r62r7
. ~A8!

It is convenient to define

K0~z,p!5N21~z,p!5N0~z21,p!. ~A9!
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K0 is an entire function having now the set of zeros$rk(p)
5pk(p)11% ~i.e., the nonfree zeros ofS0) and the important
result follows that the factorizers can be expressed as

R0~z,p!5E0~z,p!
K2~z,p!

K1~z,p!
,

S0~z,p!5F21~z,p!
K0~z,p!

K1~z,p!
, ~A10!

whereK0 satisfies the FRE

E0K22B0K11F21K050 ~A11!

and is determined up to a periodic inz.

2. Congruent zeros: Zero movers

Zeros common to, e.g.,K0 andK1 will, according to Eq.
~A10!, not show up in the factorizerS0. Otherwise, Eq.~A3!
seems to forbid a common zero forS0 andS1, unless when
coinciding with a zerodi of D0. This suggests that commo
zeros, if possible at all, deserve special attention. Theref
let (a,a21) be a pair of unitary spaced zeros ofK0 :

K05~z2a!~z2a11!K̄0 . ~A12!

From Eq.~A10! one finds

R05E0

~z132a!

~z112a!

K̄2

K̄1

, S05F21

~z2a!

~z122a!

K̄0

K̄1

,

~A13!

which violates the equal poles demand of Eq.~A1! unless
both poles are compensated by other zeros. Four possibi
can be distinguished.

~i! For compensation byK̄0 andK̄2 , K0 then additionally
has the zerosa11 anda22, and the new pairs (a11,a)
and (a21,a22) need compensation again. If this way
compensation prevails, thenK0 gets a double infinite serie
of unitary spaced zerosa1k,k52`,...,21,0,1,...,`. The
value ofa can be arbitrary, but a periodic factor having on
these zeros can be divided out fromK0 .

~ii ! For compensation byE0 andK̄0, a5di11 (i 51 or 2!
and K0 additionally has the zeroa22. Continued compen
sation by K̄0 generates forK0 a zero seriesa2k,k
50,1,2,...,̀ , left congruent todi . A left-congruentK0 can
be expressed as

K05
b2zK̃0

G~z2di21!
, ~A14!

whereK̃0 is entire and noncongruent with respect todi and
solves the equation

E0

b~z2di !
K̃22B0K̃11b~z2di21!F21K̃050, ~A15!

which displays a distribution of free zeros and ofa different
from the one in Eq.~A11!; di has been moved fromE0 to F0
and the arbitrary constantb redistributes the constanta.
e,

ies

Left-congruent zero series do not show up in the factorize
except for the first zerodi11 as a free zero ofS0 .

~iii ! The scheme of compensation byK̄2 and F21 simi-
larly results in a right-congruent zero series, starting atdj
12 ( j 53 or 4! and a corresponding zero move fromF0 to
E0:

K05
~2c!zK̂0

G~dj122z!
,

c~z2dj !E0K̂22B0K̂11
F21

c~z2dj21!
K̂050. ~A16!

If such a series is present, then only the moved zerodj will
show up inR0 .

~iv! The scheme of compensation byE0 andF21 allows
for a finite unitary spaced zero series with end pointsdi11
( i 51 or 2! and dj12 ( j 53 or 4!, which then must have a
nonzero integer spacing. The free zerosdi anddj are inter-
changed when such a series is present inK0 .

It is concluded that factorizers cannot have unitary spa
zeros~except for two free zeros!. Their underlyingK0 func-
tion can have them, but then in congruent~or doubly infinite!
series only. Similarly it can be shown thatK0 cannot have
di11 or dj12 (i 51 or 2 andj 53 or 4) as an isolated zer
without possessing the whole corresponding congruent
ries.

If the entire functionK0 has no unitary spaced and hen
no congruent series of zeros, then, e.g., Eq.~A14! can nev-
ertheless be considered merely as a transformation of
dependent variable in Eq.~A11! interrelating the solutions o
two equations having a distinct free zero distribution.
such, the factors

mi* ~z!5
b2z

G~z2di21!
, mj5

~2c!z

G~dj122z!
~A17!

figuring in Eqs.~A14! and~A16!, respectively, can concisel
be termed ‘‘zero movers’’ as their application to the depe
dent variable induces a change of the position of a free z
in the defining difference equation. It should be noted that
general, solutions of equations like Eqs.~A11!, ~A15!, and
~A16! are not entire but only meromorphic. However, b
cause in this case poles always occur in congruent positi
entire solutions of the same equations can always be
tained by multiplying with a periodic function having con
gruent zeros.

3. Infinite continued fractions

Normally, the determination of any pair of factorize
@e.g.,R0 ,S0 in Eq. ~A10!# supposes solving the FRE for th
underlying entire functionK0 @e.g., Eq.~A11!#. This gener-
ally is impossible or at least as difficult as the original pro
lem generating the factorizer equations~A1!. There are, how-
ever, special directly accessible solutions of Eq.~A1!. By
forward iteration of Eq.~A3! one finds

R05P0~z,p!5
D0

B12P1
5

D0u
uB1

2
D1u
uB2

2•••

Dku
uBk11

2•••,

S05Q0~z,p!5B02P05B02
D0u
uB1

2•••

Dku
uBk11

2•••.

~A18!
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The bivariate ICF’sP0 and Q0 are directly computable if
they converge, i.e., under the condition@11#

b2.4a. ~A19!

Similarly, by backward iteration of Eq.~A3!

P0* 5B02
D21u
uB21

2•••

D2ku
uB2k

2•••,

Q0* 5
D21

P21*
5

D21u
uB21

2•••

D2ku
uB2k

2•••, ~A20!

which is another pair of solutions, convergent under
same condition~A19!.

As factorizers, the ICF’sP0 andQ0 have the formal rep-
resentation

P05D0

M2

M1
, Q05

M0

M1
, ~A21!

whereD0 is completely assigned toP0 as indicated by the
structure of the ICF’s andM0 is the ~forward! ‘‘minimal’’
solution @2,11# of

D0M22B0M11M050. ~A22!

Clearly, the zeros of this minimal solution show up as ze
of the ICFQ0 provided no congruence occurs. Similarly, f
the backward ICF’s, one has

P0* 5
M2*

M1*
, Q0* 5D21

M0*

M1*
, ~A23!

whereM0* is the backward minimal solution of the equatio
‘‘adjoint’’ to Eq. ~A22!:

M2* 2B0M1* 1D21M0* 50. ~A24!

From Eqs.~A22! and ~A24! it follows that

D0M2M1* 2M1M2* 5D~D21M1M0* 2M0M1* !

5D21M1M0* 2M0M1* ,
~A25!

showing this expression to be periodic~or constant! in z.

4. General factorizers

Any other factorizer pair, e.g., Eq.~A10!, can now indi-
rectly be related to the ICF’s via the minimal solutionsM0

andM0* . The general solutionK0 of Eq. ~A11!, e.g., can be
written as

K05v~z!w0~z!M01v* ~z!w0* ~z!M0* . ~A26!

The first term defines a solution of Eq.~A11! by moving the
two free zerosd3 ,d4 in Eq. ~A22!. The second term is ob
tained by oppositely movingd1 ,d2 in Eq. ~A24!; v andv*
are arbitrary periodic functions or constants andw0 ,w0* are
appropriate products of zero movers~A17!. It is sufficient to
know that they are solutions of
e

s

w15F21w0 , w0* 5E21w1* , ~A27!

with

w1

w0

w0*

w1*
5D21 . ~A28!

Constructing now, e.g., the factorizerS0 @Eq. ~A10!# from
K0 @Eq. ~A26!#, one finds

S05F21

K0

K1
5F21

vw0M01v* w0* M0*

vw1M11v* w1* M1*
~A29!

or, upon simplification by use of Eq.~A27!,

S05

M01v̄
w0*

w0
M0*

M11v̄
w1*

w1
M1*

. ~A30!

Likewise, forR0 ,

R05D0

M21v̄
w2*

w2
M2*

M11v̄
w1*

w1
M1*

. ~A31!

In this representation,R0 andS0 appear as mere generaliz
tions of the forward ICF’sP0 andQ0, obtained by replacing
the forward minimalM0 in Eq. ~A21! by a general, and thus
forward dominant, solution of Eq.~A22!. The above factor-
izers are in fact the general solutions of Eq.~A1! as it is
easily verified that by choosing the periodic functions,
possible free zero assignements can be obtained.~Note, e.g.,
that for v̄50, P0 andQ0 are retrieved, while forv̄5`, one
getsP0* andQ0* .)

APPENDIX B: BRANCH POINTS

From the brief discussion of the equivalent Schro¨dinger
equation in Sec. II, it appears that in general the spectrum
the FPE~2! consists of three parts~see also@1# and Sec.
III F !. Discrete eigenmodes correspond to residues at isol
poles located on the rightmost part of the eigenvalue locuL
@Eqs. ~57! and ~58!# in the complexq plane, while con-
tinuum contributions are obtained as integrals along this
cus. For the continuum of reflecting states, the integral r
along ~part of! a branch cut uponL, and for the free con-
tinuum the path covers the remaining part ofL. The locus
intersectionq52m and the branch points mark the edges
the reflecting continuum. The branch points are necessar
define the cut. In the integral representation~52! the branch
points of the integrand originate from the SK functionM ,
which is not known explicitly. It is, however, possible t
obtain an analytical expression for the branch points, in
following two ways.
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1. Equivalent Schrödinger potential

The two asymptotic energy levels~19! of the Schro¨dinger
potential~18! delimit the reflecting continuum. Theq values
corresponding to these eigenvaluesl are found by use of Eq
~56!. One has

l~2`!5am252ap0~qA!5a@m22~qA1m!2# ~B1!

for

qA52m, ~B2!

which is the intersection of locusL, and

l~1`!5
d2

a
5a@m22~qC1m!2# ~B3!

for

qC
652m6S m22

d2

a2D 1/2

, ~B4!

which are two branch points, symmetrically located with
spect to the intersection~B2! on either the horizontal (m2

.d2/a2) or the vertical (m2< d2/a2) part of L.

2. Spectral invariance under reflection

The reflection symmetry of the FPE~2! as expressed by
Eq. ~5! does not involve the time variable. As such, the pro
lem defined by the overbar transformed variables and par
eters

x̄ 52x, t̄ 5t, ā5
1

a
, b̄5

b

a
, ḡ 5

g

a
,

d̄ 52m, ē 52e, m̄52d ~B5!

is isospectral with the original one. It follows from Eq.~56!
that

2l5ap0~q!5 ā p̄0~ q̄ ! ~B6!

or, explicitly,

a~q212mq!5
1

a
~ q̄222d q̄ !, ~B7!

which defines the transformation of the eigenvalue locuL
@Eqs.~57! and~58!# in theq plane to the corresponding locu
L̄ in the q̄ plane. Spectral separation points must prese
their role under the transformation~B7!. The intersection
q̄5d of the L̄ locus, e.g., is seen to have the two images~B4!
in theq plane, which hence must be the branch points th

3. Discussion

It is instructive to trace the origin of the branch poin
The SK functionM (z,p) is entire inz, so multivaluedness
must enter via thep dependence. The latter enters solely v
the zeros of the polynomialsA0 , B0 , andC0, determining
the factorizer equations~40!. One has explicitly
-

-
-

e

e.

.

A0~z,p!52a~z2a1!~z2a2!,

a6~p!52m6S m21
p

a D 1/2

,

B0~z,p!52b~z2b1!~z2b2!,

b6~p!52e6S e21
gp

b D 1/2

,

C0~z,p!52~z2c1!~z2c2!,

c6~p!52d6~d21ap!1/2. ~B8!

Upon substitution ofp5ap0(q) @as inM0„q,ap0(q)…] it is
seen that the above zeros become

a6
„ap0~q!…52m6@~q1m!2#1/2,

b6
„ap0~q!…52e6Fe21

ag

b
~q212mq!G1/2

,

c6
„ap0~q!…52d6@d21a2~q212mq!#1/2, ~B9!

displaying, respectively, the branch points

qA
652m, qB

652m6S m22
be2

ag D 1/2

,

qC
652m6S m22

d2

a2D 1/2

. ~B10!

As in @1#, the branch points~B4! are seen to originate from
the zeros in the coefficient~hereC0) of the highest power
(D2) of the shift operator in Eq.~24!. The locus intersection
is seen to correspond to a degenerate pair of branch po
qA

6 from A0. Branch pointsqB
6 , likewise on locusL, do not

seem to have a physical role in general~except possibly for
marking the transition between the continua of penetrat
and free states in barrier-well potential configurations!. As
theb6 branches are always symmetrically represented in
ICF’s ~see Appendix A! it is expected thatqB

6 remain latent
branch points indeed. They get an active role, howev
when B0 takes over from a vanishingC0 or A0, as in the
hypergeometric limit cases~see Sec. V!.

APPENDIX C: HEUN’S DIFFERENTIAL EQUATION

The spectral problem originating from separation of va
ables in the FPE~2! ~or, more directly, in the adjoint back
ward Kolmogorov equation! is described by the ordinary
second-order differential equation

~e2x1bex1a!
d2w

dx2 12~de2x1beex1am!
dw

dx

1l~ae2x1gex11!w50. ~C1!

The transformation

y5
ex

r1 , ~C2!
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where@see Eq.~81!#

r65
1

2
@2b6~b224a!1/2# ~C3!

are the two finite singular points of the equation, reduces
~C1! to algebraic form

~y21!~y2a!y2
d2w

dy2

1F ~2d11!y21S 2be

r1 2a21D y1a1
2am

~r1!2Gy dw

dy

1lS ay21
g

r1 y1~r1!22Dw50,

a5
r2

r1 . ~C4!

Setting further

w5yqF~y!, q52m6S m22
l

a D 1/2

~C5!

reduces Eq.~C4! to the standard form of Heun’s equatio
@8,19#

y~y21!~y2a!F91@C~y21!~y2a!1Dy~y2a!

1Ey~y21!#F81~ABy2b!F50, ~C6!

with four regular singularities and the RiemannP symbol

PH 0 1 a `

0 0 0 A y b

12C 12D 12E B
J ,
on

e

,
gy

is
q.

C1D1E5A1B11. ~C7!

The nonzero exponents are defined by@see Eqs.~83! and
~B8!#

A5q1d1~d22al!1/25q2c2~2l!,

B5q2c1~2l!,

C52q12m11, ~C8!

D5n1,

E5n2

and the accessory parameterb by @see Eq.~22!#

b5
1

r1 @2lg2b~q212eq!#5
1

r1 B0~q,2l!. ~C9!

The solutions of Eq.~C6! are discussed in@8,19#.

APPENDIX D: A USEFUL INTEGRAL

Fourier transforms occurring in the present paper give
to integrals that have the general structure

I 5E
2`

`

dx eax~ex2r1!b~ex2r2!c. ~D1!

They are reducible (y5ex) to the tabulated integral@14,15#

E
0

`

dy yl21~11ayp!2m~11byp!2n

5
1

p
a2l/p

GS l

pDGS m1n2
l

pD
G~m1n! 2F1S l

p
,n;m1n;12

b

a D ,

uarg au,uarg bu,p, p.0, 0,Re~l!,2 Re~m1n!.
~D2!
e

s
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