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Unification of one-dimensional Fokker-Planck equations beyond hypergeometrics:
Factorizer solution method and eigenvalue schemes
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A one-dimensional Fokker-Planck equation with nonmonotonic exponentially dependent drift and diffusion
coefficients is defined by further generalizing a previously studied “unifying stochastic Markov process.” The
equation, which has six essential parameters, defines and unifies a large class of interdisciplinary relevant
stochastic processes, many of them being “embedded” as limiting cases. In addition to several known pro-
cesses that previously have been solved independently, the equation also covers a wide “interpolating” variety
of different, more general stochastic systems that are characterized by a more complex state dependence of the
stochastic forces determining the process. The systems can be driven by additive and/or multiplicative noises.
They can have saturating or nonsaturating characteristics and they can have unimodal or bimodal equilibrium
distributions. Mathematically, the generalization considered parallels the extension from the Gauss hypergeo-
metric to the Heun differential equation, by adding one more finite regular singularity and its associated
confluence possibilities. A previously developed constructive solution method, based upon double integral
transforms and contour integral representation, is extended for the actual equation by introducing “factorizers”
and by using a few of their fundamental propertieesmpiled in Appendix A In addition, the equivalent
Schralinger equation and the reflection symmetry principle prove to be important tools for analysis. Fully
analytical results including normalization are obtained for the discrete part of the generally mixed spectrum.
Only the eigenvalues have to be numerically determined as zeros of a spectral kernel. This kernel generally is
unknown, but its zeros are accessible via appropriate, infinite continued fraction based search schemes. The
basic role of “congruence” in this context is highlighted. For clarity, the simpler standard case corresponding
to directly accessible zeros is elaborated first in sufficient detail and the necessary extensions are gradually
introduced afterward. The different types of solutions known to exist for Heun’s equation eigenvalue problems
are identified and are seen to have a “unified” structure as well. A small selection of case studies proves
“downward” compatibility with the previous hypergeometric case and sketches the principles for deriving the
limiting results in confluent cases with fully discrete spectra. Possible fields of application are, e.g., population
dynamics in biology, noise in nonlinear electronic circuits, chemical and nuclear reaction kinetics, systems
with noise-induced transitions or transitions to bimodality, genetics, and neural network stochastics.
[S1063-651%98)08001-5

PACS numbg(s): 02.50-r, 05.40:+j, 03.65.Ge, 03.65.Db

I. INTRODUCTION now becomes possible and the existe(foe specific param-
eter combinationsof bimodal equilibrium distributions can
There are several good reasons for considering and abe anticipated. The generalization considered aims at addi-

tempting to solve the Fokker-Planck equatiiPE tionally embedding a number of physically relevant or math-
ematically important cases as special, limiting, or confluent
ow(y,7) &% [du*+fu+g cases into one single equation. Some known examples are
T 07_y2 m the laser FPE2], the hyperbolic sine mod¢8], the FPE for
neutron thermalization in a heavy gas moderdtdr and a
9 [ A2+ mu+n theoretical stochastic process with spectral accumulation
— —| ————w], u(y)= exppy), point [5]. Although these cases were solved independently,
Y\ au’+bu+c they all formally belong to the present class, as can be seen

either directly as fof3] or after a simple exponential trans-
ye[—o,+x], 7e[0,+], a,b,c,d,f,g=0. (1) formation of the state variable for the other examples. In
addition to these known cases, which in fact inspired the
First, the equation is a straightforward generalization of thepresent extension, the FP@E) also unifies an impressive
FPE for a “unifying” stochastic Markov procedd] by the  variety of generalizations of them and of different, stochastic
addition ofu?(y) terms in the numerators and denominatorsprocesses for multidisciplinary use. By comparison i&h
of the drift and the diffusion coefficients. This unifying FPE e.g., it can be seen that basic birth-death processes such as
has been solved in terms of hypergeometdacobj func-  the Verhulst process or the hyperbolic sine process can now
tions and was shown to unify a large class of well-knownbe extended to account for nonling@amstead of just linear
and more recent stochastic processds In the present ex- population-dependent feedback upon the net birthrate and/or
tension drift and diffusion still remain bounded functions of for a state-dependent or even a noisy immigration source
y (for finite nonzero parameterdut nonmonotonic behavior (instead of just a constant oné\lso, some state dependence
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of the net birthrate fluctuations can now be modeled. ASGauss’s hypergeometric equation by having one more regu-
discussed i3], the above processes are of multidisciplinarylar singularity. This equation as such never became very
significance and the use of population dynamics terminologypopular in mathematical physics, although particular ver-
is only incidental. In more general terms, because of itssions of it(mainly confluent, biconfluent, double-confluent,
structure and parameters, the FBI has the following ca- triconfluent, and Lanie equations have been considered in
pabilities. It allows for the modeling of stochastic systemsseveral applications. The existing literature is rather old, in-
with either additive or multiplicative noise or botec. ). ~ complete, or unreliablésee, e.g., comments [ii]) and only
The systems may have saturatiftgounded characteristics ecently[8] became available. In the present paper the solu-
or nonsaturating ones if some parameters are allowed to vafions are produced in an alterrl1‘at|ve:- way, WIt!]OUt explicit
ish or become infinitéSec. \J. Those systems that are sto- '€ferénce to and even without “solving” Heun's equation.

chastically stable can have a unimodal or a bimodal equi"bpé)m_pagsor_l hwl'(th[S] will a”_O\IN OTe.tO |defn;c_||fy the results
rium distribution (Sec. 1) In view of these possibilities °Ptained with known special solutions of Heun's equation,

further applications of Eq(1) can be anticipated in such S;‘Ch als I_-Iellm’s fgnctlgnfs aqd He.un’.; ponnom|aIsf. The lljlse
domains as noisy nonlinear circuits, neural network stochas2 an; y::ca_ clontml;JIe racétl_onshmft © Contletf Oh a welk

tics, systems with noise-induced transitions or transitions tg0sed physical problem and in the framework of the present
bimodality, and reaction kinetics, among many others. solution method will reveal further properties of these inter-

A unifying Green’s-function solution for E¢1) is natu- est_irnhg mathematicfalhobjects. foll Section Il
rally expected to have continued fraction building blocks. e contents of the paper are as follows. Section Il pre-

Examples if2—4] have indeed been solved using some ver.Sents the Fokker-Planck problem in a suitably parametrized

sion of the(scalar or matrix continued fraction methof], form and with reference to the equivalent Salinger prob-

starting with a judicious but somewhat arbitrary choice of €M- In Sec. Il the FPE is solved by the method d}. This

base functions. On the other hand, a close connection to hy_ecessnates the introduction of factorizers, whose properties

pergeometric functions is expected too because (Exqre- are discussed in Appendix A. In their simplest form the fac-

duces to the unifying FPE dfl] whenever one power of tTok:!zqstjuzt rzduce to forward w(;ﬁ;nte _c:on}_ln_ttje(:hfract|rc]>ns£
u(y) (i.e., 0, 1, or 2is absent everywhere. In a sense, @y. IS “standard case IS assumed for simplicity throughou

interpolates between these three hypergeometric cases. Tmfra solution proce_:dure in Sec. lll. Sec_tlon IV discusses the
enhanced unification of the FRE) carries over to the class N€c€Ssary extensions to 9?”era' factorlze_rs. A small sele_ctlon
of equivalent Schiinger equationg2]. This equivalence of examples is introduced in Sec. V. Section VI summarizes
will briefly be discussed in Sec. Il, highlighting the type of and concludes.
potentials and the spectral structure for the extended unifying
class. o . . THE FPE, STOCHASTIC PROCESS, AND EQUIVALENT

A second reason for considering E@) is methodologi- SCHRODINGER PROBLEM
cal. In order of increasing complexity, the equation is the
next test case for a constructive solution method that was The fully parametrized form of Eq1) with ten param-
used in[6] and further developed ifil]. The method uses eters is most useful in matching particular applications and
double integral transforms and tools from complex analysigspecially for deriving limiting cases with zero or infinite
for direct construction of the exact analytical Green’s func-parameter values. However, for convenience, the following
tion (i.e., the transition probability density functiprFrom  minimal parametric version with six essential parameters is
this representation, the complete “spectral package” carddopted for the subsequent analysis:
easily be extracted: the discrete eigenvalues and the con-

tinua, the eigenfunctions with their normalizing constants, 2 2

and the weight functior(i.e., the normalized steady-state WX :a_ U+B—U+a

probability density. Because this time the peculiarities of 9t ax2\ av?+ y+1

second-order recurrencés difference equationsome into 5

play, the question to answer is how far analyticity can still be _ i v+ Bev+ CYMW X)= exp(x)
pushed. It will appear that analytical bivariate continued X\ av?+y+1 » v00= explx).
fractions(or more generally “factorizers}, emerging quite

naturally from operator factorization, will extend the appli- @)

cability of the solution method. The use of the method is not
restricted to the actual FPE. It can be succesfully applied iThis version is arrived at by scaling and translation of the
other problems of mathematical or statistical physics, such asidependent variables in E¢L):
wave propagation in nonhomogeneous media, linear magne-
tohydrodynamic waves in plasma astrophysics, Sdinger 1 /ad
equations, and some higher-dimensional FPE’s. X=py-+ —In(—), Xe[—o0,+00]
A third aspect of Eq(1) is the expected spin-off in the 4 1cg
field of applied mathematics. The eigenfunctions obtained
will realize a unification beyond and including hypergeomet-
ric special functions. The ordinary second-order differential t=
equation resulting from classical separation of variables in
Eq. (1) and thus defining the eigenvalue problem is reducible
to Heun's equation(see Appendix ¢ which generalizes and the parameters are given by

1/2

% p?r, te[0,4+%] 3)

ac
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ag\? f [ad\Y4 b/ad\ Y4 will now be introduced from physical arguments. An uncon-
a=\—I , B=5l=| . ==zl , ditionally non-negative diffusion coefficient overe [ —«,
cd d\cg cl\cg ) .
+o] is ensured by taking
h m n
= — = — = — a!ﬁ!’yko' (12)
200" T 2pf Mg 4
_ . The existence ofvg(x) in Eg. (11), i.e., the stochastic sta-
One notes the important reflection symmetry of E): bility in probability, additionally demands that
6<0, >0, 13
W(x,t;a,B.y,é,e,M)=W(—x,t;—,é,z,—u,—e,—é : a 13
@ xa which follows by inspection of the limit value§(= =) in
© Eq. (7)
The (Stratonovich stochastic differential equatidSDE) un- The constant diffusion version of the FRE
derlying the FPE?2) is given by
MED W7 e (14
. = ee——— W
x=f(x)+g(x)&(1), (6) ot arz 9L
where the functions(x) andg(x) are related to the diffu- and, correspondingly, the additive noise version of the SDE
sion and drift of Eq.(2), respectively, by2,9] (6)
2 - f(x({))
2y VT BUTa _ )= +E(t 15
g%(x) = T v(X)= exp(x), £(t) 9x(2) &) (15

are obtained by the transformation
v+ Bev+au dg

f(x)=2 g X

av’+yv+1 dx g(x)=f dx’ g~ X(x"). (16)

1
= §[4a5v4+(475+4a,3€+a:8_7)U3 These versions are rather academic, as the transformation
(16) is noninvertible in general. The drift function in Eq.
+2(2a%u+2Bye+ a’+286—1)v? (14), however, which now is given by
+(4ayu+dBetay—Blv+iau] f(x(0))
2 -2 F(O=——7> (17

X(ave+yv+1) (7) g(x({))

directly allows for the formal construction of the equivalent

and &(t) represents normalized white noise s ;
£(0) rep Schralinger potentiaMVg,

= + =248(7).
(£(1)=0, (&(t+ E1)=26(7) ®) 1, 1dE 117 gd|f
The stochastic Markov proce$s(t)} modeled by Eq(6) is (O=7F"*3 daz |a\g) T2axlg exo)
completely characterized by its transition probability density (18)
function (PDP w(X,t|x,), which is the Green’s-function so-
lution of the FPE(2), with As a ratio of two polynomials of degree eight in €xp¢)],
Vs generally is a bounded potential with asymptotic energy

W(X,0[Xg) = 8(X—Xg) (9 levels

and subject to natural boundary conditions Ve(L(+2)=6%a, Vs(Z(—*))=au?. (19

ow Between the energy leveld9), there is a continuum of re-
W(X,t|Xo), 5*0 for || —ce. (10 flecting states. For higher energies there is a second “free”
continuum and below these continua at least one bound state
A usual representation af is in terms of an eigenfunction e€Xists[if Eq. (13) is satisfied. Although there are only six
expansior2,9,10 essential parameterdg models an interesting variety of es-
sentially single-well, double-well, and barrier-well configu-
it rations, as appears from a numerical exploration of (EE§).
> J X ei(x0)e™ ™, (1D quantitatively, well depths, barrier heights, widths, and rela-
tive positions can be varied parametrically over wide ranges.
where wg(x) is the steady-state or first-order POWhich ~ Confining potentials arise for limiting parameter valysse
exists in the stochastically stable casmd the bracketed Sec.V D. Quasibound states inside the continuum may exist
sum-integral symbol points to the possible existence of af a potential well develops between the levél®) or when
mixed (discrete plus continuoluspectrum of eigenvalues,  a high interwell barrier extends into the continua. For any
in general. Some restrictions upon the parameters of&q. parameter combination, a plot ¥ [Eqg. (18)] as a function

W(X,t|Xg) =Ws(X)
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of x is a good indicator of the spectral structure to expect. L » B, Co k( 2%
Such a plot is qualitatively similar to a plot of5({), be- n(z,p)= 2 (—1)"(—A+ —AZ) -—
cause/(x) is a monotonic function ok for parameters sat- k=0 Ao Ao Ao
isfying Eq. (12). e?%
= A_ ‘1[/(21 p;XO)1 (26)
0

[ll. SOLUTION OF THE FPE

) e o
The solution method of1] basically consisted in the al- wherey/ is a formal power series ie”,

gebraic construction of a contour integral representation for o k-1 g
the Green's-function solution. The classical spectral repre- H(Z,piXg) = D (_eXo)k( I1 A—’) Tw(zp). (27
sentation(11) was then obtained by an appropriate contour k=0 1=0 Aj+1
deformation, which simultaneously generated all compo- i ) .
nents. Application of the same method in the present cas&n® following subscript convention is used
seems to be hampered by the peculiarities of second-order _ _ Ak

. : F(z,p)=Fy(z+k,p)=A"F
recurrences, for which closed-form solutions generally are K(Z,P)=Fol P o
difficult or impossible to find. With some restrictions, these
difficulties can be avoided by the use of factorizéngth
contlnue(_:l fractions as a special casEor thl§ and other CoefficientsT, in Eq. (27) follow from the homogeneous
reasons it seems useful to elaborate the solution procedure §gcond-order FRE ia:
sufficient detail. By twofold transformation of E¢), sub-
ject to the initial condition(9) and boundary conditiond.0), T(D=Tk-1)(z+1)—HoT k-2 (z+2),
it is seen that the Fourier-Laplace transform

Fu(z,p)#Fo)(z+Kk,p). (28

. . W(X,t|X) Ho(z,p)= % T-y=To=1 (29
Wz,p)zf dx eZXf dte P|— |, B0
o 0 et yetl The first fewT’s
z=iw, we[—®,+x], (20 To=Ty=1,
satisfies the functional recurrence equatiBRE) of second T2=1—Hy,

order
_ _ _ T=1l-He—Hy,
Ao(z,p) 7(z,p) +Bo(z,p) n(z+1,p)+ Co(z,p) n(z+2,p)
T(4):1_Ho_ Hl_ H2+ H0H2,

=e?, (21
. L T(5):1_HO_Hl_Hz_H3+HOH2+HOH3+HlH3

with coefficients (30)

Ay(z,p)=p—apo(2), Po(2)=7°+2puz, illustrate the Euler-Minding sum structufé&1] of these co-
efficients. As such, they are obtainable from the correspond-
Bo(z,p)=yp—Buo(2), vo(2)=2°+2ez, ing products
k-2
- — 2

Co(zp)=ap—sy(2), so(2)=22+26z.  (22) Sw=11 (1-Hy) (3

Using the shift operatoA, defined by
by deleting all terms containing at least one pair of consecu-

A*G(2)=G(z+k)=A(AK1G), (23)  tive subscripts(e.g., HoH;, H{H,, and —HH;H, for
T(4)). The denominators of the surviving terms are products
Eq. (21) becomes of distinctB; (j=0,1,...k—1) and hencel{;ZB;) T is an
— ) entire function ofz andp. It follows that (z,p) [Eqgs.(26)—
(Ag+BoA+CpA%) 7(z,p)=e*0 (24 (27)]is meromorphic irp, having an infinity of simple poles

whereA,=0, i.e., for
and is formally solved as

p=apy(z)=apy(z+k), k=0,1,... (32

— Bo, Co,,| '™ o
7(z,p)=| 1+ A—0A+ A_oA Ay ) (25 As, moreover, vanishes fop| -, a partial fraction(or
“critical parts”) representation preparing for Laplace inver-
o ) sion is possiblg12]:
A. Direct inversion
. . . i _ * r io(2)
One possible representation fgrresults from direct ex 7(z,p)= E (k) (33)

pansion of the inverse operator K=o p—apu(2)’
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Residues () can be obtained according to their definition

(2= lim [Al(z,p)7(z,p)], (34)

P— apy

but they also satisfy the recurrence

r(k)(Z)+ r(k_l)(Z-I— 1)+

CO ( )
— | k= z2+2)= 0,
AO . (k 2)

0
Aol

following from substitution of Eq(33) in Eq. (24) and ap-

plication of Eq.(34). The[ ] notation is used to indicate
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Do Dol Dy Dyl
R:P Z, ):—: —_———— — et s ——— ..
0=PolzP) =5 =5, " T8, B, Brr
B D
B,— !
2
BZ_B3—~-
_ _ _ Dol Dyl
So—Qo(z,p)—BO—PO—BO—|B—1—~-- N

(41)

that p=ap,(z) has been substituted throughout. Equationyhere the notational convention (1] is used. These func-

(35) is solved in terms of th&@ ,'s of Eq. (29):

k—1
B.
r(k)(Z)z(_l)k|:T(k)Jl_‘[0 KJ:| r(o)(z+ k), k=1,2,...‘,°c,
“o Al
(36)
which starts up from
ro(2)= lim (Agn)=e”0y[z,apy(2);i%].  (37)

pP— Dtpo

Laplace inversion of Eq(33), using Egs.(36) and (37),
yields

n(z,) =L n(z,p);p—1]
= E (_ 1)keapk(z)t+(z+ K)xg

k—1

tions exist and are computable under the simple condition

B?>4a, (42
which is derived from Perron’s more general convergence
criterion [11], and henceforth will be accepted as an addi-
tional parameter constraint. Useful properties of factorizers
(ICF's and otherscan be found in Appendix A and the use
of factorizers other thaR,,Q, will be discussed in Sec. IV.
Inversion of the operata39) now proceeds in two steps

o Q 1 P -1 eZXO
n(z,p)= (1+—0A) 1+A—ZA) A
e?*
1+%A) A X(zpixo)|, 43

wherey, generalizes the hypergeometgE, expression ob-
tained by inversion of the first-order shift operator{if,

B
x| Tooll 2| vlzt+kapd2)ixo].  (38) <1 p,

=0 Al Xo(Z,Pixo)= 2 (—eo Il 2
Up to this point the track of1] has been closely followed. w0 _
For the next step, i.e., the transition from the s(88) to a _ 2 xo)kH (44)
contour integral representation, the dependencggfupon k=0 Qj1
k must be explicited. The Euler-Minding sum gives just a
recipe, but no closed analytical form. Additional tools areFurther, withy,= xo(z+Kk),
necessary, and these can be introduced most naturally by
restarting the analysis from an alternative inversion of the — e
operator in Eq(25). 7(z,p)=4 2 &) xi H A,+1 (45)

B. Factorized inversion: Continued fractions

The operator in Eq924) or (25) can be factorized

1+ EA), (39

1+RA
= A

Ao

20A4 20,2
1+A0A+AOA )

where the factorizerRq(z,p) andSy(z,p) solve the pair of
coupled nonlinear first-order FRE’s

Ro+Sp=Bo,

R051= CoAj_: DO . (40)

The solutions that will be retained in this section are directly

obtained by forward iteration of Eq40). They are the bi-
variate infinite continued fraction$CF's)

where the sum gives an alternative representatios [q.
(27)]. By equating like powers of*0 in both series, a sym-
metrical form for theT ,'s is obtained:

U=

k—1 k m-1 k—1
I1 Bi)T(k):E (H QJ)(.H Pj)- (46)
]=0 m=0 \ =0 j=m

In the residue$36) or in 7(z,t) [Eq. (38)] the above expres-
sion is needed only fop= ap,(z) and thereby reduces to a
simple product

(47)

k-1 k-1
[U(k)]k:{(_ﬂ Bi | Tw :{H Ql}
j=0 j=0 K

becausgsee Eq.(41)]
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K1 Cr_1Ax singularities of the integrand. As [i], the functionH(q,z)
Pkl(ziapk):[ 0 } =[ 0 } =0 (48 s introduced as a degree of freedom in the integral represen-
k Jk ko Jk tation. Other than some analyticity demands, it should only
satisfy the condition

since[see Eq(22)]
Ax(z,ap,)=0. (49) H(z+k,z)=1, k=0,1,...s5, (54)

Hereby, it is tacitly assumed that the zqre-ap, of Dy in I order to preserve the equivalence of E(s2) and (38).
Eq. (41) is a zero of the ICFP, indeed, i.e.,Q,(z,ap,)  Clearly, an expression like

#0 (see, however, Appendix A and Sec. Il J 2 for a discus-

sion on “congruencey. H(q.2)= miq,:((q;)),
m(z,f(q

wherem is of period 1 in its first argument, satisfies E§4)
The k dependence of the term in large square brackets imand is a possible choice. Equivalentlt, may be taken as
7(z,t) [Eq. (38)] can now be made explicit. For the product unity and them’s can be considered as originating from the

(59

C. Explicit k dependence

of A;'s one has, using Eq$22) and(32), indeterminacy ofM. In order to obtain now a Fourier-
1 o1 transformed eigenfunction expansion from Egp), the “ei-
MMAl=I]a _ kklr(22+ 2p+2K) genvalue”[ — apy(q)] figuring in the time exponential must
b j k‘J.:O [z, ap(2)]=«a '—F(22+ 2u+K) take real non-negative values, as the problem formulated by

(50) Egs.(2) and(10) is Hermitian[2]. To achieve this, the origi-
nal contourC must move towards the eigenvalue lodus
For the other factors there is a formal representation, using/hich is found from :

Eq. (47) and the resul{A21) of Appendix A:
apo(d)=a[(q+u)®=pu?]==X\, Im(X\)=0, A=0

k—1
M (z,apy(2) (56)
U = (z, 2)=——————. (51
ol jHO Qi@ 2pd2) M (z+Kk,apy(2)) 6D and consists of a cross shape in thelane: a vertical line
Some properties of the generally unknown functhdiiz, p) Req)=—u (57

are discussed in Appendix A. Here it suffices to mention the _
following. (i) M is entire inz and basically has exactly the and a horizontal segment

zerosz=p.(p), m=0,1,..., of the factorizeQ,. If these _ _ _
where known, therM could be constructed, using well- Im(q)=0, —2u<Req)<0. (58)

knov(;/,n _thfgo_;ems gf (iomplex fl,;n;:_ti%g thg_o(;;/.lg., IHada- The intended contour deformation is possible if the integrand
mard's infinite product representa ipn3]). (ii) Vi Solves a Eq. (52) is free of singularities betwee@ andL.
homogeneous second-order difference equation and hence s

only determined up to a period-1 functiofii) M general-
izes the product of inversE functions occurring in1,6],
where the structurésl) was self-evident however. Exactly By construction of Eq(52), the poles of the summator
this structure is the essential point and, even Withunavail- I'(z—q), i.e., the points

able, further progress becomes possible.

E. Singularity analysis

g=z+k, k=0,1,...¢0, (59
D. Contour integral representation are all to the right ofC. Similarly, the poles ofl'(z+q
Considering Eq(38) as a sum of residues generated by an+2y), i.e.,
appropriately chosen function, the following integral repre-

sentation is arrived at: 0=—-2z2—2u—k, z=iw, k=0,1,..5, (60)
1 B I'(ztq+2u) are all to the left ol [Eqgs.(57) and(58)]. These pole series
n(z,t)= ﬁfcdq e Po@tTPoq? AT (2 q) T(29+2x) do not interfere with the contour deformation. Other singu-
larities of the integrand in Eq52) only originate fromM,
M (z,apo(q)) which thus contains complete information about the spectral

me(q,z) #(q,apo(Q);Xo)- (52 structure of the solution and hence could be termed a “spec-
g, Po(q tral kernel” (SK). As M is generally unknown, analyticity

The complex integration variable seems to cease here. However, the physical context of the
problem and especially the strong analogy with the fully ana-
q=z+k (53 lytically developed solution ifil] allow one to anticipate and

even prove a few essential properties f Although the
replaces the integer summation indei Eq. (38), and Egs. subsequent analysis necessarily is of a formal and abstract
(50) and(51) have been substituted. Conta@rin the com-  nature, conclusive results will eventually be obtained.
plex g plane runs clockwise around the poles of the summa- First, it should be noted that thedependence dfi(z,p)
tor functionI"(z—q) [see Eq.(59)] without enclosing other exclusively enters via the zer@s (p), b~ (p), andc*(p)
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of the quadratic polynomials im (see Appendix B These In summary, one expects on physical grounds the final
“parameters” have branch points im and so generally do true SK to have a numbéd+1 of good zerogy, (at least
M and itsz-wise zerosp,(p) (althoughM may be single gy=0) on the discrete spectrum sectionlLgf
valued if the different branches of the multivalued zero func- .
Re(q; ) <0k=<0; (67)

tions are symmetrically represented; see fujth€herefore,
no other zeros in the half plane Rp& — w, i.e., to the right

in the g plane, the set of zeros of

M (g, apo(q))=0 of L; the branch point§64); and appropriate asymptotics for

largeq [Re(q) = — w] such that distant contour integral con-

can be thought of as being partitionable into subsets, accordributions vanish. It is further assumed that thisexists and
ing to the branch of thg,,,'s where they originate from. The that its physical zerog, have been obtained numerically via
SK M must have at least one “good” or “physical” branch the ICF equatior(63).
of zerosq, that will produce the discrete eigenvalues as
poles of the integrand, with the discrete eigenfunctions as

(61)

F. Contour deformation: Spectral structure

residues(see Sec. lll | These zeros result from a formal
good” branch equation such as

a=pg(apo(q)) (62

Rewriting the integral representatigf2) compactly as

1
W20 | da u@.atx (68

and must lie on the discrete spectrum part of the eigenvalue

locusL (—u=<q=<0) or to the left of it. In the presently
assumed standard casehere the ICF'sP,,Q, (41) are the
appropriate factorizers and E8) holdg all zeros ofM
nicely show up inQq (see Appendix A and the good,

values can be found by a numerical search for the zeros of

Qo(d,ap(q))=0 (63

on the real axis interval7) (see further.
The SK must have branch points on the lotysacting as

and deformingC so as to cover the locus [Egs. (57) and
(58)], one obtains

N 1 1
77(z,t)=k20 Re§:qk(U)+2—7ﬂf8dq U+ Z—ﬂfvdq u.
(69)

The sum of residues originates from the good poles
Jo.d1.---,0n Of the integrand that cross the contour during
unfolding. TheB integral runs either around the right half of

separation points between the different parts of the spectruna. horizontal branch cuta®«?> 5%) or adjacent to a vertical

As shown in Appendix B, these branch points are

2

1/2
Oa=— K, qé=—ﬂi<uz—;z> , (64)

where the locus intersectian= — u appears as a degenerate
pair of coinciding branch points. In the present cad¢z,p)
is single valued inp becauseP, and Q, are. The branch

points (64) are latent and must be activated by annihilation

of “bad” zero branches.

The SK must have such “bad” or nonphysical zeros, with
some of them lying betwee@ andL (incidentally uporL).
These obstruct the contour unfolding fratnto L and they
must be annihilated by incorporating suitable periadi€ac-
tors intoM [or by H (55)]. If bad zerosg, originate from a
nonphysical brancl,(p) of the zero functions, say,

dk= PplapPo(dy)), (65)
then one can formally take
m(z,p)=e>mz=ro(P]_1, (66)

This function is periodic ire and m(q,@py(q)) has simple
zeros at they, of the bad branck65). Inclusion of thism not
only annihilates the bad zeros ™ but also destroys the
original symmetry ofM with respect to the distinct zero
function branches. Branch poin(64) on locusL get acti-
vated and the new “cleaned” SKVI(q,apo(q)) (the same
symbol is kepk, is multivalued ing. Branch cuts must be
introduced to isolate a single-valued branchMfin the g

plane, which now becomes the principal, or physical, Rie-

mann sheet in which the contour can be unfolded.

cut (e?u?< 6%). Accordingly, theV integral covers the en-
tire vertical locus line or the remaining part of it. The same
qualitative figures as ifil] apply. As in[1], a spectral struc-
ture with bound states, a “reflecting” continuum and a
“free” continuum is apparent. The discrete spectrum will be
calculated in the following subsection. Continuum contribu-
tions will not be further elaborated.

G. Discrete spectrum results: Steady-state PDF

The discrete spectrum contribution is obtained by calcu-
lation of the residues at the polesldfin Eq. (68); the sum in
Eq. (69 becomes

iy a D2 G 20T (2= 0
T2+ 24)

N
[ 7(Z,1) lgiscreté™ E €
k=0

X R1gM(Z, = N ) €90y (qy, — N i s X0)
(70)
where
A= — aPo(a) = — al (Ge+ )% — u?] (71)

f'and R formally denotes the residue at the pajg of the
inverse SK,

R fim 979 :(dlvl(q,oqoo(q)))l

W mqM (@, apo()) dg 0=,
_[oM(z,p) oM ap]T?
Tz a—pﬂ (72

p=apq(2),z=0qy
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Using the symbolic eigenfunction expansi¢hl) for the
Green's function and the definitid20) of »(z,p), itis seen

that thekth term of the sun{70) corresponds to the Fourier

transform

Wg(X) @ (X)
25(—(pk(<p|<(x())e“k‘,X—>Z =e WD (2)gi(Xo).
ae X+yex+1

(73

By identifying thet, Xy, andz dependences, one finds the

following results.

(i) The\ as given by Eq(71) are the discrete eigenval-

ues indeed.
(i) The eigenfunctiong, are given by

@(X) = Ny&WY(ay, — N s X). (74)

N is an unknown normalization constant a#ds given by
Eq. (27) or, alternatively, by the sum in E¢45):

m-1

¢<z,p;x>=mE_0<—eX>mxm<z,p;x>(H A?jl), (79

j=0

with xo from Eq. (44) and x,,= xo(z+m). For the presently
assumed standard case, whegesolves Eq(63), the eigen-
functions simply reduce to

@k(X)=Ne®xo( i, — N ;X)

m-1

Ci(dk,— M)
Jl;[o Qj+1(dks =Ny

=N > (—e9)m
m=0

(76)
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az(z+1)(z+26)(z+2pu+1)M(z+ 2,0
+Bz(z+2e)M(z+1,00+M(2,00=0, (79

but it is easier to solve directly the time-independent FPE
[i.e., Eq.(2) with gw/at=0] for wg(x). The results are

W(X) = Ng( €+ ye*+ 1)e2#X(eX— p+yr' 1

x(e*=p7)r 4 (80)
with
1
pr=5[-B*(B-4a)"] (8D
being the roots of the quadratic equation
p?+ Bp+a=0 (82

that determines two of the four singularities of the F@E

the e* plane. These roots are seen to be real under the same
condition (42) that ensures convergence of the ICF’s. They
are negative anfp | <|p~|. The exponents™ are given by

p
pt= S+a*tu—(1+a*t)e], a=— (83
il = el a="5 (83
and satisfy the simple relations
vi+r =2(6—pun), avt+rv =2(a+1)(e—pu).
(84)

Under conditiong13), wg(*+)=0 and can be normalized.
For calculatingNg, the Fourier-transforn{78) is a useful
intermediate result

This type of eigenfunction can be identified with the special

“Heun function” solution of the Heun equatiof8]. The

+o B
necessary analytic continuation for these functions will be CI)O(z)zNSf dx @2+ 2mX(gx— p+yr ~Lgr— pm)r -1

derived in Sec. Il H.
(iii) The z-dependent factor gives fab, the equation

Wg( X X
b y(2)= s(X) @i(X) Yoz
ae®+ ye*+1

o F(z+a+2p)T(z—aq) Ry
— 270 _\v _
R VTR 77 B VRGN
7

First using Eq.(77) for k=0 [i.e., qp=0,00(X) =Ny=1],
one has

Ws(X)
Co(2)=F| —5 X2
ae”+ye*+1

D(z+20)T(2)

e

which basically would allow for the determination of the

steady-state PDWy(x) if M(z,0) andR oy were available. It
is possible to solve the reduced versigr=0) of the general
equation(A22) for M(z,0):

=NgA(2), (85
with, from [14,15 and Appendix D,
A(Z):(_p+)z+2M+V+7l
- T(z+2u)I'(2—26—-2)
_ —\yv -1
x(=p7) T(20—26+2)
+
°-]. (@9

X oFq| z+2u,1— v ;2(u—06+1);1— p—_ .
From ®,(z) one builds the steady-state characteristic func-
tion

05(2) = F(Wg(X),Xx—2)= a®y(z+2)+ y®o(z+ 1)+ D(2)
(87)

and normalization obg yields Ng,
05(0)=1=Nd aA(2)+ yA(1)+A(0)]. (88

Subsequentlypy(z) can be used, e.g., to calculate steady-
state moments such as
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pk= (€)= 05(K). (89)

It is straightforward to verify that the “equivalent Fokker-

Planck potential'Ti.e., minus the logarithm ofig(x) (80)] is
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I'(2u)

M(z0)= Eemye)

A(z) a” (90

which solves Eq(79) indeed and yields a closed for(ap-

either a monostable or a bistable potential well, with linearparently uncatalogued if16]) for the univariate ICF

asymptotes. A mathematical side result from EB) is

M (z,0)

Qou(z,00= M(z+1.0)

H. Analytic continuation of the discrete eigenfunctions

The present solution method delivers the eigenfunctions
as power series ie*, converging around the singularity at

e*=0, up to the nearest singular pointeft=p™*. [Actually,
according td 8], the eigenvalue conditio63) implies “su-

perconvergence” up te*=p . This does not invalidate the

following analysis where it is allowed to replagé by p~
throughout] One has in genergbee Eqs(74)—(76)]

0

P(0=Ne™ X, an(q)(—e)™, [e<[p"], (92
with specifically for the standard case
am(qk)znﬁl Ci(dk, =Ny :m_l P;(dk, =N\ ,
=0 Qj+1(Ak, =AM j=0 Aj+1(dk, — Ny
ap=1. (93

Generalizing Euler’s transformatidi 7,18, one looks for a
series in the new variable

X(x)= =T (94)
which results in the analytic continuation
eX\ e *
‘Pk(x):Nkequ< 1- —+) > by(gX™,
P m=0
(p)'ay(qy) _
Bm(dk) = (0)m 2 L =D (o), bo=1, (99

where o can be chosen for convenience. The simple Euler

transformation is obtained far=1:
m

=20 (M(p)lay,

(96)

but another obvious choice is to identify with one of the
factors ofCy(qy, —\y) [see Eq(B8)],

Qo(z,0):

2F1

N
24201 v 2(pu—5+1)1— 2—)

=(=p)z(1-26-2) S
2F1(z+2,u,+1,1—v‘;2(u—5+1);1—p—)

(91)

o=0"(O) == C (— N =+ 67 (52— an) 2
97
such that théb,,,’s in Eq. (95) reduce to
m +\l F
2 —p7) (o) 8

I) j= 1QJ

This yields the Euler continuations that are usual in the
theory of Heun'’s differential equatidr,19] and thesé,,’'s
satisfy a certain second-order recurrence that will not be de-
rived here. Observing the transformation of the singular
points ate*=0, p™*, ande under Eq.(94), it follows that
the series in Eq(95) converges fofX|<1, i.e., for

+

P
X
Re(e )>—2 ,

(99
such that this representation @f, is appropriate for the en-
tire physical domairx e [ — o, + 0 ]. Other continuations will
be derived in Sec. IV C.

Returning to Eq(77), the Fourier transform can now be
evaluated by use ofvg(x) [Eq. (80)] and the continuation
(95) for ¢ (x), all integrals being of the type in Appendix D:

®(2) = NNy (—pt)Zr2utactr =1 =y -1

XT(o+2-28-0—2)S(2,9%), (100
where
I'(z+2u+q+m)
S(2,00= 2 o PN (o =264 2+ 2 my2 1| 2T 28T
p+
+m,1—v*;a+2—25+2,u+m;1—p—, . (101

This result will allow for the analytical calculation of the
normalizationN, of the eigenfunctiongp(x).

I. Normalization of the discrete eigenfunctions

Substitution of the resulfl00) into Eq. (77) and solving
for N, yields
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_ oyl z—2u—q-vt_ —\1-wT 2= (z+ 0o+ 2 )T (z—
sS(z,q )T (0+2-26—q=2)T'(2qk+24)

whereR ;)M (z, — \y) is still unknown. The right-hand side of EqL02 must bez independent. It may be evaluated by taking
Zz=(q) and resolving the resulting indeterminacy as follows. In the neighborhoae-qgf, one has

M

— +0(z—qy)? (103

M(Z1—)\k):(Z_Qk)< )
z=qy,p=—X

such that, withRy, from Eq. (72),
(z—q[1+0(z—qy)]

R(k)M(Z,_)\k): oM oM ; (104)
1+2a(qe+p) %/ E) o
z—qk,p—f)\k
The ratio of unknown partial derivatives in E(L04) is expressible in terms of the known IGP,(z,p):
oM M dQo / 9Qq
V( Ok, =N = _/_) :(—/— : (109
w ) 0z, o\ NP 0 |, o omor,

as easily follows from partial differentiation of EGA21). Derivatives ofQ, are fully analytically determined by recurrence,
e.g.,[see Eq(A18)],

(7Q0 (980 1 (9D0 DO an a’A1+ CO Do C!A2+ Cl

BTl iy, Sl 1 v = L I A=

agp dp Qi dp Qf Ip Q1 Q1 Q2
and similarly fordQq/dz. They may, however, be obtained numerically as well, e.g., during the numerical search dgr the
values in Eq(63). Setting nowz=q, in Eq. (102), the normalization is obtained

+. (106

_ _ _,t B
(_p+)1 2q—2pu—v (_P )1 v

NZ= , 10
NLLT 2a(ter LV(de, AT (02— 26— 200 S(h, G (107
|
with Ng from Eq.(88) andS from Eq.(101). This completes )
the discrete spectrum results. == ay{(awi—ﬂf)i[(ayﬂ—ﬁé)
+(ay— B)Po(dk, aPo( a1,
J. Searching for physical eigenvalues
Rd ]Y2=0. (109

The indirect access to the physical zeros of the generally

unknown SK function M(q,apge(q)) via _the ICF Preliminary numerical evidence shows that physigabal-
Qo(a,apo(0)) may be hampered by some specific problemsyes satisfy Eq(109 taken with the same sign as the one
necessary fogy=0 to be a root(the physical zera,=0
1. Bad zeros selects the physical branch, as[ih]). A more substantial
criterion, however, follows from spectral invariance under
Even if the search is restricted to the negative real axigeflection, i.e., under the “overbar” transformati@B5). A
segmeni{(67) in the q plane, bad zeros incidentally lying on physical zero q, must have a partnerq, solving
this part of the chus_ may be picked_up too. A criterion forQ_O(a,a_po(a)):O and generating the same eigenvalue
acceptance or rejection of the zeros is necessary. One POSPkee Eq.(B7)]. It appears(again there is no propfthat a

bility is to write Eq. (63) as nonphysicalqgy (or a) does not have such a partner.

2.C t
Qo(d, apo(4))=Bo(a, @Po(a)) — Po(d, ape(4)) =0 , ongriient zeros . _
(108 The basics of congruence are discussed in Appendix A.

For some values of the second variap|ehe z-wise zeros of

M(z,p) may become left congruent and as such will not
and to solve this “quadratic” equation fag,, which yields  show up in the ICRQ, anymore. Their existence, however,
a semiexplicit formula is still signaled by the vanishing @, at the starting zero of
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the congruent series, which is a “moved” free z¢for the
free zerod; see Eqs(A2) and(B8)]. Hence one has to look
for X values in the discrete spectrum range
o=sA=min(au? &% a) (110
for which
Qo(di(—=N\)+1,—-1)=0. (113

If this condition for “left congruence with respect t)” is
satisfied, therM vanishes at all left-congruent positions

112

This equation coincides with the eigenvalue conditiét) if
for somek=N,.

M(di(—\)+1-k,—\)=0; k=0,1,...0.

di(=N)+1-N¢.=q, (113
whereq corresponds ta as usual via Eq(71). It is seen that
congruence defines a two-parameterN.) [or (q,N.)] ei-
genvalue problem. Because of Eq$13 and (111) it fol-
lows that for a congruery value
Dn,-1(0,~M)=0, Qu(d,—N)=0 (114
such that all ICF'sP; and Q; for j <N, become indetermi-
nate. This breakdown in the calculation @f(q,—\) (dur-

ing the standard case search emgay be used as an inciden-
tal congruence detector, but the better strategy is first to

calculate explicitly analytically the candidatgN,) values
from Eq.(113), and then to check th@y =0 condition. For
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erate” congruent case. All thesgvalues are acceptable with
N.=0 and the problem effectively becomes a one-parameter
problem.

(i) With d;(p)=c™(p), Eq. (113 can be written as

¢ (=\@)—-gq=c (-N)—a'(—=\)=—(gq+q)=N.—1
(119

and solved fog(N,),
1 2 2 2
Q(Nc)=—1_az{(a u—0—Nc+1)E[(a“u—56—Nc+1)

+(Ne—1)(26+N.—1)(a?-1)]*3,

Re(q+ 8+ N,—1)<0. (119

If such aq satisfiesQNc(q,—)\(q))=0, then a congruent
eigenvalue has been found. To be a physical eigenvalue, the
sameX must be retrievable from the overbar transformed
[see Eqg.B5)] search procedure. Because only EHL8) is
invariant under this transformation, left congruence with re-
spect toc™ is the only nondegenerate congruence scheme
that can produce physical eigenvalues and the optahns
=a —1 ord;=c’ need not be considered anymore. The
overbar version of Eq114) becomegsee Eq.(160]

_ 1 — 1
Qn,(d,—N)=—PIy(=d,~N)=—P5(q-1,-\)=0,
(120

which shows a physical congruextalso to cause right con-
gruence with respect @" — 1. Although Eq.(118) coincides

the eigenfunctions corresponding to congruent eigenvaluegyith the necessary conditiofupon the Frobenius exponent

one may envisage a complicated de Ip#tal limit for

atoo; see Appendic Cfor the existence of Heun’s “polyno-

Dn,-1/Qn,, but a direct recurrent calculation of their coef- mials” [8], the additional transcendental equatiQq_=0
ficients by Eq(29) is more appropriate. One notes the usefulseems to be just a condition for extended convergéfte

equivalents for Eqs(29) or (46):

T (2)=T-1)(2) =Hy2Tk—2)(2), (1159

U (2)=Bx-1Uk-1)(2) —Dy_2U_2(2), (115b
k-1

U(k)(z):U(k—l)(Z)Pk—l+j1:[0 Q;. (1159

Equation (1150 can be used fronk=N;+1 on and then
simply reduces to

Ui=Uk-1)Pk-1. (116

and not for truncation of the solution series. This generally
yields “transcendental Heun functions” for the congruent
eigenfunctions and these need to be analytically continued
(see Sec. Il H. Incidentally, however, the solution series
may truncate to a Heun polynomial, converging over the
entire e* plane. The exact condition for this to occur is not
further investigated herélassically[8], this is anN:th de-
gree polynomial equation for the accessory paramnietde-
fined in Appendix G.

3. Close-to-congruent cases

The possibility of congruent zero series, as well as the
existence of three hypergeometric limiting cagese Secs. |
and V) implies that many FPE parameter combinations give

showing the corresponding coefficients to have the samgge 1o 5 close-to-congruent situation, where at least two ze-
pure product structure as in the standard case Heun functiophs of M become almost unitarily spaced. When this hap-
This type of_ so_lut|on could be termed “se_m|m|n|mal.” _ pens, theg, zero values can get extremely close to poles of
On substitution ff the free zeros, one finds the following.q " ang when the zero-pole separation fails below numerical
(i) Fordi(p)=a"(p)—1, Eq.(113 explicitly becomes  aqo|ution both disappear, even when theoretically congru-
ence is not perfect. To remedy this problem, one may access

+(— —_ = —_ =
2" (=Ma)=Ne=g-Nc=a, (117 the zeros oM via the product of ICF's
which is identically satisfied for algj if N,=0. As, more- N M
over, Eq.(114) reduces to Eq(63), one just retrieves thg Q= 0 (121)
values of the standard case, which thus appears as a “degen- =0 ) Mpgq
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instead of just viaQo=My/M,. By taking for N a suffi- k-1 -

ciently large positive integer, the “shadowing” poles are U= H Rj)L(z) (H ) L(z+k+1)

shifted and the “hidden” zeros can be resolved. Alterna- =0 =0

tively, the expression (127)
N P N -1\ and, in addition, an ICF representation for the sefigs16]

j 0
JHO (1 Bi) (JHO i Mn+1 (122 i i
. _ 1] Ro R,

having the same zeros as E@21) can be used and is often L(z)= |—1— —SO——S— cee (128

much better conditioned from a numerical point of view. 142 1422

Basically, usefulN values must be determined by trial and Ro R1

By an obvious equivalence transformation and the use of Eq.
(40), this reduces to

error. As such, the eigenvalue problem appears as a “weak
version of the strictly two-parameterq(N;) eigenvalue
problem arising in the case of exact congruefsee Sec.
lJ2).

L(z)= (129
4. Failure of the standard case approach Qo—So

A simple numerical exploration of Eq63) and/or EQ. sych that
(117) reveals that for some parameter sets no eigenvalues
can be found at alfexcepthy=0), although the equivalent
Schralinger potentia(18) is strongly confining or very close U=
to a potential that is known to have bound stateg., the
case in 3]). This is not unexpected, as it is knoj2,20] that
sometimes a dominant solution of the recurrence is necessa
for constructing the physical eigenfunctions, while the for-
ward ICF Qg only gives access to the minimal solutid.
Moreover, backward ICF's may be necessary for generating
the eigenvalues. This opens the gate for the general factoriz-
ers derived in Appendix A and for some related extensions.

TR TN

Substitution herein of EqA10) for the general factorizers
R}, S0, Eq. (A26) for Ko, Eq. (A21) for Py,Qo, and use of
the zero mover properti€&27) and(A28) gives, after some
algebra,

k

*
My~ Mo My,
j

Ugo= . (13Y)
* MOM{—D,lMng

IV. EXTENSIONS
A. Introducing general factorizers Property(A25), also used in the above calculation, states that
The developments in the present section strongly depenghe denominator of Eq.131) is periodic inz:
upon the material introduced in Appendix A, to which the
reader is referred for more details. Replacing the forward Dy(z,p)=MMI —D _1M§M;=D;(z,p)=Dy(z+1,p)
ICF's Py andQg, as special solutions of E¢0), by general (132

factorizersRy, andS,, Eq. (46) for the coefficients becomes ) )
such that many alternative forms in terms of the ICF's be-

k o/ml k-1 come possible, e.g.,
U“‘):mzzo JEO S J-Hm Ry (123 k-1 k-1 k k
Pr | —-Q} P; i— ¥
or after factorizing out the first term of the sum U QO( j[[o J ) QO( H ‘) jHo Q ,Ho <
(K= =
k-1 kK /mil S Qo— Qs Qu—Qk
U(k):( [l R ) 2 R (124) (133
1 = | 2o
It is seen that the use of general factorizers reduces, at the
The infinite sum level of the coefficientd),, to the combined use of for-
o mi ward and backward ICF’s or their associated minimal solu-
L(z)= 2 H i (125 tions M, andM§ . This result is completely independent of
(2)= <o R any specific choice related #,,S;,Ko. All free zerosd,

have an equivalent role and the constant distribution fafctor
converges under the condition [see Egs(A4) and (A5)] drops out as well as all arbitrary
periodicsw(z). The alternative of a left dominalt,, i.e.,
S

lim Rk

k— o0

<1, (126

lim

k— —

(134

Ry
—|<
sk‘ '
which can be shown to hold if th€, function composindr,

and S, behaves asymptotically dominant in the right half instead of Eq(126), of course leads to the same result via a
plane. When satisfied, one has formal interchange of forward and backward ICF’s. Proceed-



264 A. DEBOSSCHER 57

ing further as in the standard case, it is seen that the ratio afherem(z,p) is a suitable entire periodic function athav-
M functions in the contour integral representati@®) is  ing the bad zero branch dy(z,p) [say =" (p)]. Starting
now replaced by with the simplest possible choice

Mo(z,~MM3(,—)) m(z,p) ="z (Pl_1, (140

TzaN=—"fp o (139

it is seen that the nonphysicaldependent poles of the inte-
grand are destroyed, the integrand gets activated branch
points(as in Sec. Ill g, and, moreover, the eigenvalue con-
dition now effectively becomes

with A=N\(q)=—apy(q) as in Eq.(72).

B. Eigenvalues

The result(135 as a spectral kernel is puzzling, as it m(q,—A(q))=0 (141

seems to imply the eigenvalue equation or, in view of Eq.(140 and withN any integer,

Do(z,—N\)=0, 136

oz =N (135 q—m [—\a)]=—N. (142
which normally should produce-dependent eigenvalues. f
Again Dy is unknown, but at least its noncongruent zeros ar
accessible via the ICF’'s

* were known, then this equation could be solved for the
ephysically possible 4y ,N,) combinations(note that gener-
ally Ny #k; k just labels the eigenvalugswWith unknown

a*, solutions of Eq(142 have to be found as solutions of
My M3 Dy

— * _p* _ —_— -
Qo= Q3 =P5 ~Po=jyg ~D1jyr = yyr 137 Do(@+N,—\(q))=0 (143

via the ICF’s[see Eq(137)] and again one has to be aware
of bad, congruent, and close-to-congruent zeros. This eigen-
value equation could have been obtained also by formally
. . ) . using Dy(z+k+N,—N\) instead ofDy(z,—\) in deriving
found in the physical rang€110 that satisfy Eq(136 in- Eq. (135 and by substitution oz+k=q here as well when

depend_ently of the va]ue @ The Ia_lt.ter, however, sensibly switching to the integral representation. This procedure,
determines the numerical resolvability of these zeros and cap

- . owever, is less general than the annihilation scheme, as will

be optimized to avoid congruence. be seen further.
h(b) Other values E)qrthe same r;]).zrameterl.segis fc_>r . On settingN=0, the standard case search of Sec. lll is

other parameter combinations, exhibit a cyclic behavior ino 4 ced because EA.35 reduces to
deed where is gradually varied te+1. The observed be- P E439
havior may be just a back and forth movement along the real Mo(z,— N (Q))
\ axis or even a disappearan@ssibly becoming complex T(z,q,N)= Mo(@ = N(q))°
or obscured by congruencduring part of the cycle. o{q. q

The above phenomena can be understood from the Sttuge g search fails to yield the complete discrete spectrum

ture (see Sec. lll Jthen otherN values may be considered, ac-
cessing Eq(143) via

such that a numerical exploration of E{.36) is possible.
This has revealed the following facts.
(@) For certain FPE parameter sets, values can be

(144

Do(z,p) = F(p){eZ”i[Z’ =t (p]_ 1}{ezm[zf T (p)]_ 1,
(138 Qo(@+N,—=\(0))— Q5 (g+N,—\(q))

which can be derived by a tedious asymptotic analysiBpf =Qn(d,—N)—QN(g,— M) =0, (1495
[Eqg. (132] at the upper and lower ends of a fundamental

period strip in thez plane, using the technique described inWhere eitheQy (for N<0) or QY (for N=0) truncates to a
[21,22. Unfortunately, thegp-dependent functiong and==  finite continued fraction becausB _(y:1)(q+N,—\(q))
remain unknown and there seems to be no possibility to de=0.

termine them. The present context, however, allows one to From Eq.(137) it easily follows that, e.g., foN=0,
conclude that ther™(p) must be the branches of a two- N

valued function, having known branch poiritee Sec. Il E N . Qj

and Appendix B. They are determined up to an additive QN_QN:(QO_Qo)jH1 P*_ (146
integer only. Thex, values of type(a) result fromF(—X\) =1

=0 and necessarily are physical eigenvalues as they cannghyich already shows that searching with K45 gives a
be suppressed. Typ) \(2) values manifestly are non- g perior resolution of close-to-congruent cases in much the

physical, but bf_ecaus_e _the_y o_riginate_ from a pe_riodical factoggme way as the heuristically introduced formul&21) or
in Eq. (138 their annihilation is possible. It suffices to rede- (127 The full power of the extension to general factorizers,

fine theH function [see Eqs(52), (54), (55)] as however, becomes clear when dealing with exact congru-
2.~ \Q)) ences. One observes the following facts.
m(z, — i iti i '
H(q,2) q (139 (i) In addition to left congruence in the forward ICF's as

- m(g,—A(q))’ discussed in Sec. Il J 2 and detected by



Qo(c™ (=N)+1,—N)=0, (147
there now also is the possibility for right congruen@éth
respect tadj=c™) in the backward ICF's, detectable by

P5(c (—=N\),—\)=0. (148
(i) In any case of congruencP, acquires the full infinite
series of zeros

Do(c (—=N)+k,—\)=0, k=—o0,...,—1,0,1,...:5+%,

(149

as follows from the periodicity132).

(i) A N value causing congruence is an eigenvalue if it

falls in the physical rangél10 for discrete eigenvalues and
if its correspondingy value[see Eq(71)] satisfies

¢ (=NMa)+1-Nc=¢q (150

for some integeN; such that Eq(149 coincides with the
eigenvalue conditior{143). In contrast to Eq(113), N, is
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N
Do| A+ -~ M) | =Dw(@+ vy, —M(@))=0,
P
N N . t( N)
—=m+v,, m=intl —|,
Np n Np
V”:N_p’ n=0,1,..Ny—1 (152
via the appropriate ICF differences
Qi(q+vn,—N)—Qf(q+v,,—\)=0, j=...,—101,.,
(153

as can easily be verified. This procedure covers the standard
case N=0 or m=v,=0), the previous extensionN(

mN, or v,=0), andN,— 1 additional eigenvalue schemes
corresponding to the possibleonzer9 values of the rational
number v,. Schemes withy, and — VN,-n=Vn~ 1 are

equivalent. The integan (or j) is physically irrelevant and
just determines the numerical accessibility of the eigenval-
ues. The parameter,, however, codetermines their very
existence and their value. Parallel to E§52), the congru-
ence relation generalizes to

not restricted here to non-negative values. The analytical so-

lution of Eq. (150 for gq(N.) is still given by Eq.(119). For
eigenvalues resulting from left congruendet?) in position
N¢, Eq. (114 and the resulting indeterminacy 8% ,Q; for
j <N¢ still apply. Similarly, for a right congruendd 48 one
hasDy_-1(d,—\)=0, ﬁc_l(q,—)\)=0, andP; ,Qf in-
determinate foj =N;.

(iv) Also in contrast to the standard case, “congrueqt”

values generally do not require special treatment. They d&f

show up as zeros in search@45) with Qy—Qx=0, just as
standard casq values in Eq.(63), providedN is properly
chosen. This can be understood from EB7). When, e.g.,
M is left congruent, the®@,— Qg still displays the rightmost
zerosc™ +k for k=1 of the fully infinite serieg149 and so
doesQy— Qy, for k=—N+1. Likewise, on right congruence
in M*, Qy—Qy displays the leftmost zeros fdt<<—N

+ 1. Substitutingk=1— N in the above inequalities defines
the values oiN that ensure visibility of a zero iIQy— QY ,
whenever the candidatgN;) truly becomes a congruenqt
value. These values dfl also are the appropriate ones for
avoiding the indeterminate ICF’s on congruence.

C_(_)\(Q))+1_Nc:q+vn (154)
such that
Dy, -1(a+vn, —N\)=0,
Qo(C™+1,~N)=Qu(q+ ¥y, ~\)=0
Pg(c’,—)\)zPK,C_l(quvn,—)\):O (155

Again, Eq.(155 causes indeterminacy of some ICF’s, but all
ICF’s figuring in the eigenfunctions have the argumeints (
—\) and stay perfectly determinate when the eigenvalue
originates from av,#0 scheme. Becaud¥, explicitly en-
ters into the solution, it must be uniquely assignable for any
given FPE parameter set. A decisive method has not been
found yet, and further research is guided by some facts and
conjectures.

(i) The coexistence of two distinct eigenvalue schemes,
one for even and one for odd eigenfunctions, is not uncom-

(v) The simultaneous occurrence of left and right congru-mon (see examples if20]). The valueN,=2 (with v,=0

ence[conditions(147) and (148)] cannot be excluded pri-

and v;=1/2, respectively is the minimum value allowing

ori. The g values resulting from such a double congruencefor this configuration. The schemes effectively are selected

would stay invisible for anyN and in fact the access ®,

by assigningy, values, which are, as ir20], related to pos-

via Qu— Qy, even fails because there is always one indetersible values of the Frobenius exponent at infirfigge Egs.

minate ICF. The values|(N.), however, are known from
Eqg. (119.

(C8) and (154)].
(i) If N, grows large, then the, values become densely

One further generalization of the above eigenvalue searcipaced on the intervaD,1 and, given a value that causes

scheme is obtained if in EG140) the bad ¢-dependentzero
annihilator period is reduced l‘dgl:

i _ ot
m(z,p)=e>"MNelz=m (P17 N=1,2,... (151

congruence, Eq154) can be satisfied to any degree of ac-
curacy desired. This would allow one to validate all sich
as physical eigenvalues. It is an open question whether
in its dependence on the FPE parameters, must stay bounded
or is indeed allowed to grow “sufficiently” large.

(iii) Eigenfunctions corresponding to eigenvalues from a

This eventually leads to a search procedure for the zeros of,# 0 scheme are of a different type. They are entirely com-
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putable in terms of forward and backward ICF's without awhich Comp|ete|y deﬁna)?k(x) By extended convergence

need for recurrent calculation as in Ed15. It is conjec-

[8], Eq. (158 is valid for |€*|>|p™|. In their common do-

tured that they are related to the so-called path multiplicativenain of convergence

solutions of Heun'’s equatidi8]. The parameter, (which in
fact is only determined up to an integeseems to fulfill the
role of “path index” (or “Floquet exponent’.

(iv) Likewise, it is conjectured that the enhanced scheme
might be the appropriate one for dealing with spectral accu

mulation points for the discrete eigenvalusse the example
in [5] mentioned in Sec.)]

C. Continuation by symmetry

The reflection symmetry5) allows one to define addi-

tional representations for the eigenfunctions. The present so-

lution method produces the basic power sef@®, which

lpTI<le<|p], (161

o and ¢, are equal, while outside this ring they are analyti-
cal continuations of each other. Analytical continuation of
Eqg. (158 by Euler's transformation gives the overbar ver-
sion of Egs.(94) and (95), useful for the entire physical

rangex e[ —oo,+oo]:

©

?k<x>=N_ke*‘4kX<1—p*e*X)*“rgo bm(qX™,

essentially is a Frobenius expansion about the singularity at

e*=0:

(%) =N P ay, — N ;X)

= Nkef*k*mE:O an(d)(— €)™,
(156)

where thea,, are given by Eq(93) for the minimal solutions
of the standard case, and by the general formula:

m-1

(157

an=

in other cases. Th&, follow from Eq. (29) or (115), or
alternatively, via theU,, [see, e.g., Eqsi46), (119, and
(133 and equivalents An expansion about the singularity at
"= s directly obtainable by applying the symmet8) to
Eq. (156). This gives

E<x>=ﬁke‘?kxngo?,n<a)<—e-X)m, (159

where all overbar quantities follow from the original ones by

application of the transformatiofB5). One notes thak =
A\ and qy is given by the appropriate branch of E&7):

Q= 8+[ 8+ a’(G+ 260 ] 7= 5+ 8~ an]
(159

It is easily verified that
AzZ,p)=Ao(z+k,p)=a *Co(—z—k,p)
=a C_y(—-zp),
By(z,p)=a 'B_(—zp),
Cu(z.p)=a *A_(~zp),
Dy(z,p)=a ?D_y_1(—2.p),
Quzp)=a P*(~zp),

Pu(z,p)=a 1Q* (-2zp), (160

(162

It must be remarked that the power seriegirf (158 would
emerge as a direct result if the operator equatiz) would
have been rearranged and factorized as

B A _
1+ A1 —OA‘Z)Azn

Co Co
1 C—OA C—OA

1+ (163

and then solved foAZ7.
A third alternative is solving

e?%o

14 200
Qo

Qo (169

Ao —
1+—A1)A =
Qo 7

for A; which generates a Laurent serieseify

e?%

A=
7 Qo—Qp

¥(Z,p;X%0),

oo

Wz,pix)= >,

m=0

m-1

[

i=0

Cj
Qj+1

m-1

A-j
I

=0 PZ 41

(— eX)m(

+mE:1 (—eX>m( ) (165

after a straightforward but rather tedious calculation, using
tools from Sec. IV A and Eq(146). The corresponding
eigenfunction representation

@K(X) =Ny WP (g, — N5 X) (166)
converges in the ring161) and is particularly useful for
deriving the limiting form in the double confluent cagg
where simultaneousljp|—0 and|p~|— in such a way
that the merged singularities at=0 and e*=« become
irregular (see the example in Sec. V\D
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V. CASE STUDIES the accessory parameter=0, and a quadratic transforma-
tion y’' =y? of the independent variable.
Relative to the numerous cases included in the present
class of FPE’s, the number of case studies discussed here is B. Second and third hypergeometric cases
by necessity very limited. Rather than fully elaborating some

general numerical exampléwhich is almost a straightfor- . ox . L ;
ward exercisg a brief analytical overview of a few selected without e ter_ms. Their ann|h|lat|_on has to progeed via the
fé{lly parametrized FPEL) by zeroinga, b, andh in a con-

cases has been preferred. One reason for this option is th tent Eventually. the followi d s R
many physically important models happen to be special OEIIZCeen way. eventually, the following procedure resufts. Re-

limiting casegmost often confluent, double confluent, bicon-
fluent, or triconfluentof Heun's equation. The limiting pro-
cedures necessary to extract such a particular case result

from the general solution are not always obvious and often B—Blo, y—ylw (169
have arad hoccharacter. The selected examples will contain

some additional analytical material related to this problemin Eq. (2) and in all quantities of the general case solution.
Another reason is that the present study generalizes the “unBy letting now w—0, Eq.(2) acquires the structure of the
fying stochastic process” FPEee Sec. | anfll]). It is in-  unifying FPE, while the solution components behave as fol-
structive to verify the “downward” compatibility of the ac- lows. The convergence conditiq@2) for the ICF's obvi-
tual results by retrieval of the three hypergeometric limitously is satisfied for sufficiently smalb and Q, is seen to
cases that are apparent from Ef). behave asymptotically as

The second hypergeometric case corresponds to(Z&q.

X—X+Ihw, »>0

; : Mo 1
| A. First h-ypergeor.netrlc c-ase | Qo(z,p)= M_(l’w ZBO(va)- (170
A first hypergeometric case is obtained parametrically by

setting8=y=0 in Eq.(2). The resulting FPE, devoid of first jth B, as originally in Eq.(22), such that theM function
powers ofe*, is identical in structure to the unifying FPE of “degenerates” tosee Eq{(B8) for b*(p)]
[1] [except for an inessential scale factor Xirwhich can be
removed by a trivial reparametrization wigh=1/2 in Eqgs. (—wlB)*
(3) and(4)]. With 8=0, condition(42) for ICF convergence M(z,p)= MO:F(Z_ b )(z—b )" 17D
is violated, but the factorize®, andQ, remain defined by
Eqg. (A21) (with a nonminimalM), while Eq. (A22) with For a stochastically stable limit process<(0) the zeros of
Bo=0 basically reduces to a solvable first-order differencethe physical branch o¥1(q,apy(q))=0 are given by
equation forM. One has

1/2
B ay
Mo(z,p) M, ak—b ™ (apo(aw)=0ay+ e+ 62+7(q§+2,uqk)
Qo(Zyp):_Po(Z,p):M—:_CoAlM_,
! ! =—k, k=0,1,., (172

M(z.p) which, as in[1], can be explicitly solved for the, . Eigen-

functions are retrieved most simply by starting from the gen-

i z/2
_ . Ee /166“)+ _ ' eral expressioni27) for ¢, in which & andB; are replaced
z—c z—cC z—a +1) (z—a +1 by we* andB;/w, respectively. One gets
r 2 r 2 r 2 2 J

m-1

(167

with a=(p),c*(p) from Eq.(B8). The physical branch equa-
tion for the g, values can be identified as

, (273
w j=0

lim ¥(z,p;x) = >, (—ex)m( [1 A_J
0 m=0 j+1

which, when inserted into Eq74), nicely truncates to the
expected polynomials ofl]. The limiting normalization
lim,_ o(Ncw%) will not be calculated here. Referring to
[19], the above case corresponds to the hypergeometric limit
k=0.1,..., (168 of Heun's equation foa—o, b—e, andb/a=c.

The third hypergeometric case, with af-independent

atnd tth?j h_)ll_ﬁ_ergeometlrlc rlesullts_ﬁjﬂ fart] betr?l:eli:tly rlec(;)n- {erms in Eq.(2) suppressed, is equivalent to a second case in
structed. This example clearly illustrates that knowledge ofe s oty =y and parameters &l gla, yla, —u, — e,

the M function becomes essential whenever the ICF’s do not . :

exist. The above hypergeometric case result may be taken asé’ by virtue of the reflection symmetrs).
a zeroth-order approximation féd in the analysis of close-
to-hypergeometric cases with small but nonzgand v,
where the ICF’s do not exist. Finally, it should be mentioned There are many more instances in which Heun'’s equation
that the present case is not documented as a known hypdi€6) reduces to the Gauss hypergeometric equafibA.
geometric limit of Heun’s equatiofi8,19]. It may be ex- Only the most obvious ones, following by mere inspection of
tracted from Eq(C6) by taking the fourth singularita=—1, the equation, have been listed [i8]. Referencd19] men-

C. More hypergeometrics
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tions two nontrivial cases where a transformation of vari-and the locus intersectioq= — . are seen to move to infin-
ables together with particular parameters perform the redudty with w, irrespective of whether the; are real or com-
tion (the case in Sec. V A above is of a similar typkt can  plex. Because the convergence conditidf) is always sat-
be shown that whenever a singular point of Egg), say, the isfied, the complete subclagk?b) is solvable in terms of the
pointa, merges with one of the others (), while keeping  ICF’s, which have a well-defined finite limiting form. Some
the exponentsA,B,...) finite, an equation results that gen- of the components simplify, e.g.,

erally is not identical but reducible to the Gauss hypergeo- ]

metric equation by a simple transformation of the tye Na@)= lim [—apo(q)]=—2a*q,

=7PF or F* =(z—1)PF. The identification of possible sub- pe

classes of the FPR) corresponding to these configurations

— _ *
is easy and will not be pursued here. The marginal @fse Ao(z,p)=p—2a72, (179

=4a (or p"=p~ =—pI2), where the ICF’s cease to exist o
and with 5+ u=2¢€ to keepv™ finite, is a noteworthy ex- Co(z,p)==(27+202).
ample.

In the limit p* =0 andp~ = — B, such that Eq(175 can be

related to thegsimply) confluent Heun equatiof8]. For the

eigenfunctionse,(x), an appropriate form must be chosen
The analytical results of Sec. Il and the extensions inthat survives the limiting operations. A first candidate is the

Sec. IV have been fully elaborated for the discrete part of the&€ontinuation(94) and (95) with p* replaced byp™=—-p8

spectrum only. Cases with entirely discrete spectra becomgee remark preceding those equatjons

particularly interesting as their analysis is completely cov-

D. Fully discrete spectra

o]

ered by the presently available material. A fully discrete e X\ T x Am
spectrum is obtained when the equivalent Sdhrger poten- Pr(X) =Nyet| 1+ B mE:O Bm(di) &5
tial (18) becomes confining, i.e., when the asymptotic energy (180

levels au? and 6%/ « [Eq. (19)] grow to infinity. The corre-

sponding limiting procedure must be such that the FPE rewith the b,, according to EQ.(95) (with also p™—p~
sulting from Eqg.(2) stays meaningful, and that the spectral =—g). Thea,, figuring in Eq.(95) are given by the limiting
representation in at least one of theor q planes survives form of Egs.(93) or (157) according to whether the eigen-
with an infinite discrete spectrum locutersection and values result from a standard, a nonstandard, or a congruent
branch points being moved to infinjtyin a first example, the  search. Alternatively, the limiting form of continuatioh62)

option is can be used, where it should be noted ffs#te Eq.(159)]
ot lim,_...q,=0. (In the limit, th_e broken reflection symmetry
n—o, = 7 a*, 6 finite. 174 invalidates the analysis in the plane, where the intersection
g = & and the branch points remain unchanged. This suggests
The FPE reduces to that for large but finitew and small but nonzera, an accu-

mulation of discrete eigenvalues neat: 0 takes place in the

2 2 —
aw(x,t)  9” | (e"+p)e _zi 5e”+ Bee”+ a* w q plane) The present subclass has only three free zeros
at 07)(2 'yeX+ 1 ox —yex+ 1
17 p _
I atp-1=5 -1, c'(p)=-25 c (p)=0
for which obviously the reflection symmetry is broken. (181)

Equation(175 actually defines a four-parameter subclass of

Edg. (2). One parameter in Eq179 is redundant, but its and the candidate -congruentq values have the simple
elimination by translation o, scaling oft, and reparametri- expressiorjfrom Eq. (113)]

zation is not essential for the subsequent discussion. The

limiting form of the steady-state PD{BO0) is easily obtained q(Ng)=1-—N, (182
Ws(X)=Ng(1+ ye¥)(1+Be ¥)» 1 such that conditiori114) reduces to

* 1,—M)=0, A=2a*(N,—1). 183

xexp{Z(b‘—l)x— 5 e |, (176 Qo ) a*(Ne=1) (183

It is an open question wheth@&" congruence should be
with v~ from Eq. (83): considered too in this limiting case, as there are strictly no
symmetry arguments anymore to forbid tligee, however,
the following subclags A further detailed treatment includ-
F+ o—€|. 177 ing the relation to the confluent Heun equation, the identifi-

cation of confluent hypergeometric cases, and other topics
In the g plane, the branch point$4) clearly is a vast subject in its own that falls outside the scope
12 of this preliminary case study.
+_ ] -~ 6 A second discrete spectrum subclass is obtained from Eq.
S I LU o P

a*

v =2
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such that the present class can be related to Heun’s double
confluent equatiop8], and the Laurent seri€465) gives the

To yield again a meaningful FPE with a maximal nhumber ofappropriate representation for deriving the limiting form of
parametersfour plus one redundant parametand suitable the eigenfunctions.

for ICF treatment, one can set also (ii) BecauseB— o, the ICF's stay convergent and their
asymptotics for largen can be derived. A sensitive point

a—o, S=ad*, &, u finite. (184

B=aB*, y=ay* (185 hereby is that the actual arguments have to be substituted

[e.g., as iMo(q, @pe(q)) or in Qo(d;(—\), —\)] before the
such that the limiting equation becomes asymptotics are determined because these arguments may
depend onw as well. Starting with the eigenvalue expression
aw(x,t) | Brer+1 ~
N I — ANO)=—«a ~—=2auqw=\Qq)w, 192
o — 2| e (a) Po(q) T (a) (192
) it is seen thaht stays finite, as it shoulthsterisks removed
0| 5" e+ preetpu (186 in the right equality:
X[ (€+y*)e

=\t (193

t

AM=—a t~—2auqow| —
This equation exactly has the structure of the reflected Po(®) #a (w
(x— —x) version of Eq.(175 and hence needs no separate o ) i
discussion. When identity with this version is achieved by a1€réby, it is tacitly assumed that tipvalues, ifw depen-
suitable choice of the parameters, E(E75) and (186 de- ~ dent at all, stay bounded when—c. The elements of the
fine two problems that are mutually conjugate under refleclCF's Qo and Qg , with arguments as in the most general
tion and hence isospectral. This property can be used to d€igenvalue search procedutEs3), behave as
velop adapted criteria for physicality of the eigenvalues in
both problems.

For a third and essentially different discrete spectrum sub-

ALG+ vy, = N@)~[ M) — 2ap(q+k+ vy Jo=Aw,

class, confinement is attained via

w—®, p=op*, S=wd*, a,u*,5 finite.

(187

B+ v, — N(@)~{— y\(q) — BL(q+k+ vy)?

+2e(q+k+ Vn)]}w=§kw,

C(@+ vn, —N(@)~[— aN(q)— 28(q+ k+ vy) Jo=Cyo,

To keep a meaningful diffusion equation, one may addition-

ally scaleB and the time variableé,

*

B=wp*, tzz, (188

such that the limit of Eq(2) becomesdropping the aster-
isks)

aw(x,t) &2 Be*
= — —W
ot ax?\ ae®+ ye*+1
d | 6+ Bee*+ a
gl [ Thee Tan (189
X\ ae®+ye*+1

The equation has two redundant parameters and the refle

tion symmetry(5) is conserved. The steady-state P[30)
reduces to

Wo(X) =Ng( e+ y+e ) exf 2ex+28~1(5e*— ae )]
(190

and the other solution ingredients behave as follows for large

w.
(i) The singularitiesp™ [Eq. (81)] simultaneously move

N al

p ~—2——0, p~—Po—ox

3w (191

MQ)=—2auq (199
such that forQ,,, e.g., it follows that
anénwv (195}

Where'@n is an w-independent ICF in terms ﬁk,[’;k,ék:

angn

SRl Cobed o
1

Bos Buiz

Note thatA, is q independent, whil€, is linear inq. It is
assumed that,, can be assigned independently ofor at
least stays bounded whe#—oo. In this case they values
qbtained fromQ,—Q} =0 [as a limiting version of Eg.
&53)] will be w independent indeed.

(iii) The free zeros behave for largeas

(=N)-1 r 1 1=—|1+ > 1
at(=») 20 0 2au a5
a (—\N)—-1~-2uw,
cH(—\)~—2bw,
N aN 1 aN  a’uq
R R A B
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and only the two useful zeroga™—1 andc™ are seen to
survive. Again, candidatee™-congruentq values get a
simple w-independent expresside.g., from Eq.(154)]

A@+ vy, — M)~ —20(k+ vp) y=Ayy,

Bi(@+ v, — M) ~[—A— (k+v) = 2e(k+ v,) ]y=Byy,

Ne—1+v —
A(Ne+vn)= —;QM—” (198 Cu@+ v, =N@)~20(k+vy)y=Cyy (209
S -1 such that the asymptotics of the ICF’s are similar to Egs.

(1995 and (196). The ICF's for congruence detectid¢th47)
and congruence detectipsee Eq(155)] can be expressed in and(148) can be constructed similarly from the expressions
terms of the asymptotic ICF’s such as, e.g., B®5). (205, by formally settingv,=1 and v,=0, respectively.

A final remarkable discrete spectrum example is obtainedFinally, the steady-state PDF becomes
from the same confinement princip(@87), but instead of
time scaling as in Eq(188), the growth of3, &8, andu is
compensated by the growth ¢f The overall procedure can
be tuned so as to avoid redundancies

ws(X)=Ng exd 2ex— 4o coshx], (206)

whereNg is expressible in terms of a modified Bessel func-

tion [3].
y—o©, é=—0ay, umu=ocy, a=1, B=vy, >0,
(199 VI. SUMMARY AND CONCLUSIONS
yielding the equation The one-dimensional FP@) studied in this paper gener-
alizes the FPE for a unifying stochastic Markov procelds
aw(x,t)  dPw J . by allowing for nonmonotonic drift and diffusion coeffi-
pr =y—25[(e—2(rsmh x)w]. (200 cients. As a consequence, the equation not only unifies a

large number of known stochastic processes from different
. . branches of physics, which previously had been solved inde-
This is the FPE for the hyperbolic sine model, whose analyyengently, but it also covers a wide variety of different, more
sis in [3,20] significantly inspired the present research. Aganera| stochastic systems. These systems are characterized
particularity for this limiting case is the necessity to scale theOy a more complexe.g., saturatingstate dependence of the

q values during the limiting process. As time does not scalegiqchastic forces determining the process, and a subclass of

the eigenvalued must stay finite. They are given by

Na)=—(a*+20yq) (201
such that the scaling law fay is
I
9=2, A=-5.. (202

Becausax=1 andu= — 6, theq and q planes are identical
and both show accumulation of values at zerdto be ob-
served for large but finitey). In the limit, the analysis sur-
vives, however, in théﬁ plane. The following asymptotics
for large y are easily obtained

pt~—yt pT~—y,
a (—-\)~qy L a ~-20v,
ct~20y, ¢ (-N)~—-qy L (203

them even exhibits bimodality of its equilibrium distribution.
The equation basically introduces the general, i.e., the non-
confluent, Heun equation into the domain of diffusion
theory. By having one more finite singular point, it general-
izes the Gauss hypergeometric equation, to which it reduces
in several instances.

The constructive solution meth¢@,1] has been extended
successfully for the present problem by factorization of the
Laplace-Fourier transformed FPE operator. The necessary
theory about factorizers has been developed in Appendix A,
with the entire function representation and the principles of
congruence as main results.

Under the restriction32>4a, which ensures the exis-
tence of ICF factorizers, fully analytical results have been
obtained, except for the eigenvalues. These have to be found
from ICF equations that allow for numerical access to the
zeros of a generally unknown spectral kernel function. It has
been shown that if the most general factorizers are used, then
eventually both forward and backward ICF’s are invoked to
define the solution structure and the eigenvalue scheme. Oc-
casionally, the general solution may reduce to the standard
case, which, for tutorial reasons, has been fully elaborated

showing a double confluence and yielding the asymptotidirSt and where forward ICF's alone can do the job.

congruence conditiofil54)

- 29q
c (—)\)—q~—7:NC—1+vn, (204

which is identically satisfied for all congruence generaﬁqg
values in the limit, withN.=1 andv,=0. The ICF building
blocks behave as

The present solution method does not explicitly refer to
Heun’s equation for its development. It has been thought
useful, however, to identify the results obtained with the dif-
ferent known types of solutions that are listed in R&f.
Hereby, it appears that the present study not only unifies a
significant number of physically important stochastic pro-
cesses but also achieves a unification of the distinct types of
Heun’s equation eigenvalue problems. The important role of
congruence should be clear in this respect, as considerably
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enlarging the scope of continued fraction solution methods.
The preliminary results in the case studies indicate that
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1. General properties

It is assumedin fact, suggested by the structure of the

also solutions for at least some of the confluent versions ofjirectly emerging infinite continued fraction solutions; see
Heun’s equation are obtainable by appropriate limiting pro-gec 1| and Sec. 3 belowthat solutions of Eq(A1) are

cesses upon the general solution. As already obsend,in

meromorphic functions of, having in general an infinite

this embedding procedure stays possible even if the limiting, , \ber of poles and zeros. From E4L) it appears thaR,

FPE itself cannot be solved anymore by the present metho
At this stage it should be clear that the solution method als
applies to stochastically unstable cases where of course t
normalization has to be reconsidered. Without claiming com

pleteness, it may safely be concluded that the EBEan be

solved in all cases of physical interest. Finally, a short list of
possible future research topics can be given: other singularit

configurations, such as~ complex conjugatéfor B2<4a
and the ICF’s nonexistingor p* and/orp~ real and posi-
tive and thus defining finitee*-interval problems for the

same equation; analytical prediction of the number of eigen

values from the FPE parameter $at 3,7, 5, €, u}; identifi-

cation of other physically relevant special or limiting cases

(e.g., with bimodal steady-state PDF’'saadaptation of the
actual solution method to generate the kndwhhypergeo-

metric function series solutions for Heun’s equation, which

may have superior convergence properties; and derivation

additional properties of ICF’s, considered as special factor

izers.
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%nd Sy must have the same poles with opposite principal

arts(residues, if the poles are simpleecauseB is entire.

oles of R, must be zeros of; and poles ofS, [i.e., of
Sy(z+1)] must be zeros oR, becauseD, is entire. In ad-
dition to these mutually compensating poles and zeRgs,
andS; must have the free zeros Bf, and the constant in
ome way distributed between them. Without loss of gener-
ality d;,d,,fa'”2 can be assigned B, andds,d,,f ta?
to S;, with f an arbitrary constant. Let nofur,(p)} be the
set of poles oR, andS,. By well-known theorems of com-
plex function theory[12,13, there exists an entire function
N(z,p) that has exactly all the zeras- 7, with correct mul-
tiplicity and no others. If .} were known, thefN could be
constructed, e.g., as an infinite product of monomials (1
—z/m) and appropriate but not uniquely determined con-
vergence factordHadamard’s theoremNow RyN(2) is free
of poles andRy/N(z+ 1) has only the assigned free zerhs

andd,. It follows that

No

RONl

Eo(2)e¥?, Eo=—fa'qz—d;)(z—dy),

(A4)

Goossens and the colleagues of the Centre for Plasma Astr@herek(z) is entire and thusX is entire without zeros. Simi-
physics. Thanks are also due to A. Van Daele and P. Levrigyrly, for S, and withh(z) entire,

for many constructive discussions.

APPENDIX A: FACTORIZERS

The factorization of the operat@B9) supposes the exis-
tence of a pair of functionRy(z,p) andSy(z,p) solving the
set of nonlinear first-order FRE®r difference equations

Ro+Sp=Bo,

R081= DOZCOAl. (Al)
Here Ay,Bq,C, are given polynomials iz and p [see Eq.
(22)] and F((z) = A*Fo(z) =Fo(z+ k) as usual. For conve-
nience, the fourth-order polynomiél, will be denoted as
Do(z,p)= a(z—dy)(z—dx)(z—d3)(z—dy), (A2)
where{d,,d,,d3,d,} stands for any permutation of the ze-
ros of Cy andA,, i.e.,c*(p) anda™(p)—1 [see Appendix

B, Eqg. (B8)]. The p dependence oR, and S, exclusively
comes in via thesel;(p) and viab™(p). It will be sup-

pressed in the notation whenever it is less essential. The
system(Al) can be split up in two separate equations for

Ro,Sy:

Do
" Bi—Ry’

Do

N
—0 —F_(2)€"?,

FOZ —fﬁlallz(z— dg)(z_d4).
N_;

(A5)

Note thatEqyF,=D,. Substitution of Eqs(A4) and(A5) into
Eqg. (Al) yields

k(z)=—h(z+1),

N N_
Eoek(z) N_; + F _167 k(z-1) _l = BO .

No (AB)

A simple asymptotic analysis shows thdtz) must be con-
stant(say, zerd while Ny(z) behaves asymptotically as

1
No(z)~r?z® 1+ 0 2l (A7)
with [see Eq(81) for p*]
+\ 12
r=r+=f1<p—I ,
P
*(dy+dy)+pF(dyt+dy+2)—2
w=w:=l (dy+dy) P+( 3: 4t2) ,36. (A8)
p=—p
It is convenient to define
Ko(z,p)=N_1(z,p) =Ng(z—1,p). (A9)
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Kg is an entire function having now the set of zefas(p)
=m(p)+1} (i.e., the nonfree zeros &) and the important
result follows that the factorizers can be expressed as

Ka(z,p)
Ro(z,p)=Eo(z,p) 7———,
O( p) O( p) Kl(zyp)
Ko(z,p)
z,p)=F_q(z, , A10
whereK satisfies the FRE
EOKZ_BOK]_—’_F*].KO:O (All)

and is determined up to a periodic 2n

2. Congruent zeros: Zero movers

Zeros common to, e.gky andK will, according to Eq.
(A10), not show up in the factorize3y. Otherwise, Eq(A3)
seems to forbid a common zero 8§ and S;, unless when
coinciding with a zeral; of Dg. This suggests that common
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Left-congruent zero series do not show up in the factorizers,
except for the first zerd; +1 as a free zero of,.

(i) The scheme of compensation By andF _; simi-
larly results in a right-congruent zero series, startingiat
+2 (j=3 or 4 and a corresponding zero move frdfg to
Eo:

(=0
" T(dj+2-2)°

Fo.

c(z—d;)EqK,—BoK, +

If such a series is present, then only the moved zgrwill
show up inRy.

(iv) The scheme of compensation By andF_; allows
for a finite unitary spaced zero series with end pouhts 1
(i=1or 2 andd;+2 (j=3 or 4, which then must have a
nonzero integer spacing. The free zedgsand d; are inter-
changed when such a series is preserjn

It is concluded that factorizers cannot have unitary spaced
zeros(except for two free zergsTheir underlyingK, func-

zeros, if possible at all, deserve special attention. Therefordion can have them, but then in congruémt doubly infinite

let (a,a—1) be a pair of unitary spaced zerosky{:

Ko=(z—a)(z—a+1)K,. (A12)
From Eq.(A10) one finds
(z+3-a) K, (z—a) Ko
Ro=Bors 73—y = LA iy s
(z+1-a) K, (z+2-a) K,
(A13)

which violates the equal poles demand of E41) unless

both poles are compensated by other zeros. Four possibilities

can be distinguished.

(i) For compensation bi{, andK,, K, then additionally
has the zeros+1 anda—2, and the new pairsa(+1,.a)
and @—1,a—2) need compensation again. If this way of
compensation prevails, théfy, gets a double infinite series
of unitary spaced zerog+k,k=—»,...,—1,0,1,..,0. The
value ofa can be arbitrary, but a periodic factor having only
these zeros can be divided out frdfg.

(ii) For compensation b, andK,, a=d;+1 (i=1or 2
and K, additionally has the zera—2. Continued compen-
sation by K, generates forK, a zero seriesa—Kk,k
=0,1,2,..%, left congruent tad;. A left-congruentkK, can
be expressed as

b=7K,

“Tea-n A

whereK, is entire and noncongruent with respectoand
solves the equation

Eo 2
b(z—d,) 2

—BoK;+b(z—d;—1)F_;Ko=0, (A15)

which displays a distribution of free zeros andcoflifferent
from the one in Eq(A11); d; has been moved frofd, to F
and the arbitrary constarii redistributes the constant.

series only. Similarly it can be shown thidt, cannot have
di+1ord;+2 (i=1 or 2 andj =3 or 4) as an isolated zero
without possessing the whole corresponding congruent se-
ries.

If the entire functionKy has no unitary spaced and hence
no congruent series of zeros, then, e.g., &4.4) can nev-
ertheless be considered merely as a transformation of the
dependent variable in EALL) interrelating the solutions of
two equations having a distinct free zero distribution. As
such, the factors

b—Z
T(z—d—1)

(—c)*

m(z) =
figuring in Egs.(A14) and(A16), respectively, can concisely
be termed “zero movers” as their application to the depen-
dent variable induces a change of the position of a free zero
in the defining difference equation. It should be noted that, in
general, solutions of equations like Eq#11), (A15), and
(A16) are not entire but only meromorphic. However, be-
cause in this case poles always occur in congruent positions,
entire solutions of the same equations can always be ob-
tained by multiplying with a periodic function having con-
gruent zeros.

3. Infinite continued fractions

Normally, the determination of any pair of factorizers
[e.0.,Ry,Sp in Eg. (A10)] supposes solving the FRE for the
underlying entire functiorK, [e.g., Eq.(A11)]. This gener-
ally is impossible or at least as difficult as the original prob-
lem generating the factorizer equatidid). There are, how-
ever, special directly accessible solutions of E4l). By
forward iteration of Eq(A3) one finds

Dy Do D Dy
R:P Z, ):—:____ R T
0=PolZP) =5 —5 "B, B, [Bewx
Dol Dyl
So=Q0o(z,p)=By—Py=By B, Bres
1 k+1

(A18)
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The bivariate ICF'sP, and Q, are directly computable if
they converge, i.e., under the conditifti]

B?>4a. (A19)
Similarly, by backward iteration of EqA3)
D_, D_yl
P¥=By— = — s — -,
0 7% B,y B«
D; D4 Dy
*
- = —... -, (A20)
Qo p*, [B_s IB_k

which is another pair of solutions, convergent under the

same conditior(A19).
As factorizers, the ICF'$, and Qg have the formal rep-
resentation

QO_M_l! (A21)

2

Po= DOM_l’
whereD is completely assigned tB, as indicated by the
structure of the ICF's andll, is the (forward) “minimal”
solution[2,11] of

DOM2_80M1+M0:O. (A22)

Clearly, the zeros of this minimal solution show up as zeros
of the ICFQ, provided no congruence occurs. Similarly, for

the backward ICF’s, one has

PX Mz Qt=D M3
= _1—,
0 Ma\:

VER (A23)
1
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©1=F_100, ¢5=E_j07, (A27)
with
*
?1 Po
— —=D_4. A28
®o (P’J\: 1 ( )

Constructing now, e.g., the factoriz&, [Eq. (A10)] from
Ko [EQ. (A26)], one finds

Ko

S,—F _F w@oMo+ w* o5 Mg
—F_, 2=F_
K1

YoM+ 0* eI MI

(A29)

or, upon simplification by use of E¢A27),
(A30)

Likewise, forRg,
*
—
M2+w‘72|v|§
— = (3D
Mi+ o—M?*
®1

ROZ DO

In this representatiorl}; and Sy appear as mere generaliza-
tions of the forward ICF'P, andQ,, obtained by replacing

whereMg is the backward minimal solution of the equation the forward minimaM, in Eq. (A21) by a general, and thus

“adjoint” to Eq. (A22):

M% —BoM* +D_;M% =0. (A24)

From Egs.(A22) and (A24) it follows that
DoM,M7 ~MM3=A(D_ M ;M§—MyM7)

=D _;M;Mg—MMT,
(A25)

showing this expression to be periodar constantin z.

4, General factorizers

Any other factorizer pair, e.g., E§A10), can now indi-
rectly be related to the ICF’s via the minimal solutiol,
andM§ . The general solutioK, of Eq. (A11), e.g., can be
written as

Ko=w(2)¢o(2)Mo+ 0* (2) @5 (2)Mg . (A26)
The first term defines a solution of EgA11) by moving the
two free zerods,d, in Eq. (A22). The second term is ob-
tained by oppositely movind,,d, in Eq. (A24); » and w*
are arbitrary periodic functions or constants apg ¢ are
appropriate products of zero movédrsl?). It is sufficient to
know that they are solutions of

forward dominant, solution of EqA22). The above factor-
izers are in fact the general solutions of EAl) as it is
easily verified that by choosing the periodic functions, all
possible free zero assignements can be obtaiinate, e.g.,

that for =0, Py, andQ, are retrieved, while fotw=10, one
getsP§ and Qg .)

APPENDIX B: BRANCH POINTS

From the brief discussion of the equivalent Sclinger
equation in Sec. Il, it appears that in general the spectrum for
the FPE(2) consists of three partésee alsg 1] and Sec.
IIIF). Discrete eigenmodes correspond to residues at isolated
poles located on the rightmost part of the eigenvalue ldcus
[Egs. (57) and (58)] in the complexq plane, while con-
tinuum contributions are obtained as integrals along this lo-
cus. For the continuum of reflecting states, the integral runs
along (part of) a branch cut upoi., and for the free con-
tinuum the path covers the remaining partlof The locus
intersectiong= — u and the branch points mark the edges of
the reflecting continuum. The branch points are necessary to
define the cut. In the integral representat{é@) the branch
points of the integrand originate from the SK functibh,
which is not known explicitly. It is, however, possible to
obtain an analytical expression for the branch points, in the
following two ways.
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1. Equivalent Schradinger potential Ao(z,p)=—a(z—at)(z—a),

The two asymptotic energy level$9) of the Schradinger
potential(18) delimit the reflecting continuum. The values
corresponding to these eigenvalueare found by use of Eq.
(56). One has

1/2

+ _ 2, F
as(p)=—pE|ut

Bo(z.p)=— B(z—b")(z—b"),
N(—0)=au?= —apo(qa) = al w2~ (qa+ p)?] (B1) °

1/2
for b*(p)=—€* 62+y—p ,
B
=—u, B2
= (62 Colz,p)=—(z—c")(z—C"),
which is the intersection of locus, and
¢ (p)=— 8= (8*+ap)? (B8)
52
AN(+o)= ;:a[ﬂz_(QC+ ©)?] (B3)  Upon substitution op=apy(q) [as inMy(q,apy(q))] it is
seen that the above zeros become
for .
a*(apo()=—ux[(q+u)?1*,
52 1/2
S=—ut| uli-—| B4 1/2
demmH (“ a2> (9 b* (apo(q))= — e 62+%(q2+2MQ)} ,

which are two branch points, symmetrically located with re- .
spect to the intersectiofB2) on either the horizontal y? c* (apo(q))=— 6x[ &+ a®(®+2uq)]"%, (B9

> 6%/ a®) or the vertical ?< 6%/ «?) part ofLL. _ _ _ _
displaying, respectively, the branch points

,862 1/2
+_ _ _ 2_ P&
The reflection symmetry of the FP@) as expressed by da="# s ’“i(’“ ay) ’
Eq. (5) does not involve the time variable. As such, the prob-

lem defined by the overbar transformed variables and param- . oL 12
eters Jc=—p*| p _Ez

2. Spectral invariance under reflection

(B10)

As in [1], the branch point$B4) are seen to originate from
' the zeros in the coefficienthere Cy) of the highest power
(A?) of the shift operator in Eg(24). The locus intersection
(B5) is seen to correspond to a degenerate pair of branch points
g, from A,. Branch pointsyg , likewise on locud., do not
is isospectral with the original one. It follows from E@G6)  Seem to have a physical role in genei@kcept possibly for

=L s

x=—x, t=t, a=

Rl
RI™
R

S5=—u, €=—¢, ,u_=—5

that marking the transition between the continua of penetrating
and free states in barrier-well potential configuratjorfss

~N=apy(q)=apy(q) (B6)  theb™ branches are always symmetrically represented in the
ICF’s (see Appendix Ait is expected thatg remain latent

or, explicitly, branch points indeed. They get an active role, however,

1 when B, takes over from a vanishin@, or A,, as in the
- — hypergeometric limit casesee Sec. V.
o Q2+ 2u0) = — (047~ 250), (B7) ~ MPergeometric limit caset ¥

) ) . . APPENDIX C: HEUN'S DIFFERENTIAL EQUATION
which defines the transformation of the eigenvalue locus

[Egs.(57) and(58)] in theq plane to the corresponding locus The spectral problem originating from separation of vari-

L in the q plane. Spectral separation points must preserv@P!es in the FPE2) (or, more directly, in the adjoint back-
their role under the transformatiofB7). The intersection ward Kolmogorov equationis described by the ordinary

g=45ofthel locus, e.g., is seen to have the two imaga4) second-order differential equation
in the g plane, which hence must be the branch points there. d?e do
(€%+ Be*+ a)W+2(5e2X+ﬁeeX+ am) gy

3. Discussion
. . . _ + N+ ye*+ 1) p=0. (C1)
It is instructive to trace the origin of the branch points.

The SK functionM(z,p) is entire inz, so multivaluedness The transformation

must enter via th@ dependence. The latter enters solely via «

the zeros of the polynomials,, By, andC,, determining y= e (C2)
the factorizer equation&0). One has explicitly p™’
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where[see Eq(81)]

1
pr =5 BE(p-4a)" (C3)

are the two finite singular points of the equation, reduces Eqg.

(C1) to algebraic form

d?¢
_ _ 2 T
(y=Dy-a)y* 5o

2Be 2ap | do
+](26+1)y?+ —a—-1|y+a+——|y——

+\ ay1+§4y+(p+rq>¢=0

-
a=—. C4
= (C4
Setting further
1/2

e=yIF(y), q=—ui(uz—;) (CH)

reduces Eq(C4) to the standard form of Heun’'s equation

(8,19
y(y=1)(y—a)F"+[C(y—1)(y—a)+Dy(y—a)
+Ey(y—1)]F'+(ABy—Db)F=0, (Co)
with four regular singularities and the RiemaRnsymbol

0 1 a o0
P 0 0 0 Ay b
1-C 1-D 1-E B

C+D+E=A+B+1. (C7)

The nonzero exponents are defined [sge Eqs.(83) and

(B8)]

A=q+8+(82—aN)P=q—c(—\),
B=g-c"(—1\),
C=2q+2u+1, (C9

D=v",
E=v"
and the accessory paramebeby [see Eq(22)]
b= %[—M—B(QZJr 2eq)]= %Bo(q,—h)- (C9
The solutions of Eq(C6) are discussed if8,19].

APPENDIX D: A USEFUL INTEGRAL

Fourier transforms occurring in the present paper give rise
to integrals that have the general structure

|=f dx eX(e*—p")P(e*—p)°C. (D1)
They are reducibley(=€*) to the tabulated integr4ll4,15

de Y14 ayP) AL+ ByP) "
0

A
T =|T| gt v—=
1o p) e p) e B
P Fluty) 2 Hp 00 a)
larg of,|larg B|<m, p>0, O<ReN)<2Reu+v).
(D2)
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