PHYSICAL REVIEW E VOLUME 57, NUMBER 2 FEBRUARY 1998

Model for anisotropic directed percolation
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We propose a simulation model to study the properties of directed percolation in two-dimensional aniso-
tropic random media. The degree of anisotropy in the model is given by theudbetween the axes of a
semiellipse enclosing the bonds that promote percolation in one direction. At percolation, this simple model
shows that the average number of bonds per site in two dimensions is an invariant equal to 2.8 independently
of w. This result suggests that Sinai's theorem proposed originally for isotropic percolation is also valid for
anisotropic directed percolation problems. The invariant also yields a constant fractal dimension
D{~1.71 for all u, which is the same value found in isotropic directed percolatipa., u=1).
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PACS numbe(s): 47.55.Mh, 05.40tj, 64.60.Ak, 64.60.Cn

I. INTRODUCTION The paper is organized as follows. In Sec. I, we outline
our model. In Sec. lll, we present the results of our simula-

Critical phenomend1] in anisotropic systems without tions and discuss the effects afon the scaling exponents.
equivalent nearest neighbors constitute an interesting re-
search topid¢2]. A universal formula for percolation thresh-
olds, that involves the dimension of the anisotropic lattice In order to simulate DP in 2D anisotropic random media,
and an arithmetic average of the coordination number foge develop a S|mu!at|on algor!thm similar to the one used in
different anisotropic lattices, was recently postulated in Ref, ef.[4]. The coord|r_1ates dif;lZSIteS are generated at rar_1d_om

. ' . in a square box of size=N"“. The simulation length unit is
[3]. The extension of these studies to more complex probznosen such that the density of sites, namelyin the box is
lems, such as directed percolatit®P), and more complex ajways unity regardless of the total number of sitesThe
systems, such as anisotropic random systems, is yet to Qgercolation is then checked over sites from the left edge to-
addressed. In this context, random systems are good candiards the right edge of the simulation bGe., along thex
dates to model anisotropy since they do not have equivalerxis in Fig. 1. A periodical boundary condition is applied in
nearest neighbors nor equivalent sites at all lengths. the verticaly direction. _ o

In this work we propose a simple simulation model to " Fig- 1 we show a “particle” that moves fromto j.
study the properties of DP in two-dimension@D) aniso-

Il. MODEL

tropic random media. The degree of anisotropy is computed H=1
by means of the ratigu=y./x; between the axes of a
semiellipse enclosing the bonds that promote percolation in Y, 2

one direction, such that<x (see Fig. 1 As a function of
the order parametex and at the percolation threshold, we
measure the correlation length exponentind the fractal
dimensionD; of the largest percolating clustefim systems

of up to 51200 random sitgsin the present model, the

well-known scaling exponents of isotropic DP follow by g
simply settingu=1. //

At percolation threshold, our model shows that the aver- .
age number of bonds per site for DP in anisotropic 2D ran-
dom systems is an invarianB{=2.8) independently of.

This result suggests that the Sinai theorem, proposed origi-

nally for isofropic percolgtlor(l!?), IS also. valid for aniso- FIG. 1. The anisotropically directed percolation model. Percola-
tropic DP prObIems_' The invariant also yields a Co_nsam_ tion from sitei to j is allowed whenever sitg is contained within
~1.71 for all w, which corresponds to the value of isotropic e shaded elliptical area. The degree of anisotropy is given by the
DP. ratio =X, /Y, Wherex,, is the longer ang,, the shorter axis of
the semiellipse. The cage=1 yields the standard isotropic DP. At
percolation, the average number of bonds per (itgs in this fig-
*Electronic address: canessae@ictp.trieste.it ure is 2.8.
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The moving is allowed whenever the siteis contained 5.5
within the shaded elliptical area. In our simulations, the de- C
gree of anisotropy is given by the paramejer X;,/Ym,, a0l
wherex, is the longer ang,, is the shorter axis of a semiel- r
lipse, i.e.,u is the ratio of the maximum *“hopping dis- r
tances” along thex andy axes. 45

In the standard 2D isotropic DP, there are three possible

equivalent directions to move: up, down, and forward. This -
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situation in our model is attained by settipg=1. In the limit

pn—o, the model tends to the one-dimensional percolation
problem. Thus, simulation results using the present 2D per- 3.5
colation model will reveal features of the crossover from the
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standard(say, isotropi¢ DP to the 1D percolation problem. 50 £
For intermediate values gi>1 our model features aniso- ' o
tropic DP. o

_ For ag|_ven_value of the anisotropy pa_lramqteand fora 2§ o e
given realization of random site coordinatgs,y;}, in a In(L)=In(N"?)
sample of siz&N=L X L, we study percolation from the left- 100 (5 s
to the right-simulation box edge. At the percolation thresh- 9.5 . De=1.727 f‘f§
old, we obtain the critical value of the semiellipse ayjs, oo : D=1.682 28

VYo(N)=y,(N), and the masM of the critical clusterM (N)

which is the total number of sites belonging to the largest 8.5 De=1.723
cluster at percolation. These quantities are then averaged F : D=1.674
over a great numbef of random realizations of site coordi- = %o
nates for the same sample sievhich result on the average = 5L e
quantities Y.(N) =(y.(N)) and M(N)=(M(N)), respec- £ g §
tively. woE e
In general, the dependence of the averaggdN) and 6.5 &
M(N) on the samples sizd is a consequence of the finite- c
size effects of the percolation problem. In order to quantify 80¢
these effects, the present simulations were performed at dif- 5.5 _ ¥
ferentN=400, 800, 1600, 3200, 6400, 12 800, 25 600, and c v
51 200. Accordingly, the numbet decreases from f0to S05 e a5 40 15 50 55
107 such that the product of the numbé¢s< N is approxi- In(L)=In(N**)
mately the same for all sample sizisin our study. FIG. 2. Simulation data and linear fitting féa) — Indy(N) of
Along with these average quantities, we also calculate thgy (2 1) piotted against the sample sizeLIfor several values of
moments the anisotropy parametet. (b) InM(N) of Eq. (3.3 plotted
against the sample sizelnfor several values of the anisotropy
8Y(N)=([yc(N)— Y (N)]?)*2, (2.1)  parametep. Within measurement errors, most fitted lines are par-
allel giving the average constant valllg~1.71+0.02. Note that
5M(N)=<[M(N)—M(N)]2>1’2, 2.2 fluctuations around this value are not systematig.dacreases.
and also the next-order moments, which are used to estimate IIl. RESULTS AND DISCUSSION

the statistical errors of our simulation results. . In Fig. 28 the quantities—Indy(N) are plotted versus
The present measurements are performed for various vajz| —inNY2 for different values of the order parameter
ues ofu=1,2,3,4,5, 6,7, and 8. As can be seen from therpe giopes of the fitting lines give the corresponding values
results d|scus_s¢d in Sec. lll, the greater th_e valug.othe 5 the exponent. Thus we found that for the largest 8,
stronger the finite-size effects are. We verify that fo+ 8 »=1.14, and foru=2 we measured=1.48. Other values
simulations can only be carried out in samples of se e given in the figure. From these calculated moments and
=3200. ) o ) the linear fitting procedure, we estimate the statistical error
Following the well-known finite-size scaling procedure 4 pe |ess than 0.02 for all values pfshown in this figure.
suggested in Ref5], the critical exponent of the percola- Results for the DP limiting casp=1 were previously
tion problem is defined from the scaling expression reported by one of ug4]. In this case, the value~1.65
oy *+0.02 is known as the universal value of for a whole
OYe(N)oc L™, (2.3)  class of isotropic DP models in two dimensions. As the
amount of anisotropy increases, i.e.>>1, the correlation
where sy (N) is given in Eq.(2.1). Note that in the present length exponeni decreases. Since this decrease is initially
study percolation is checked by the longitudinal directionvery fast to then become smoothly, it is not possible to ob-
only (the x axes in Fig. 1, then the exponent in Eq. (2.3)  tain the whole crossover from 2D to 1D directed percolation
should be identified with the paralle|| (see Ref[1]). for the behavior ofv. That is, the decrease from=1.65 in
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2D DP to the limity=1 in one dimension is limited by the
size of our simulation box. The finite-size effects in corre-
spondence to the different values@f(and, therefore, to the
different degrees of anisotropy in the 2D random sysjems
are in fact equivalent to those discussed in great detail in
Refs.[4,6] for anisotropic percolation and isotropic DP.
By using the values of in Fig. 2(a), the criticalradius y;
=Yy.(N—x) is determined from the scaling expression

Vo= Ye(N) L™ (3.1
In Figs. 3a)—3(c) the quantitiesy.(N) are plotted versus
L=, From these plots we obtaily, by taking the
asymptotic valuesN—x for all u studied. The estimated
values ofy, are also shown in this figure.

Very remarkably, our simulations show that for alicon-
sidered the quantityu,yﬁ(,u,) is in fact a constant. Since
(W/Z)/Ly(Z:E(ﬂ'/Z)XCyC is the area of the critical semiellipse
at percolation, then our results suggest that Sinai's theorem
[7], proposed originally for IP, is also valid for 2D aniso-
tropic DP problems. In this respect, we emphasize again that
our length unit should be taken as ' for a system with
site concentratiom.

Thus, our simulations lead to the invariance

BW=gn=(7/2)nuy?=2.82+0.02, (3.2
wheren is the site concentratiote.g., the donor concentra-
tion in doped semiconductqrsS; is the area of the critical
semiellipse, an@'? is the mean number of connected bonds
per site at percolation. The invariance of £§.2) may be
somehow related to the fractal behavior of the critical clus-
ters, as we shall discuss below.

Let us determine first the fractal dimensi@x of the
critical percolation cluster using a standard procedure based
on the scaling expressida]

M(N)_xLPr, (3.3
In Fig. 2(b) the quantities I (N) are plotted against Infor
different values of the anisotropy parameter

Very surprisingly, we found that the fractal dimensions
D;, as determined from the slopes of the fitting lines for
various values ofx in Fig. 2(b), seem indeed to be constant
and independent gf within our simulation errors. We esti-
mateD;(u)=D¢~1.71*+0.02 for all u, which corresponds
to about the same value of the isotropic DP model with
=1.

At first glance this result might raise some doubts, but we
believe it can be understood in connection with the invariant
given in Eq.(3.2). The invariance oB{®, with respect to
changes in the anisotropy parameterimplies that the av-
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erage number of connected bonds at percolation is indepethe asymptotic valuell— co.

dent of . If we assume the percolation process within an
elementary semiellipsés in Fig. 1 to be the “originating
percolation rule,” then the invariance of E¢3.2) could

L-l/u

0.02

FIG. 3. Simulation data and linear fitting fgr.(N) of Eq. (3.1
plotted against. ~Y”. (@ w=1, 2, and 3.(b) =4, 5, and 6.(c)
=7 and 8. The thresholy. for eachu studied is estimated from

theorem; in these cases, the fractal dimensions of the perco-
lation clusters could all be the same.

mean that the law to generate percolation clusters remains It should be noted that our simulations are limited to 1
unchanged ag. varies. If this conjecture is right, here we <u<8. Itis in this range that we observed the invariance of
could suggest a more general statement for all types of peB. and the constant value fdD;. We believe that these
colation models which are related to each other by the Sindeatures are maintained for a larger range.ofalues. How-
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ever, it is not feasible to increage and the sample sizN ping conduction in anisotropin-Ge andn-Si under strong
simultaneously and get to the point where the present 2[lectrical fields, where the impurity wave functions are an-
simulation model crosses to the 1D cdse., u—©). isotropic and the conduction band splits into one ellipsoid
To conclude, we suggested a model for anisotropic di{9]. Our measurements could be useful, for instance, in the
rected percolatiofADP) and have presented simulation re- expressions for the hopping resistivity in 2D anisotropic ran-
sults for the main critical exponents of the model in 2D dom media. The invariandg{®’~2.8 could be used in these
random systems. Quite surprisingly, we found an invariancgystems similarly to the invarian@’ = 4.5 for IP in a circle

for the average number of connected bonds at percolatioproblem[9]. We hope the present model will stimulate fur-
due to presence of a suitable external foieg., shear stress, ther investigations on this direction.

magnetic field, etg. Our simulations show that the product
,u><y§ is a constant for alj’s considered. This invariance ACKNOWLEDGMENT
should be in close relation to the value Bf .
We strongly believe the present model of ADP could be One of the authoréN.V.L.) would like to thank the Con-
important to describe some physical phenomena such as hogensed Matter Group at ICTP, Trieste, for financial support.
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