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Model for anisotropic directed percolation
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We propose a simulation model to study the properties of directed percolation in two-dimensional aniso-
tropic random media. The degree of anisotropy in the model is given by the ratiom between the axes of a
semiellipse enclosing the bonds that promote percolation in one direction. At percolation, this simple model
shows that the average number of bonds per site in two dimensions is an invariant equal to 2.8 independently
of m. This result suggests that Sinai’s theorem proposed originally for isotropic percolation is also valid for
anisotropic directed percolation problems. The invariant also yields a constant fractal dimension
D f;1.71 for all m, which is the same value found in isotropic directed percolation~i.e., m51).
@S1063-651X~98!00702-8#

PACS number~s!: 47.55.Mh, 05.40.1j, 64.60.Ak, 64.60.Cn
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I. INTRODUCTION

Critical phenomena@1# in anisotropic systems withou
equivalent nearest neighbors constitute an interesting
search topic@2#. A universal formula for percolation thresh
olds, that involves the dimension of the anisotropic latt
and an arithmetic average of the coordination number
different anisotropic lattices, was recently postulated in R
@3#. The extension of these studies to more complex pr
lems, such as directed percolation~DP!, and more complex
systems, such as anisotropic random systems, is yet t
addressed. In this context, random systems are good ca
dates to model anisotropy since they do not have equiva
nearest neighbors nor equivalent sites at all lengths.

In this work we propose a simple simulation model
study the properties of DP in two-dimensional~2D! aniso-
tropic random media. The degree of anisotropy is compu
by means of the ratiom5yc /xc between the axes of
semiellipse enclosing the bonds that promote percolatio
one direction, such thaty<x ~see Fig. 1!. As a function of
the order parameterm and at the percolation threshold, w
measure the correlation length exponentn and the fractal
dimensionD f of the largest percolating clusters~in systems
of up to 51 200 random sites!. In the present model, th
well-known scaling exponents of isotropic DP follow b
simply settingm51.

At percolation threshold, our model shows that the av
age number of bonds per site for DP in anisotropic 2D r
dom systems is an invariant (Bc52.8) independently ofm.
This result suggests that the Sinai theorem, proposed o
nally for isotropic percolation~IP!, is also valid for aniso-
tropic DP problems. The invariant also yields a constantD f

;1.71 for allm, which corresponds to the value of isotrop
DP.

*Electronic address: canessae@ictp.trieste.it
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The paper is organized as follows. In Sec. II, we outli
our model. In Sec. III, we present the results of our simu
tions and discuss the effects ofm on the scaling exponents

II. MODEL

In order to simulate DP in 2D anisotropic random med
we develop a simulation algorithm similar to the one used
Ref. @4#. The coordinates ofN sites are generated at rando
in a square box of sizeL5N1/2. The simulation length unit is
chosen such that the density of sites, namely,n, in the box is
always unity regardless of the total number of sitesN. The
percolation is then checked over sites from the left edge
wards the right edge of the simulation box~i.e., along thex
axis in Fig. 1!. A periodical boundary condition is applied i
the verticaly direction.

In Fig. 1 we show a ‘‘particle’’ that moves fromi to j .

FIG. 1. The anisotropically directed percolation model. Perco
tion from sitei to j is allowed whenever sitej is contained within
the shaded elliptical area. The degree of anisotropy is given by
ratio m5xm /ym , wherexm is the longer andym the shorter axis of
the semiellipse. The casem51 yields the standard isotropic DP. A
percolation, the average number of bonds per site~dots in this fig-
ure! is 2.8.
2467 © 1998 The American Physical Society
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The moving is allowed whenever the sitej is contained
within the shaded elliptical area. In our simulations, the
gree of anisotropy is given by the parameterm5xm /ym ,
wherexm is the longer andym is the shorter axis of a semie
lipse, i.e., m is the ratio of the maximum ‘‘hopping dis
tances’’ along thex andy axes.

In the standard 2D isotropic DP, there are three poss
equivalent directions to move: up, down, and forward. T
situation in our model is attained by settingm51. In the limit
m→`, the model tends to the one-dimensional percolat
problem. Thus, simulation results using the present 2D p
colation model will reveal features of the crossover from
standard~say, isotropic! DP to the 1D percolation problem
For intermediate values ofm.1 our model features aniso
tropic DP.

For a given value of the anisotropy parameterm and for a
given realization of random site coordinates$xi ,yi%, in a
sample of sizeN5L3L, we study percolation from the left
to the right-simulation box edge. At the percolation thres
old, we obtain the critical value of the semiellipse axisym ,
yc(N)5ym(N), and the massM of the critical cluster,M (N)
which is the total number of sites belonging to the larg
cluster at percolation. These quantities are then avera
over a great numberK of random realizations of site coord
nates for the same sample sizeN which result on the averag
quantities Yc(N)5^yc(N)& and M(N)5^M (N)&, respec-
tively.

In general, the dependence of the averagesYc(N) and
M(N) on the samples sizeN is a consequence of the finite
size effects of the percolation problem. In order to quan
these effects, the present simulations were performed at
ferent N5400, 800, 1600, 3200, 6400, 12 800, 25 600, a
51 200. Accordingly, the numberK decreases from 104 to
102 such that the product of the numbersK3N is approxi-
mately the same for all sample sizesN in our study.

Along with these average quantities, we also calculate
moments

dyc~N!5^@yc~N!2Yc~N!#2&1/2, ~2.1!

dM ~N!5^@M ~N!2M~N!#2&1/2, ~2.2!

and also the next-order moments, which are used to estim
the statistical errors of our simulation results.

The present measurements are performed for various
ues ofm51, 2, 3, 4, 5, 6, 7, and 8. As can be seen from
results discussed in Sec. III, the greater the value ofm, the
stronger the finite-size effects are. We verify that form58
simulations can only be carried out in samples of sizeN
>3200.

Following the well-known finite-size scaling procedu
suggested in Ref.@5#, the critical exponentn of the percola-
tion problem is defined from the scaling expression

dyc~N!}L21/n, ~2.3!

wheredyc(N) is given in Eq.~2.1!. Note that in the presen
study percolation is checked by the longitudinal directi
only ~the x axes in Fig. 1!, then the exponentn in Eq. ~2.3!
should be identified with the paralleln uu ~see Ref.@1#!.
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III. RESULTS AND DISCUSSION

In Fig. 2~a! the quantities2 lndyc(N) are plotted versus
lnL[lnN1/2 for different values of the order parameterm.
The slopes of the fitting lines give the corresponding valu
for the exponent. Thus we found that for the largestm58,
n51.14, and form52 we measuredn51.48. Other values
are given in the figure. From these calculated moments
the linear fitting procedure, we estimate the statistical er
to be less than 0.02 for all values ofn shown in this figure.

Results for the DP limiting casem51 were previously
reported by one of us@4#. In this case, the valuen'1.65
60.02 is known as the universal value ofn uu for a whole
class of isotropic DP models in two dimensions. As t
amount of anisotropy increases, i.e.,m.1, the correlation
length exponentn decreases. Since this decrease is initia
very fast to then become smoothly, it is not possible to o
tain the whole crossover from 2D to 1D directed percolat
for the behavior ofn. That is, the decrease fromn'1.65 in

FIG. 2. Simulation data and linear fitting for~a! 2 lndyc(N) of
Eq. ~2.1! plotted against the sample size lnL for several values of
the anisotropy parameterm. ~b! lnM(N) of Eq. ~3.3! plotted
against the sample size lnL for several values of the anisotrop
parameterm. Within measurement errors, most fitted lines are p
allel giving the average constant valueD f;1.7160.02. Note that
fluctuations around this value are not systematic asm increases.
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2D DP to the limitn51 in one dimension is limited by the
size of our simulation box. The finite-size effects in corr
spondence to the different values ofm ~and, therefore, to the
different degrees of anisotropy in the 2D random syste!
are in fact equivalent to those discussed in great deta
Refs.@4,6# for anisotropic percolation and isotropic DP.
By using the values ofn in Fig. 2~a!, the critical radius yc
5yc(N→`) is determined from the scaling expression

uyc2yc~N!u}L21/n. ~3.1!

In Figs. 3~a!–3~c! the quantitiesyc(N) are plotted versus
L21/n. From these plots we obtainyc by taking the
asymptotic valuesN→` for all m studied. The estimated
values ofyc are also shown in this figure.

Very remarkably, our simulations show that for allm con-
sidered the quantitymyc

2(m) is in fact a constant. Since
(p/2)myc

2[(p/2)xcyc is the area of the critical semiellips
at percolation, then our results suggest that Sinai’s theo
@7#, proposed originally for IP, is also valid for 2D aniso
tropic DP problems. In this respect, we emphasize again
our length unit should be taken asn21/2 for a system with
site concentrationn.

Thus, our simulations lead to the invariance

Bc
~d!5Scn[~p/2!nmyc

252.8260.02, ~3.2!

wheren is the site concentration~e.g., the donor concentra
tion in doped semiconductors!, Sc is the area of the critica
semiellipse, andBc

(d) is the mean number of connected bon
per site at percolation. The invariance of Eq.~3.2! may be
somehow related to the fractal behavior of the critical cl
ters, as we shall discuss below.

Let us determine first the fractal dimensionD f of the
critical percolation cluster using a standard procedure ba
on the scaling expression@8#

M~N!L→`}LD f . ~3.3!

In Fig. 2~b! the quantities lnM(N) are plotted against lnL for
different values of the anisotropy parameterm.

Very surprisingly, we found that the fractal dimensio
D f , as determined from the slopes of the fitting lines
various values ofm in Fig. 2~b!, seem indeed to be consta
and independent ofm within our simulation errors. We esti
mateDf(m)[D f'1.7160.02 for all m, which corresponds
to about the same value of the isotropic DP model withm
51.

At first glance this result might raise some doubts, but
believe it can be understood in connection with the invari
given in Eq.~3.2!. The invariance ofBc

(d) , with respect to
changes in the anisotropy parameterm, implies that the av-
erage number of connected bonds at percolation is inde
dent of m. If we assume the percolation process within
elementary semiellipse~as in Fig. 1! to be the ‘‘originating
percolation rule,’’ then the invariance of Eq.~3.2! could
mean that the law to generate percolation clusters rem
unchanged asm varies. If this conjecture is right, here w
could suggest a more general statement for all types of
colation models which are related to each other by the S
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theorem; in these cases, the fractal dimensions of the pe
lation clusters could all be the same.

It should be noted that our simulations are limited to
<m<8. It is in this range that we observed the invariance
Bc and the constant value forD f . We believe that these
features are maintained for a larger range ofm values. How-

FIG. 3. Simulation data and linear fitting foryc(N) of Eq. ~3.1!
plotted againstL21/n. ~a! m51, 2, and 3.~b! m54, 5, and 6.~c!
m57 and 8. The thresholdyc for eachm studied is estimated from
the asymptotic valuesN→`.
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ever, it is not feasible to increasem and the sample sizeN
simultaneously and get to the point where the present
simulation model crosses to the 1D case~i.e., m→`).

To conclude, we suggested a model for anisotropic
rected percolation~ADP! and have presented simulation r
sults for the main critical exponents of the model in 2
random systems. Quite surprisingly, we found an invaria
for the average number of connected bonds at percola
due to presence of a suitable external force~e.g., shear stress
magnetic field, etc.!. Our simulations show that the produ
m3yc

2 is a constant for allm ’s considered. This invarianc
should be in close relation to the value ofD f .

We strongly believe the present model of ADP could
important to describe some physical phenomena such as
,
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ping conduction in anisotropicn-Ge andn-Si under strong
electrical fields, where the impurity wave functions are a
isotropic and the conduction band splits into one ellips
@9#. Our measurements could be useful, for instance, in
expressions for the hopping resistivity in 2D anisotropic ra
dom media. The invarianceBc

(d);2.8 could be used in thes
systems similarly to the invarianceBc

( i )54.5 for IP in a circle
problem@9#. We hope the present model will stimulate fu
ther investigations on this direction.
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