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Rosenfeld-Prigogine complementarity of descriptions in the context
of informational statistical thermodynamics
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Within the framework of informational statistical thermodynamics, we consider the case of a particular
dissipative dynamical system, namely, a system of harmonic oscillators weakly interacting with a thermal bath.
Informational entropy and informational-entropy production are obtained. In terms of them we derive the
information gain in alternative pictures and a Rosenfeld-like complementarity principle between microdescrip-
tion and macrodescription. This complementarity is related to a kind of measure of the incompleteness of both
descriptions and to Prigogine’s theory of irreversible processes. The fundamental role of the universal Boltz-
mann constant for the characterization of this complementarity is disc&HE3-651X98)06501-5

PACS numbsgs): 05.70.Ln, 05.90tm, 82.20.Db, 89.70-c

I. INTRODUCTION versible processedas its mechanical-statistical foundations
in the statistical mechanics for nonequilibrium systems, in
The connection and interplay of the microscopic and macgparticular, the so-called nonequilibrium statistical operator
roscopic levels of description in matter, that is, between memethod (NESOM for short, reviewed in Refl9]), with
chanics and thermodynamics, have been the object of discugubarev and co-workers’ constructipt0,11] apparently be-
sion since the emergence of thermodynamics, as an offshobtd the most concise, elegant, practical, and physically sound
of the Industrial Revolution, in last century. In particular, @PProach12,13. _ _ _
Rosenfeld 1] has argued that in this case is at work a kind of [N continuation, the method is applied to the particular
logical relationship to which the name @bmplementarity model system mentioned above, which admits exact solu-

may be applied. This was conjectured by BéBt, and is tions, and for which particular thermodynamic aspects, in the
contained in a barticular form in Prigogine’s WE)[B] n  context of IST, are obtained in order to used them to char-
Rosenfeld’s words, it should characterize the mutual excluf"Cterlze Rose_nfeld_s arguments. We dlscuss_ this kind of
siveness of the two descriptions: conditions allowing for acomplem_enta_rlty prlnC|p_Ie, analyze its connection to _the one

. ' due to Prigogine, and give the form of a principle of incom-

o X nE)Ieteness of description. In Sec. IV we present a critical dis-
equude the pOSSIbIIIty of applying to the system any of thecussion and some concluding remarks.

typical thermodynamic concepts; and, conversely, the mac-

roscopic description in terms of the latter requires conditions

of observation under which the mechanical parameters scape Il. MODEL AND ITS DESCRIPTION IN IST

our control. Consider the system composed by two subsystems of har-

We consider here the ideas of Rosenfeld and Prigogine ifonic oscillators, coupled through a particular interaction, as
the framework of an emerging theory, namely, the so-calledjescribed by the Hamiltonian

informational statistical thermodynami@dST for shor}. It is

applied to the study of a particular system consisting into an 2 2.0 BV (1 (8 AV Ll (v PV 173 A v B

assembly of two subsystems of linear oscillators in mutual H(X,p; X,P)=Hoy(X,p) + Ho X,P) +H'(X,p,X,P), (1)

interaction(it constitutes an excellent model for the descrip- o R A~ -

tion of particular sets of collective elementary excitations inWherex=xi,... xy and X=Xy,..., Xy, are the generalized

solids like, for example, polaritons, magnetoplasma wavesgoordinates of the two types &f andN’ oscillators, respec-

etc). tively, andp andP are the corresponding sets of linear mo-
IST (sometimes also called information-theoretic thermo-menta. In Eq.(1), Hy; andH, are the Hamiltonians of the

dynamic$ was pioneered by Hobsd#], sometime after the free subsystems, namely,

publication of Jaynes’s seminal papfs$on the foundations

of statistical mechanics on the basis of information theory

(brief considerations and short historical notes on IST are Hoi= >, 3(PF+ w?XD), (2a

given in Ref.[6], and additional topics in Reff7]). It may be J

noted that, as thermostatithermodynamics of equilibrium

system$ has microscopic foundations provided by Gibbs’ . N .
equilibrium statistical mechanic&nd then is referred as Hop= > %(pi+gixi) (2b)
Gibbs Thermostatic§8]), IST (a thermodynamics for irre- m=

andH’ is the interaction energy, which is taken in the form
*Electronic address: jgramos@ifi.unicamp.br of the bilinear interaction,
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- _ dependent, through, on the se{F;}, Eq. (5a allows us to
H'=> T,%X,, i=1..N;p=1.N', (20  close the equations in terms of variabl@s.
s Two other relevant results are that the informational-
wherel stands for the coupling strength of the interaction. €ntropy production is given bj9-11,15,

Given the Hamiltonian of Eq1) we can proceed to build
the informational mechanostatistical description of the sys-
tem in NESOM, a description which may be considered to be
encompassed within the scope of Jaynes’s predictive statis-
tical mechanicg14] (see Refs[9-13]), and which, as no- and a particularly well-defined relationship between the root-
ticed, provides the foundations of IST. We recall that the ISTmean-square deviations of the macrovariables and of the
(or informational-statisticalentropy is given by Lagrange multipliers is satisfied, namely,

S(t)=—Tr{p(t)In p(t,0}=—Tr{p()P(V)In p(1)}, [AZF(D]Y1A%Q;()] = ke[ Gj;(1)]Y2 ®
©)

?(t):d§t)/dt=j21 F,(H[dQ(t)/dt], @

whereG is a quantity equal to the product of the diagonal

wherep(t,0) is an auxiliary coarse-grained distribution, andelementj of the correlation matrix and that of its inverse,
p(t) is the distribution that describes the macroscopic statend equal to 1 in the case of uncorrelated variables, as shown
of the system and its evolution in nonequilibrium conditions.in Appendix A. Equation(8) resembles a kind of uncertainty
The latter contains nonlinear, nonlocal in space, and memorjgrinciple in the way proposed by Rosenfdlt], which is
effects, and it is an operator uniquely defined by the formewalid for arbitrarily far-from-equilibrium conditions and at
and the system’s Hamiltonigi®—13]. Moreover,P(t) is @  any time during the evolution of the dissipative macrostate of
time-dependent projection operator, which projects on thehe systemit ought to be noticed that the root-mean-square
so-called informational subspace composed by the dynamieviationsA?;(t) are to be understood in the same sense as
cal variables used for the description of the sysfém?3). is done in equ|I|br|um what is described in REE9]; on the

The informational entropy of Eq(3) increases in time, other hand, the\?Q;(t) represent the statistical fluctuations
which is a consequence of the loss of information in thegf the macrovanables
interpretation of the measurements performed on the system | et us return to the specific case of the system of oscilla-
[9,15,16. According to the methog(t,0) is a superoperator tors characterized by the Hamiltonian of Ed). We con-
depending on a set of basic dynamical varialfleg, with  sider two different statistical descriptions of it: First, we con-
j=1,...n, chosen to provide for the sought-after statisticalsider the description in terms of
description of the systeff®—13], and also depending on an A
accompanying set of Lagrange multiplierdF;(t) () {Hou,Hozt, {Bu(0);B2(D)}, {Ei();Ex(D)}, (9
=kg l}‘(t)} wherekg is a Boltzmann constant. It takes the

form of an instantaneous generalized Gibbsian-like distribu¥VNich consists of collective variables corresponding to the
tion given by[9—13 energies of each of the subsystems; that is, here we have a

kind of canonical description of each one in nonequilibrium

L n " conditions, with the auxiliary(coarse-grained statistical
p(t,0)=ex —<¢>(t)—2l Fi(OP;, (4) probability distribution given bycf. Eq. (4)]
j=
where ¢, playing the role of the logarithm of a generalized pi(t.O)=exp{— () = Bu(VHo = Bai(DHoat  (10)

nonequilibrium partition function, ensures its normalization.
Moreover, the Lagrange multipliefsr intensive thermody-
namic variablegsatisfy that

Let us consider the equations of evolution for the two
basic variables, that is, the equations of the type of Eg)s.
for Q1(t)=E4(t) andQ,(t)=E,(t) in this case. As already
N L SOy N T noted, the right-hand side of these equations is in fact a func-
Fi(D=ke oS/ 0Q;(H=F{Qu(t by (3 tional of the two Lagrange multiplier8,,(t) and B,(t), on
where§ stands for functional differential, and they are deter-which p(t) depends. But these Lagrange multipliers are re-
mined by the constraints that lated to the basic variables through E@s), which in this

- case, and in a classical-mechanical approach, are
Qi) =TrH{Pjp(1)}=Q{ F;(1),.... Fn(D)}. (5b)

E1(t)=Tr{Hop ()} =NBL(1), 11
The set{Q;j(t)} is composed by the macroscopic variables () {Howp (D} =NB1 (1) (113
that describe the nonequilibrium thermodynamic state of the . N a—1
system, with their irreversible evolution governed by gener- Ea()=Tr{Hoop()} =N"By(1). (11b

alized nonlinear quantum transport equations of the type Therefore, the equations of evolution for the basic variables

d 1 . can be transformed into equations of evolution for the
at Qj(t)=Tf[m [P; ,H]p(t)}Eq)j{Ql(t),---,Qn(t);t}, Lagrange parametey8y () and By (t). This is done using
©6) the nonlinear transpprt theory that the method provi@es
11,17,18, but resorting to the so-called second order ap-
where the explicit form of the nonlinear, nonlocal in space,proximation in relaxation theory17], that is, the one that
and memory-dependent functionals; is given elsewhere keeps the interaction up to second ordanary collisions,
[9-11,17,18 Although the term after the first equal sign is restricted then to weak interactions. Moreover, we take the
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limit of N’ going to infinity, that is, the second system of T3, ()=T.=To, (18b)
oscillators plays the role of an ideal reservoir at, say, tem-
peratureT,. The resulting system of equations of evolution Z.(t)z(aj lwj)exp( —t/27))sin w;t+ 6;), (180
is solved to finally obtair(see Appendix B after introduc- o o
ing the definitions B3'(t)=kgTH(t) and B5%(1) p;(t)=—x()/27;+a; exp( —t/27))coq w;t+ 6;),
=kgT5(t), with both T* playing the role of nonequilibrium (180
temperature-like variable@isually referred to as quasitem- . B
peratureg20]), that o () =N7"H[T5, ()= T3, ()% TT, () T3, (1)}
*
T =T.+Ae ", Th(t)=T.=T,, (12) +[f(t)/kgT3, ()], (19

with the IST entropy production being wherea; and 6; are determined by the initial conditions

(=N [T -THOTLOT3(L), (13 f()=2 [(«?/m)xA ) +AX(DP(D], (200
I

whereT,, (corresponding to the temperature when final ther-
mal equilibrium is achieved; that is, far— the tempera-
ture of the system and reservoir coingidandA, are fixed

7; is defined in Eq(14), and

by the initial conditions. In Eqs(12), 7 is a relaxation time A= (T H(Q%—wd) 2 (20b)
given by w
1 1 1 1 We recall that subsystem 2 acts as an ideal reservoir at
— — 2y, .2 —T* —
=N EJ: TN EJ‘, (77/2)% (|7} 0f) 8(0j—Q,,). constant temperaturBy,=T3,(0)=T...

Next we compare both descriptios and (Il) [cf. Egs.
(10) and(16)] using, evidently, the same initial conditions in
both cases. We fix the initial energies of both systems,
which, using Egs(11) and(17), can be written in the form

(14

The entropy production of Eq13) is positive, and becomes
null when final equilibrium is achievedl'y,=T5=T..=T,

for t—o). I AE=E{(0)—NkgT.=48q;,, 21
Consider now the description 0 1© ° s i

(I {H10,%B;Haghi {811 (1), 01 (1), %1 (1); Ban (D O =Nka[ T51(0) = To]=Nkgh (21D
{El(t),x_(t),ﬁt);Ez(t)}, 15 (I AE=E{(0)—NkgT,=48qq, + Wy, , (210

which is a mixed one, involving the microscopic individual oWy, =2 (a12/2), (210

coordinates and momenta of the oscillators in subsystem 1 !

and the collective variables enerfgs in (I); cf. Eq. (9)]. 51 = NKe[ T4, (0) — To]=NkeAy, | (2168

Therefore, the coarse-grained auxiliary distribution in this

case is(cf. Eq. (4)] we recall that the energy of the reservéis is fixed by its

temperatureTo=T,,, and for the sake of simplicity, without
—t 0= _ _ oo - losing generality, we have chosen the initial conditions
t,0)=ex t t)H t)H 108 alt
p(tO) p{ (0= Bun(H10™ Bz (DHz0 X;(0)=0 andp;(0)=a;. Equations(21) provide the initial
N energy in excess of the values in final equilibriudk,
: A which is composed of two terms: onég, which we call a
— . Ay : . . .
le[@“'(t)xl Yin (ORI 19 heatike contribution,” and the other,6w, dubbed a
“worklike contribution.”

and, whileE,(t) is again the one given in E¢L1b), we now We proceed to compare both descriptions for which pur-
have that pose, first, we resort to a quantum description—more appro-
\ priate for a full analysis in what follow&see Appendix G—
1 N 5 5 . and, second, we define what we call arder parameter
Ei()=NBy;(t)+ Ejgl B (OLyju (V) + o), (H], given by
17 - - — —
(7 AD=[50- S (OUSO=KWISO, (22
2ty — _ p—1
@iXj()==Byrepn (L), (179 where we have introduced
Pi=—BLit) v (). (179 K(t)=—=Tr{p,(t,0)[In p;(t,00—In p;; (1,01}, (23

Proceeding as in the previous cabe(see Appendix B we  namely, an analog of Kullback’s information meas{i24],
derive and solve the equations of evolution to find that which is interpreted as a measure of the gain in information
in the description using,, in comparison with the one using
TH(O=T.+A e, (1838 .. In Fig. 1 we show the evolution af for the choiceT,
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T T 1 ¢ small the heatlike contributio@q,,, goes to zero, while,
2 - the worklike contributiondw,,, acquires the maximum value
= - AE, which can be interpreted as meaning that one can only
— Teo = 300 K - pump mechanical work on the system, and that no heating is
— éff‘i'l,':“:.? - possible. For nonzero value af both contributions are
1=~

Fo s 35 mev 1 present, and fo£ of the order and larger than 0.5, we obtain

— - that they very approximately maintain the distribution of

— - 90% and 10% of the pumped enerdye, for 6q,, and

- 6wy, respectively.

— - We may summarize these results as implying that for a

L L L “small Boltzmann constant” a mechanical-like description

! 2 3 4 predominates, while for the universal value of the Boltzmann

SCALED TIME t/< . .

constant, and also for “larger values of it,” both heatlike and

FIG. 1. Evolution in time of the order parameter of E22). worklike contributions can be pumped simultaneously on the

system. Furthermore, in the former case, the informational

=300 K; AE=0.1NKgTy, &wy,=0.1AE, and all %o entropy S, tends to zero, in accord with the fgct of ha\{in_g
equal to 35 meV. The IST entropy in descriptioh) is what can be coq3|dered as a purely mechamcal description,
smaller than in descriptiofl), as expected, since the former @nd the informational-entropy production vanishes. Then we
carries more information, but they asymptotically coincideMay Say that in such a limiting situatidfinull Boltzmann
once final thermodynamic equilibrium is achieved, as itconstant) no statistical thermodynamics exists, quite in
should. Further considerations on the informational entropy2dreement with Jaynes’s statements, in his already classical
and its production are given in Ref§9,15,16, and a Paper of 196§23] (see also Ref.24]). _ o
geometrical-topological discussion of the method is due to On the other hand, to make contact with Prigogine’s ap-

ORDER PARAMETER A(t)
= N W h OO N O
I

Ref.[22]. proach, we introduce in IST the entropy operator
R n
[ll. ROSENFELD-PRIGOGINE COMPLEMENTARITY S(t)=kgS(t)=—kgP(t)In p(t)=—Fy(t)— 21 ]-"J-(t)Pj ,
IN IST I=

(24)

Taking into account the results of Sec. Il together with the ] ) o
relationship of Eq.(8), we explore the role of Boltzmann Where Fo=kg¢ and P(t) is the time-dependent projection
constant resorting to, at a given tingay the initial onet ~ OPerator present in E¢3) and defined elsewhef8] (which
=0), introducing in the expression fax of Eq. (22) a scal- projects at each timeover the subspace defined by the basic
ing ¢ of the Boltzmann constarttvritting £kg), with & vary- set of dynamical variables, the so-called informational sub-
ing from zero to infinity. The resulting-dependent(0[¢) is ~ SPAce; see also ReR2]). The statistical average with(t)
shown in Fig. 2. It is verified that@ A<1, with A going to  Of this entropy operator is the IST entropy of ES). Fur-
one for & going to zero and\ going to zero foré going to thermore, if we indicate by the Liouville operator of the
infinity, implying in maximum information gain and no in- System, then it follows that
formation gain at all, respectively. For the numbers used
(and we recall thaw,, is 10% of the input of exciting kgo(t)=iLS(t)= >, Fi(b)iLP;, (25)
energyAE, while 6q;;, is 90% of AE), for £=1, that is the i
real case in nature fdz=8.617< 10" ° eV/K, the informa-

tion gain is roughly 1% of5,. Moreover, it follows that for which introduces the entropy production operatewhose

average is the IST entropy production of E@). The con-
nection of the entropy operator of E4) and the one in-

10 troduced in a general form by Prigogine is made through the
S identification —kgP(t)Inp(t)=Mp(t), with operatorM de-
S 08 . fined in Ref[3]. Let us take the commutator of the Liouville
< };g;gﬂ"hfmm operator and the entropy operator, and next the average value
B o6k Swg=0.1 AE of it, to obtain that
b fo= 35mev
2 . 1 aa .
< o4f THLL SO ]p(0) = = THIS,H]=S[p.H]}
x [ ~ JR—
8 0.l =THpiLS} =kgo(t). (26)
o]
According to Prigoging3], the non-null commutatdriL,S]
005 ' o5 i 1o 5 in this Eg. (26) leads to acomplementarity principleghat

SCALING FACTOR & implies that either we consider eigenfunctions of the Liou-
ville operator to determine the mechanical evolution of the
FIG. 2. Dependence of the order parameter of &) for t system, or we consider eigenfunctions of the entropy opera-
=0 on a scaled Boltzmann constant. tor [25], but they do not have common eigenfunctions.
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IV. CONCLUDING REMARKS fluctuations of the basic variables, also providing for a gen-

We can say that the results presented above point to th([erahzatlon of Maxwell’'s relations to nonequilibrium situa-

plausibility that the incommensurability of the Liouville op- ?ons, namely,

erator (mechanical levgland the entropy operatgthermo- 2 , —
dynamical level implies a kind of uncertainty relation, or, "¢/ 3F;(1) SR (D =Ciu(V)
more appropriately, a kind aheasure of incompleteness of
descriptions A simultaneous determination of the informa-
tional content of the solutions of the equations of evolution
of the macrostate and a detailed microscopic positioning :f dFAﬁj(t)Aﬁk(t)Ht,O), (A2)
(point in phase space or quantum stagenot possible. This

fact is governed by the presence of the Boltzmann constant,

as quantified in Eq<8) and (26) (see Fig. 2, where the role Where

of kg—scaled by the factaf¥—in characterizing this comple- A - a_ -

mentarity principle is evidenced APj()=P;—=Tr{Pjp(t,00}=P;—Q;(t), (A3)

It has been arguel®6] thatkg introduces an influence on ) ) ) ) )
the microscopic level of the experiment at the macroscopi@1dCik(t) is the matrix of correlations of the basic dynami-
level. Heat and work are considered as intrinsic properties df@l variables, which is symmetric, name@j = Cy;, and, as
matter, and heat flux as a movement of “thermal charges’n0ted; is a generalization to the nonequilibrium situation
under the action of a gradient of temperature. In this contexil€ context of IST of Maxwell’s relations in thermostatics.
kg may then be—as reinforced by the results in this paper—Furthermore9—11],
considered as a ‘“quantum of thermal charge,” namely, the S
minor amount of heat to be displaced by unit of temperature 6°S(t)/6Q;(t) 6Qy(t) = 6F;(t)/ 6Qu(t) = F(t)/ 5Q;(t)
gradient. It wouldrepresent the unit of measure of the un- (A4)
certainty of the description of the mechanical state on the
basis of the given reduced macroscopic characterization oftnd
the systemThis point has also been stressed by Tikh ) S
Hence it may be argued that, as Planck’s constant defines t 5" ¢(1) 5°S(t) oQ;(t) SF (1)

interaction between the quantum system and the measures: SF (1) 8F /(1) 8Q (1) 5Qy(t) 7 SF (1) 8Qy(t)
ment device as nondecomposable, Boltzmann’s constant also '
defines the microscopic and macroscopic descriptions as
nondecomposablg27]. In this case, we reiterate, there is at
work a kind of logical relationship to which the name of

complementarity-as an extension of Bohr’'s ideas—may be
applied[1]: As shown(and we stress that this is in the realm
of IST) it can be characterized by a kind of uncertainty rela-
tion [cf. Eq. (8)] and the interplay of two noncommutative

operatordcf. Eq. (26)], and it becomes tempting, or, better, —
conjecturable, to consider the Boltzmann constant as playing keS()=S(1),  Fj()=kgF;(t)=S(1)/6Q;(1).

= _5jk1 (AS)

and then the second differential coefficients of the informa-
tional entropy are the elements of minus the invezse®) of

the matrix of correlation€. Let us next introduce the alter-
native definitiongthus introducing Boltzmann constant

the role of an elementary quantum of heat transfer, and being (AS)
responsible for the necessary duality of descriptions. The fluctuation of the informational entropy is
ACKNOWLEDGMENTS 6S(t) oS(t
N AZS(t)=2 5 L 300 © Cik(1)
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Paulo State Research AgentlyAPESB, the National Re-
search CouncilCNPg, the Ministry of Planning(Finep, :2 Cik(D)F (1) F(b), (AB)
Unicamp FoundatiofFAEP), IBM-Brasil, and the John Si- ik
mon Guggenheim Memorial Foundation.
and that of the intensive variablegSare
APPENDIX A: CORRELATION MATRIX SFi(t) oF;(1)
AND AN UNCERTAINTYLIKE LAW A2F(t)= e t
' V=% 50,0 30,1
Given ¢(t) andS(t) of Egs.(3) and(4), their differential
coefficients giveQ;(t) andF(t); that is[9-11], :szkE/ ngk—l)(t)C]ﬂﬂ)(t)Ck/(t):kéqjﬂ)(t)_
Qj(t)=—08¢(1)/5F;(1), F;(t)=35(1)/5Q;(1), ) (A7)
Al

Therefore,

where § stands for functional derivativi28]. Moreover, the ) 5 )
second order functional derivatives allow us to introduce the A“Qj(1)AF;(t)=kgGj; (1), (A8)
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Gj;(H=Cy(HCj; M(1). A9 N
i0=Ei 0G0 " gt ExO=— [Bi' (0= B2 (D], (B6)
In the particular case when the basic variables are uncorre- !
lated, viz.C;,=0 for j#k, as in the case of equilibrium,
then d _ d
gt E2(D=— g Ea(V), (87)
A2Q;(t) A2F;(t)=kj (A10)
and where
[A%Q)(D]“FAZF ()] 2=Ks. (AL1) N 7o I
. R Do23 e se-ay. (88)
Equations(A8) and (A11) have a similarity with an uncer- 71 Jn @j
tainty law, as is the case in quantum mechanics for the case
of two noncommuting Hermitian operators. and the final form of Eq(B7) is a result of the conservation
of energy in the global system. Moreover, taking into ac-
APPENDIX B: EQUATIONS OF MOTION count Egs.(11), we have a closed system of two equations

1. First description [cf. Eq. (9)] for the two Lagrange parametegfs; and 3, .
In the Markovian limit of the NESOM-based kinetic

theory[9.17,18,29 we find that 2. Second descriptior{cf. Eq. (15)]

The calculation runs quite similarly to the previous one,
a 12 and we omit the details for the sake of brevity, only noticing
E1(1)=317(0), dt Ea(t)= ‘] (), (B1) that the average values of the basic variables in terms of the
Lagrange multipliers are
where the collision operatai? is given by

Ei(t)= +2 P fM+oiX (1], (B9
33, ()= Jldt’eft’fdrldrz ' (t)

X{H'(t")o, {H".Hoa}}pa(T'1.1 EZ(I):—,BN(t)’ (B10)
112
where subindex zero indicates an evolution in time under
Hy, and, we recallg is a positive infinitesimal that goes to ~ 2
zero after the calculation of the average has been performed,; Xj(1)=— oy (O] 0f Bia (1), (B11)
I'y andI', are phase points in the phase space of each sub-
system. After some lengthy but straightforward algebra, we ﬁj(t)= — yj“(t)|,8|,1(t). (B12)
find that
@ APPENDIX C: QUANTUM-MECHANICAL APPROACH
J§ (t)—f dt'eet’ f dr f dr, 2 r.T,
In a quantal approach the two descriptions of Sec. Il are,
_ 41 , in terms of the dynamical quantities, in the first caske Eq.
X[XuX; codwjt’)cos Q1) (9)] of the Hamiltonian operators
+P,X, 0, cogwjt’)sin(Q,t")]
- o , Ho=> hoi(ala+1), (C1)
—j% T}, TP cofwyt’)sin(Q,t") 04 R
+ PPy - sin(wt)sin(Qt")] Fpy(T1,Tt,0), HOZ—E hw,(blb,+3), (C2

(B3
) ) o wherea (a") andb (b") are annihilation and creation op-
wherex, p, X, andP are given at timet’=0. A similar  erators in the corresponding states. In the second [edse
equation follows ford§?(t) which we omit for the sake of Eq.(15)], besides the two Hamiltonians above, are incorpo-
brevity. The average values that appear in EB3) are  rated the quantities; anda/, which, through appropriate

evaluated to obtain that linear combinations, produce the operators for coordinate
_ _5.5-1 and momentum of the oscillator in the second quantization
(Ppult) =0, (pjpult) =B (1), (B4 representation. The auxiliary coarse-grained statistical opera-

L tors are, in this case,
(PX,Jt)=0, (X,X,|t}=5,,0,%85'1), (B5)

and, introducing these results into E&1), we find that p(t,00=exp[— ¢ (t)— ,81|(t)H01 Bt OZ‘L (C3
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_ - - Using the results listed above, after some algebra, the differ-
pu(t,O)=exp — ¢ (t) = B () Hor— B2n (1) Ho2 ent statistical-thermodynamic functions can be calculated to
obtain in the first description that

where ¢, B, andf are the corresponding Lagrange multipli- ¢ IN=—In[2sinH 3 B i wo)], (C12
ers. The macrovariables are

. L S/ IN=(¢/N)+ By (E/N)
Ei(1)=Tr{Hop (1,00}, Ex(t)=Tr{Hgp1(t,0)}

= —In[2sin(3B11fiwo)]
in the first description, and + 3B hwg coth(3 By hwg). (C13

El(t)zTr{Izloﬁ(t,O)}, Ez(t)zTr{lzlozﬂ(t,O)}, In the derivation of these equations, we have taken a unique
(C6) frequency for all the oscillators, and the second system is
taken as an ideal reservd@see the main textIn the second

in the second, together with description, we find that

(&l =Trapn (O} (2)|)" =Triajpu (1O} E1IN=thwocoth( 2By fiwg) + BLA(A/KD), (C14

(C7
It ought to be noted that the statistical operapgi(t,0) of ¢ IN=—In[2sinh(3 By, wo) ] — Byt (AIKE),
Eq. (C4) can be expressed in terms of only the population (C1H5
operators for a new set of quantities, say once the — _
Glauber-like transformation S IN=—In[2sinh(3 B fwo)]
aj=a;+(aj|t) (C8) +3Buifiwg coth(z By fawy), (C10

is performed. The calculations are then greatly simplifiedwhereA =Aw/N and
and it can be shown that

~ e - Aw=k3>, || C1
=T 80} ~en Bu(thoy) =21+ I0F, o=ke2 11| (1
We use these results in the numerical calculations, proceed-

(aj|t>= — (/B (Dhw;. (C10 ing in the same way as done in the classical approach.
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