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Orthorhombic phase of crystalline polyethylene:
A constant pressure path-integral Monte Carlo study
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In this paper we present a path-integral Monte C4R&MC) simulation of the orthorhombic phase of
crystalline polyethylene, using an explicit atom force field with unconstrained bond lengths and angles. This
work represents a quantum extension of our recent classical simu[&iodartorek et al, J. Chem. Phys.

106, 8918(1997)]. It is aimed both at exploring the applicability of the PIMC method on such polymer crystal
systems, as well as on a detailed assessment of the importance of quantum effects on different quantities. We
used theNpT ensemble and simulated the system at zero pressure in the temperature range 25-300 K, using
Trotter numbers between 12 and 144. In order to investigate finite-size effects, we used chains of two different
lengths, G, and G,, corresponding to the total number of atoms in the supercell being 432 and 864, respec-
tively. We show here the results for structural parameters, like the orthorhombic lattice comastanisand

also fluctuations of internal parameters of the chains, such as bond lengths and bond and torsional angles. We
have also determined the internal energy and diagonal elastic constants,,, andcs;. We discuss the
temperature dependence of the measured quantities and compare to that obtained from the classical simulation.
For some quantities, we discuss the way they are related to the torsional angle fluctuation. In the case of the
lattice parameters we compare our results to those obtained from other theoretical approaches as well as to
some available experimental data. In order to study isotope effects, we simulated also a deuterated polyethyl-
ene crystal at low temperature. We also suggest possible ways to extend this study and present some general
considerations concerning modeling of polymer crysted.063-651X98)08102-1

PACS numbsgs): 02.70.Lg, 05.30-d, 07.05.Tp, 61.4ke

[. INTRODUCTION crystal structures have classically very close energies, and
the system is close to a structural phase transition, qguantum
Polymer crystals are well known to be intrinsically diffi- fluctuations can play a decisive role. In the case of solid
cult to prepare in a highly crystalline state, which in turn nitrogen[5], they are responsible for a strong isotope effect
hinders the possibilities of their experimental characterizaon the low-temperature-y structural phase transition as a
tion. As a consequence, computer simulation appears to befdnction of pressure. If the classical energy difference is
convenient tool to study their properties. For crystallineSmall énough, quantum effects can even suppress the transi-
polyethylene(PE), which represents the simplest and thustion a!together, and stabilize the d|sord9red phase, as it hap-
paradigmatic case, it has been recently shé®jrthat clas- P&nNsS 1N the case of quantum paraelectrics S§T0OKTa0;,
sical constant pressure Monte CafMiC) simulation is a where the ferroelectric long-range order is only incipient

well applicable simulation method, provided a good qualitydov‘f[n to-{]: Od[6]' Et\_/en thoug?la PItE crystaltdoes_tnpt reE)re—
force field is available. It allows one to calculate the wholeSEMt SUch & dramalic case, at low temperatures It 1S not pos-

variety of static local and collective quantities, including sible to account even qualitatively for the temperature depen-

roperties of maior practical and technoloaical im ortancedence of quantities like thermal expansion coefficients and
brop jor p . 9 P elastic constants without quantum effects being duly taken
like thermal expansion and elastic constants. On the oth

. M8hto account.
hand, recent work on the same system, using a quasihar-  patyral extension of the classical MC method in order
monic or self-consistent quasiharmonic approximatidr 14 include quantum effects at finite temperature is the path-
A_r], ha; clearly pointed to a quantlt_anve as well as a qua“taintegral Monte CarldPIMC) schemd7]. Recently, theNpT
tive inadequacy of the classical treatment at lowyersion of this method has been applied to study quantum
temperatures, where quantum effects cannot be neglectedfects in crystals at low temperatures, in particular in solid
anymore. rare gas systems], and silicon crysta[9]. In the case of
Generally, quantum effects are known to be important inpolymer crystals, the distinguishing feature is an extreme
lattice dynamics of solids in the low-temperature region,anisotropy, closely related to the existence of many energy
when classical thermal fluctuations become comparable to ascales, ranging from soft intermolecularonbonded inter-
smaller than the amplitude of the quantum zero-point moactions to stiff intramoleculafbonded interactions. This
tion. Under particular circumstances, when two differentfeature presents a problem already at the classical level, as
discussed if10,11,1, and requires an introduction of spe-
cial global moves in the sampling algorithm. In the quantum
*Permanent address: Department of Physics, Faculty of Electricalase, we should moreover expect very different convergence
Engineering, Slovak Technical University, llkoeica 3, 812 19  properties of different physical quantities as a function of
Bratislava, Slovakia. Trotter number, depending on the typical energy scale with
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which a given quantity is associated. (s15,53)NPe #Ep, whereEp=Hp+ pV;S:S,Ss, P is the ex-

The aim of this paper is basically twofold. On the oneternal pressurey, is the volume of the reference supercell,
hand, we explore the applicability of the constant pressureinds,,s,,s; are three independent scaling factors along the
PIMC method to a PE crystal, and determine the region otoordinate axes. In all simulations described in this paper,
temperatures where the use of the method is practical. On thfie external pressure was set to zero. The estimators for all
other hand, since the PIMC scheme is capable of providingonfigurational properties, diagonal in the coordinate repre-
essentially exact results, it can also be used to assess tigntation, are straightforward analogs of their classical coun-
range of validity of approximate analytical methods, like, terparts, while for the kinetic energy we used the virial esti-
e.g., quantum quasiharmonic approximati@-4]. This is mator[13].
particularly important for the study of intrinsically anhar- 14 sample the system, we have used three kinds of
monic phenomena, like, e.g., lattice thermal expansion.  moyes: classical moves, quantum moves, and volume moves.

The paper is organized as follows. In Sec. II, we briefly classical moves of two types, local moves of atoms or global
describe the PIMC simulation method used, without addressnoves of whole polymer chains, as described in Refs.
ing the force field anq its imple.mentat.ion, since these issueplo,ll,]], have always been applied to all particles or chains
have already been discussed in detai[ih In Sec. Ill, we  wjth a given number in all Trotter slices simultaneously.
present and discuss the results, paying particular attention tfhese moves sample the classical configurational phase
a comparison of the quantum results to thg classical ones. Khace of the system. We note here that when performing a
the final Sec. IV we draw some conclusions and suggesitation of a given chain in all Trotter slices, the energies of
some possible ways to extend this study. We also make seyhe “harmonic springs” between the corresponding indi-
eral remarks concerning general issues related to modeling @fdual particles have to be recalculated explicitly, in contrast
polymer crystals. For completeness, in Appendix A Wetg pyre translational moves of a particle in all Trotter slices,
pr_esent the_full form of the force field we have used togethe(yhich preserve the energy of the “springs.” Quantum
with numerical values of the parameters. In Appendix B, Wemoyes consisted of local translational moves of individual
present some considerations on the relation of correlatioi};artideS of the pseudoclassical system, which sample the
functions of torsional fluctuations to the contraction of thequantum fluctuations around the classical paths. In the quan-

crystal along the chain axis. tum moves, different maximum displacements have been
used for C and H atoms, not only because of the different
Il. PIMC SIMULATION METHOD number of bonds but also because of the different mass of

In thi i il d i v th ¢ fh the atoms and resulting different stiffness of the “springs.”
n this section, we will describe only those features of the,, 1 ;me moves, we performed a simultaneous rescaling of

simulation method that are specific for the constant pressurg, ,ginates of all particles in all Trotter slices by the three
PIMC scheme. The implementation of the Sorensen—Lh':lu-Scaling factorss; ,S,,S;. One Monte Carlo step per site

Kesner-Boyd(SLKB) force field [12] we used as well as MCS) thus consisted of an attempted quantum move on

many other features of the present algorithm are exactl ach particle of the pseudoclassical system, followed by a

identical to those of our classical simulation, which has beer(‘:lassical move attempted successively on all atoms or all
described in detail in Refl]. For convenience, however, in chains (always simultaneously in all Trotter slices, as de-

Appendix A we summarize the form and parameters of the5cribed aboveand a volume move. Among the classical

force field. oves, 30% of global moves were used, as in the classical

We have' implemented  the constant pressure PIM tudy [1]. For all kinds of moves, the displacements were
scheme basically along the same lines as it was done for &hosen to yield an acceptance ratio of 20—30 %

cubic system in Ref8], the qnly diff_erence. being that in our We have simulated systems with&nd G, chains, con-
case we had to use an anisotropic version of Ner en- sisting of 2<3X6 and 2<3Xx12 unit cells, respectively

semple. We have 'use_d the pr|m|t'|ve decqmpqsmon of th?432 and 864 atomsat temperatures 25, 50, 100, 150, 200,
Hamiltonian, resulting in the effective Hamiltonian and 300 K. At different temperatures, different numbers of
p N p 1 values of the Trotter number were used. For the smaller sys-
Ky i “k_ ~k—1y2 ~k tem, we used at 25 R=144, at 50 KP=54,72,144, at 100
He({ri) kzl 21 ZhZBZ(r' o +PV({r'}))’ K P=36,54,72, at 150 K =48, at 200 KP=16,24,32, and
(1) finally at 300 KP=12,16,24. The larger system was simu-
lated only at 100 K withP=72 and at 300 K withP=24.
whereN is the number of particles in the quantum system,we note here that the largest pseudoclassical systems simu-
m; are their masse® is the Trotter numbe3=1/kgT isthe  |ated consisted of 432144=864x72=62208 particles,
inverse temperature, and({r;}) is the potential energy of which is quite a large number. As an initial configuration for
the system. Such an effective Hamiltonian represents a given temperature, we always used a pseudoclassical sys-
pseudoclassical system consistingfofopies(Trotter slicey  tem consisting of identical copies of an equilibrated clas-
of the original system, individual particles in neighboring sical configuration at the same temperature. This configura-
Trotter slices being connected via harmonic “springs,” andtion was then equilibrated for several thousand MCS with the
periodic boundary conditions being applied along the Trottefull PIMC algorithm, which corresponded to switching on
direction. This pseudoclassical system has moWparticles  the quantum fluctuations and allowing the system to find a
and can be simulated using the same constant pressure M@w equilibrium. For illustration of the run length used for
algorithm as in the classical case. The acceptance criteriomeasurement, for the smaller system at 300 K Brd24 we
for the volume moves was based on the Boltzmann factoused about 280 000 MCS. Roughly the same amount of CPU
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time was used for all data points, the number of Monte Carlo 0.06
steps per site thus scaling inversely with the number of par-
ticlesNP of the pseudoclassical system. The whole run con- 005 o O &> o <o i

sisted of numbers of subbatches ranging from 5 to 57 and the
batch subaverages were used to estimate the approximates ;o4 |
error bars of the total averages.

[A]

(<Bree>)

0.03
Ill. RESULTS AND DISCUSSION

Before discussing in detail the results for various quanti- 0.02 |
ties, we comment briefly on convergence of the PIMC
scheme as a function of the Trotter numiserFor different 001 }
guantities, we have found considerably different conver-
gence, the best case being that of quantities like, e.g., lattice . .
constants, which are mainly related to softer interactions 0 100 200 300
(nonbonded interactions and torsional ternis such cases, TIK]
where the results obtained with different values of Trotter
number P were identical within the statistical error, the _FIG. 1. Temperature dependence of the average fluctuation
quantum limit was practically reached and no extrapolationV{(8rcc)?) of the C-C bond length, in the classical and the quan-
was necessary. A considerably slower convergence is foungm case, _shown for Qifferent system sizes. In this _and most of the
for quantities such as the energy, which depend crucially offllowing figures, stat!stlcal error bars are shovyn; lines are for vi-
fluctuations of degrees of freedom related to strémanded sual help only. In all figures, the same symbol is used for quantum

interaction potentials. In these cases, an extrapolation tBasults corresponding to different values of the Trotter nuniher

P— was performed in order to recover the true quantumWhen at a given temperature the results for different valués arfe

Indistinguishable within the statistical error, as in this figure, the
values. We have used the standard formjai Trotter numbers are not indicated explicitly.

@—@classical C12 chains
A classical G24 chains
Qquantum C12 chains
Aquantum C24 chains

, (2 minimum, which already in the classical cddd has been
shown to play an important role in the physics of the system.
_The values aT =50 K andT =25 K are already very close to

Po

a b
Ap:Am+ P7+ E'FO

which requires data for three different values of Trotter num A
ber P in order to find the extrapolated value, . each other, and therefore tfie= 25 K value of 5.59° can be

In the discussion, we concentrate mainly on the COmloarig:onsidered to be representative of the ground state. The char-

son of quantities obtained from the quantum simulation tfcteristic temperature, below which the difference between

their classical counterparts, presented I We start with the classicgl and quantum values starts to increase rapidly,
the local quantities, in particular fluctuations of the internalc@n b€ estimated to be about 150 K. At room temperature,

coordinates, for which the quantum effects are found to bdhe difference is still about 0.5°. . .
most pronounced. The internal energy per unit cell of the system is shown in

In Figs. 1 and 2, we show the temperature dependence &9. 6. The dependence dhis in this case particularly pro-
the average bond length fluctuation for C-C and C-H bonds,

respectively. The distinguishing feature of quantum results 0.09
for such fluctuations is their saturation at rather large values o008 | - " ]
at low temperatures, instead of the classical vanishing o on 8¥ 9% G, e

007 F 144 O s

[((6r)%)c T asT—0 in the classical cageln particular
in the case of the C-H bond, there is a marked Trotter de-

pendence of the results. By means of the above described
extrapolation, we found &k=50 K the values of 0.05 A for
V((6rc0)?) and 0.079 A for\{(érc)?), which represent
about 3% and 7% of the respective equilibrium bond length.
These values are representative of the ground state values,
since both curves appear to be entirely flat up to room tem- 002 }
perature, reflecting high frequencies of corresponding bond
stretching phonon modes. In Figs. 3 and 4, average fluctua-
tions of the bond angle®.cc and 8,y are shown as a 0.00
function of temperature. Trotter extrapolation B&50 K

yields here the values of 3.46° and 8.44° f\ﬂr(ﬁaccaz>
and ((66ycn) %), respectively. While the former curve in- 5 5> Temperature dependence of the average fluctuation
creases at room temperature by about 0.5° with respect to thw of the C-H bond length, in the classical and the quan-
ground state value, the latter one corresponding to the bongim case, shown for different system sizes. When the quantum re-
angle involving two hydrogen atoms is completely flat. sults at a given temperature exhibit a pronounced dependence on

In Fig. 5, we show the temperature dependence of théne Trotter numbeP, as in this figure, the corresponding values of
average torsional angle fluctuatiaff qscz cco from the trans P are indicated next to the symbols.

0.06 |

@—@classical C12 chains
0.05 Aclassical C24 chains
QOquantum C12 chains
Aquantum C24 chains

(<ry )" [A]

0.04 |

0.01 |

0 100 200 300
TIK]
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FIG. 3. Temperature dependence of the average fluctuation FIG. 5. Temperature dependence of the average torsional angle

J((&accc)z) of the C-C-C bond angle, in the classical and thefluctuation\/(zﬁczcca from the trans minimum, in the classical and
guantum case, shown for different system sizes. the quantum case, shown for different system sizes.

chain from the “herringbone” structure, just as in the clas-

nounced, since the dominant contribution at low tempera~". ;
P cal casd1]. No such rotation was observed for the larger

tures comes from the hard degrees of freedom that requi

larger values of the Trotter number in order to converge. Theystem, howev_er. . :
extrapolation td°— o is thus absolutely necessary here, and Before passing o the discussion of the temperature de-

has been performed for all temperatures where data for thrét%endence of the lattice constaatsb, andp, we would like :
values ofP are available, i.e., 50, 100, 200, and 300 K. The© make a general comment on the _stqtlsncal error of lattice
extrapolated values at 50 and 100 K suggest that the ener I:ﬂséantsh of cr_?_/ﬁtalst f_v?lualtted within co?s{:]antl ﬁ_ressure
in this region would still somewhat decrease by approachin scheme. The statistica error((a}ryn)_ of the lattice
zero temperature and the extrapolated value of 62.125 kcatPStanta)nn averaged over a run consisting fconfigu-
mol at 50 K can be considered as an upper estimate of ghitions is given by
ground state total energy. By subtracting the classical ground
state energy, which is found to be equal-t¥.39 kcal/mol a(a)
per unit cell, we find a value of 17.38 kcal/mol per £H U(<a>'““):\/T/s'
group, which agrees well with the zero-point energy of
17.598.kcal_/mol, obta!ned in RefLS] ywthm quasiharmonic whereo(a) is the intrinsic fluctuation of the quantiy, and
approximation for a different forcg_ field. s is the corresponding statistical inefficiency, expressing the
Concerning the structural stabll!ty, for the.smaller SYSt€Mgttact of correlations between subsequent configurations of
we observed al =300 K an occasional rotation of a whole

()

70
10 j j Qgquantum C12 chains, finite P
@quantum C12 chains, infinite P
— o8 © ©° © & 3 65l
g, g o 24
=2 ] °
o Q
- - ® 16
'-T = on O a8 <32
~ 61 3 O144 o2
§ w 60 O 54 12
D
v
=4t o o O O 16
144
55 |
@—@classical C12 chains
s b Aclassical C24 chains O 54
Qquantum C12 chains
Adquantum C24 chains
50 . L
0 . . 0 100 200 300
0 100 200 300 T [K]

T[K]
FIG. 6. Temperature dependence of the internal energy per unit
FIG. 4. Temperature dependence of the average fluctuatiopell of a quantum system with,gchains, shown for different val-

\/((50HCH)2> of the H-C-H bond angle, in the classical and the ues of the Trotter numbeP, together with an extrapolation to
guantum case, shown for different system sizes. P—. Note the strong dependence on the Trotter nunfber
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2.535 S - T T 2.532
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- —_ 2.530 F 25 Aquantum 24 chains
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2.525 @—@classical G12 chains
Aclassical C24 chains
C12 chai
R 24 chain 2524 |
W experimental [17]
=300
2520 ' ' 2522 s s .
0 100 200 300 0 20 40 60 80 100
TIK] <0ccce > [deg’]
FIG. 7. Temperature dependence of the lattice paranueteer FIG. 8. Lattice parametar vs ( p2 o), in the classical and the
the classical and the quantum case, shown for different systejuantum case, shown for different system sizes. Note that also in
sizes, together with the experimental dptd]. the quantum case, the dependence is almost linear over the whole

temperature range. The values of temperature, which is a parameter
the Monte Carlo rurf16]. In order to keep the Trotter error of the plot, are indicated next to the symbols.
roughly constant at different temperatures, one usually keeps
the productP T constant. For given system size and amountorder to separate different contributions. In the latter plot, the
of CPU time, the number of configuratiomé is inversely classical and quantum curves are roughly parallel to each
proportional to the Trotter numbéd? and thus directly pro- other, which shows that the low-temperature flattening of
portional to temperatur€. On the other hand, the fluctuation is a consequence of freezing of the thermal contribution to
o(a) of the lattice constana is essentially a fluctuation of the torsional fluctuations. With the exception of the lowest
the linear size of the system, which is a purely classicatemperatures, the shift of the quantum curve with respect to
fluctuation, and obeys the equipartition theorem. Providedhe classical one appears to be temperature independent, be-
the elastic constants of the system do not vary too muching roughly equal to 0.0015 A. This represents a zero-point
which should be well satisfied at low temperatures, the relaexpansion of the lattice along the direction arising from
tion o?(a)~T should hold. Combining the expressions to- hard modes that are not significantly excited even at room
gether, we find temperature. While in the classical case all points are found
to fall very well on a straight line in the whole temperature
JT range[1], in the quantum case a distinct upward bending of
ff(<a>run)~\/=~ Vs, (4)  the curve is apparent at low temperatures. To understand its
T/s . .
origin, one might try to use the full formula

where the explicit dependence dnin the numerator and 1 al
denominator has canceled. Of course, there is still an implicit c= co( 1- ZSinZE §<(¢°_ ¢1)2>>
dependence hidden in the fac®rwhich increases with de-

creasing temperature because of growing system size in the 1 (odr)
Trotter direction. Nevertheless, in the case of such a purely =co| 1— —sin2—<¢§>< 1-— 021 H (5)
classical fluctuation which vanishes &s-0, the situation is 42 (¢0)

more favorable with respect to the case of a general fluctua-
tion, which would instead tend to a finite zero-point quantumderived in Ref[3] (see also Appendix B which relates the
value. In our results for the lattice constants, this is illus-contraction of the lattice constantto correlation functions
trated by the fact that the error bars of points at lowest temof two neighboring torsional angle fluctuatiogg, ¢,. The
peratures are not larger than those of points at higher tentemperature dependence of the normalized correlation func-
peratures. tion ( po1)/{ $3) is shown in Fig. 9. In contrast to the clas-
The temperature dependence of the lattice constast  sical curve, which is flat in the whole temperature region, the
shown in Fig. 7. In both classical and quantum cases a latticquantum one is seen to increase in value at low temperatures
contraction with increasing temperature is observed. An inwhere it becomes almost a factor of two larger than the clas-
teresting feature here is that &t-50 K, the classical and sical one. In Fig. 10 we plat versuss((¢o— ¢1)?). In this
guantum curves cross. At higher temperatures, the quantuplot, the low temperature upward bending from Fig. 8 has
result stays above the classical one while falling slightly be-become less pronounced and the points now exhibit a clear
low that for T<50 K, where the quantum flattening appears.linear dependence, which suggests that the bending has its
This behavior suggests the presence of at least two distinarigin in the quantum reinforcement of the correlation func-
quantum effects. Since in the classical cfeit turned out  tion (¢od1)/($2) of neighboring torsions at low tempera-
that there is a linear dependence betweemd( $2.c0, we  tures. The slope of 1.23510™* A deg™2, however, turns out
have tried the same plot for our quantum data, Fig. 8, irto be larger in magnitude by a factor of two with respect to
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FIG. 9. Temperature dependence of the normalized correlation
function { po¢b1)/{ $3) of fluctuations of two neighboring torsional ~ FIG. 11. Temperature dependence of the lattice pararagter
angles from the trans minima, in the classical and the quantum cas#le classical and the quantum case, shown for different system
for the system with &, chains. Note the pronounced dependence orsizes, together with the experimental dpta].

the Trotter numbeP. o L . L .
fails in the quantitative aspect. We discuss the origin of this

1 5 s _, discrepancy in detail in Appendix B. Analogously to the
the value of ;Cosin’(a/2)(m/180f'=6.22<10"° A deg classical case, no significant finite-size effects are seen on the
resulting from Eq.(5) (we took the values=2.53 A'and  |aiice constant. Comparing the quantum result to experi-
a=180°-110.75%). About the same discrepancy in thenenta| datd17] in Fig. 7, we see that apart from the con-

slope is found also for the classical data, and this has beefyjnt offset. the agreement has improved at low tempera-
pointed out already in Refl1] (where, however, the correla- {,res due t;) the quantum flattening.

tion funct_ion between neighboring torsion.s was neglected |, Fig. 11, we show the temperature dependence of the
and the discrepancy thus turned out to be just about a factqgice constana. At temperatures below 50 K, the quantum

of 1.5. While in the classical case the thermal contractiony,e appears to be entirely flat, and the difference between
could be modified due to contribution of modes other thanne quantum and the classical result is in this region as large
torsions, in the quantum case such harder modes are mostly 13 A which represents a 2% effect. At all temperatures,

frozen even at room temperature, and do not contribute cofpe quantum curve lies above the classical one. It is interest-
siderably. Thus in the quantum case the form@ashould 4 15 note that the difference between the two curves per-

yield a better agreement with the simulation. As it turns out,gis;g up to room temperature, beingTat300 K equal to
however, it captures qualitatively correctly the basic role ofy 5 A, which is still about a half of the zero-temperature

torsional correlation functions in the thermal contraction, but, 5| ,e. For this lattice constant. a very good agreement be-

tween the simulation and experimental res{itg] is found,
2530 p» ' ' which proves that almost the whole low-temperature discrep-
50 Oquantum C12 chains ancy between the classical simulation results and experiment
is purely due to quantum effects. Similarly to the classical
case, no finite-size effect is seen on the quantum curve at
=100 K, while a small one is seen at=300 K.
Analogously to the case of the lattice constanin Fig.
12 we plot the lattice constart versus(¢2.cq. Interest-
ingly, in such a “scaling” plot, both classical and quantum
results are found to collapse nearly on the same straight line,
which shows that the lattice constamtdoes not depend on
temperature explicitly, but only implicitly, through the tem-
perature dependence of the torsional fluctuations. Since the
latter dependence is very different in the classical and quan-
2509 . . tum cases, the behavior afis also substantially different.
20 40 60 80 In Fig. 13, the temperature dependence of the lattice con-
1/2 <(0, - 0,)°> [deg’] stantb is shown. Similarly to the classical case, the error
bars forb are larger than those far. The quantum flattening
FIG. 10. Lattice parameter vs 3({(¢o— ¢1)2) in the quantum  at low temperatures is now less pronounced, and in order to
case for system with § chains. The values of temperature, which find the limiting zero-temperature value bf it would be
is a parameter of the plot, are indicated next to the symbols. Thﬁecessary to go to even lower temperatures than 25 K. Here
points can be fitted by a line=2.5327-1.275<10 *3((¢,  again, the quantum curve lies above the classical one at all
—$1)?). temperatures. At 25 K, the difference between them is about

c[A]

2528 |

2526 |

2.524
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— 300 6 —_
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FIG. 12. Lattice parametea vs (¢acco, in the classical and FIG. 14. Lattice parametérvs (2.0, in the classical and the

guantum case, shown for different system sizes. The values of tengjuantum case, shown for different system sizes. The values of tem-
perature, which is a parameter of the plot, are indicated next to thperature, which is a parameter of the plot, are indicated next to the
symbols. Note the collapse of both classical and quantum results osymbols. Note the strong finite-size effect at higher temperatures for
almost the same straight line over the whole temperature range. both sets of data as well as the downward bending of the quantum

. ) _curve at low temperatures.
0.03 A, which represents a 0.6% effect, while at 300 K it

decreases to about 0.02 A. A finite-size effect very similar to kT
the one in the classical case is observed here too. It is visible =2 lee) !l k=12

. . Clk <elek> ’ I, 11 131 (6)
already at 100 K, where the point for the system witjy C V)
chains falls slightly below that for the system with;,.C )
chains, while being strongly pronounced at 300 K, where thdvhile for ¢33 we used the Gusev-Zehnder-Suter form{l]
difference is about 0.035 A. The same finite-size effect id" ItS approximate version suitable for small strain fluctua-
also visible in the “scaling” plot in Fig. 14, where moreover tONs
at lower temperatures a downward bending of the quantum
curve can be observed. Comparison to the experimental data ck=—2> (pien){ened L, 7
[17]in Fig. 13 in this case appears to be less good than in the n
case ofa, however, for a detailed comparison simulation . .
data for larger system sizes would be required. whereV is the supercell volume anpl ande; are the diag-

We have also computed the diagonal elastic constant@nal components of the pressure tensor and strain tensor,

C11,Ca0,C33 O the system. Analogously to the classical caseg'espectively. This choice of methods was motivated by the

[1], we evaluatedty;,c,, from the Parrinello-Rahman fluc- finding that in the classical ca$g] significantly smaller sta-
tuation formula[ 18], tistical errors resulted focz; from the Gusev-Zehnder-Suter
formula (7), while for the other elastic constants errors were

5.05 ‘ _ slightly smaller for the Parrinello-Rahman fluctuation for-
_ A govotor) o mula (6). Both formulas are classical and their use for evalu-
% e o oo § ation of elastic constants also in case of PIMC technique is

5.00 | ® experimental [17] 1 justified by the fact that strain fluctuations are classical ob-

jects that have the same values in all Trotter slices. The
results are shown on Figs. 15, 16, and 17. The datafor
exhibit a flattening at low temperatures and suggest that the
ground state value is reduced with respect to the classical one
by about 2 GPa. A similar conclusion might be true also for
C,», Where the large statistical error precludes a more de-
tailed comparison. The best results are obtained cfqr,
analogously to the classical case. Here the flattening is

. . clearly seen and the ground state value is reduced due to
4.85 | ] . ‘ ‘ 1 quantum effects by about 20 GPa. In Fig. t§; is plotted
0 100 200 300 against( ¢p2.co). The quantum points fall close to the line of
TIK] collapse of the classical points, which indicates that a domi-

nant part of the quantum softening @f; has its origin in the
FIG. 13. Temperature dependence of the lattice pararbeier ~ finite value of zero-point torsional fluctuations. Not surpris-
classical and quantum case, shown for different system sizes, tangly, error bars of the quantum data are much larger com-
gether with the experimental dafa7]. Note the strong finite-size pared to the corresponding classical ones. Our results show
effect at higher temperatures for both classical and quantum resultthat for a strongly anisotropic crystal, in might be possible to
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FIG. 17. Elastic constant;; as a function of temperature, in

FIG. 15. E_IaSt'C constanty, as a function of temperature, N hoth the classical and the quantum case, shown for different system
both the classical and the quantum case, shown for different systef}, o

sizes.

obtain fairly good results for some components of the tensoing a fully quantum simulation of crystalline systems with
of elastic constants, while other components might be muchany different energy scales, like realistic explicit atom
more difficult to compute. In any case, calculation of elasticmodels for polymer crystals with no constraints on the de-
constants within the PIMC scheme is at present computatiorgrees of freedom. Even in the low-temperature region, where
ally very demanding. the system is close to its ground state, it is possible to cal-
Finally, we have also studied isotope effects by simulatculate lattice constants and internal coordinates with a fairly
ing deuterated PE. In this case, we have performed the sim@ood accuracy. On the other hand, an accurate determination
lation only at the lowest temperatufe= 25 K, with the same  of elastic constants is still very difficult. The limitations of
system size and Trotter number as in case of nofmalro- the method in a study of the thermal expansion of the PE
genated polyethylene. The results for some quantities arecrystal are mainly set by the fact that the finite-size effects in
summarized in Table I. All three lattice constants are shortefhe quantum case are more pronounced with respect to the
in deuterated PE. The largest effect is seen on the latticelassical one, while at the same time it is more difficult to
constanta, while in case ofb its relative magnitude is simulate larger systems, because of the extra Trotter dimen-
smaller by a factor of 3 and in that ofby a factor of 20.  sion. It would be very helpful to have for an anisotropic
crystal a combined finite-size scaling scheme, allowing a si-
multaneous extrapolation of lattice constants to thermody-

namic limit and Trotter limit, analogous to the one developed
In this paper, we have demonstrated that for system sizes

IV. CONCLUSIONS

of several hundred atoms, PIMC is a practical method allow- 340
L X1}
15 y T T ~ @classical C12 chai
& 050 Qintum G12 chaine
— @—@classical C12 chains —_— 330 | \\
[+ Aclassical C24 chains 2 “
o Oquantum C12 chains o ~1\°°
9 Adquantum C24 chains \\
R I @150
© 320 e .
O N
25 O 100 ™
o Q20
10} 310 | 150 \\
\62\50
300 1 N300
[ ]
300
T 290 . ’ ’ .
0 20 40 60 80 100
2 2.
5 N L <¢cccc > [deg ]
0 100 200 300
TIK] FIG. 18. Elastic constarts; vs (p2cco, in both the classical

and the quantum case, for system with, €hains. The values of
FIG. 16. Elastic constant,, as a function of temperature, in temperature, which is a parameter of the plot, are indicated next to
both the classical and the quantum case, shown for different systethe symbols. Note that the quantum results fall close to the line
sizes. passing through the classical results.
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TABLE I. Isotope effect: deuterated PE compared to norghgtirogenatedPE. All values correspond to
the system with ¢, chains andP =144 atT=25 K. No extrapolation t®®—c has been performed here.

Normal PE Deuterated PE Difference
a 7.201-0.003 A 7.176:0.003 A —0.43%
4.928+0.002 A 4.9210.002 A —0.14%
c 2.5297-0.0001 A 2.5292-0.0001 A —0.02%
WpZecd 5.59+0.01° 5.26-0.015° —5.9%
W(86uchn)®) 8.28+0.001° 7.12-0.003° —13.4%
W(oren)® 0.074+0.00001 A 0.065:0.00001 A -12.1%

in Ref. [8] for the specific heat of a cubic crystal. A prere- contribution of other modes. Such behavior might perhaps
quisite for such scaling, however, is an availability of high- have to do with the equilibrium values in the bond stretching
accuracy data. A possible route here might be an improveand angle bending terms since for the KDG force field these
ment on the primitive PIMC algorithm by using a better are substantially different from their average values, which
approximation to the density matrix, similar to that used forin our opinion does not seem to be sufficiently justified. This
liquid “He in Ref.[7], allowing a substantial reduction of the also demonstrates that the properties of a polymer crystal are
Trotter number. In a polymer crystal, the stiffest parts of themuch more sensitive to the details of the force field than
potential are the bond stretching terms, which formally havehose of a liquid. In order to have a systematic control of the
a form of pair interactions between neighboring atoms. Formportant anharmonic properties of a solid polymer system,
such pair interactions, it is possible to calculate the exacan improvement on the side of the force field building is
two-body density matrix, either by means of expansion innecessary. Such improvement would allow one to explore
eigenfunctions, or by matrix squaring. This exact form couldfully the potential of existing classical and quantum simula-
be tabulated and used in the simulation, while the rest of thion methods. One first and relatively simple thing to do in
potential would be treated in a standard way. Such a triclorder to develop force fields suitable for quantum simula-
can be expected to considerably improve the Trotter convertions would be to use a quantum quasiharmonic approxima-
gence, which in turn would enable simulation of larger sys-tion to determine the ground state structure, instead of bare
tems and increase the statistical accuracy of the results. energy minimization, for fitting force fields to experimental

A detailed comparison to a quasiharmonic approximatiorstructures. Obviously, a prerequisite for this is a better ex-
will be done in a forthcoming pap¢20]. It would also be of  perimental characterization of the system in the whole range
interest to perform such an approximation for finite latticesof temperatures, making use of up-to-date experimental tech-
in order to clarify the physical origin of the finite-size effects niques, such as, e.g., x-ray diffraction with synchrotron
in both classical and quantum cases, which still remain to beources. Such techniques should also allow a precise experi-
understood. mental determination of isotope effects on lattice constants

Concerning the physics of the system, we have demorand thermal expansion, which might in principle help one to
strated that in both the classical and the quantum case, tlecide which of the above-mentioned force fields provides a
torsional fluctuations play a central role in the thermal ex-better description of the real PE crystal. While for the SLKB
pansion of the system. It would be desirable to have an anderce field the difference between classical and quantum
lytical theory of the lateral thermal and zero-point expansionyalue (the isotope effect is also related to this differencge
allowing one to understand the origin of the anisotropy ina; tends to vanish in the temperature region over 200 K,
both cases. We have determined also some local quantitieshere the torsional fluctuations become thermally activated,
in particular zero-point fluctuations of internal coordinates,in case of the KDG force field a large difference persists up
like bond lengths and bond and torsional angles, knowledgé room temperaturg2]. Accurate measurements of all com-
of which might be of relevance for local experimental tech-ponents of the tensor of elastic constants in a wide region of
niques. temperatures would also be very interesting and helpful.

Finally, we would like to make a few remarks concerning
modeling of polymer crystals in general, taking into account
guantum effects. It seems to us that for this sort of system,
force field building lags somewhat behind the development We would like to acknowledge stimulating discussions
of simulation methods, concerning in particular the ability towith P. C. Hajele, P. Nielaba, and D. Ceperley, as well as
reproduce anharmonic effects correctly. As already pointedorrespondence with G. C. Rutledge and R. A. Stobbe.
out in Ref.[1], in the classical limit, where in principle all
phonon modes can contribute to the thermal expansion of the
system, there is a substantial difference between the proper-
ties of SLKB force field[12] and Karasawa-Dasgupta- In this Appendix, we present the full form of the force
Goddard(KDG) force field[15], as far as the thermal expan- field used in our present quantum and previous classical
sion coefficienta; is concerned. In the case of the former simulation[1], which is a slightly modified version of the
one, a3 is classically negative at all temperatures, and origi-SLKB force field[12]. While the formal modifications have
nates dominantly from torsional fluctuations, while for thebeen described in detail in Refl], here we provide the
latter one it vanishes a&—0 [2], which points to a large actual numerical values of all parameters. The force field
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TABLE Il. Parameters of the bonded interaction of the force field. The first and second columns contain
the coefficients of terms diagonal in the internal coordinates of the chains, while the third and fourth ones

contain the coefficients of the off-diagonal terms.

rs€[A] 1.53 k'S [keal(mol A)] 0
k€ [keal/ (mol A?)] 617.058 k3 [keal/(mol AA%)] 0
r$™[A] 1.09 keey [keal(mol A)] —34.0818
kCH [keal/(mol A2)] 654.455 k5! [keal(mol A)] 0
kHCH [kcal/mol] 76.952 kS [keal/(mol A2)] 0
65t [°] 107.899 kESC [keal(mol A)] —54.494
kECH [kcal/moll 85.726 kSSS [keal/(mol A2)] 25.9337
65°H [°] 109.469 GCCCH [keal/mol] —6.0034
kCC€ [keal/mol] 107.446 GCCHH [keal/mol] —3.6409
65°C1°] 110.999 GCHCC [keal/mol] 2.9127
VHCCH [keal/mol] 0.2776 GCHCH [keal/mol] 0
VECCH [keal/mol] 0.2776 FH-CCH [kcal/mol| —16.0398
VCCCC [keal/mol] 0.2776 FCCCH [keal/mol] —15.5343
FC:CCCkeal/mol] —33.3664

consists of bonded and nonbonded interactions. The bondegd(r,r,,0)= k'J (r1—T10)(cosf— coa90)+k' (2= T20)
interactions involve bond stretching, angle bending, and tor-
sions, as well as off-diagonal, or cross terms, coupling to-
gether the different internal coordinates of the chains. The
corresponding terms have the form of the following expres- (A4)
sions:

(a) Bond stretching, applying to all C-C and C-H bonds:

X (€089~ COSp) + Ky (11— F10)(F2— T 0),

wherer,; andr, are the bond lengths of theJ and J-K
bonds adjacent to aldK bond angled.
(e) One-center angle-angle cross terms, applying to all

1 ) pairs of bond angles about a tetrahedral carbon atom sharing
U(r) =3k (r=ro* (A1) 3 common bond,
U(6,,0,) =G (cos; — cosh,)(cost,— cosh,),
(b) Angle bending, applying to all C-C-C, C-C-H, and (A5)
H-C-H angles: .

g whered,, 6, are theJIK andJIL bond angles, respectively,

and | is the tetrahedral carbon. Herg, is the tetrahedral

1 5 5 angle.
U(6)=5k~"(cosh—coso)*. (A2) (f) Two-center angle-angle cross terms, applying to all

C-C-C-C, C-C-C-H, and H-C-C-H sequences,

(c) Torsion terms, applying to all C-C-C-C, C-C-C-H, and U(@,01,6,)=F'"“"cosp(coss; — cosf)(cost, — coshy),
H-C-C-H sequences, (AB)

whereg is the torsional angle corresponding to the sequence
IJKL, 64,6, are thelJK and JKL bond angles and; is
again the tetrahedral angle. Numerical values of all the pa-
rameters in the above expressions are contained in Table II.
The nonbonded interaction has the fotd(r)=Ae '
where is the torsional angle€=0 corresponds to cis and —Cr~® between atoms on different chains and atoms on the
¢= 1 corresponds to transThroughout the rest of the pa- same chain separated by more than two baad® and 1-3
per, we use also torsional angledefined as a fluctuation of interactions are excludg¢dNumerical values of all the pa-
¢ from the trans valueg= o — 7. rameters for all three pairs of ator(s-C, H-H, and C-H are
(d) Bond-angle and bond-bond cross terms, applying taontained in Table Ill. Details concerning cutoff and long-
all C-C-C, C-C-H, and H-C-H angles, range corrections can be found in REf].

U(e)== V”KL(1+cos3cp) (A3)
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TABLE Ill. Parameters of the nonbonded interaction of the more than one bond. This is clearly impossible within the

force field. simple single-chain model assumed in RE], where the

— . crystal environment of the chain is neglected entirely. This
Atoms A [keal/moll B[A™Y] C [A® keal/mol] together with a separable torsional potential classically leads
c-C 14889.0 3.089 639 58 to vanishing of all correlation functions between displaced

torsions, and in turn to coiling of longer segments of a chain.
H-H 2640.2 3.739 27.39 In a crystal it is just the external nonbonded field of all other
chains acting directly on the absolute coordinates of the at-
oms of a given chairfrather than on the torsional angles,
which by their very nature have a character of relative coor-
APPENDIX B dinates, which induces nonzero correlations between the
torsions in the chain. These correlations reflect the existence
In this appendix we discuss in detail the origin of the of the underlying 3D crystal structure with its translational
guantitative discrepancy between the slope of ¢heersus long-range order and result in an overall coherent shortening
3{(ho— #1)?) line as obtained from formulés) and from  of the chain, instead of its coiling. The quantitative agree-
our quantum simulation dat#ig. 10. To this end, we have ment of the formula with experiment, as stated in R&i,
to look more closely at the way the formula has been derivedhus appears to be accidental and arises due to compensation
in Ref.[3]. The model used assumes a single chain consisbf two effects: neglecting the crystal field contribution low-
ing of rigid C-C bonds with lengtla and rigid C-C-C angles ers the effective torsional constant by a factor of two, which
fccc= 7— «, subject to torsional deformations only. The ex-in turn increases the torsional fluctuations and compensates
pression(5) then evaluates simply as the average end-to- for the lower value of the proportionality constant in expres-
end distance between carbon atoms separated by four bondson (5).

Let us denote by,r’ the instantaneous positions of the two ~ Now we derive a few formulas similar to E¢6), taking
atoms, and byr 7 their equilibrium positions around into account pro_gresswelyllonger segments of a chain. !n

o J0ro TR P general, we are interested in calculating the end-to-end dis-
which they oscillate with instantaneous fluctuatiohgA’.

) ) X tance of a segment of a chain consistingnef 2m bonds.
The squared end-to-end distance is then given by The corresponding vector can be expressefRab

C-H 4300.9 3.416 137.44

1
Ti(a,0,0)7, (B2)
0

(r=r")2=(ro—rg+A—A")2=(ro—rp)*+(A-4")?, Nk
81 Rn:kgli

where the cross term has vanished, because the fluctuations

A,A" are orthogonal tcfo—Fé (since the bond lengths and where the 33 matricesT; are defined as follows:
angles are assumed to be rigid, the only possible small dis-

placements of carbon atoms are those perpendicular to the cosy sina 0
plane of the unperturbed all-trans chaifThis expression
contains, apart from the squared distance between the equi-
librium positions €,—rg)2, which is directly related to the Sinasing;  —cowsing; — COSp;

lattice constantc, also a fluctuation term. Neglecting this ] i =

term for a relatively short segment of chain, as done in Refanglese; being the torsional angles. EvaluatifR,|) and
[3], results in underestimating of the thermal contraction. Ink€€pINg just terms up to second order in the anglesve
order to improve on this, one has to consider a longer sedfind the following approximations(™ = (1/m){|R,|) to the
ment of the chain, which would, however, require a knowl-contracted lattice constant(the actual calculation has been
edge of correlation functions between torsions displaced bperformed byMATHEMATICA ):

T,=|sinacosp; —cosxCcosp; sing; |, (B3)

1 . 1
c®=2(|Ral)=co| 1~ Zsin2§(<¢02>—<¢o¢1>>},

@_Lig _E-nzﬁ 2 _ _
c 3<|R6|> Coll 9S! 2(4<¢o) 5(podb1) +2( o) — (o P3)) |,

e (|Rely=Co| 1— i 2(10{ bo?) — L& bodbs) + B(odbs) — 5{dobs) + 2( docba) —(bod >>} B4)
4 8 0 16 2 0 o¥1 o¥2 o0¥3 o¥4 o¥s 1
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e=Lg ool 1- Seid 2y _ _
c 5<|R10|> Coll 555! 2(20<¢0> 30 pod1) +2X Poba) — 1K o ps)

+8(poda) —5(dods) + 2(bods) —(Dob7)) |,

1
1- %sinzg(35< $0%) — 5K pod1) + AX o b2) — 3K Pocbz) + 20 boda) — 1K o bs) + 8( bobe)

1 .
0(6):g<|R12|>:Co

—5(bod7) +2(Pobs) —(Poda)) |,

where cy=2acos(/2) is the lattice constant of the unper- tion of the segment consisting of two C-C bonds, whose

turbed chain. end-to-end length i<y, on the plane of the unperturbed
We introduce now off-plane displacemergsof carbon  chain.

atoms along locat axes defined for each C atom by the unit  Applying the formula forc® corresponding to a segment

vector IZi = (éi Xéiﬂ)/azsina, where 5i is the vector con- consisting of six C-C bonds to our simulation data, we find a

necting carbon atomis—-1 andi. VectorsEi are perpendicu- slope that is still Iarger by about 50% than the theoretical
lar to the plane of the all-trans chain and their directionsone. A characteristic property of all the expressioBg) is
alternate below and above the plane. It can then be easiljpat the coefficients of torsion correlation functions increase
shown [4] that the torsional angleg; defined via cog  in magnitude with the length of the segment. The correct
=—(a_1Xa)-(aXa . )/a%irta, or, alternatively, sigh Iimiting result for thermal contractign thus emerges progres-
=& _1-(axa . )la%ira, can be in first order in displace- sively as a consequence of a delicate cancella‘uon_ between
mentsz, expressed ag =(—2z_,—2_1+2+2,4)/asina. the terms, Whlch means that a knowledgg of correlation func-
Upon substitution of this latter expression to EB4), we tions at many dlﬁergnt dlsplacement§ with very good accu-
find racy would be required. Such behavior reflects the lack of
existence of a preferred crystal direction for a chain in the
1 ((Zo—sz)2> formulation employing exclusively torsional angles. In con-
m2 o , (B5  trast to this, upon substitution of the true off-plane displace-
ments of the atoms into these expressions, the limiting exact
where result emerges in a very simple form, which has a clear geo-
metrical interpretation and contains just a single correlation
(20—22)%) function between second neighbors. This demonstrates that
203 while the relation between the torsional fluctuations and the
lattice constant provides a very useful insight for qualita-
is the limitingm— o value of the contracted lattice constant tive understanding of the thermal contractioncofit would
c. The last result has been derived also in Réf.by means be at the same time hard to push these considerations to a
of a simple geometrical argument, expressings a projec- truly quantitative level.

c<°°>:co< 1- (B6)
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