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Traveling through potential energy landscapes of disordered materials:
The activation-relaxation technique
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A detailed description of the activation-relaxation techni¢®RT) is presented. This method defines events
in the configurational energy landscape of disordered materials such as amorphous semiconductors, glasses and
polymers, in a two-step process: first, a configuration is activated from a local minimum to a nearby saddle
point; next, the configuration is relaxed to a new minimum; this allows for jumps over energy barriers much
higher than what can be reached with standard techniques. Such events can serve as basic steps in equilibrium
and kinetic Monte Carlo schemd$1063-651X98)07302-4

PACS numbgs): 02.70.Rw, 61.43.Bn, 82.20.Kh, 82.20.Mj

[. INTRODUCTION yond the linear level are particularly difficult to achieve. Re-
cently, a promising scheme involving a mixture of transition-
Microscopic structural phenomena often proceed on timestate theory and MD has achieved a significant speed-up in
scales remarkably long compared to those of the atomistithe simulation of a model systefd]; it is, however, too
oscillations. This is the case, for example, for glassy materiearly to say how successful this scheme will be for generic
als where microscopic dynamics takes place over time scalégoblems.
orders of magnitude larger than that associated with the natu- The inherent limitation to the degree of structural relax-
ral atomistic time scale, set by a phonon frequency of typi&tion achieved with MD does not apply priori to MC
cally 10" Hz. Such a discrepancy is best understood fron§chem¢s. Here, the speed of structural relaxation is 'mostly
the configurational energy landscape: the system finds itseff€{€mined by the nature of the attempted moves. Until now,
in a deep minimum surrounded by energy barriers that argdhost algonth_ms have used moves defined n real space, in-
many times larger than its temperature. Only rare fluctuayolvmg the displacement of either one or a limited number

. . i . of atoms. Single-atom moves are rather efficient in liquids
tions of thermal energies will allow the system to jump over--. . .

: - : [2]; however, they are not as successful in reproducing the
a barrier and move to a new minimum. Typically, the rate for

. . I . . collective nature of structural relaxation associated with the
such jumps decreases exponentially with increasing barri

heiah q h ; |  the ord low dynamics of glassy and amorphous materials. Algo-
eight, and may reach macroscopic values — of the order Gjinms with more complex moves exist: the bond-switching

second; or more, rendering the study of these phenome%orithm of Wooten, Winer, and Weaif&], for instance,
rather difficult. succeeds in producing some of the best continuous random
These long time scales are especially prohibitive for nunetwork models of amorphous semiconductors. Such algo-
merical studies. Traditional methods for the study of structithms are, however, problem specific, and their dynamics
tural relaxation are of two kinds: molecular dynam{t4D) generally unphysical.
and Monte CarldMC). MD is based on the direct integra-  In lattice models like the Ising model, it is often possible
tion of the equations of motion. In order to ensure the stabilto move from microscopic events, such as single spin flips in
ity of the solution, the integration step cannot be larger thanhe traditional Metropolis and heat-bath Monte Carlo simu-
a fraction of a typical phonon vibration, i.e., somewhere bedations, to collective events determining the behavior over
tween 1 and 10 fs. Depending on the number of atoms, thivnger times, such as flips of clusters of spins. Doing so can
interaction potential, and the speed of the computer, the totaéad to a substantial improvement in the speed of algorithms,
number of steps can reach*l® 10/, which translates into a especially near the critical temperature where the correlation
time scale on the order of nanoseconds; this is still far fromlength and thus the cluster size diverges. The cluster algo-
the experimental time scale for structural relaxation of glassyithm of Swendsen and Warg], for example, can increase
materials. Because of the nature of MD, improvements bethe computational performance of the simulation by many
orders of magnitude compared to single-spin-flip algorithms.
In this paper, we give a detailed description of a recently
*Permanent address: Department of Physics and Astronomy, Ohjproposed method that introduces a similar change of para-
University, Athens, OH  45701. Electronic  address: digm for continuum-based models: from the microscopic
mousseau@helios.phy.ohiou.edu single-atom displacements to collective moves that form the
"Permanent address: Institute for Theoretical Physics, UtrecHbasis of the activated processes in glassy and amorphous
University, 3508 TA Utrecht, The Netherlands. Electronic addressmaterials. This method, the activation-relaxation technique
barkema@fys.ruu.nl (ART), has already been applied with success to amorphous
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semiconductors and metallic glasgés-7]. With a similar  type of atomic rearrangements leading to structural relax-
algorithm, Doye and Wales have studied the potential energgtion. In effect, it is the system itself that determines the
surface of small Lennard-Jones clustEss appropriate atomic processes, in much closer agreement with
An event in ART is defined as a move from a local energyreal processes. Such a change in paradigm, from real to con-
minimum M©=(x{?, ... x{?)) to another nearby mini- figurational space, is particularly necessary for the study of
mum M®=x{V, ... x{V)) following a two-step process glassy materials where an unambiguous description of real-

mimicking physical activated processe$) the activation — SPace configurations in terms of neighbor lists, coordination
during which a configuration is pushed from a local mini- defects, etc., is generally impossible to give. ARRipriori
mum to a nearby saddle poiriti) the relaxationthat brings ~ blind to the details of real space configurations; all ART
the configuration from this saddle point to a new local mini-needs is a local and continuous description of an energy
mum. landscape; discontinuous energy landscapes, as, for instance,
By defining the moves in theN-dimensional space con- in discrete spin models, cannot be differentiated and thus
trolling the dynamics of relaxation—the configurational en-forces are not defined. Any continuous interaction potential,
ergy landscape—ART removes any constraint on the type dfowever, from Lennard-Jones to LDA, can, in principle, be
real-space moves allowed. This is particularly important inused with ART.
disordered and complex materials where events can involve As mentioned in the introduction, the activation-
very complex local or collective rearrangements that are har¢elaxation technique consists of two parts: a path from a
to foresee. local energy minimum to a nearby saddle point—the activa-
This paper is organized as follows: we first present thdion; and a trajectory from this point to a new minimum—
activation-relaxation technique. The following section dis-the relaxation.
cusses the implementation of the algorithm. We finally show The relaxation to an energy minimum poses no particular
examples of events in amorphous silicear-$i) and silica  challenge: itis a well-defined and well-behaved operation for

glass @-Si0,). which a number of efficient algorithms are availatdee, for
example, Ref[11]).
Il. THE ACTIVATION-RELAXATION TECHNIQUE The activation from a minimum to a saddle point requires

more care: to our knowledge, no theoretical framework ex-

In many materials and systems, the dynamics can be agsts that allows for finding the complete set of saddle points
curately described as a sequence of metastables states sempaund a local minimum. A number of works have been
rated by energy barriers high comparedkiI, the typical devoted to the study of finding the transition states in clusters
energy scale at the atomic level. Such metastable configurand low-dimensional systems. Many of the techniques, how-
tions will remain essentially unchanged on a time scale thagver, start with the knowledge of both minimum states and
is long compared with the natural time scale set by latticery to find the path connecting the twd2]. It is a very
vibrations, and can be well identified by the atomic positionsdifferent problem to try to find a saddle point with the
at 0 K, i.e., by the local minimum of the configurational knowledge of only one minimum. Most methods can be
energy landscape. Knowledge of the distribution and propertraced back to two techniques, the distinguished coordinate
ties of these local minima is sufficient for determining the[13,14 and the eigenvector-followinfB,15,16 algorithms.
thermodynamical properties of the system. To understand th&lthough these methods are generic, neither addresses the
dynamical properties of these materials, however, a knowlguestion of the generation of a complete set of saddle-points
edge of the rates controlling the jumps from one minimum toaround a given minimum.
another is also necessary. In steepest-descent—or zero-temperature Langevin dy-

To a first approximation, the dynamics in these materialsiamics, where the velocity is proportional to the force—all
is determined by the activation energy, i.e., the energyrajectories, including those starting at a saddle point, lead to
needed to bring a configuration from the local minimum to aa local energy minimum. A naive approach to finding the
nearby saddle point. Because of the exponential nature gotrajectory from a minimum to a nearby saddle point would
erning the energy fluctuations, any event following anothetherefore be to retrace this path using a time-reversed zero-
trajectory, with by definition an energy higher than that at thetemperature Langevin dynamics, or a steepssentalgo-
saddle point, will be much less probable and can be safelyithm. This fails, however, since using steepest ascent simply
neglected 9]. For the simplest characterization of the non-corresponds to inverting the sign of the total energy, in effect
equilibrium properties or dynamics of a disorder materialexchanging local minima with local maxima. Moreover, the
away from the glass transition it is, therefore, sufficient tominimum-energy trajectory leading from a local minimum to
map the continuous configurational energy landscape onto @ saddle point is an unstable trajectory for steepest ascent;
network formed by minima connected via trajectories goingany perturbation sends the path away from the reversed
through first-order saddle pointslO]. The current ART  steepest-descent trajectory.
method provides a local prescription for exploring this sim-  Within Newtonian mechanics a trajectory from a saddle
plified space through hops from a local minimum to anothempoint to a minimum is also time reversible: starting at a
(events. minimum with properly chosen velocities, one would be able

By defining the events directly in the configurational en-to move up to any saddle point. In contrast to time-reversed
ergy landscape, which, as we have seen, fully determines tHeangevin dynamics, the trajectory cannot reach divergent
dynamical and equilibrium properties of a material, ART be-parts of the configurational energy landscape since the total
comes much less sensitive to the details of the real-spaanergy is conserved. As with time-reversed zero-temperature
configuration. Doing so, it refrains from definiagpriori the  Langevin dynamics, though, even a very tiny deviation can
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bring the system far away from the saddle point. Sampling algorithm fails. From experience, such trajectories are rare
very large number of initial random displacements and therand the algorithm generally converges to a saddle point.
targeting the least divergent trajectories, Dykneaial. could Since moves are defined in the configurational energy
successfully find the saddle points of a chaotic two-landscape, vectors in EqLl) have 3N components both for
dimensional systenjl7]. If this approach can work for a the force and the positiofi8]; the displacement of the con-
simple energy function in low dimensions, such a hit-and-figuration from a local minimum to a nearby saddle point
miss algorithm becomes hopeless in a largedmensional  may, therefore, involveany number of atoms—from one to
space with a computationally expensive force to evaluate. all N atoms.

At the saddle point, all eigenvalues of the Hessian but one In disordered networks, it is unlikely that the lowest ei-
are positive. The energy landscape resembles a valley goirgenvalue of the Hessian matrix is degenerate. There are,
down along the eigendirections corresponding to the negaherefore, always only two valleys stemming out of the local
tive eigenvalue. Leaving the saddle point by steepest descentinimum, corresponding to the positive and negative direc-
we follow the floor of the valley to eventually arrive at a tion of the lowest eigenvector. Thus, following valleys from
nearby minimum. This suggests immediately a local algothe minimum either along the lowest eigenvector or the
rithm that should be more stable than the steepest ascent: moodified force leads to only two saddle points, whereas a
define a trajectory to a saddle point, the configuration isystem typically has many, even thousands, of saddle points.
moved in such a way as to minimize the force along allEven worse, these two directions correspond, in bulk mate-
directions but the one corresponding to the lowest eigenrials, to long-wavelength distorsions and do not lead to in-
value. This eigenvalue is identified with the local bottom ofteresting events. Finding a way to avoid these directions can
the valley, and the configuration is moved against the forcde a difficult task.
along this direction. A small displacement away from the One approach, taken by Doye and Wales for the study of
bottom of the valley would be corrected for by theN3 a 13-atom Lennard-Jones cluster, is to select in turn each of
—1)-dimensional minimization, making the trajectory stable.the eigendirections of the Hessian at the minimum and fol-
Intuitively, this line and the path of steepest descent shouldbw it to a nearby saddle poiri8]. Since there are only 78
run mostly parallel; they are not identical though, and somesuch directions, only a fraction of the mary 1%, see Ref.
times diverge. [19]) saddle points can be reached this way from the mini-

In most circumstances, this algorithm will converge to amum; local information around the minimum is insufficient
saddle point. Because we consider here the maximizatioto locate all valleys leading to saddle points. Moreover, the
along a single eigendirection, this algorithm will not lead to repeated calculation of the Hessian is an expensive operation
second- or higher-order saddle points. This is in essencfor large systems.
what was proposed by Cerjan and Miller for the location of We propose a few approaches that do not req@ifsl®)
transition states in low-dimensional energy surfatgs], operations and work for a wide spectrum of circumstances;
and what was used for an extensive study of a 13-atom Lthese are discussed in Sec. Ill.
cluster by Doye and Walds8]. Once a valley has been found, the situation becomes more

Because of itdN® requirements, this algorithm becomes straightforward, and we can use either of the algorithms de-
rapidly too computer intensive for realistic bulk systems, of-scribed above to follow the valley to the saddle point.
ten demanding many hundreds of atoms with a costly energy

function. We must therefore find another algorithm which . IMPLEMENTATION
does not require evaluation of the full Hessian matrix at each ) _ )
step. The implementation of the method poses no particular

The current implementation of ART follows a modified conceptual or computational problems. The whole code, ex-
force vectorG. obtained byinverting the component of the cept for the force and total energy calculation, contains a few

force parallel to the displacement from the current position hundred lines at most. Its_ core consists of three parts: the
. > 2 2 (0) . L escape from the harmonic basin, the convergence to the
to the local minimumr=X—M(© while minimizing all

) ) saddle point, and the relaxation to a minimum.
other N —1 directions:

A. Escaping the harmonic basin

G=F—-(1+a)(F-nr, @ The part of the algorithm that is most sensitive to details
of the system studied is the escape from the harmonic basin;
wheref is the normalized vector parallel fg F is the total  different approaches might have to be tried to find the most
force on the configuration as calculated using an interactior‘?ffeCt'Ve one. In general, open but stiff materials I|ke_ amor-
potential, andw is a control parameter. This equation is ap- phous s_em_copductors have a very small harmonic pasm
plied iteratively until the force parallel to the displacementfrom which it IS easy to escape. I\/!ore compact materlql_s,

. > A . . . such as metallic glasses, or floppier ones, such as silica
f_rom the minimumF-r changes sign from negatn_/e to posi- lasses, pose more problems. To ensure a proper sampling of
tive. Generally, the force perpendpular tq thg d|splacemen vents, any method for escaping the harmonic basin that
decreases rapidly after a few iterations, bringing the conﬁgur

) ; eaves out a significant fraction of the saddle points should
ration close to the steepest-ascent trajectory. For a steepegls oy oided

ascent path perfectly parallel tg the modified force of Eq. The simplest way of escaping a harmonic basin is to make
(1) strictly sticks to the floor of the valley up to the saddle a random displacement away from the minimum, involving a
point; for steepest-ascent trajectories perpendicular; the  single randomly chosen atom, a cluster, or all atoms. In our
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experience, for small systems they all lead to the same typgaddle point. Such a crude method, however, is rather un-

of events; for larger systems, a global random displacemerstable and can easily enter into oscillations or severe slowing

tends to induce many spatially separated events which bealown.

come difficult to disentangle. We therefore prefer a local The conjugate-gradientCG) algorithm provides an easy

displacement for systems of more than a few hundred atomsolution to this restriction by ensuring that the new displace-
A random direction generally has a sizable overlap withment will be in a direction conjugate to the previous ones.

the softest elastic modes, and tends to fall back to theSﬁ_l] The line minimization a|ong a directioﬁ required in
easily. We get better results by taking the escape directiofhe CG implementations of numerical packages, however,
for the initial displacement along the force induced by aare based on the existence of a total energy—which cannot
small random displacement; this procedure is essentiallpe defined. We replace it by a root-finding algorithm of

equivalen_t to_appl_ying the Hessian ”?a”ix to & random VECHE.A. In general, only a couple of force evaluations are nec-
tor, resulting in a first-order suppression of the softest elas“%ssary to reach,that point

modes. -
. . The Levenberg-Marquard(LM) algorithm[11] proposes
For small systems, where the Hessian can be obtained a'?admixture of steepest-descent and a full-fledged second-order

diagonalized ir_1 a relatively short time_, t_h_e so_ftest_ modes Caliessian minimization technique. Away from the harmonic
be removed directly from a random initial direction, or the regime, the steepest descent controls the optimization; as

if““a' displacgment can b.e ch_osen alqng a linear (.:ombinaéteps get smaller and the space becomes more convoluted,
tion of the stiffest eigendirections. This approach is rathe he information contained in the Hessian matrix starts being

computationally involved and cannot be reasonably carrie sed

out for systems with more than 100 or 200 atoms. If applied directly, the LM algorithm is rather computer

theog];sesgz;eeigiftizl)gﬂi.reefrﬁiroensLsolfijxeiiaiit;;i;hge?hglgg eﬁal:mgnivgtensive and does not suit our need. However, it is possible
. . ! simplify the algorithm while retaining many of its advan-
region has been left. This threshold has to be large enough implify gor wh ining y otl v

Ages. We keep here the steepest-descent part untouched but
ensure that the trajectory does not fold back onto the softe.?} 9 P P b

direct hil ining inside the basin of attraction. W se a local Hessian, which contains only th& 3 blocks
Irection while remaining Inside the basin ot attraction. eanng the diagonal of the full Hessian, where both deriva-
use a combination of two conditions for determining the

; ' ) ) . ~tives of the energy are belonging to the same af@@.
point where the configuration has left the harmonic reg|0nAIthough this is a rather crude approximation to the real

surrounding the.mmal minimum: when thg force C.omponemHessian, it suffices to reach with a reasonable efficiency the
parallel to the displacement either stops increasing or whe addle point and the minimum on the other side

the ratio of this component to the perpendicular componen At each step, the force and the local Hessian are evalu-

iriosnrirlalrgiézelgf?a%igiﬂeftzgiﬁg’r(xé d%?gsfige;utgﬁtbtehg?nzaréted. The displacement is then calculated using a parameter
In the algorithm used in Ref$5], [6], and[7], no clear N\, which is varied depending on the success of the step:

distinction was made between leaving the harmonic region AX=-(H"YHE 3)
and convergence to the saddle point; instead, an additional
repulsive harmonic potential was introduced, which is addegyith
around the minimum with a strength,, and a range.:
H=H+N\I, (4)
Erep=Aregl [T —1¢)2. 2
P reP(' =1 . wherel is the identity matrix, and is the local Hessian. For
Although relatively efficient, this approach modifies the locallarge \, the right-hand term dominates, and the algorithm
energy landscape and introduces an artificial length sgale reduces to a steepest descent with step size times the
in the problem. To reduce the impact of this additional lengthforce. When the step is too large,is increased, otherwise it
scale, one can reinitialize, andA, at random before each is decreased.
event. Both LM and CG require a similar number of steps. A
Currently we prefer to take as the initial direction the negative point of LM is that, in order to be computationally
force after a random displacement, and follow that directiorefficient, a local Hessian should be calculated analytically,
until we leave the harmonic region, and then foll@vas Which is not easy if the force is taken from already written
defined in Eq(1) until the saddle point is reached. subroutines or packages. Therefore, we tend to prefer CG.

B. Convergence to a saddle point C. Relaxation to a minimum

Convergence to the saddle point cannot be achieved using Although any method could be used for the relaxation to
standard minimization techniques because the modified ford&€ minimum, we prefer to use the same algorithm as for the

& as defined in Eq(1) is not curl free, i.e., it cannot be convergence to the saddle point. In general, it is not neces-

obtained from the gradient of a scalar. We therefore have tgary to have a very precise convergence, just a few signifi-

L = . igits (of th f 0.01 ffice. B fi
follow closely the direction ofG until we reach the saddle cant digits(of the order of 0.01 Asuffice. Because of its

T S stability, the convergence to a minimum is often faster than
point, indicated by a change of sign in the component of the[hat to a saddle point

force parallel _tOF- Many simple algorithms can readily be  pepending on the material or system, it takes roughly
adapted for this purpose. Making small displacements in thg0-500 force evaluations to converge to a saddle point, and
direction of G is the most obvious choice for reaching a 50—300 steps to reach an acceptable minimum. For a 500-



57 TRAVELING THROUGH POTENTIAL ENERC . .. 2423

Initial

o [&]

Initial Saddle Final

Saddle
o
FIG. 1. An event in the simulation of amorphous silicon. From
left to right, the initial, saddle-point, and final configurations are Final

shown. The top and bottom rows correspond to different viewing
angles of the same event. Dark atoms change their bonding envi-
ronment during the event; light atoms are nearest neighbors of the
dark atoms. Activation energy, 5.74 eV; energy difference from
initial to final configuration, 2.30 eV.

atom unit cell and a relaxation of roughly one ART step per FIG. 2. An event in the simulation of silica glass. From top to

atom, this means between 100000 and 1000 000 forcRottom, the initial, saddle-point, and final configurations are shown.
evaluations. Large circles represent Si, small ones O atoms. Dark atoms either

change their bonding environment or move by more than 0.75 A
during the event; light atoms are near neighbors of the dark atoms.
Activation energy, 10.84 eV; energy difference from initial to final
configuration, 4.25 eV.

IV. EXAMPLE: EVENTS IN AMORPHOUS SILICON
AND SILICA GLASS

To illustrate the real-space working of the algorithm, we
present events created @Si andg-SiO,. from the melt using molecular dynami¢22]. The initial
A 1000-atom cell ofa-Si was obtained following the pre- relaxation was done using the full Vashisietaal. potential
scription given in Ref[5]: starting from a randomly packed [23] while ART was applied using a screened version of the
cubic cell, ART is applied successively until the configura-same potential24]. Figure 2 shows an event in this struc-
tion reaches a stable energy. To obtain a low-energy configdure. Because of its more open nature, events in silica tend to
ration, we use the standard Metropolis algorithm, where anvolve more atoms than in amorphous silicon. Total atomic
new configuration is accepted with probability 1 if the en-displacement between initial and final configurations is 6.8 A
ergy is lower than that in the original configuration, other-with three broken and two created bonds and many tens of
wise with probability exptAE/kgT). The temperature as atoms involved at a lower degree during the activation and
such is fictitious and we find tha; T=0.25 gives satisfac- relaxation phases. The activation energy is considerable, at
tory results. As in Ref[5], we use a modified Stillinger- 10.84 eV, with the new configuration 4.25 eV higher in en-
Weber [21] interaction potential with a three-body force ergy than the initial one.
twice the original value to remove the liquidlike features of  The characterization of events botharSi andg-SiO; is
the amorphous phase associated with the original SW. difficult: although each event normally involves less than
One event obtained in the relaxed structure is shown if0—12 bonds being broken or created, many more atoms can
Fig. 1 from two different angles. In the bottom representa-mnove significantly, rendering visualization complicated. We
tion, we can see how the configuration passes from thre@re currently working on a systematic study of events in both
five-membered ringginitial) to one five- and one eight- materials.
membered rindfinal). In the process, four bonds are broken
and f_our are crea_ted, preserving the totgl coordmat!on, and V. CONCLUSION
the displacement incurred by the atoms is 2.3 A. This event
has an activation energy of 5.74 eV and the final configura- By defining events directly in the configurational energy
tion is 2.30 eV higher than the initial one. landscape, the activation-relaxation technique provides a ge-
For silica glass, we use a 576-atom configuration relaxederic approach to study relaxation in complex systems such
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as glassy and amorphous materials, polymers, and clusterscape that are difficult to sample using more standard tech-
Real-space moves are determined by the system itself amdques. This paper provides the necessary description of the
represent the most likely physical trajectories followed dur-algorithm to allow for a rapid application of ART to a wide
ing relaxation. ART is much less sensitive to the slowingrange of problems.

down caused by increasing activation energy barriers than
standard MC and MD approaches.

Already ART has produced results that could not be
achieved via other techniques: it has produced well-relaxed We acknowledge useful and interesting discussions about
samples ofa-Si [5], a-GaAs [6,7], NiglPy [5], and ART with J. P. K. Doye, M. I. Dykman, S. W. de Leeuw,
minimum-energy configurations of clusters of Lennard-Jonesand V. Smelyanski, and partial support by the Stichting FOM
particles[8]. The examples of events presented here demonfundamenteel Onderzoek der Mat¢umder the MPR pro-
strates that ART can easily reach regions of the energy landgram.
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