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Many-body diffusion algorithm: Harmonic fermions
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A numerical implementation scheme is presented for the recently developed many-body diffusion approach
for identical particles, in the case of harmonic potentials. The procedure is free of the sign problem, by the
introduction of the appropriate absorption or reflection conditions for the walkers at the boundary of a state
space. These conditions are imposed by the permutation symmetry. The outflow of the walkers at the boundary
of the state space contributes substantially to the energy. Furthermore, the implementation of crossing-
recrossing effects at absorbing boundaries proves indispensable to sample the antisymmetric states by discrete
time steps[S1063-651X98)02802-3

PACS numbgs): 02.70.Lg, 05.30.Fk, 03.65.Ca, 02.50.Ga

[. INTRODUCTION account, even in the presence of harmonic two-body interac-
tions. It is clear that analytic path-integral meth¢d8—15
In this paper the theoretical method put forward in a seriesllow the study of these models in a more direct way. But it
of publications by three of the present authgts 3] around  is not without value in view of the sign problem if the lowest
the criticism[4] on an approach initiated by Korzeniowski energy state of this harmonic system with a specified sym-
et al.[5] is applied to an analytically exact soluble model. A metry can be simulated with a sign-problem-free procedure.
sign-problem-free estimation of an excited antisymmetricSuch a procedure will be applied in the present paper. We
eigenstate of the model is presented. want to stress that our only inference is that we simulate the
Monte Carlo simulations of an excited state of quantummodel (fermions interacting harmonically and isotropically
systems are only possible if symmetry considerations can bgign-problem-free. The adaptation of the technique for a re-
invoked to guarantee that the excited state is orthogonal talistic model is beyond the scope of the present paper. The
all lower lying states of the same system. Usually this meansmitation of the proposed method originates from the fact
that one simulates the state with the lowest energy that transhat in the theoretical framewoifld—3] leading to this algo-
forms according to a particular irreducible representation ofithm, we rely on a typical symmetry property of harmonic
the symmetry group of the system. Usually this also meangteractions, which is absent for more general potentikts
that the state has a nodal structure in the configuration spaclevertheless, the basic idea of using the permutation sym-
This is, e.g., the case if one wants to simulate a system commetry to partition the configuration space in domains with
taining a fixed number of fermions. Th@inknown nodal  boundary conditions offers the potentiality to lead to a gen-
structure of this system is the origin of the so-called signeral procedure for more realistic systems.
problem. The fermion state to be simulated is an excited state From our theoretical contributions to this problé¢fir-3],
of a quantum system of distinguishable particlibe walkers it should be clear that, in an algorithmic way, we have to
in the simulation are registergthat transforms according to study a new problem, formerly not encountered in the area of
the antisymmetric irreducible representation of the permutaguantum Monte Carlo simulations and relating the sign prob-
tion groupSy, whereN is the number of indistinguishable lem to absorption and reflection of walkers at a boundary.
particles. Up till now, there is no generally accepted way thafThe novelty is that the boundary for a walker depends on the
solves the sign problem. Several approaches avoid the prolpositions of some other walkers.
lem approximately by fixing the nodal surfaces to be those of The introduction of a domain also has consequences for
a known, usually exactly solvable problem, or by allowing the estimation of the ground-state energy. With ground-state
that parts of the configuration space with different sign areenergy we mean here the lowest energy of all the states that
sampled in combination with variance reducing methidds  transform according to a specified irreducible representation
8]. of a symmetry group. The absorption of walkers at the
Oscillators belong to the class of simple models that carboundary of the domain creates a flux of walkers out of the
be tested easilj9—11] and gain importance in view of the phase space volume that gives an important contribution to
models for trapped systenid2]. The ground-state energy the estimate for the energy as will be shown below.
and the static response functions of particles in a harmonic This paper is organized as follows. In Sec. Il we will
potential can be calculated with their statistics taken intadiscuss what absorption or reflection means for the distribu-
tion of particles in a domaiD3 and how this distribution
can be simulated by Bernoulli walks or by diffusion Monte
*Also at the Universiteit AntwerpetRUCA) and Technische Carlo. In this respect a crossing-recrossing correction de-
Universiteit Eindhoven, The Netherlands. serves special attention. In Sec. Il the energy estimation is
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considered, with special attention to the flux term coming i
from the absorption of walkers at the boundary. In the last :
section the results for a set of oscillator models are given, ;
followed by a discussion and conclusions.

R:@

Il. FREE DIFFUSION WITH A BOUNDARY L)

For N particles moving in a Bl-dimensional configura-
tion space, permutation symmetry can be taken into account
by ordering linearly the coordinates of the particles along the X;(t) /\
three basic directions, introducing in this way a domaiip.
Depending on the configuration the antisymmetric represen- %E\:/
tation can be realized by several combinations of boundary Do
conditions: the antisymmetric representationirigducible

with respect to the permutation &f particles but isreduc- FIG. 1. lllustration of the Skohorod construction for a Brownian
ible with respect to the permutation of theN3coordinates. yajectoryx(1). Xi(r) refers to the bosonlike random process in
The symmetry of the model without interaction or with only 4,4 presence of a reflecting boundary gxis). The corresponding

harmonic interactions along the principal axes is higher thag, o niike proces, (+) is identical toX;(r) until the pointB,
that of a ma_”y'bOdy system W_”‘:h re_allstl_c one-l_aody and tWO'whereupon it stays on the boundary propagating with zero weight.
body potentials. A decomposition into irreducible represen-
tations of the permutation of coordinates leads to four com- _— . . .
binations, labeled by a quantum numbér 0,1,2,3 referring By definition, L;(7) is .a.nondecreasmg rgndom function on
to the behavior of the coordinates at the boundzby,, u the event space, and it increases only wKgt) reaches the
=X,y,z. We follow here the conventions introduced [ boundary, i.e., in this example X;(7) =0. This mechanism
The case/=0 for the antisymmetric combination, e.g., is illustrated in Fig. 1, in which the reflection of a Brownian
means that coordinates behave fermionlike in the three dire¢ample pattX;(7) occurs by the combination of;(7) with
tions, while /=2, for instance, means that the coordinatesLi(7). (For vividness but without consequences for the prin-
behave fermionlike in the direction and bosonlike in the ciple in mind, the sample path has been depicted as a smooth
two other directions. Using this reduction by symmetry andfunction) With the N-dimensional generalization of the con-
the appropriate boundary conditions, the representative d@truction, it can be shown that the transition probability sat-
main that is specified cannot be left by the walkers anymoreisfies the Neumann boundary condition for the backward
On this domain the wave function of the model does notequation. It should be noted that if a diffusion with drift is
change sign, leading to a sign-problem-free simulation ofonsidered—the forward and backward equations are
that antisymmetric state. It is important first to analyze thedifferent—the boundary conditions will become dependent
algorithm for moves in one direction only. This is done for on the drift[17].
fermionlike as well as for bosonlike behavior. The moves in  In order to see how the distribution arises in a simulation
a general three-dimension@D) direction are combinations using prescription(2) for boson diffusion, the example of
of both. two identical bosons on a line is instructive. A representative
outcome of the numerically simulated free-particle boson
A. Reflection and bosons on a line diffusion is compared in Fig. 2 with the rigorous density, i.e.,
a permanent with the appropriate transition probabilities
p(X{ x;;A7) as entries, wherex; and x; (with i,]
=1,...N) are coordinates at time and at timer+Ar,

o

<

)

T

For N bosons moving on a line, the domdi, that we
consider here, is linearly ordered ky>Xx; . ; and the bound-
ary of the domaingDy, is reached if one of the following
equationsx;=x;, 1 is satisfied fori=2,... N. A sample
path forN walkers starting in the domain is denotedXfr)
and the increments of thid-dimensional random walker or
Brownian motion are independent and obtained as usual
This sample path can be used to construct one with reflectio
at the boundaryDy by the following procedure. Consider
the path of one componentvith a reflecting boundary at the
origin. In this case those parts ¥f(7) which areoutsidethe
domain before the time are reflected to thmsideby adding
an amount_;( ), determined by the most negative value on
the trajectory in the time intervl0,7],

Li(m)=—inf{X;(7"),0;7" < 7}. 1) FIG. 2. Comparison of the rigorousight hand sidg and nu-
. ) . merically sampledleft-hand sid¢ probability densities of two one-
The sample path of the diffusion or random walk with reflec-gimensional free-diffusive identical bosons, having started from an

tion is given by the Skohorod construction: initial point denoted by the crosses, after an evolution of three

. atomic time units. The solid line indicates the state space boundary
Xi(1)=Xi(7)+Li(7). @ x=x,.
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FIG. 3. The same as Fig. 2 for fermions. FIG. 4. The same as Fig. 2 for distinguishable particles. The
dashed line indicates the hypersurfage= x,.

respectively. First, an ensemble of walkers was created at a
fixed position inside the state spabe. The initial position ~ ary; their modal distance monotonously increases with Eu-
is indicated by a cross, whereas the state sjacavith x,  clidean time. These properties are in contrast to the evolution
>x, is situated right below the solid black lingg=x,. The  ©f distinguishable particles, which is not restricted to the
walkers evolved for three atomic times and by projection ofState spac®, (see Fig. 4. The walkers spread out isotropi-
the walker coordinates onto tha,(x,) plane a snapshot of Cally with rigid modal distance, which nicely illustrates the
the simulated density has been obtained. The numerical defck of free-particle interactions due to quantum statistics.

sity is in good agreement with the rigorous one, also shown
in the figure. D. Absorption and reflection in more than one dimension

In order to illustrate the construction of an antisymmetric
B. Absorption and fermions on a line state for two particles using the appropriate processes for
For fermions on a line on the same domaig but with diffusion of their coordinates, the rate that the walkers get

absorbing boundary conditions, the sampling technique hadPsorbed at the bour]dary of the s?ate space is a chargcteristic
to generate a determinant with, as elements, th&f the many—gofdy diffusion algorithm. In thLeefspa';lal di-
T ; ; tisymmetric state, the four fermion
p(x!,xi;A7). The construction of a sample path with ab- MENSIONS ana for an an .
sorE)tian from a Brownian motion or a random waX{ 7) prC)[%(]asse$f,bl,lb}, {b'f’lb(}j’.ﬁ;{b’b'f}’Snd{f.'f’f} mtrodu.ced
ith the i : f a first- ime: in generally reveal di erent at sorptlpn rates. Figure 5
proceeds with the introduction of a first-passage tirfe gives a typical example for thguclidean time dependence

Tp=inf{7=0;X(7) € 9D }. ©) of the relative number of walkers residing in the state space.
Providing infinitely large samples, this numerical quantity
The new stochastic proce¥r) is then by definition converges to the conditional probabili (7;p> 7). Due to
the presence of absorbing boundaries in each direction, the
_ X(r) if <7 {f,f,f} process decays faster than any of the other three
X(7) XT{;D if m=7,. @ Ll r r 7
' A {f,b,b}
It should be noted that each sample pXi¥) has its own LT J {b,fb} ]
first-passage time; therefore this time is a random variable A 1o Z ?f’,’f',’éf} ]
The transition probability for the proce3q 7) satisfies the E oo O 3D dist. part.
Dirichlet boundary conditions. As argued [ita], this proce- g 08
dure simulates the Slater determinant describing motion on ¢ 4 o7 |
line. < 0.6 F
In order to see how the distribution arises using prescrip- ,E s |
tion (4) for fermion diffusion, the simulation of two identical o
fermions on a line is shown in Fig. 3. Also in this case, the g 041
numerical density has been found to be in good agreemen — 03[
with the analytically rigorous one. L oo
0.1t
C. Bosons and fermions in one dimension 0.0 . . . . . . . . .
o 1 2 3 4 5 6 71 8 9 10

Figures 2 and 3 vividly recover typical characteristics at- evolution time
tributing to the time evolution of free bosons and fermions.

As has been shown in a previous pape}; the state-space FIG. 5. An exemplary comparison of the numerically obtained

boundary dD, acts attractive for the two bosons. Their relative number of walkers inside the state space with the rigorous
modal trajectory, i.e., the trajectory with the highest densityyesults indicated by the solid lines, as a function of evolution time

rapidly approaches the boundary and stays there for the regh atomic unit3 for both the subprocesses modeling the many-body
of the evolution timg2]. Fermion evolution on the contrary diffusion process of two three-dimensional identical fermions and
looks as if the two fermions would be repelled by the bound-three-dimensional free-distinguishable-particle diffusion.
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FIG. 6. The definition of finite time steps and corresponding
spatial grids induces shortcomings with respect to the accurate as-
signment of validity flags. The refinement of the coarse gri¢ain
indicates[see(b)] that a considerable rate of possible paths fidm
to C enters prohibitedgray) regions. : X,

processegf,b,b}, {b,f,b}, and{b,b,f}. As can be clearly FIG. 7. Diffusers having propagated from to C may have
seen in Fig. 5, the processes decay with a different rate; thigllowed a valid path(solid line) as well as an invalid onedashed
reason for this is that the distribution of the first-passage timéine ABC) that passed into the forbidden regitn gray) outside
7,5 depends on the initial position. For large times;c,  the domain.

they decay as— %2 proportional to the relative fermionlike

coordinate of the initial position. Again, considering the state Assume that a discrete time scaler and, consistently
space as the domain of interest, the evolution ofetkietime ~ according to the Einstein relation, a spatial grid with spac-
for distinguishable particles reveals a totally different decayings Ax= A7 has been chosen, as illustrated by Fig)6

in time, because nothing prevents them from reentering th@uring a time steph 7, a walker initially located aA could

domain after having left it before. move a distanc@x into each direction, so as to reach one of
the pointsC, C’, C", or C". Let it eventually advance tG.
IIl. SAMPLING THE GROUND STATE The only possibility to perform that step on the broad grid is

thus the straight move, as indicated by the straight solid line

The sample paths inside the domain are made using th&c in Fig. 6@). Refinement of the gridsee Fig. &)] to
traditional tEChniqueS for Brownian motion or Bernoulli SpacingsAx/Z, and Corresponding|y time Steﬁs;—/;]_, indi-
walks. In addition, computational efficiency calls for the in- cates that not all possible paths frarto C provide nonzero
corporation of the Feynman-Kac functional using the techtontributions. During the four time stedsr/4, the diffuser
nique of branching and killing. This is consistent with the gjther could have taken admissible paf@ like the dashed
underlying formalism of many-body diffusion provided the gne or, on the other hand, could meanwhile have left the
system does not require walker transitions fronvastate to  jomain as indicated by the solid padlC. In the latter case,
a (different /" state, thereby changing its boundary condi-the move would be invalid and the diffuser should be ab-
tions. The fact that such transitions are possible in a generalorbed. But the broad grid in Fig(# principally does not
potential has been overlooked [i8] (see[16]). However, it  allow us to distinguish between valid and invalid pafgs.
remains of interest to simulate a class of antisymmetric statel& other words, working on angartificial) discrete grid, any
sign-problem-free with the proposed algorithm; in particular,move the initial and final positions of which are situated
in view of algorithms for more advanced models taking intoinside the domain automatically includes a set of invalid
account the additional transitions fromto /. paths. This gives rise to systematic errors in the evolution.

A. Estimation of the first-passage time B. The crossing-recrossing correction

Although the consequences of permutation symmetry are To correct for these errors in the evolution, each trial
rigorously incorporated in both the formalism of many-body displacement of a diffuser must be assigned a ratio of valid-
diffusion and the algorithm described so far, numerical pracity, Which directly corresponds to the ratio of possible valid
tice reveals that the simulation of the imaginary-time $ehro@nd invalid paths to perform the move in continuous space.
dinger equation along these lines widiscretetime steps The correction has to do with the crossing and recrossing at
introduces systematic inaccuracies due to the possibility of€ boundary in a time lapse smaller than the time increment
crossing and recrossing the boundary during that finite timaised in the simulation. It may be illustrated by the following
step. To elucidate this point, we focus on the evolution ofafguments. _ .
free particles, for the effect is caused by the underlying ki- A Probabilistic argument based on the reflection principle
netics, the potential here being irrelevant. Consider two iden¢@n be given as follows. Suppose that a walker, situatéd at
tical fermions on a line, with their coordinates in the con-€Volves toC (see Fig. 7. It might either have taken a com-

figuration space denoted ag and x, (see Fig. 6 The pletely valid path(solid line) or have hit the boundary at,
absorbing boundary is given by e.g., B (dashed lineABC in Fig. 7). Because free distin-

guishable particle diffusion is isotropic, the probability
ID,={X1=X5}. (5) P[X,+2,=C|X,=A, X,=B] to reachC over an arbitrary
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point B on gD, with ve[ 7,7+ A7] equals the probability ments of the domain, is complementary to the probability not
P[X,;2,=C'|X,=A, X,=B] to end up in the imag€’.  to hit any of theN— 1 boundaries. Hence, a completely valid

Clearly, the total probability for the move fromto C isthe  path occurs according to the product of elemental probabili-
sum of the two conditional probabilities to move either fromties of the form +R(A—C). The implementation of these

A to C without crossingB or to move fromA to C’ with extended probabilities eliminates the systematic errors origi-
crossingB. Generalizing this argument to all poirBson the  nating from finite-time-step considerations in the presence of
boundary, the move from to C has to take into account two absorbing boundaries. Strictly speaking, the systematic er-

nonintersecting subsets of paths, i.e., rors specific for our numerical description of many-fermion
systems compares with systematic inaccuracy attributing to
P[X;+a,=C|X;=A]=P,[ X1 4.=C|X,=A] the simulation of respective distinguishable-particle systems.
It must be stressed that the arguments concerning bound-
+P3[ X a,=C[X,=A], ary crossing-recrossing effects are reminiscent of the method

(6) of image charges, which have been transferred to probability
theory a long time ag$18]. The method is based on the
A ) - yr’nathematical formalism of diffusion as distinct from other
while ¢ indicates thatC is reached without boundary ., t5.date quantum Monte Carlo techniques. Quite in con-
crossing-recrossing. Theonditiona) probability P;[X 11, trast, the same geometrical argument has been employed by
=C[X,=A] equalsP[X,,4,=C'|X;=A], and since any anderson[19] to formulate the behavior at boundaries fixed
move fromA to C’ crosses the boundary one obtains by the nodal structure of a trial function and [80] to in-

P[X.. s.=C|X.=A]=P[X.. .= C'|X.=A] troduce the so-called Pauli potential.

where the indeX means that the path crosses the boundar

+P3[X, 2, =C|X,=A]. IV. ESTIMATION OF GROUND-STATE ENERGIES

(7)
Most often propagator-based methods will be used to es-
The crossing-recrossing correction can then be identifiedimate the energy of the system under consideration. In this

with case, one can use the exponential decay of the free energy, or
one may devise separate estimators for the components of
P3[X;4a,=CIX;=A]=P[X,;s,=C|X,=A] the internal energy. Propagator-based methods use implicitly
paths with known beginning and ending points. The key path
|1 P[X;+a-=C'|X;=A] integral goes over all paths starting and ending in the same
P[X,;2,=C|X,=A] /" point of the phase space. In the algorithm explained in the

(8) preceding section only a construction of sample paths with a

known starting point is given. A generalization of the con-
Hence, the normalized probability for moves fromto C  struction, keeping the increments independent and imposing
with boundary crossing-recrossing arises from the ratio  an end point but taking the boundary into account, is to our
knowledge not documented in the mathematical literature.

P[X,+a,=C'|X,=A] Without the boundary condition the construction is known as

R(A=C) P[X,:2,=C|X,=A] the Brownian bridge; physically it means that one takes the
classical action as the starting point to incorporate quantum
(X1 =%5) (X1 = X5) fluctuations. Without the generalization of the Brownian
=exp — AT : bridge another estimation scheme for the ground-state energy

(9) has to be used.

A physical argument leading to the same correction is based
on the method of the images implying that the evolution of
two walkers without interaction but with absorbing boundary ~ To the best of our knowledge, it was Anderd@1] who
conditions is given by the determinant of the free propagafirst reported ground-state-energy estimates based om the
tors. Factoring out the diagonal element one obtains the saniori assumption of the exponential ground-state-energy de-
expression. In practice, the evolution procedure must be eypendence of the time decay of the propagator. For
tended with the supplementary rejection rai®: even dif-  distinguishable-particle systems, the ground-state energy can
fusers having made a move to a final position which isbe evaluated by “stochastic” averages over the potential
clearly situated inside the domain may eventually be judged(r),

A. The kinetic contribution

invalid.
As the many-body diffusion formalism traces back the — — —
evolution of many-body systems of arbitrary spatial dimen- ) ) f dr W(r,n)Vv(r)
sion to adapted one-dimensional diffusion processes, the ar-  Eo= limE(7)=lim —=(\)*. (10
gument described above is readily generalized to any dimen- = = f dr ¥(r,7)

sions. The extension td particles with, e.g., ordering along

the x axis corresponds to the constructiondf1 signifi-

cant boundary conditions. The probability to cross the set offhe “stochastic estimatesE () are based on the stochastic
boundaries during the move fro to C, both points ele- probability density
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TABLE |. Comparison of eigenenergids (a.u) gained by the

R— T
Y(r,r)=Eg exr( - J V(R(T ))d’;) . (1)  many-body diffusion algorithm, with results from rigorous analyti-
0 cal calculations.
For sufficiently large Euclidean time, ¥(r,7) mimicsthe o o N N, N, D E o Eexat  Eexc
ground-state wave function and, accordingly, the estimates
E(T) reflect the ground_state ener&w_ 2 1 2 2 0 1 3.1215 0.0010 3.1213 1.4142
The expectation in Eq(11) goes over all sample paths 2 1 2 2 0 3 6.535 0.0013 6.5355 1.4142
starting atr and ending wherever in the configuration space? + 3 3 0 3 9.0091 0.0051 9.0000 3.0000
with {X(7);7=0} a Brownian motion or a random walk. 3 1 4 2 2 3 19.039 00074 19.034 4.4721
This type of functional integration leading to a wave function3 1 6 2 4 3 29594 00185 29.615 12.124
is based on the path-integral representation of the wave o 1 8 7 1 3 35991 0.0209 36.000 21.000
erator[22]. Once a procedure for the wave function is found,4 1 10 10 0 3 149.27 0.0989 149.30 110.23
it is obvious that the potential averag¢0) is in directcon- 4 1 10 5 5 3 88118 0.0472 88.058 48.990
trast to the quantum-mechanical expectation value of thepd 1 20 10 10 3 27252 0.2795 27247 201.25

tential, and both potential averages must be clearly distin
guished. ) s . ]
Antisymmetry, as specific for the ground-state wave functhe case of fermiong;j)® can be interpreted as the relative
tion of identical fermions, causes the breakdown of the poflow per time step through the absorbing boundaries of the
tential averagél0) as an estimate of the ground-state energy?tate space, this expectqtlon value depends on the distribu-
in the configuration space. Both the numerator and the deion of the first-passage time,p . In the standard treatment
nominator in the estimator tend to zero: the projection on thef distinguishable particlesyW(r) at the corresponding
antisymmetric representation of the simulated wave functiortinfinitely remote boundaries is zero. Evidence that the gra-
in the asymptotic limit of large Euclidean timeis not well ~ dient of diffusive movement at reflecting boundaries van-
defined anymore. During the thermalization of the systemishes has been given |8]. For a diffusion or a random walk
the statistical error attached to the numerical estimates rapf the{f,b,b} type, for example, the kinetics reveals nonzero
idly overwhelms the signal. gradients at the absorbing boundaries inxtaérection. Con-
Replacing the Brownian motion or random walk over thesequently, surface tern{g)® are of essential importance in
configuration space by the many-body diffusion process asur treatment.
discussed in the preceding section, the formulation of energy
estimates adapted to the state spBge with its boundary B. The model system

conditions avoids the mentioned decay of the signal-to-noise The algorithm introduced in the preceding section has

ratio. The implementation of the many-body diffusion pro- .
. . been used to calculate the lowest energy of the states speci-
cess goes hand in hand with a loss of walkers at the absori-

ing boundaries of the state space. From the algorithmic poi ed b_y a given sy_mmetry for an oscillator model with the
) . X . el . following Hamiltonian:
of view, this loss is caused by the underlying diffusion ki-
netics and contains essential information on the lowest en- N 52 N 02 N o
. . > w- >
ergy of that antisymmetric state. In terms of the wave func- H=->, —A+ > _rJ.Z_ > _(ri_rj)Z_
tion on the domain, Eq.10) has to be replaced by =12m =12 =1 2 14

(ﬁ2/2m)f dr VUe(r) The repulsive interparticle interaction is introduced to mimic
Dy many-body interaction. Because Ed4) can be diagonal-
e S — ized, all the energies of the system are known analytically.
fD dr We(r) The diagonalization, the thermodynamic properties, and the
N response properties of this model have been discussed else-
where[13,14]. The ground states of Eq14) for identical

Eoz I|m ET: -

5 dr We(r)v(r) particles with a specific symmetryi.e., specifying the

i ={(j)3+(V)5, (120  boundary conditions on the domdDy) are excited states of
J dr We(r) Eq. (14), considered as a system of distinguishable particles.
Dy The purpose of showing that the algorithm is workable has

Ve(r,7)=Eg, . (13

L L led us to choose the worst cases: the particles are arranged in
whereW(r)=Y(r,») denotes the asymptotic probabil- such a way that the ranking according to all their coordinates
ity density on the state spaé®, with the boundariegD: is maintained during the simulation, and fermion diffusion is
chosen along one direction, while boson diffusion is chosen
ex;{ B fTV(R (7))d7—) for the other directions. Thg s.imulatiqn has been done for
0 F several values of) and o indicated in Table I.N=N,
+N, indicates the number of particles in the system. The
where{Xg(7); 7=0} is a many-body diffusion or many-body spin-up particles and th¢, spin-down particles are mutually
random walk. indistinguishable, but théN; spin-up particles are distin-
In contrast to the distinguishable-particle estimatb), guishable from thé\| spin-down particlesD is the spatial
Eqg. (12) comprises additional kinetic contributio$)® . In  dimension of the evolution equation for each partideis
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FIG. 8. Ground-state-energy estimates in atomic uwiteles for ten three-dimensional identical fermions, Etd), =4, v=1 as a
function of evolution time in atomic units on two different scales. The dotted lines at the right-hand side indicate a deviation of 1% from the
rigorous ground-state energgolid line). The numerically predicted energy is denoted by the dashed line. The left-hand side illustrates the
same results on the scale of exchange contributions.

the energy obtained from the simulatiom,is the standard study the statistical errors two common simulation methods
deviation, andE,,is the analytically obtained energy value have been considered; both the inclusion of Bernoulli walks
of the excited state of the distinguishable oscillator modebr diffusion leads to analogous results if a suitable time step
corresponding with the symmetry as explained above. In oris chosen(that also determines the unit of distance by the
der to have an idea about the relevance of the flux term anflindamental diffusion constarit/2m through the Einstein

of the boundary conditions, the exchange eneggy. is the  relation and if the crossing-recrossing corrections for ab-
difference betweek and the ground-state energy of the sys-sorbing boundaries are applied. The ground-state-energy es-
tem of distinguishable particles. Time step periods of 10 timation is satisfactory, especially taking into consideration
atomic units proved suitable for the parameter values liste¢hat these estimates are obtained without invoking impor-
in Table I. In Fig. 8 the numerical results for ten three-tance sampling. Furthermore, the estimation is sign-problem-
dimensional identical fermions are shown. free.

The present results confirm the accurate implementation A discussion of the present results is not an easy matter
of quantum statistics for the model of indistinguishable in-when placed against the large number of publications par-
teracting harmonic oscillators. In all the considered cases, thgally dealing with this problem. In the long run, it will be the
many-body diffusion algorithm has achieved energy esti-ability to treat realistic models with an extension of this
mates, which are in good agreement with the analytical rigmethod that will determine its usefulness. Without further
orous results. We stress that our results do not significantlgiscussion and without being exhaustive the following refer-
depend on the choice of the initial densities. In particular, theences deal with such mode[@-11,23.
support of sophisticated trial functions has been avoided in In summary, in this paper a sign-problem-free simulation
the present paper, for the emphasis is on the investigation @f a specific interacting fermion system is presented. The
the algorithm’s general capability to describe indistinguish-simulated system has harmonic interactions, and the algo-
able particles. rithm as well as the theory leading to this algorithm make

explicit use of the harmonic character of the interactions.
Apart from this limitation, it is shown that the algorithm
V. DISCUSSION AND CONCLUSIONS based on the absorption and reflection at a boundary of a
. . . ) Brownian motion or a Bernoulli walk reproduces the correct

It should be emphasized that in all the simulations that weyistributions. It gives also good energy estimates when cross-
have reported here, use has been made of the special syfiy and recrossing correction on the first-exit time are taken
metry property of the model under study. Its Hamiltonian isintg account. In view of the fact that no importance sampling

invariant under permutations of the Cartesian components ¢fas heen used an acceptable standard deviation has been ob-
the coordinates. For motion in three dimensions, this invariigined.

ance allows us to define four independent partial processes,
each with a well-defined boundary condition. Introducing a
number of walkers, initially randomly divided over the four
types of processes, their absorption determines how many
walkers survive. The absorption together with the reflection
at the boundary?Dﬁ determines the distribution ibﬁ. This This work was supported by the Interuniversity Poles of
has been illustrated for a few low-dimensional examplesAttraction Program, Belgian State, Prime Minister's Office,
Given that the distribution is understood, an estimator for thé=ederal Office for Scientific, Technical and Cultural Af-
ground-state energy is obtained. This estimator takes the oufaires. We acknowledge support from the BOF NOI 1997
flow of the walkers out of the domain into account as aprojects of the University of Antwerpen, NFWO Project No.
crucial ingredient in the ground-state energy. In order toW0.073.94N(Wetenschappelijke Onderzoeksgemeenschap,
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