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Many-body diffusion algorithm: Harmonic fermions

F. Luczak, F. Brosens, and J. T. Devreese*
Departement Natuurkunde, Universiteit Antwerpen (UIA), Universiteitsplein 1, B-2610 Antwerpen, Belgium

L. F. Lemmens
Departement Natuurkunde, Universiteit Antwerpen (RUCA), Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
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A numerical implementation scheme is presented for the recently developed many-body diffusion approach
for identical particles, in the case of harmonic potentials. The procedure is free of the sign problem, by the
introduction of the appropriate absorption or reflection conditions for the walkers at the boundary of a state
space. These conditions are imposed by the permutation symmetry. The outflow of the walkers at the boundary
of the state space contributes substantially to the energy. Furthermore, the implementation of crossing-
recrossing effects at absorbing boundaries proves indispensable to sample the antisymmetric states by discrete
time steps.@S1063-651X~98!02802-5#
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I. INTRODUCTION

In this paper the theoretical method put forward in a se
of publications by three of the present authors@1–3# around
the criticism @4# on an approach initiated by Korzeniows
et al. @5# is applied to an analytically exact soluble model.
sign-problem-free estimation of an excited antisymme
eigenstate of the model is presented.

Monte Carlo simulations of an excited state of quant
systems are only possible if symmetry considerations can
invoked to guarantee that the excited state is orthogona
all lower lying states of the same system. Usually this me
that one simulates the state with the lowest energy that tr
forms according to a particular irreducible representation
the symmetry group of the system. Usually this also me
that the state has a nodal structure in the configuration sp
This is, e.g., the case if one wants to simulate a system
taining a fixed number of fermions. The~unknown! nodal
structure of this system is the origin of the so-called s
problem. The fermion state to be simulated is an excited s
of a quantum system of distinguishable particles~the walkers
in the simulation are registered! that transforms according t
the antisymmetric irreducible representation of the permu
tion groupSN , whereN is the number of indistinguishabl
particles. Up till now, there is no generally accepted way t
solves the sign problem. Several approaches avoid the p
lem approximately by fixing the nodal surfaces to be those
a known, usually exactly solvable problem, or by allowi
that parts of the configuration space with different sign
sampled in combination with variance reducing methods@6–
8#.

Oscillators belong to the class of simple models that
be tested easily@9–11# and gain importance in view of th
models for trapped systems@12#. The ground-state energ
and the static response functions of particles in a harmo
potential can be calculated with their statistics taken i

*Also at the Universiteit Antwerpen~RUCA! and Technische
Universiteit Eindhoven, The Netherlands.
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account, even in the presence of harmonic two-body inte
tions. It is clear that analytic path-integral methods@13–15#
allow the study of these models in a more direct way. Bu
is not without value in view of the sign problem if the lowe
energy state of this harmonic system with a specified sy
metry can be simulated with a sign-problem-free procedu
Such a procedure will be applied in the present paper.
want to stress that our only inference is that we simulate
model ~fermions interacting harmonically and isotropicall!
sign-problem-free. The adaptation of the technique for a
alistic model is beyond the scope of the present paper.
limitation of the proposed method originates from the fa
that in the theoretical framework@1–3# leading to this algo-
rithm, we rely on a typical symmetry property of harmon
interactions, which is absent for more general potentials@16#.
Nevertheless, the basic idea of using the permutation s
metry to partition the configuration space in domains w
boundary conditions offers the potentiality to lead to a ge
eral procedure for more realistic systems.

From our theoretical contributions to this problem@1–3#,
it should be clear that, in an algorithmic way, we have
study a new problem, formerly not encountered in the are
quantum Monte Carlo simulations and relating the sign pr
lem to absorption and reflection of walkers at a bounda
The novelty is that the boundary for a walker depends on
positions of some other walkers.

The introduction of a domain also has consequences
the estimation of the ground-state energy. With ground-s
energy we mean here the lowest energy of all the states
transform according to a specified irreducible representa
of a symmetry group. The absorption of walkers at t
boundary of the domain creates a flux of walkers out of
phase space volume that gives an important contribution
the estimate for the energy as will be shown below.

This paper is organized as follows. In Sec. II we w
discuss what absorption or reflection means for the distri
tion of particles in a domainDN

3 and how this distribution
can be simulated by Bernoulli walks or by diffusion Mon
Carlo. In this respect a crossing-recrossing correction
serves special attention. In Sec. III the energy estimatio
2411 © 1998 The American Physical Society
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2412 57LUCZAK, BROSENS, DEVREESE, AND LEMMENS
considered, with special attention to the flux term com
from the absorption of walkers at the boundary. In the l
section the results for a set of oscillator models are giv
followed by a discussion and conclusions.

II. FREE DIFFUSION WITH A BOUNDARY

For N particles moving in a 3N-dimensional configura-
tion space, permutation symmetry can be taken into acco
by ordering linearly the coordinates of the particles along
three basic directions, introducing in this way a domainDN

3 .
Depending on the configuration the antisymmetric repres
tation can be realized by several combinations of bound
conditions: the antisymmetric representation isirreducible
with respect to the permutation ofN particles but isreduc-
ible with respect to the permutation of the 3N coordinates.
The symmetry of the model without interaction or with on
harmonic interactions along the principal axes is higher t
that of a many-body system with realistic one-body and tw
body potentials. A decomposition into irreducible repres
tations of the permutation of coordinates leads to four co
binations, labeled by a quantum numberl 50,1,2,3 referring
to the behavior of the coordinates at the boundary]DN

u , u
5x,y,z. We follow here the conventions introduced in@3#.
The casel 50 for the antisymmetric combination, e.g
means that coordinates behave fermionlike in the three di
tions, while l 52, for instance, means that the coordina
behave fermionlike in they direction and bosonlike in the
two other directions. Using this reduction by symmetry a
the appropriate boundary conditions, the representative
main that is specified cannot be left by the walkers anymo
On this domain the wave function of the model does
change sign, leading to a sign-problem-free simulation
that antisymmetric state. It is important first to analyze
algorithm for moves in one direction only. This is done f
fermionlike as well as for bosonlike behavior. The moves
a general three-dimensional~3D! direction are combinations
of both.

A. Reflection and bosons on a line

For N bosons moving on a line, the domainDN , that we
consider here, is linearly ordered byxi.xi 11 and the bound-
ary of the domain]DN is reached if one of the following
equationsxi5xi 11 is satisfied fori 52, . . . ,N. A sample
path forN walkers starting in the domain is denoted byX(t)
and the increments of thisN-dimensional random walker o
Brownian motion are independent and obtained as us
This sample path can be used to construct one with reflec
at the boundary]DN by the following procedure. Conside
the path of one componenti with a reflecting boundary at th
origin. In this case those parts ofXi(t) which areoutsidethe
domain before the timet are reflected to theinsideby adding
an amountLi(t), determined by the most negative value
the trajectory in the time interval@0,t#,

Li~t!52 inf$Xi~t8!,0;t8<t%. ~1!

The sample path of the diffusion or random walk with refle
tion is given by the Skohorod construction:

X̂i~t!5Xi~t!1Li~t!. ~2!
g
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By definition, Li(t) is a nondecreasing random function o
the event space, and it increases only whenX̂i(t) reaches the
boundary, i.e., in this example ifX̂i(t)50. This mechanism
is illustrated in Fig. 1, in which the reflection of a Brownia
sample pathXi(t) occurs by the combination ofXi(t) with
Li(t). ~For vividness but without consequences for the pr
ciple in mind, the sample path has been depicted as a sm
function.! With theN-dimensional generalization of the con
struction, it can be shown that the transition probability s
isfies the Neumann boundary condition for the backw
equation. It should be noted that if a diffusion with drift
considered—the forward and backward equations
different—the boundary conditions will become depend
on the drift @17#.

In order to see how the distribution arises in a simulat
using prescription~2! for boson diffusion, the example o
two identical bosons on a line is instructive. A representat
outcome of the numerically simulated free-particle bos
diffusion is compared in Fig. 2 with the rigorous density, i.
a permanent with the appropriate transition probabilit
r(xi8 ,xj ;Dt) as entries, wherexi8 and xj ~with i , j
51, . . . ,N) are coordinates at timet and at timet1Dt,

FIG. 1. Illustration of the Skohorod construction for a Brownia

trajectoryXi(t). X̂i(t) refers to the bosonlike random process
the presence of a reflecting boundary (t axis!. The corresponding

fermionlike processX̃i(t) is identical toXi(t) until the pointB,
whereupon it stays on the boundary propagating with zero wei

FIG. 2. Comparison of the rigorous~right hand side! and nu-
merically sampled~left-hand side! probability densities of two one-
dimensional free-diffusive identical bosons, having started from
initial point denoted by the crosses, after an evolution of th
atomic time units. The solid line indicates the state space boun
x15x2.
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57 2413MANY-BODY DIFFUSION ALGORITHM: HARMONIC FERMIONS
respectively. First, an ensemble of walkers was created
fixed position inside the state spaceD2. The initial position
is indicated by a cross, whereas the state spaceD2 with x1
.x2 is situated right below the solid black linesx15x2. The
walkers evolved for three atomic times and by projection
the walker coordinates onto the (x1 ,x2) plane a snapshot o
the simulated density has been obtained. The numerical
sity is in good agreement with the rigorous one, also sho
in the figure.

B. Absorption and fermions on a line

For fermions on a line on the same domainDN but with
absorbing boundary conditions, the sampling technique
to generate a determinant with, as elements,
r(xi8 ,xj ;Dt). The construction of a sample path with a
sorption from a Brownian motion or a random walkX(t)
proceeds with the introduction of a first-passage timet]D :

t]D5 inf$t>0;X~t!P]Dn%. ~3!

The new stochastic processX̃(t) is then by definition

X̃~t!5H X~t! if t,t]D

Xt]D
if t>t]D .

~4!

It should be noted that each sample pathX(t) has its own
first-passage time; therefore this time is a random varia
The transition probability for the processX̃(t) satisfies the
Dirichlet boundary conditions. As argued in@1#, this proce-
dure simulates the Slater determinant describing motion o
line.

In order to see how the distribution arises using presc
tion ~4! for fermion diffusion, the simulation of two identica
fermions on a line is shown in Fig. 3. Also in this case, t
numerical density has been found to be in good agreem
with the analytically rigorous one.

C. Bosons and fermions in one dimension

Figures 2 and 3 vividly recover typical characteristics
tributing to the time evolution of free bosons and fermion
As has been shown in a previous paper@2#, the state-space
boundary ]D2 acts attractive for the two bosons. The
modal trajectory, i.e., the trajectory with the highest dens
rapidly approaches the boundary and stays there for the
of the evolution time@2#. Fermion evolution on the contrar
looks as if the two fermions would be repelled by the boun

FIG. 3. The same as Fig. 2 for fermions.
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ary; their modal distance monotonously increases with
clidean time. These properties are in contrast to the evolu
of distinguishable particles, which is not restricted to t
state spaceD2 ~see Fig. 4!. The walkers spread out isotrop
cally with rigid modal distance, which nicely illustrates th
lack of free-particle interactions due to quantum statistics

D. Absorption and reflection in more than one dimension

In order to illustrate the construction of an antisymmet
state for two particles using the appropriate processes
diffusion of their coordinates, the rate that the walkers
absorbed at the boundary of the state space is a characte
of the many-body diffusion algorithm. In three spatial d
mensions and for an antisymmetric state, the four ferm
processes$ f ,b,b%, $b, f ,b%, $b,b, f %, and$ f , f , f % introduced
in @3# generally reveal different absorption rates. Figure
gives a typical example for the~Euclidean! time dependence
of the relative number of walkers residing in the state spa
Providing infinitely large samples, this numerical quant
converges to the conditional probabilityPx̄(t]D.t). Due to
the presence of absorbing boundaries in each direction,
$ f , f , f % process decays faster than any of the other th

FIG. 4. The same as Fig. 2 for distinguishable particles. T
dashed line indicates the hypersurfacex15x2.

FIG. 5. An exemplary comparison of the numerically obtain
relative number of walkers inside the state space with the rigor
results indicated by the solid lines, as a function of evolution ti
~in atomic units! for both the subprocesses modeling the many-bo
diffusion process of two three-dimensional identical fermions a
three-dimensional free-distinguishable-particle diffusion.
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2414 57LUCZAK, BROSENS, DEVREESE, AND LEMMENS
processes$ f ,b,b%, $b, f ,b%, and $b,b, f %. As can be clearly
seen in Fig. 5, the processes decay with a different rate;
reason for this is that the distribution of the first-passage t
t]D depends on the initial position. For large times,t→`,
they decay ast21/2 proportional to the relative fermionlike
coordinate of the initial position. Again, considering the st
space as the domain of interest, the evolution of theexit time
for distinguishable particles reveals a totally different dec
in time, because nothing prevents them from reentering
domain after having left it before.

III. SAMPLING THE GROUND STATE

The sample paths inside the domain are made using
traditional techniques for Brownian motion or Bernou
walks. In addition, computational efficiency calls for the i
corporation of the Feynman-Kac functional using the te
nique of branching and killing. This is consistent with th
underlying formalism of many-body diffusion provided th
system does not require walker transitions from anl state to
a ~different! l 8 state, thereby changing its boundary con
tions. The fact that such transitions are possible in a gen
potential has been overlooked in@3# ~see@16#!. However, it
remains of interest to simulate a class of antisymmetric st
sign-problem-free with the proposed algorithm; in particul
in view of algorithms for more advanced models taking in
account the additional transitions froml to l 8.

A. Estimation of the first-passage time

Although the consequences of permutation symmetry
rigorously incorporated in both the formalism of many-bo
diffusion and the algorithm described so far, numerical pr
tice reveals that the simulation of the imaginary-time Sch¨-
dinger equation along these lines withdiscrete time steps
introduces systematic inaccuracies due to the possibility
crossing and recrossing the boundary during that finite t
step. To elucidate this point, we focus on the evolution
free particles, for the effect is caused by the underlying
netics, the potential here being irrelevant. Consider two id
tical fermions on a line, with their coordinates in the co
figuration space denoted asx1 and x2 ~see Fig. 6!. The
absorbing boundary is given by

]D25$x15x2%. ~5!

FIG. 6. The definition of finite time steps and correspond
spatial grids induces shortcomings with respect to the accurate
signment of validity flags. The refinement of the coarse grid in~a!
indicates@see~b!# that a considerable rate of possible paths fromA
to C enters prohibited~gray! regions.
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Assume that a discrete time scaleDt and, consistently
according to the Einstein relation, a spatial grid with spa
ings Dx5ADt has been chosen, as illustrated by Fig. 6~a!.
During a time stepDt, a walker initially located atA could
move a distanceDx into each direction, so as to reach one
the pointsC, C8, C9, or C-. Let it eventually advance toC.
The only possibility to perform that step on the broad grid
thus the straight move, as indicated by the straight solid
AC in Fig. 6~a!. Refinement of the grid@see Fig. 6~b!# to
spacingsDx/2, and correspondingly time stepsDt/4, indi-
cates that not all possible paths fromA to C provide nonzero
contributions. During the four time stepsDt/4, the diffuser
either could have taken admissible pathsAC like the dashed
one or, on the other hand, could meanwhile have left
domain as indicated by the solid pathAC. In the latter case,
the move would be invalid and the diffuser should be a
sorbed. But the broad grid in Fig. 6~a! principally does not
allow us to distinguish between valid and invalid pathsAC.
In other words, working on any~artificial! discrete grid, any
move the initial and final positions of which are situat
inside the domain automatically includes a set of inva
paths. This gives rise to systematic errors in the evolutio

B. The crossing-recrossing correction

To correct for these errors in the evolution, each tr
displacement of a diffuser must be assigned a ratio of va
ity, which directly corresponds to the ratio of possible va
and invalid paths to perform the move in continuous spa
The correction has to do with the crossing and recrossin
the boundary in a time lapse smaller than the time increm
used in the simulation. It may be illustrated by the followin
arguments.

A probabilistic argument based on the reflection princip
can be given as follows. Suppose that a walker, situated aA,
evolves toC ~see Fig. 7!. It might either have taken a com
pletely valid path~solid line! or have hit the boundary at
e.g., B ~dashed lineABC in Fig. 7!. Because free distin-
guishable particle diffusion is isotropic, the probabili
P@Xt1Dt5CuXt5A, Xn5B# to reachC over an arbitrary

s-

FIG. 7. Diffusers having propagated fromA to C may have
followed a valid path~solid line! as well as an invalid one~dashed
line ABC) that passed into the forbidden region~in gray! outside
the domain.
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point B on ]D2 with nP@t,t1Dt# equals the probability
P@Xt1Dt5C8uXt5A, Xy5B# to end up in the imageC8.
Clearly, the total probability for the move fromA to C is the
sum of the two conditional probabilities to move either fro
A to C without crossingB or to move fromA to C8 with
crossingB. Generalizing this argument to all pointsB on the
boundary, the move fromA to C has to take into account tw
nonintersecting subsets of paths, i.e.,

P@Xt1Dt5CuXt5A#5P]@Xt1Dt5CuXt5A#

1P ]̃ @Xt1Dt5CuXt5A#,
~6!

where the index] means that the path crosses the bounda
while ]̃ indicates thatC is reached without boundar
crossing-recrossing. The~conditional! probability P]@Xt1Dt
5CuXt5A# equalsP]@Xt1Dt5C8uXt5A#, and since any
move fromA to C8 crosses the boundary one obtains

P@Xt1Dt5CuXt5A#5P@Xt1Dt5C8uXt5A#

1P ]̃ @Xt1Dt5CuXt5A#.
~7!

The crossing-recrossing correction can then be identi
with

P ]̃ @Xt1Dt5CuXt5A#5P@Xt1Dt5CuXt5A#

3S 12
P@Xt1Dt5C8uXt5A#

P@Xt1Dt5CuXt5A# D .

~8!

Hence, the normalized probability for moves fromA to C
with boundary crossing-recrossing arises from the ratio

R~A→C!5
P@Xt1Dt5C8uXt5A#

P@Xt1Dt5CuXt5A#

5expH 2
~x182x28!~x12x2!

Dt J .

~9!

A physical argument leading to the same correction is ba
on the method of the images implying that the evolution
two walkers without interaction but with absorbing bounda
conditions is given by the determinant of the free propa
tors. Factoring out the diagonal element one obtains the s
expression. In practice, the evolution procedure must be
tended with the supplementary rejection ratio~9!: even dif-
fusers having made a move to a final position which
clearly situated inside the domain may eventually be jud
invalid.

As the many-body diffusion formalism traces back t
evolution of many-body systems of arbitrary spatial dime
sion to adapted one-dimensional diffusion processes, the
gument described above is readily generalized to any dim
sions. The extension toN particles with, e.g., ordering alon
the x axis corresponds to the construction ofN21 signifi-
cant boundary conditions. The probability to cross the se
boundaries during the move fromA to C, both points ele-
y,

d

d
f

-
e

x-

s
d

-
ar-
n-

f

ments of the domain, is complementary to the probability
to hit any of theN21 boundaries. Hence, a completely val
path occurs according to the product of elemental probab
ties of the form 12R(A→C). The implementation of these
extended probabilities eliminates the systematic errors or
nating from finite-time-step considerations in the presence
absorbing boundaries. Strictly speaking, the systematic
rors specific for our numerical description of many-fermi
systems compares with systematic inaccuracy attributing
the simulation of respective distinguishable-particle syste

It must be stressed that the arguments concerning bo
ary crossing-recrossing effects are reminiscent of the met
of image charges, which have been transferred to probab
theory a long time ago@18#. The method is based on th
mathematical formalism of diffusion as distinct from oth
up-to-date quantum Monte Carlo techniques. Quite in c
trast, the same geometrical argument has been employe
Anderson@19# to formulate the behavior at boundaries fixe
by the nodal structure of a trial function and by@20# to in-
troduce the so-called Pauli potential.

IV. ESTIMATION OF GROUND-STATE ENERGIES

Most often propagator-based methods will be used to
timate the energy of the system under consideration. In
case, one can use the exponential decay of the free energ
one may devise separate estimators for the componen
the internal energy. Propagator-based methods use impli
paths with known beginning and ending points. The key p
integral goes over all paths starting and ending in the sa
point of the phase space. In the algorithm explained in
preceding section only a construction of sample paths wi
known starting point is given. A generalization of the co
struction, keeping the increments independent and impo
an end point but taking the boundary into account, is to
knowledge not documented in the mathematical literatu
Without the boundary condition the construction is known
the Brownian bridge; physically it means that one takes
classical action as the starting point to incorporate quan
fluctuations. Without the generalization of the Brownia
bridge another estimation scheme for the ground-state en
has to be used.

A. The kinetic contribution

To the best of our knowledge, it was Anderson@21# who
first reported ground-state-energy estimates based on ta
priori assumption of the exponential ground-state-energy
pendence of the time decay of the propagator. F
distinguishable-particle systems, the ground-state energy
be evaluated by ‘‘stochastic’’ averages over the poten
V( r̄ ),

E05 lim
t→`

E~t!5 lim
t→`

E d r̄ C~ r̄ ,t!V~ r̄ !

E d r̄ C~ r̄ ,t!

5^V&s. ~10!

The ‘‘stochastic estimates’’E(t) are based on the stochast
probability density
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2416 57LUCZAK, BROSENS, DEVREESE, AND LEMMENS
C~ r̄ ,t!5ERFexpS 2E
0

t

V„R~ t̃ !…d t̃ D G . ~11!

For sufficiently large Euclidean timet, C( r̄ ,t) mimics the
ground-state wave function and, accordingly, the estima
E(t) reflect the ground-state energyE0.

The expectation in Eq.~11! goes over all sample path
starting atr̄ and ending wherever in the configuration spa
with $X(t);t>0% a Brownian motion or a random walk
This type of functional integration leading to a wave functi
is based on the path-integral representation of the wave
erator@22#. Once a procedure for the wave function is foun
it is obvious that the potential average~10! is in direct con-
trast to the quantum-mechanical expectation value of the
tential, and both potential averages must be clearly dis
guished.

Antisymmetry, as specific for the ground-state wave fu
tion of identical fermions, causes the breakdown of the
tential average~10! as an estimate of the ground-state ene
in the configuration space. Both the numerator and the
nominator in the estimator tend to zero: the projection on
antisymmetric representation of the simulated wave func
in the asymptotic limit of large Euclidean timet is not well
defined anymore. During the thermalization of the syste
the statistical error attached to the numerical estimates
idly overwhelms the signal.

Replacing the Brownian motion or random walk over t
configuration space by the many-body diffusion process
discussed in the preceding section, the formulation of ene
estimates adapted to the state spaceDN with its boundary
conditions avoids the mentioned decay of the signal-to-no
ratio. The implementation of the many-body diffusion pr
cess goes hand in hand with a loss of walkers at the abs
ing boundaries of the state space. From the algorithmic p
of view, this loss is caused by the underlying diffusion k
netics and contains essential information on the lowest
ergy of that antisymmetric state. In terms of the wave fu
tion on the domain, Eq.~10! has to be replaced by

E05 lim
t→`

Et52

~\2/2m!E
]DN

d r̄ ¹CF~ r̄ !

E
DN

d r̄ CF~ r̄ !

1

E
DN

d r̄ CF~ r̄ !V~ r̄ !

E
DN

d r̄ CF~ r̄ !

5^ j &s1^V&s, ~12!

whereCF( r̄ )5CF( r̄ ,`) denotes the asymptotic probab
ity density on the state spaceDN with the boundaries]DN :

CF~ r̄ ,t!5ERFFexpS 2E
0

t

V„RF~ t̃ !…d t̃ D G , ~13!

where$XF(t);t>0% is a many-body diffusion or many-bod
random walk.

In contrast to the distinguishable-particle estimator~10!,
Eq. ~12! comprises additional kinetic contributions^ j &s . In
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the case of fermions,̂j &s can be interpreted as the relativ
flow per time step through the absorbing boundaries of
state space; this expectation value depends on the dist
tion of the first-passage timet]D . In the standard treatmen
of distinguishable particles,¹C( r̄ ) at the corresponding
~infinitely remote! boundaries is zero. Evidence that the gr
dient of diffusive movement at reflecting boundaries va
ishes has been given in@3#. For a diffusion or a random walk
of the$ f ,b,b% type, for example, the kinetics reveals nonze
gradients at the absorbing boundaries in thex direction. Con-
sequently, surface terms^ j &s are of essential importance i
our treatment.

B. The model system

The algorithm introduced in the preceding section h
been used to calculate the lowest energy of the states s
fied by a given symmetry for an oscillator model with th
following Hamiltonian:

H52(
j 51

N
\2

2m
D j1(

j 51

N
mV2

2
rW j

22 (
i , j 51

N
mv2

2
~rW i2rW j !

2.

~14!

The repulsive interparticle interaction is introduced to mim
many-body interaction. Because Eq.~14! can be diagonal-
ized, all the energies of the system are known analytica
The diagonalization, the thermodynamic properties, and
response properties of this model have been discussed
where @13,14#. The ground states of Eq.~14! for identical
particles with a specific symmetry~i.e., specifying the
boundary conditions on the domainDN

3 ) are excited states o
Eq. ~14!, considered as a system of distinguishable partic
The purpose of showing that the algorithm is workable h
led us to choose the worst cases: the particles are arrang
such a way that the ranking according to all their coordina
is maintained during the simulation, and fermion diffusion
chosen along one direction, while boson diffusion is chos
for the other directions. The simulation has been done
several values ofV and v indicated in Table I.N5N↑
1N↓ indicates the number of particles in the system. TheN↑
spin-up particles and theN↓ spin-down particles are mutuall
indistinguishable, but theN↑ spin-up particles are distin
guishable from theN↓ spin-down particles.D is the spatial
dimension of the evolution equation for each particle.E is

TABLE I. Comparison of eigenenergiesE ~a.u.! gained by the
many-body diffusion algorithm, with results from rigorous analy
cal calculations.

V v N N↑ N↓ D E s Eexact Eexc

2 1 2 2 0 1 3.1215 0.0010 3.1213 1.414
2 1 2 2 0 3 6.5356 0.0013 6.5355 1.414
2 1 3 3 0 3 9.0091 0.0051 9.0000 3.000
3 1 4 2 2 3 19.039 0.0074 19.034 4.472
3 1 6 2 4 3 29.594 0.0185 29.615 12.12
3 1 8 7 1 3 35.991 0.0209 36.000 21.00
4 1 10 10 0 3 149.27 0.0989 149.30 110.2
4 1 10 5 5 3 88.118 0.0472 88.058 48.99
5 1 20 10 10 3 272.52 0.2795 272.47 201.2
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FIG. 8. Ground-state-energy estimates in atomic units~circles! for ten three-dimensional identical fermions, Eq.~14!, V54, v51 as a
function of evolution time in atomic units on two different scales. The dotted lines at the right-hand side indicate a deviation of 1% f
rigorous ground-state energy~solid line!. The numerically predicted energy is denoted by the dashed line. The left-hand side illustra
same results on the scale of exchange contributions.
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the energy obtained from the simulation,s is the standard
deviation, andEexactis the analytically obtained energy valu
of the excited state of the distinguishable oscillator mo
corresponding with the symmetry as explained above. In
der to have an idea about the relevance of the flux term
of the boundary conditions, the exchange energyE exc is the
difference betweenE and the ground-state energy of the sy
tem of distinguishable particles. Time step periods of 1023

atomic units proved suitable for the parameter values lis
in Table I. In Fig. 8 the numerical results for ten thre
dimensional identical fermions are shown.

The present results confirm the accurate implementa
of quantum statistics for the model of indistinguishable
teracting harmonic oscillators. In all the considered cases
many-body diffusion algorithm has achieved energy e
mates, which are in good agreement with the analytical
orous results. We stress that our results do not significa
depend on the choice of the initial densities. In particular,
support of sophisticated trial functions has been avoided
the present paper, for the emphasis is on the investigatio
the algorithm’s general capability to describe indistinguis
able particles.

V. DISCUSSION AND CONCLUSIONS

It should be emphasized that in all the simulations that
have reported here, use has been made of the special
metry property of the model under study. Its Hamiltonian
invariant under permutations of the Cartesian component
the coordinates. For motion in three dimensions, this inv
ance allows us to define four independent partial proces
each with a well-defined boundary condition. Introducing
number of walkers, initially randomly divided over the fou
types of processes, their absorption determines how m
walkers survive. The absorption together with the reflect
at the boundary]DN

3 determines the distribution inDN
3 . This

has been illustrated for a few low-dimensional exampl
Given that the distribution is understood, an estimator for
ground-state energy is obtained. This estimator takes the
flow of the walkers out of the domain into account as
crucial ingredient in the ground-state energy. In order
l
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study the statistical errors two common simulation metho
have been considered; both the inclusion of Bernoulli wa
or diffusion leads to analogous results if a suitable time s
is chosen~that also determines the unit of distance by t
fundamental diffusion constant\/2m through the Einstein
relation! and if the crossing-recrossing corrections for a
sorbing boundaries are applied. The ground-state-energy
timation is satisfactory, especially taking into considerati
that these estimates are obtained without invoking imp
tance sampling. Furthermore, the estimation is sign-probl
free.

A discussion of the present results is not an easy ma
when placed against the large number of publications p
tially dealing with this problem. In the long run, it will be th
ability to treat realistic models with an extension of th
method that will determine its usefulness. Without furth
discussion and without being exhaustive the following ref
ences deal with such models:@9–11,23#.

In summary, in this paper a sign-problem-free simulati
of a specific interacting fermion system is presented. T
simulated system has harmonic interactions, and the a
rithm as well as the theory leading to this algorithm ma
explicit use of the harmonic character of the interactio
Apart from this limitation, it is shown that the algorithm
based on the absorption and reflection at a boundary
Brownian motion or a Bernoulli walk reproduces the corre
distributions. It gives also good energy estimates when cro
ing and recrossing correction on the first-exit time are tak
into account. In view of the fact that no importance sampli
has been used an acceptable standard deviation has bee
tained.
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