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Oscillatory patterns composed of the parametrically excited surface-wave solitons

Xinlong Wang, and Rongjue Wei
Institute of Acoustics, Nanjing University, Nanjing 210093, People’s Republic of China

~Received 2 September 1997; revised manuscript received 14 October 1997!

Multiple solitons in a water trough resonator are observed to organize into some ordered and symmetrical
one-dimensional patterns that can exhibit spatiotemporal oscillations at certain excitations of the system.
Experimental details including the ordering rules for the generations of stable multisoliton chains are described,
and the phenomena are numerically simulated with the parametrically driven, damped nonlinear Schro¨dinger
equation.@S1063-651X~98!15302-3#

PACS number~s!: 42.65.Tg, 47.35.1i, 47.20.Ky, 43.25.1y
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I. INTRODUCTION

The study of the parametrically excited surface-wave s
tons in Faraday’s water trough resonator@1,2# has been of
fundamental importance for understanding similar or vir
ally the same localized phenomena recently uncovered
many other vertically driven systems of various physical m
dia @3#, such as on the interface between two fluids@4#, in
nonlinear lattices@5,6#, in ferromagnets and antiferromagne
@7#, and even in~one-dimensional@8# and 2D@9#! granular
materials. So far, the stability and bifurcation behavior o
single soliton is well studied@3,10–12#. In our earlier work
@13,14#, we explored the dynamics of soliton-soliton intera
tions for some simple cases, and revealed several dynam
modes~I, II, and III!. We also mentioned there@14# that
these basic modes exist in many multisoliton states. H
ever, the situations become much more complicated and
remain to be understood when multiple solitons~number
n.2) are strongly coupled together in a bounded chan
especially for the case when the trough lengthl is compa-
rable tonl, wherel is the extent of one solitary wave en
velope. Based on our previous works@14#, here we empha-
size themany body problemand attempt to supply a clea
physical picture for the general behaviors of the parame
cally excited multisolitons.

In the following section~II !, we shall report our recen
experimental observations on the dynamics of multisolito
Our major results include~i! the ordering rules governing th
stabilities of multisoliton chains,~ii ! the generic solitary-
wave patterns allowed by the rules,~iii ! the interesting spa
tiotemporal oscillations of these patterns, and~iv! the degen-
eration and bifurcation behaviors of the oscillatory patte
under the control of the driving parameters. In Sec. III
give some detailed descriptions and interpretations of th
interesting phenomena with theparametrically driven,
damped nonlinear Schro¨dinger ~PDNLS! equation. Finally,
in Sec. IV, we give some remarks and conclusions about
laboratory and computer experiments.

II. EXPERIMENTAL OBSERVATIONS

The solitons in a long water channel appear as some
citations highly localized in thex ~longitudinal! direction,
‘‘sloshing’’ in the y ~transverse! direction @1#. As before
@14#, we denote the polaronlike localized objects by the
and down arrows, ‘‘↑ ’’ and ‘‘ ↓,’’ and reference to a multi-
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soliton state by the combinations of the symbols, e.g.,S(↑↓)
stands for the state of two opposite polarity solitons,S(↑↑)
for a pair of like polarity solitons, etc. In the present expe
ment, we use a Plexiglas trough about 2.5 cm wide, fil
with water to a depth of about 2.0 cm, and subjected t
vertical vibration of the formz05(g/v2)Gcos(4pft). Here
the driving strengthG is normalized to the gravitational con
stantg, and the frequencyf 5v/2p is adjusted to be little
lower thanf 01;5.55 Hz@1#, the linear eigenfrequency of th
dominant transverse mode~0,1!. In such a configuration,l
usually takes a value of about 6 cm. To producen solitons
with desired polarity arrangement, we repeatedly adj
(G, f ) and, at the same time, apply a proper disturbance
the water surface, until the state is stabilized.

Using this setup, we have investigated various states
different polarity arrangements, withn up to 6. Among them,
we observe that a state with more than two abutting solit
of like polarity appears to be unstable anyhow. These st
includeS(↑↑↑), S(↑↑↑↓), andS(↑↓↓↓↑), etc. For example,
after the formation ofS(↑↑↑) in the trough ofl;30 cm, the
middle soliton is soon coalesced by one of its neighbors
thus the state transits to a bound state:S(↑↑↑)⇒S(↑↑), or
even the state is simply replaced by other waveforms. T
instability can be understood as beingdue to the competitive
attractions among the identical solitons.

We find that the following states can be easily formed a
sustained in some large driving parameter ranges

Type 1: S~↑↓ !,S~↑↓↓↑ !,S~↑↓↓↑↑↓ !,

Type 2: S~↑↑ !,S~↑↑↓ !,S~↑↑↓↓ !,

S~↑↑↓↓↑ !,S~↑↑↓↓↑↑ !.

@The simplest casesS(↑↑) andS(↑↓) have already been wel
studied in our early work@13,14#. The basic experimenta
evidence ofS(↑↓↓↑) was also mentioned in@14#.# What
particularly interests us for these states is the synchron
spatiotemporal oscillations.~The results are recorded b
video, and the copies of the records are available to in
ested readers upon request.! In other words, for each of thes
states,~i! individuals can be oscillating along the channel f
some properly adjusted (G, f ), and~ii ! even if we disturb the
motions out of the steps, they will soon become synch
nized. Figure 1 illustrates some typical cases. As we see
oscillating patterns can be considered simple combinati
2405 © 1998 The American Physical Society



iv
tro
0

w
ru

id

ity
m
am

-
ye
es
’
t

are
or-
r
ial

eral

ated

illa-
ls

pair
to

sys-
riv-
-

an
po-
his-

in
ult
ce
ace,

ch
u-
ng
-
e of

ve

s-
sk
sed

2406 57XINLONG WANG AND RONGJUE WEI
of the behavior of the simplest casesS(↑↑) andS(↑↓) @14#.
Obviously, the harmonic oscillations show the corporat
behavior among the individuals. Depending on the con
parameters, the oscillation frequency varies from 0.1 to
Hz.

The stabilities and the cooporative behaviors of the t
stable types reflect the orders and symmetries in their st
tures. By applying the ‘‘mirror effect’’@13#, we see that type
1 substantiates the general pattern in an infinite wavegu

•••↑↓↓↑↑↓↓↑↑↓↓↑↑↓↓↑↑↓↓↑↑↓•••, ~1!

which were solely composed of like pairs, with their polar
alternately distributed along the guide. At first sight, it see
that the states of type 2 would become unstable, for the s
unfavorable situations as found inS(↑↑↑) would also exist if
the ‘‘mirror effect’’ is applied. But here we should take no
tice of the inevitable existence of the viscous boundary la
or/and the surface pinning effect at the end walls. Th
effects, no matter how small, will spoil the ‘‘mirror effect’
to some degree and tend to keep the solitons away from
boundaries, thus keeping the states stable.~In the states of

FIG. 1. Oscillations of solitary-wave chains:~a! S(↑↑↓↓)
(G50.11, f 55.45 Hz!, ~b! S(↑↑↓↓↑) (G50.1218, f 55.45 Hz),
and ~c! S(↑↓↓↑↑↓) (G50.1551,f 55.50 Hz).
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type 1, the same effects on the solitons by the end walls
negligible, as compared to the repulsion from the neighb
ing solitons of opposite polarity.! The suggestion is furthe
supported by the fact that putting a little damping mater
such as cotton on the end walls will makeS(↑↑↓↓) much
more stable. We therefore draw from type 2 another gen
pattern:

x↑↑↓↓↑↑↓↓•••↑↑↓↓↑↑↓↓v, ~2!

where the symbols ‘‘x ’’ and ‘‘ v ’’ mean the damping end
walls. In a sense, this pattern can be regarded as a trunc
form of the infinite one~1!.

For each state of type 1 and 2, the spatiotemporal osc
tion diminishes withG increased gradually, and individua
all become standing. On the other hand, asG is decreased to
a certain value, one of the like pairs collapses and the
combines into a single one, leading to the degeneration
one of the following states.

Type 3: S~↑↓↑ !,S~↑↑↓↑ !,S~↑↓↑↓ !,S~↑↑↓↑↑ !, . . . .

However, the reverse process, such asS(↑↓↑)⇒S(↑↓↓↑), is
seldom observed, which shows the hysteresis in the real
tem. The threshold of the degeneration depends on the d
ing frequencyf and the trough dimension as well. For in
stance, in the trough ofl 534 cm,S(↑↓↓↑)⇒S(↑↓↑) when
G is decreased to 0.101 atf 55.45 Hz, while atf 55.5 Hz,
this happens atG50.094. Of course, each state of type 3 c
be produced directly; each can also exhibit the spatiotem
ral oscillation, but the situations are somewhat more sop
ticated. For example, depending on (G, f ), the solitons in
S(↑↓↑)may oscillate either as

S~↑ ↓ ↑
→ ←!, S~↑ ↓ ↑

→ ←!, . . . ,

or

S~↑ ↓ ↑
←←←!, S~↑ ↓ ↑

→→→!, . . . ,

where ‘‘→ ’’ and ‘‘← ’’ denote the directions of motions.
In principle, more than 6 solitons could also be formed

the water trough. However, it becomes much more diffic
in experiment to manually supply a proper initial surfa
waveform, e.g., a sudden disturbance on the water surf
which would definitely evolve into what we desire (n.6).
Moreover, additional difficulty also arises in generating su
a multisoliton chain, for the unwanted excitations of longit
dinal waves usually become unavoidable in a very lo
trough ~note thatl;nl). In spite of these, it is straightfor
ward to generalize the above observed results to the cas
n.6.

III. NUMERICAL SIMULATIONS

Now we attempt to interpret and describe what we ha
observed with the PDNLS equation

i ~ft1af!1fXX12ufu2f1bf1gf* 50, ~3!

wheref is the solitary-wave envelope modulating on cros
wave mode~0,1!, a the damping coefficient, and the asteri
denotes complex conjugate. The equation was first propo
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57 2407OSCILLATORY PATTERNS COMPOSED OF THE . . .
by Miles @2# to model the parametrically excited solitar
wave phenomena in an unbounded channel. For the deta
well as the incorporation of the surface tension effect,
refer readers to Miles’s contribution. The relations of t
variables and parameters in Eq.~3! to those used in the ex
periment are described below in brief. Lete be a small pa-
rameter (0,e!1) that measures the strength of nonline
ity. Then,

b[
f 22 f 01

2

2e f 01
2

, g[
G

e
, ~4!

andf is a function of the slow variables (X,t), respectively
defined as

X52AeA T

T1kh~12T2!
kx, t5evt, ~5!

whereT[tanh(ph/b), v52p f , b is the breadth of the wate
trough, andh is the height of water. In what follows, w
assume

e52
f 22 f 01

2

2 f 01
2

.0, ~6!

so thatubu is normalized to unity. Our derivation by using
multiple scales’ method shows that Eq.~3! is still valid for
the present case of the bounded channel, if letting

b5212n^ufu2&, ~7!

where^•& denotes the average over the channel and

n[
8~12T2!2

~6T425T211629T22!
.

The modification is required by the mass conservation
fluid @15# in the bounded container. In our experimen
T.0.987 andn.731024, so it is insignificant and negli-
gible. To numerically solve Eq.~3!, together with the rigid
boundary conditionfx50 at the end wallsx50 and l , we
use the same algorithm as ours before@14#. We first apply

FIG. 2. The instability ofS(↑↑↑) and the transition to an oscil
lating bound state at (a,b,g)5(0.6455, 21, 0.9778).
as
e

-

f
,

the implicit finite difference algorithm with respect toX, so
that Eq. ~3! becomes a set of discrete ordinary different
equations forf (n)[f(Xn ,t)

i ~ft
~n!1af~n!!1

1

hX
2 ~f~n11!22f~n!1f~n21!!

12uf~n!u2f~n!1bf~n!1g~f~n!!* 50,

~n50,1,2, . . . ,N21!, ~8!

with the boundary condition

f~21!5f~1!, f~N!5f~N22!, ~9!

at X0 and XN21, whereXn5nhX , hX5L/(N21), N is the
number of differencing points, and the dimensionless sys
interval L is related to the trough lengthl through~5!. We
then integrate Eqs.~8! in time t by the Runge-Kutta-
Fehlbergalgorithm. In the computations, numerical error
controlled within 1026.

Numerically we investigate a multisoliton chain by loca
ing its control parameter region of stability on the (a,g)
plane. We only consider the parameter ranges usually use
the experiment. We find out that such a region does not e
for the states that havemore than two like polarity individu-
als neighboring each other. A typical case is the three iden
tical soliton stateS(↑↑↑), which is observed to be unstab
in experiment. Figure 2 shows how, in a trough ofl 530 cm,
these identical solitons interact with each other, and th
evolve into an oscillating bound stateS(↑↑), i.e.,
S(↑↑↑)⇒S(↑↑). Initially the three solitons are positioned
respectively, atx56.8, 15, and 23.5 cm. Att;25 s, the two
solitons of smaller separation~here the first and the secon
solitons! combine into a single one, due to the stronger
traction in between.@Note that, for the given initial wave-
form, the solitons are much closer to each other than to t
virtual images~due to mirror effect of rigid boundary condi
tion!, so the influence of two end wall boundaries are co
paratively small.# The similar situations have also bee
found in the simulations to the other states such

FIG. 3. Synchronization of the two oscillating bound pairs
S(↑↑↓↓) @h5Im(f)#. @Parameters: l 534 cm, (a,g)5(0.6,
0.9903), andC520 atx50,l .#
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FIG. 4. Simulations of the time evolutions of the oscillatory patterns@h5Im(f)#. ~a! S(↑↓↑) at (a,g)5(0.6455, 0.9778),~b! S(↑↓↓↑)
at (a,g)5(0.9445, 1.2976), labeled by ‘‘% ’’ in Fig. 5~a!; ~c! S(↑↑↓↓) at (a,g)5(0.8938, 1.2326) (C5` at X50,L); ~d! S(↑↓↓↑↑) at
(a,g)5(0.6003, 1.0512) (C5` at X5L); ~e! S(↑↓↓↑↑↓) at (a,g)5(0.6003, 1.0446) labeled by ‘‘̂’’ in Fig. 5~a!. ~Note thatC5`
means a highly damping boundary.!
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S(↑↓↓↓↑)⇒S(↑↓↓↑) and S(↑↓↓↓↓↑)⇒S(↑↓↓↑). There-
fore, the numerical simulations have confirmed the exp
mental observations of the instability of the states with m
than two neighboring like solitons.

Before presenting the details of the numerical results
the three stable types, we point out the different treatment
the boundary condition in simulating different types. By d
rectly using the numerical procedure and the rigid bound
condition~9! to type 1@and some of type 3, such asS(↑↓↑)
and S(↑↓↑↓)#, we have successfully reproduced every
pect experimentally observed~see below!. However, we fail
to locate the stability regions for type 2@and some other
states of type 3, such asS(↑↑↓↑)#. In fact, if simply apply-
ing the boundary condition~9!, the physical situations fo
type 2@and some of type 3#, sayS(↑↑↓↓), are essentially the
same as those of the unstable states just described in th
paragraph. As a result, in the stateS(↑↑↓↓), for example,
the solitons near the two end walls will be attracted by a
then attached to the boundaries, or evenS(↑↑↓↓)
i-
e

r
of

y

-

last

d

⇒S(↑↑↓)⇒S(↑↓). To interpret the stability of the type, w
model the experimental situations by taking a greater da
ing coefficienta at the boundariesX5X0 and XN21 @only
X0 for S(↑↑↓) and S(↑↑↓↓↑)# than elsewhere. This is
implemented simply by replacing the damping coefficienta
for the difference equationsn50 and N21 in Eq. ~8! by
Ca, whereC.1. With this treatment, everything observe
for type 2~and some of type 3! can also be well reproduced
The greater the coefficientC is, the larger the paramete
region of the stability for such a state. This confirms t
experimentally based suggestion about the stability of typ

To illustrate how the individuals get synchronized, Fig.
gives the responses at the centers of two bound pair
S(↑↑↓↓) whenC520. As is clearly seen, the two oscillatin
pairs are 180° phase locked after a few interacting cyc
After getting synchronized, the solitons will oscillate in
stationary pattern. Some of the examples of the simulati
of the time evolutions are presented in Fig. 4, where~b! and
~e! are of type 1,~c! and ~d! type 2, and~a! type 3. Each of
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57 2409OSCILLATORY PATTERNS COMPOSED OF THE . . .
these oscillatory patterns has its own stability regions. Fig
5~a! is the computed stability diagram in the (a,g) plane for
the steady stateS(↑↓↓↑) @S(↑↓) and S(↑↓↓↑↑↓) have the
similar ones#, while ~b! is the one forS(↑↑↓↓) in the case of
highly damping boundaries (a→`, or f.0, atx50 andl ).
In the diagrams, the conelike bands between two lines are
parameter regions of the stationary oscillatory patterns.

As g is decreased across the lower boundary of the
bility regions, one or more bound pairs are combined i
single solitons, and the states thus degenerate to the on
fewer individuals. As a typical example, Fig. 6~a! shows how
S(↑↓↓↑) degenerates asg is decreased. Whent,20 s,g is
located inside the oscillatory parameter regions, and thus
state behaves as shown in Fig. 4~b!. At the timet520 s,g is
decreased to a value just below the stable region~see Fig. 5!,
and thusS(↑↓↓↑)⇒S(↑↓↑). Since the value ofg is rela-
tively large forS(↑↓↑), the resulting state becomes standin
Further decrease ofg ~at t560 s! will have the solitons
oscillate. Just as observed in experiment, the three oscilla
solitons will get synchronized~in one interacting cycle!, and
then (t.80 s! they oscillate in the sequence of

S~↑ ↓ ↑
← →!⇒S~↑ ↓ ↑

→ ←!⇒S~↑ ↓ ↑
← →!⇒S~↑ ↓ ↑

→ ←!⇒ •••,

FIG. 5. Stability diagrams in the channel ofl 534 cm. For each
case, the stability domain for the oscillatory pattern lies between
upper and lower lines, which are the best fits of the compu
points, ‘‘1 ’’ and ‘‘ s,’’ respectively; below the region, the state
degenerate into the ones of fewer solitons, while above the re
all solitons become standing.
re
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while keeping the middle soliton standing, which is same
shown in Fig. 4~a!. The transition process can be better cha
acterized by the ‘‘particle number’’P(t) @14#, as is the
shown in Fig. 6~b!. Here the quantity is normalized with
respect to a single soliton, i.e.,

P~t![

E
0

L

uf~X,t!u2dX

E
2`

`

ufs~X!u2dX

, ~10!

e
d

on

FIG. 6. Degeneration of the 4-soliton stateS(↑↓↓↑) at a fixed
damping coefficient,a50.9445, in the trough ofl 534 cm:~a! time
evolution of the transitions;~b! variation of the ‘‘particle number’’
P with time. The driving strength takes the values~1! g51.2982
for t,20 s; ~2! g51.2894 for 20 s<t,60 s; ~3! g51.222 for
t>60 s.
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2410 57XINLONG WANG AND RONGJUE WEI
wherefs(X) is the single standing soliton solution to Eq.~3!
in an unbounded channel@2#. In this definition,P'n for an
n-soliton state. For a standing state,P is a constant in time,
but for an oscillating one,P varies periodically in the vicin-
ity of n.

Finally, we mention that spatiotemporal chaos will occ
to the oscillatory patterns for low dissipation, name
a,0.5. Asa is decreased along the stability bands in Fig.
the oscillations first appear to be quasiperiodic tempora
Further decrease ofa will give rise to the destruction of the
coherent structures in space and irregular motions in ti
and thus lead to the onset of spatiotemporal chaos. Figu
shows how the quasiperiodical oscillation ofS(↑↓↓↑) be-
comes chaotic both in time and space as (a,g) changes from
~0.5, 0.95! to ~0.3, 0.9256!. The numerical evidence has als
been proved by our experiment at low frequencyf and using
very clean water.@Note thata[d/e ~see@2#!, whered is the
ratio of actual to critical damping for free oscillation of th
first transverse mode~0,1! and e is given by Eq.~6!. In a
given experimental configuration,d almost keeps constan

FIG. 7. Onset of spatiotemporal chaos from the 4-soliton s
S(↓↑↑↓) as (a,g) changes from~0.5, 0.95! to ~0.3, 0.9256! at the
time t550 s. The gray level is proportional to Im(f), so the darkest
sites are the two solitons close to the boundaries, while the brigh
ones are the two like solitons~bound pair!.
D

-

r
,
,
.

e,
7

and thus lowering the driving frequencyf is equivalent to
decreasing damping coefficienta.# The interesting behavio
indicates that, in addition to the ordering rules, dissipat
plays another important role in stabilizing and supporting
parametrically excited oscillatory patterns. An in-depth
vestigation of the complex dynamics of the transition to s
tiotemporal chaos will be given elsewhere.

IV. DISCUSSION AND CONCLUSIONS

To compare with the experiments directly, one shou
take notice of the difficulty to precisely determinea experi-
mentally, as well as the high sensitivity ofg to the experi-
mental parameters such asb, h and the surface-tension co
efficient. For example, the measurement errors ofb andh are
about 60.025 and60.05 cm, respectively, in our exper
ment. It immediately follows thatg51.29760.226, which
almost span over the stability domains, as can be seen in
5. In spite of this, we see that Eq.~3! can describe the ob
served phenomena satisfactorily.

In summary, both our experimental and numerical wo
show that the spatial arrangement orders of the polaron
solitons are responsible for the stabilities of the 1D pa
metrically excited solitary-wave chains, and the stable cha
assume some very orderly and symmetric structures, wh
can be abstracted as two general patterns~1! and ~2! ~and
their degenerate, type 3!. Quite different from those found in
other 1D systems@16,17#, these patterns are solely compos
of polaronlike ‘‘molecules’’—bound pairs (↑↑ ’s and
↓↓ ’s!—and, in particular, the corporative interactions of t
bound pairs result in the spatiotemporal oscillations of
patterns, not yet observed in the 2D analogous ‘‘molecula
and ‘‘crystalline’’ structures@9#. The agreement between th
experiment and the numerical simulations suggests the e
tence of the same or similar structures in other vertica
driven systems modeled by the same equation@3–7#. The
approach may also provide a clue for understanding the
mation and dynamics of the patterns in biological, chemic
and physical systems in general@18#.
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