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Oscillatory patterns composed of the parametrically excited surface-wave solitons
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Multiple solitons in a water trough resonator are observed to organize into some ordered and symmetrical
one-dimensional patterns that can exhibit spatiotemporal oscillations at certain excitations of the system.
Experimental details including the ordering rules for the generations of stable multisoliton chains are described,
and the phenomena are numerically simulated with the parametrically driven, damped nonlineding§ehro
equation,[S1063-651X98)15302-3

PACS numbes): 42.65.Tg, 47.35ti, 47.20.Ky, 43.25+y

I. INTRODUCTION soliton state by the combinations of the symbols, &4t,|)
stands for the state of two opposite polarity solito8&] 1)

The study of the parametrically excited surface-wave solifor a pair of like polarity solitons, etc. In the present experi-
tons in Faraday’s water trough resonafdr2] has been of ment, we use a Plexiglas trough about 2.5 cm wide, filled
fundamental importance for understanding similar or virtu-with water to a depth of about 2.0 cm, and subjected to a
ally the same localized phenomena recently uncovered imertical vibration of the formzy=(g/w?)I'cos(4rft). Here
many other vertically driven systems of various physical methe driving strengti” is normalized to the gravitational con-
dia [3], such as on the interface between two flujd§ in  stantg, and the frequency=w/27 is adjusted to be little
nonlinear lattice$5,6], in ferromagnets and antiferromagnets lower thanf,,~5.55 Hz[1], the linear eigenfrequency of the
[7], and even in(lone-dimensional8] and 2D[9]) granular  dominant transverse mod6,1). In such a configuratiory
materials. So far, the stability and bifurcation behavior of ausually takes a value of about 6 cm. To produceolitons
single soliton is well studie@3,10-13. In our earlier work  with desired polarity arrangement, we repeatedly adjust
[13,14], we explored the dynamics of soliton-soliton interac- (I',f) and, at the same time, apply a proper disturbance on
tions for some simple cases, and revealed several dynamicéle water surface, until the state is stabilized.
modes(l, 1l, and Ill). We also mentioned thergl4] that Using this setup, we have investigated various states of
these basic modes exist in many multisoliton states. Howdifferent polarity arrangements, withup to 6. Among them,
ever, the situations become much more complicated and ygte observe that a state with more than two abutting solitons
remain to be understood when multiple solitomimber  of like polarity appears to be unstable anyhow. These states
n>2) are strongly coupled together in a bounded channeincludeS(117), S(1111), andS(T]]|1), etc. For example,
especially for the case when the trough lengtis compa-  after the formation oB(717) in the trough ofl ~30 cm, the
rable tonk, where\ is the extent of one solitary wave en- middle soliton is soon coalesced by one of its neighbors and
velope. Based on our previous workis4], here we empha-  thus the state transits to a bound st&€f11)=S(11), or
size themany body problenand attempt to supply a clear even the state is simply replaced by other waveforms. The
physical picture for the general behaviors of the parametriinstability can be understood as beidige to the competitive
cally excited multisolitons. attractions among the identical solitons.

In the following section(ll), we shall report our recent We find that the following states can be easily formed and
experimental observations on the dynamics of multisolitonssustained in some large driving parameter ranges
Our major results includé) the ordering rules governing the

stabilities of multisoliton chains(ii) the generic solitary- Type 1: S(T1),S(TLLIT),S(TLITTL),
wave patterns allowed by the ruld§j) the interesting spa-

tiotemporal oscillations of these patterns, diwl the degen- Type 2: S(T1),S(TT1),S(TT11),
eration and bifurcation behaviors of the oscillatory patterns

under the control of the driving parameters. In Sec. Il we SITLLTLS(ITLLTT).

give some detailed descriptions and interpretations of these

interesting phenomena with th@arametrically driven, [The simplest case¥(11) andS(7 |) have already been well
damped nonlinear Schdinger (PDNLS) equation. Finally, studied in our early wor{13,14. The basic experimental
in Sec. IV, we give some remarks and conclusions about thevidence ofS(1||1) was also mentioned ifil4].] What

laboratory and computer experiments. particularly interests us for these states is the synchronous
spatiotemporal oscillations(The results are recorded by
Il. EXPERIMENTAL OBSERVATIONS video, and the copies of the records are available to inter-

ested readers upon requgst. other words, for each of these
The solitons in a long water channel appear as some estates(i) individuals can be oscillating along the channel for
citations highly localized in thex (longitudina) direction,  some properly adjusted’(f), and(ii) even if we disturb the
“sloshing” in the y (transversg direction [1]. As before motions out of the steps, they will soon become synchro-
[14], we denote the polaronlike localized objects by the upnized. Figure 1 illustrates some typical cases. As we see, the
and down arrows, 1" and “ |,” and reference to a multi- oscillating patterns can be considered simple combinations
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type 1, the same effects on the solitons by the end walls are
negligible, as compared to the repulsion from the neighbor-

_/THN ing solitons of opposite polarity.The suggestion is further
W supported by the fact that putting a little damping material
—/\—/H/\/— such as cotton on the end walls will mak¢tT]|) much
j\/w\(_f (a) more stable. We therefore draw from type 2 another general
pattern:
M
—/\/H/\_)/— BATLLTTLL 111U TLL<, @

0 5 10 15 20 o5 30 where the symbols > and “ <’ mean the damping end
walls. In a sense, this pattern can be regarded as a truncated
form of the infinite ong(1).

W For each state of type 1 and 2, the spatiotemporal oscilla-

tion diminishes withI" increased gradually, and individuals
all become standing. On the other handJ'ais decreased to

w a certain value, one of the like pairs collapses and the pair

(b) combines into a single one, leading to the degeneration to

W one of the following states.
« =
NN Type 3: S(TL1,S(TLNS(TD.SATIID, -

0 10 20 30 40 However, the reverse process, suctsgs| 1)=S(1111), is
seldom observed, which shows the hysteresis in the real sys-
tem. The threshold of the degeneration depends on the driv-

M ing frequencyf and the trough dimension as well. For in-
PN =< stance, in the trough df=34 cm,S(7]|17)=S(1]1) when

time

time
1
T

&~ < I' is decreased to 0.101 &&5.45 Hz, while atf =5.5 Hz,
Qé /R_/_/\/R this happens df =0.094. Of course, each state of type 3 can
E=1 N - N (©) be produced directly; each can also exhibit the spatiotempo-
o N ral oscillation, but the situations are somewhat more sophis-
ticated. For example, depending oh,{), the solitons in
\/\/—/\ﬂ S(7] T)may oscillate either as
0 10 20 30 40 SG ) SGT)
X (cm)
or

FIG. 1. Oscillations of solitary-wave chainga) S(11.1)

(I'=0.11,f=5.45 Hz, (b) S(171/1) (I'=0.1218,f=5.45 Hz), S(?TT) S(?T?), el
and(c) S(11117]) (I'=0.1551,f=5.50 Hz).

where “— " and “ <" denote the directions of motions.
of the behavior of the simplest cas®g| ) andS(1]) [14]. In principle, more than 6 solitons could also be formed in
Obviously, the harmonic oscillations show the corporativethe water trough. However, it becomes much more difficult
behavior among the individuals. Depending on the controin experiment to manually supply a proper initial surface
parameters, the oscillation frequency varies from 0.1 to 0.5vaveform, e.g., a sudden disturbance on the water surface,
Hz. which would definitely evolve into what we desira*6).

The stabilities and the cooporative behaviors of the twovoreover, additional difficulty also arises in generating such
stable types reflect the orders and symmetries in their strucx multisoliton chain, for the unwanted excitations of longitu-
tures. By applying the “mirror effect’[13], we see that type dinal waves usually become unavoidable in a very long
1 substantiates the general pattern in an infinite waveguidetrough (note thatl ~n\). In spite of these, it is straightfor-

ward to generalize the above observed results to the case of

S TLLTTLLTTLLTTLTTidTTd -y @D n>e.

which were solely composed of like pairs, with their polarity

alternately distributed along the guide. At first sight, it seems lll. NUMERICAL SIMULATIONS

that the states of type 2 would become Unstable, for the same Now we attempt to interpret and describe what we have
unfavorable situations as found$4111) would also existif  gpserved with the PDNLS equation

the “mirror effect” is applied. But here we should take no-

tice of the inevitable existence of the viscous boundary layer i(p,+ad)+ dxxt2|p|2dp+ Bod+yd* =0, 3)
or/and the surface pinning effect at the end walls. These

effects, no matter how small, will spoil the “mirror effect” where¢ is the solitary-wave envelope modulating on cross-
to some degree and tend to keep the solitons away from th#ave mod€0,1), « the damping coefficient, and the asterisk
boundaries, thus keeping the states stafifethe states of denotes complex conjugate. The equation was first proposed
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FIG. 3. Synchronization of the two oscillating bound pairs in

S(T1111) [w=Im(¢)]. [Parameters:1=34 cm, («,y)=(0.6,
0.9903), andC=20 atx=0,.]

50 60

FIG. 2. The instability ofS(717) and the transition to an oscil-

lating bound state ata(, 3, y) = (0.6455, —1, 0.9778). the implicit finite difference algorithm with respect ¥ so

that Eq.(3) becomes a set of discrete ordinary differential

by Miles [2] to model the parametrically excited solitary- equations forg(M= ¢(X,,7)
wave phenomena in an unbounded channel. For the details as
well as the incorporation of the surface tension effect, we
refer readers to Miles’s contribution. The relations of the
variables and parameters in E§) to those used in the ex-
periment are described below in brief. Letbe a small pa-
rameter (G<e<<1) that measures the strength of nonlinear-

w¢@+a¢mn+ﬁa¢m+”—2¢m+¢m*h
X

22+ B+ y(4M)* =0,

ity. Then, (n=0,1,2... ,N-1), (8
f2—£2, r : iy
= = Y=, (4)  Wwith the boundary condition
2¢f €
. , o . . V=D HN= N-2) )
and ¢ is a function of the slow variables{(7), respectively ' '
defined as at X, and Xy_1, whereX,=nhy, hy=L/(N—1), N is the
T number of differencing points, and the dimensionless system
X=2\/e ka, T=€wt, (5  intervalL is related to the trough lengththrough(5). We

then integrate Eqs(8) in time 7 by the Runge-Kutta-
Fehlbergalgorithm. In the computations, numerical error is

whereT=tanh@rh/b), w=2=f, b is the breadth of the water
controlled within 10°8.

trough, andh is the height of water. In what follows, we

assume Numerically we investigate a multisoliton chain by locat-
(22 ing its control parameter region of stability on the,{) _
_ 0 6) plane. We_z only consn_ller the parameter ranges usually used_ in
2f§l ' the experiment. We find out that such a region does not exist

for the states that hawmore than two like polarity individu-
als neighboring each otheA typical case is the three iden-
tical soliton stateS(111), which is observed to be unstable
in experiment. Figure 2 shows how, in a trough &f30 cm,

so that| 8] is normalized to unity. Our derivation by using a
multiple scales’ method shows that E®) is still valid for
the present case of the bounded chanifdetting

B=—1—v{|#|?, (7)  these identical solitons interact with each other, and then,
evolve into an oscillating bound stat&s(77), i.e.,
where(-) denotes the average over the channel and S(TT1)=S(17). Initially the three solitons are positioned,
8(1-T?)?2 respectively, ak=6.8, 15, and 23.5 cm. At~ 25 s, the two

v solitons of smaller separatiaimere the first and the second

4 2 -2y°
(6T"=5T"+16-9T") solitong combine into a single one, due to the stronger at-
The modification is required by the mass conservation ofraction in between[Note that, for the given initial wave-
fluid [15] in the bounded container. In our experiments,form, the solitons are much closer to each other than to their
T=0.987 andv=7x10"4, so it is insignificant and negli- virtual images(due to mirror effect of rigid boundary condi-

gible. To numerically solve Eq.3), together with the rigid
boundary conditionp,=0 at the end wallx=0 andl, we
use the same algorithm as ours beffitd]. We first apply

tion), so the influence of two end wall boundaries are com-
paratively smalll The similar situations have also been
found in the simulations to the other states such as



2408 XINLONG WANG AND RONGJUE WEI 57

20
0.5

t(s)

A @ T

t(s)

0.4
0.2

o \\%ﬁg\ , ‘V

FIG. 4. Simulations of the time evolutions of the oscillatory patt¢ms Im(¢)]. (a) S(T11) at («,y)=(0.6455, 0.9778)b) S(11171)
at (a,y)=(0.9445, 1.2976), labeled bys'™” in Fig. 5(a); (c) S(1711) at (a,y)=(0.8938, 1.2326) = atX=0L); (d) S(T//11) at
(a,y)=(0.6003, 1.0512) €= at X=L); (&) S(1/111]) at («,y)=(0.6003, 1.0446) labeled by&” in Fig. 5(a). (Note thatC=o0
means a highly damping boundary.

S(TLLLIT=S(TLLT) and S(TLLLIT)=S(T11T). There- =111)=1]). To interpret the stability of the type, we
fore, the numerical simulations have confirmed the experimodel the experimental situations by taking a greater damp-

mental observations of the instability of the states with morang coefficienta at the boundarieX= X, and Xy_; [only
than two neighboring like solitons. Xo for S(111) and S(11111)] than elsewhere. This is
Before presenting the details of the numerical results foimplemented simply by replacing the damping coefficiant
the three stable types, we point out the different treatments dbr the difference equations=0 andN—1 in Eq. (8) by
the boundary condition in simulating different types. By di- Ca;, whereC>1. With this treatment, everything observed
rectly using the numerical procedure and the rigid boundaryor type 2(and some of type)3can also be well reproduced.
condition(9) to type 1[and some of type 3, such &8(7 | 1) The greater the coefficiert is, the larger the parameter
and S(1171)], we have successfully reproduced every astegion of the stability for such a state. This confirms the
pect experimentally observedee below. However, we fail  experimentally based suggestion about the stability of type 2.
to locate the stability regions for type [and some other To illustrate how the individuals get synchronized, Fig. 3
states of type 3, such &17/1)]. In fact, if simply apply- gives the responses at the centers of two bound pairs of
ing the boundary conditiort9), the physical situations for S(171]]) whenC=20. As is clearly seen, the two oscillating
type 2[and some of type]3sayS(11/]), are essentially the pairs are 180° phase locked after a few interacting cycles.
same as those of the unstable states just described in the lagter getting synchronized, the solitons will oscillate in a
paragraph. As a result, in the ste&8€71]]), for example, stationary pattern. Some of the examples of the simulations
the solitons near the two end walls will be attracted by andf the time evolutions are presented in Fig. 4, whimeand
then attached to the boundaries, or ev&{i11]]) (e) are of type 1/(c) and(d) type 2, and(a) type 3. Each of
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FIG. 5. Stability diagrams in the channellof 34 cm. For each
case, the stability domain for the oscillatory pattern lies between thi 4
upper and lower lines, which are the best fits of the computec
points, “+” and “ O,” respectively; below the region, the states A
degenerate into the ones of fewer solitons, while above the regio 35
all solitons become standing. )
these oscillatory patterns has its own stability regions. Figuri
5(a) is the computed stability diagram in the,(y) plane for 3r
the steady stat&(7]17) [S(T]) andS(1]]11]) have the
similar one$, while (b) is the one forS(11||) in the case of
highly damping boundarie o, or =0, atx=0 andl). 25 i i . :
gnly ping Sa(e ¢ ) 20 40 80 100 120

In the diagrams, the conelike bands between two lines are tt t?g)
parameter regions of the stationary oscillatory patterns.

As vy is decreased across the lower boundary of the sta- FIG. 6. Degeneration of the 4-soliton st | | ) at a fixed
bility regions, one or more bound pairs are combined intgdamping coefficienty=0.9445, in the trough df=34 cm:(a) time
single solitons, and the states thus degenerate to the ones&yplution of the transitions(b) variation of the “particle number”
fewer individuals. As a typical example, Figashows how P with time. The driving strength takes the valus y=1.2982
S(1117) degenerates agis decreased. Whet< 20 s, y is for t<20 s;(2) y=1.2894 for 20 st<60 s; (3) y=1.222 for
located inside the oscillatory parameter regions, and thus tHe 60 s-
state behaves as shown in Figby At the timet=20s,yis  while keeping the middle soliton standing, which is same as
decreased to a value just below the stable re¢see Fig. 3  shown in Fig. 4a). The transition process can be better char-
and thusS(7]|7)=S(1/1). Since the value ofy is rela-  acterized by the “particle numberP(7) [14], as is the
tively large forS(1] 1), the resulting state becomes standing.shown in Fig. 6b). Here the quantity is normalized with
Further decrease of (at t=60 9 will have the solitons respect to a single soliton, i.e.,

oscillate. Just as observed in experiment, the three oscillating )

solitons will get synchronize@in one interacting cycle and J:|¢(X,T)| dXx

then (>80 9 they oscillate in the sequence of P()=——, (10)
S D= S=SG =S )= [ tes
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FIG. 7. Onset of spatiotemporal chaos from the 4-soliton state

S(I111) as («,y) changes from0.5, 0.95 to (0.3, 0.9256 at the
timet=50 s. The gray level is proportional to I@f, so the darkest
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and thus lowering the driving frequendyis equivalent to
decreasing damping coefficieat] The interesting behavior
indicates that, in addition to the ordering rules, dissipation
plays another important role in stabilizing and supporting the
parametrically excited oscillatory patterns. An in-depth in-
vestigation of the complex dynamics of the transition to spa-
tiotemporal chaos will be given elsewhere.

IV. DISCUSSION AND CONCLUSIONS

To compare with the experiments directly, one should
take notice of the difficulty to precisely determineexperi-
mentally, as well as the high sensitivity gfto the experi-
mental parameters such bsh and the surface-tension co-
efficient. For example, the measurement erroris ahdh are
about =0.025 and+0.05 cm, respectively, in our experi-
ment. It immediately follows thaty=1.297+0.226, which
almost span over the stability domains, as can be seen in Fig.
5. In spite of this, we see that E(B) can describe the ob-

sites are the two solitons close to the boundaries, while the brighte§er\’Ed phenomena satisfactorily.

ones are the two like solitori®ound pai.

wheregq(X) is the single standing soliton solution to Eg)
in an unbounded channgl]. In this definition,P~n for an
n-soliton state. For a standing stakjs a constant in time,
but for an oscillating oneR varies periodically in the vicin-
ity of n.

Finally, we mention that spatiotemporal chaos will occur
to the oscillatory patterns for low dissipation, namely,

a<0.5. Asa is decreased along the stability bands in Fig. 5,
the oscillations first appear to be quasiperiodic temporally

Further decrease af will give rise to the destruction of the
coherent structures in space and irregular motions in tim
and thus lead to the onset of spatiotemporal chaos. Figure
shows how the quasiperiodical oscillation 7] ] 1) be-
comes chaotic both in time and space asy) changes from
(0.5, 0.95 to (0.3, 0.9256. The numerical evidence has also
been proved by our experiment at low frequefignd using
very clean waterNote thata= 6/ € (se€[2]), wheres§ is the
ratio of actual to critical damping for free oscillation of the
first transverse modé€0,1) and € is given by Eq.(6). In a
given experimental configuratior, almost keeps constant,

€

In summary, both our experimental and numerical works
show that the spatial arrangement orders of the polaronlike
solitons are responsible for the stabilities of the 1D para-
metrically excited solitary-wave chains, and the stable chains
assume some very orderly and symmetric structures, which
can be abstracted as two general pattéinsand (2) (and
their degenerate, type.3uite different from those found in
other 1D systemgl6,17], these patterns are solely composed
of polaronlike “molecules”—bound pairs 7(J's and
| l’'s)—and, in particular, the corporative interactions of the
bound pairs result in the spatiotemporal oscillations of the
patterns, not yet observed in the 2D analogous “molecular”
and “crystalline” structureg9]. The agreement between the
éf(periment and the numerical simulations suggests the exis-
tence of the same or similar structures in other vertically
driven systems modeled by the same equafi®n7]. The
approach may also provide a clue for understanding the for-
mation and dynamics of the patterns in biological, chemical,
and physical systems in genefaB].
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