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A way to compress an optical pulse in a single-mode fiber is presented in this paper. By the use of the
cross-phase modulatidi€PM) effect caused by the nonlinearity of the optical fiber, a shepherd pulse propa-
gating on a different wavelength beam in a wavelength division multiplexed single-mode fiber system can be
used to enhance the pulse compression of a copropagating primary pulse. Although CPM will not cause energy
to be exchanged among the beams, the pulse shapes on these beams can be altered significantly. For example,
a 1-mW peak power 10-ps primary pulse on a given wavelength beam may be compressed by a factor of as
much as 25 when a copropagating 10-ps shepherd pulse of peak power of 49 mW on a different wavelength
beam is similarly compressed. Results of a systematic study on this effect are presented in this paper. Further-
more, even when the primary pulse on a given wavelength beam has a peak power of much less than 1 mWw,
it can still be compressed by the same compression factor as a copropagating shepherd pulse of peak power
much larger than 1 mW on a different wavelength beam as it undergoes compression. Through CPM, copropa-
gating pulses on separate beams appear to share the nonlinear effect induced on any one of the pulses on
separate beamfpS1063-651X98)12902-1

PACS numbe(s): 42.81.Dp

[. INTRODUCTION detailed simulation results on this type of pulse compression

technique.
In spite of the intrinsically small value of the nonlinearity
coefficient in fused silica, due to low loss and long interac-
tion length, the nonlinear effects in optical fibers made with

fused silica cannot be ignored even at relatively low power The fundamental equations governikty numbers of co-
levels [1]. This nonlinear phenomenon in fibers has beerpropagating waves in a nonlinear fiber including the CPM
used successfully to generate optical solit)pk to com-  phenomenon are the coupled nonlinear Sdimger equa-
press optical puls€$], to transfer energy from a pump wave tions[7,14]
to a Stokes wave through the Raman gain effégtto trans-
fer energy from a pump wave to a counterpropagating Stokes
wave through the Brillouin gain effe¢b], to produce four- ’?_Ai+ i ‘?_Al 1 ai A
wave mixing[6], and to dynamically shepherd puld&s. iz vg ot 2 11

In a wavelength division multiplexedWDM) system, the
cross-phase modulatiof€CPM) effects[8,9] caused by the ) M
nonlinearity of the optical fiber are unavoidable. These CPM :E B J AJ’_ ( |A-|2+22 A |2)A-
effects occur when two or more optical beams copropagate 2 P2 gz M| A Mz !
simultaneously, and effect each other through the intensity
dependence of the refractive index. This CPM phenomenon
can be used to produce an interesting pulse shepherding ef-
fect to align the arrival time of pulses which are otherwise

misaligned. This same CPM effect can also be used to progere, for thejth wave,A(z,t) is the slowly varying ampli-
duce a highly compressed pulse on a different wavelengtf,ge of the wavey y; the group velocity 8, the dispersion

beam. . _ coefficient (8,j=dv*/dw), «; the absorption coefficient,
The usual soliton-effect compressg8,10-13, which 5.4

makes use of higher-order solitons supported by fiber as a

result of interplay between self-phase modulaiis®M) and

anomalous group-velocity dispersi¢gB8VD), is well known. Ny

It is found here that the interplay between CPM and GVD Vi:(T.‘eﬁ @)
may also provide similar pulse compression effects. The sig-

nificant difference is that pulse compression can take place

for pulses on a different wavelength beam. This means thas the nonlinear index coefficient, with.; as the effective
the high power pulse on one wavelength beam may be usezbre area andh,=3.2x 10" ¢ cn?/W for silica fibers,w; is
to provide high compression to a low power pulse on anothethe carrier frequency of thgh wave,c is the speed of light,
wavelength beam. The purpose of this paper is to providendz is the direction of propagation along the fiber.

II. FORMULATION OF THE PROBLEM

(j=123... M) 1)
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Introducing the normalizing coefficients vanced first using only the nonlinear part of the equations.
Then, the solutions are allowed to advance using only the

t=(Zlvg) linear part of Eq.(6). This forward stepping process is re-
™ To ' peated over and over again until the desired destination is

reached. The Fourier transform is accomplished numerically

dij=(vg1—vg)/vgivg;j, via the well-known fast Fourier transform technique. Due to

the large dynamic range of the pulse width, a mesh size of

¢=127/Lpq, 2048 withA 7=0.01 was used.

Using the above approach, the evolution of all the pulses

Lo1=T3/|B4, (3 on all the copropagating WDM beams as they propagate

. down the fiber may be obtained. It was through these nu-

and setting merical computations that we discovered the interesting

pulse shepherding and beam compression eff@¢tAs ex-

ui(7,6)=(A|(2,0)/Pg)exp(ajLp1é/2), (4)  pected, these effects only exist when group-velocity mis-

match for the interested beams is negligible. In other words,

L= (i Poj), there is no walk-off7,14] among the interested beams. This

) can be accomplished through proper tailoring of the disper-

Lp; :T0/|32J| (5 sion characteristics of a single-mode filh&7].
. Now consider the evolution of two single soliton pulses
gives on two copropagating beams whose operating wavelengths
S Baor Py Gy e sebeled L4, Tor e cese e for vave
€ 2Lp; 9" Ty Ploar g giglme. P

primary (P) pulse and the second pulse as the sheph®rd (

Loy pulse. The soliton numbe; for the pulse on th¢th beam is

- exp(— ajLp1é)|u;|? defined as
LNLj
S 2 NjZ:LDj/LNLj-
+2r’r§' exp(— amLD1§)|um| uj
| Furthermore, we assume that there is negligible walk-off,
(j=123... M). 6 €

HereT, is the pulse widthPy; is the incident optical power  dj;=(walk-off parameter between beam No. 1 and bgam
of the jth beam, andy;, the walk-off parameter between

beam 1 and beam, describes how fast a given pulse in =g~ Vg =0,
beamj passes through the pulse in beam 1. In other words,
the walk-off length is and there is no loss, i.e.,
Lwaj)=To/|dyl- (7 a;= (attenuation or absorption of beajnin fiber)=0.

So L)) is the distance for which the faster moving pulse
(say, in beanj) completely walked through the slower mov-
ing pulse in beam 1. The nonlinear interaction between the
two optical pulses ceases to occur after a distangg .

For CPM to take effect significantly, the group-velocity mis-

The neglect of fiber loss is justified since the fiber lengths
Sypically employed are only a small fraction of the absorp-
tion length (;L<1). Strictly speaking, for multiple inter-
acting beams, there is no condition under which solitons may
match must be held to near zero. exist even if the fiber is lossless. However, numerical simu-
It is also noted from Eq(6) that the summation term in lation shows that significant pulse compression still exists for

the bracket representing the CPM effect is twice as effectivd€Se interacting pulses.
as the SPM effect for the same intensity. This means that the

nonlinear effect of the fiber medium on a beam may be en- IV. DISCUSSION OF THE RESULTS
hanced by the copropagation of another beam with the same ) )
group velocity. (i) Shepherd and primary pulses are all in the anomalous

dispersion regionFor solitons propagating on a single beam
in silica fibers, pulse compression is experienced wNen
the soliton order, is larger than[&]. This effect is due to the
Equation(6) is a set of simultaneous coupled nonlinearinteraction of self-phase modulation and anomalous group-
Schralinger equations which may be solved numerically byvelocity dispersion during propagation. When two aligned
the split-step Fourier method, which was used successfullpulses, one called the primary pulse and the other called the
earlier to solve the problem of beam propagation in complexshepherd pulse, on two different wavelength beams copropa-
fiber structures, such as the fiber couplerS], and to solve gate in a single-mode silica fiber, compression of both pulses
the thermal blooming problem for high-energy laser beam®ccurs due to the interaction of cross-phase modulation of
[16]. According to this method, the solutions may be ad-these two pulses and anomalous GVD during propagation.

IlI. NUMERICAL SOLUTION
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FIG. 1. Compression factorF() for various soliton valuesN,) of a primary pulse P) as a function of soliton values\g) of a
copropagating shepherd puls®) ( The compression factor for the primary pulse is the same as the compression factor for the shepherd
pulse. The initial pulse width for the primary pulse and that for the shepherd pulse are identical. The compressibp isdiefined as the
ratio between the full width at half maximum for the initial uncompressed pulse and that for the final compressed pulse.

A. Initial pulse widths are identical ous cases of the primary pulse with the soliton orblgr.

Computer simulation results are shown in Figs. 1—4 forl e amount of compression is expressed by the compression

copropagating pulses with identical initial pulse width. Both factor Fc, which is defined a$3]
pulses are in the anomalous GVD regime. In Fig. 1 the maxi-

mum amount of compression experienced by both pulses, the
primary (P) pulse and the shepher@)( pulse, are plotted where the subscript FWHM means the full width at half

against the soliton ordeX for the shepherd pulse for vari-
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FIG. 3. An illustration of the evolution of the primary pulse and

FIG. 2. An illustration of the evolution of the shepherd pulse the shepherd pulse fdd;=2 andN,=5. Both pulses are in the
and the primary pulse fdls=7 andN,=1. Both pulses are in the anomalous dispersion region. The power amplithgé is plotted
anomalous dispersion region. The power amplitiul@ is plotted  in each frame. The highest power amplitude in each frame is nor-
in each frame. The highest power amplitude in each frame is normalized to unity. The initial power amplitude for the shepherd pulse
malized to unity. The initial power amplitude for the shepherd pulseis 4 (Ns=2), and that of the primary pulse is 2B/ (=5). The final
is 49 (Ns=7), and that of the primary pulse is Nf=1). The final  power amplitude for the shepherd pulse is 6.96, and that of the
power amplitude for the shepherd pulse is 71.2, and that of th@rimary pulse is 35.1. The number along the horizontal abscissa
primary pulse is 2.15. The number along the horizontal abscisseefers to the normalized distance from the starting point of the fiber;
refers to the normalized distance from the starting point of the fiberin other words, when the normalized distance is 3, the distance is
in other words, when the normalized distance is 3, the distance i8(zq/20)20/5, where zy=(m/2)Lps, and Lps is the dispersion
3(Zopt/ 20) /5, where zg=(m/2)Lps, and Lpg is the dispersion length of the shepherd pulsg,y is the optimum fiber length in km
length of the shepherd pulsg, is the optimum fiber length in km  for the shepherd pulse when it experiences maximum pulse com-
for the shepherd pulse when it experiences maximum pulse conpression. Note that both pulses with different initial soliton numbers
pression. Note that both pulses with different initial soliton numbersare similarly compressed, and that the degree of compression for
are similarly compressed, and the degree of compression for bothoth pulses is higher than that experienced by each pulse when
pulses is higher than that experienced by each pulse when proparopagating alone. The dispersion coefficiegts and 8,, have
gating alone. The dispersion coefficiefig and 3,, have units of  units of (pg/km). All other numbers in the figure are dimension-
(ps/km). All other numbers in the figure are dimensionless. less.
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FIG. 4. Normalized optimum fiber length as a functionNaf for various fixed values o, . zo=(7/2)Lps, andLps is the dispersion
length of the shepherd pulsg,, is the optimum fiber length in km for the shepherd pulse when it experiences maximum pulse compression.

maximum of the pulse and the subscript COMP means the It is known that a single pulse witN<1, no pulse com-
FWHM of the compressed pulse. It is seen that, in the abpression will occur. Hence N,<1 primary pulse traveling
sence of the shepherd pulse, iH,=0, the primary pulse alone, or aN;<1 shepherd pulse traveling alone, will not
undergoes the well-known soliton compression process for axperience any pulse compression. This is no longer true
single soliton pulse for soliton numb&>1. As expected, when these pulses copropagate in the fiber. Even vityen
the primary pulse retains its shape wheg=1. But, whena  +Ng<1, a slight pulse compression may still be observed
copropagating shepherd pulse is present, both pulses underfyw both the primary and secondary pulses. This is caused by
the same compression evenNf, is not equal toNg or if  the nonlinearity of the fiber medium. One also notes that
Ns<1 or if Ng<1. Furthermore, the amount of compressionwhenN,<1 andN¢>1, pulse compression will be experi-
is always larger than that achievable by a single stand-alonenced by both the primary and shepherd pulses. The same
pulse. degree of pulse compression will occur on the primary pulse
For Ns>N,, the shepherd pulse helps to compress theeven whenN,<1. The degree of pulse compression for the
primary pulse further, especially when soliton number for theprimary or shepherd pulse is governed by the>1 shep-
primary pulse is near unity. For example,Mdgvaries from 1 herd pulse.
to 7, the pulse width of théN,=1 primary pulse can be Figure 4 shows the normalized optimum fiber length
compressed by the shepherd pulse by a factor of 27, while,/z,, for the primary pulse as a function bl for various
the pulse width of theN,=2 primary pulse will be com- fixed values oN,, wherez,y is the optimum fiber length in
pressed by a factor of 7. For a,=5 primary pulse, its km for the primary or shepherd pulse when it experiences
pulse width will be reduced by a factor of only 2.2 B ~ maximum pulse compression arg,= (7/2)Lp,. HereLp,
varies from 1 to 7. In other words, the weaker the intensity ofis dispersion length for the primary pulse defined in £&j.
the primary pulse the more its pulse width will be com- It is of interest to note that, for the primary pulse occurs
pressed by the presence of a copropagating high intensityt the same location or very near the same location as that for
shepherd pulse. Figure 2 gives an illustration of the evolutiorthe shepherd pulse. This means that the maximum pulse
of the pulse shapes of the primary and shepherd pulses faompression for the primary pulse and that for the shepherd
the case wherdl;=7 andN,=1. pulse occur at the same location and at the same time. For
For Ng<N,, the shepherd pulse still helps to compresshigh values olNg, this normalized optimum fiber length can
the primary pulse further, but the effect is much more mod-be much smaller than unity, indicating that the maximum
erate. For example, d$, varies from 0 to 2, the pulse width pulse compression could occur at a length many times
of theN,=2 primary pulse is compressed by a factor of 2.4,smaller than the dispersion length. Using, as an example, the
while the pulse width of theN,=5 primary pulse will be physical parameters
compressed by a factor of only 2 &k varies from O to 5.
This means that to effectively enhance the pulse compression .= (dispersion coefficient=—2.0 ps/km,
of a primary pulse, a higher intensity shepherd pulse must be
used. Figure 3 shows the evolution of the pulse shapes of the.; = (operating wavelength of beam No)=11.552 um,
primary and shepherd pulses for the case winyye 2 and
Np=5. \,=(operating wavelength of beam No)=21.548 um,
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y=(nonlinear index coefficiep=20 W *km™?! sion. The degree of compression is mostly governed by the
high intensity narrow shepherd pulse. For example, at the
Po=(incident power of each begml mw, maximum compression distance, the shepherd pulse is com-

pressed by a factor of approximately 16, while a narrow
«= (attenuation or absorption of each beam in fiber pulse with the same compressed pulse width as that of the
shepherd pulse appears to have been generated on top of the

=0 dB/km, broad small intensity primary pulse which appears as the
pedestal for the narrow pulse.
vg=(group velocity of the beam2.051 14K10° m/9), It is noted here that what has been described above has

practical significance. This scheme provides a practical pure

d; = (walk-off parameter between beam No. 1 and bgam optical way of generating very narrow bits on different
wavelength streams for the bit-parallel data format.
=041~ 0g;=0 (no walk-off),
(ii) The shepherd pulse is in the normal dispersion region
To=(pulse width=10 ps, and the primary pulse is in the anomalous dispersion regime
It is known that pulse compression of a single pulse in a fiber
one has occurs because of the interaction of the nonlinear effect and
L. —50 km the anomalous (_BVD effe({IS]. This int(_araction alsq gives
Dp : birth to the possible existence of a soliton pulse vtk 1.
The above simulation results show that when a shepherd
ulse is added as a copropagating companion primary pulse,
nhancement of pulse compression of the primary pulse is
observed. It is of interest to learn if this pulse compression
enhancement of the primary pulse still exists if the shepherd
pulse is launched on a beam whose wavelength falls in the
N . S normal GVD regime. This computer experiment has been
B. Initial pulse widths are not identical carried out. In this experimenN, is set to unity withg3,,

We also investigated the case where the pulse width of thes — 2, while Ny is set to 9 withB,s= + 2. It is expected that
primary pulse and that of the shepherd pulse are not identwithout the shepherd pulse, the primary pulse is a soliton
cal. Let us consider the case where a primary pulse has giilse which will retain its shape without pulse compression
initial intensity of N, =1, and a shepherd pulse has an initial of pulse spreading as it propagates down the fiber. Also,
intensity ofNs=9. It was assumed that the pulse width of the without the primary pulse, the high amplitude shepherd pulse
shepherd pulse is varied from the same to several tixe§  in the normal dispersion regime is expected to propagate
times wider than that of the primary pulse. Our computer Without experiencing pulse compression. When both of these
simulation shows that the primary pulse is similarly com-pulses copropagate on two separate beams, the pulse shep-
pressed for all the above cases. In other words, varying theerding effect is observed, but no pulse compression is ob-
pulse width of the shepherd pulse does not appear to affeserved.
the minimum pulse width achievable for the primary pulse, If N, andN; are both set equal to 9, the high amplitude of
although the distance required to gain this minimum pulsdéhe primary pulse in the anomalous dispersion regime pro-
width for the primary is increased as the pulse width of theduces large pulse compression, but the degree of pulse com-
shepherd pulse is increased. The amount of pulse compregression(i.e., the narrowness of the compressed pulseot
sion for the primary pulse is governed by the intensity of theinfluenced by the presence of the high amplitude shepherd
accompanying shepherd pulse. It is observed that, for theulse in the normal dispersion regime. On the other hand, a
broad shepherd pulse, only the central portion of the shep«ery significant dip appears in the center of the shepherd
herd pulse that overlaps the primary pulse is significantlypulse in the normal dispersion regime, breaking the original
affected and undergoes compression. single shepherd pulse into two pulses. This is very different

This simulation shows that the broader shepherd puls¢han the case where both primary and shepherd pulse are in
with high intensity appears to enhanc¢er increasg the  the anomalous dispersion region. There both pulses undergo
strength of the nonlinear coefficient of the fiber medium forcompression.
the primary pulse, so as to enhance the pulse compression
effect experienced by the primary pulse. This means that (iii) The shepherd pulse and primary pulses are all in the
there is a way to increase the nonlinear effect of the mediurmormal dispersion regionwhen both shepherd and primary
dynamically through the addition of a broad, high intensitypulses are in the normal dispersion region, no pulse compres-
shepherd pulse. The amount of enhancement and the dursion occurs. Pulses tend to congregate toward the region of
tion are controlled by the intensity and the pulse width of thehigher induced index of refraction.
shepherd pulse. The nonlinear effect of the medium is trans-
ferred to the primary pulse through the CPM effect. Summary of the above discussiofhe interaction be-

Let us now investigate the case where the intensity of theween two separate pulses copropagating on two different
narrow shepherd pulse is much higher than that of the broadlavelength beams in a single-mode fiber is studied in detail.
primary pulse. In this simulation, the initial intensity of the It is shown that the cross-phase modulation effect can be
narrow shepherd pulse is taken to g=9, and that of the used effectively to provide another way to generate pulse
broad primary pulse isl,<1. Both pulses undergo compres- compression in the anomalous disper-

Take the case dfl,=5 andNg=7, one findszy,/zp,=0.04
from Fig. 4. This means that maximum pulse compressiorg
can occur in a fiber with length of only 2.0 km long. For
higher values oN,, and/orNg, this length can be made even
shorter.
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FIG. 5. Evolution of two propagating pulses in various different dispersion regions. The initial pulse amplitude of the primary pulse
(pulse 2 is Ny=0.1, and the initial pulse amplitude of the shepherd p(gstse 3 is Ng=3. The initial pulse width of primary pulsg@ulse
1) is three times the initial pulse width of the shepherd pufagse 2. (A) Primary pulse 1 and shepherd pulse 2 are both in the normal
dispersion regionfg,= +2). (B) Primary pulse 1 and shepherd pulse 2 are both in the anomalous dispersion ggion 2). (C) Primary
pulse 1 is in the anomalous dispersion regigg€ —2), and shepherd pulse 2 is in the normal dispersion regir-(+2). (D) Primary
pulse 1 is in the normal dispersion regiofi,& +2), and shepherd pulse 2 is in the anomalous dispersion re@ion {2). The power
amplitude|u|? is plotted in each frame. The highest power amplitude in each frame is normalized to unity. The initial power amplitude for
the shepherd pulse is N(=3), and that of the primary pulse is 0.0M=0.1). The final power amplitudes for the shepherd pulse are
(A)=6.59, (B)=14.8, (C)=6.59, and (D)} 14.8 and those of the primary pulse are §4.0116, (B)=0.0317, (C)=0.0195, and (D)
=0.0121. The number along the horizontal abscissa refers to the normalized distance from the starting point of the fiber; in other words,
when the normalized distance is 3, the distance &,3(2)2o/5, wherez,=(7/2)Lps, andLps is the dispersion length of the shepherd
pulse.z,y is the optimum fiber length in km for the shepherd pulse when it experiences maximum pulse compression. The dispersion
coefficientsB,s and 85, have units of (p8km). All other numbers in the figure are dimensionless.

sion region of a single-mode fiber. Due to the nonlinearity ofdation to the primary pulse as it travels down the fiber. In
the fiber medium, a slight pulse compression still occursother words, an additional frequency chiim addition to
when the sum of the soliton numbers for the two beams ighat caused by self-phase modulajids added to the pri-
less than unity. mary pulse by the copropagating shepherd pulse.

A more complex interaction is observed when one of the This “chirped” primary pulse is acted upon by the fiber's
pulses is propagating in the normal dispersion region. Thélispersion to yield the expected behavior. For example, if the
pulse in the normal dispersion region is seen to be broken upfimary pulse is on a beam whose wavelength is in the
by the compression of the high soliton number pulse in thethomalous dispersion regidnegative GVD regiopand if
anomalous dispersion region. It also appears that if the pulst€ chirp caused by self- and cross-modulation effects is high

in the normal dispersion region is very broad compared Wiﬂfnough, the leading half of the pulse containing the lowered

C - : : . frequencies will be retarded, while the trailing half, contain-
the high intensity narrow pulse in the anomalous d|sperS|oi g the higher frequencies. will be advanced, and the primary

region, a dark sqhtonllke pulse can be. genergted on top o ulse will tend to collapse upon itself resulting in pulse nar-
the broad pulse in the normal dispersion region, while th wing or pulse compressidisee Figs. 8) and 5C)]
pulse in the anomalous dispersion region undergoes the usua On the other hand. if the primarS/ pulse is on.a beam
pulse compression. Figure 5 is introduced to illustrate the, o se wavelength is i,n the normal dispersion regipasi-
evolution of the two propagating pulses when they exist in;e gvD region, the presence of a copropagating shepherd
various different combinations of the dispersion regions.  p|se on a different wavelength beam induces a dark-soliton-
It should be noted that the dispersion region in which thejike behavior for the primary pulse, confirming the fact that
beam reside§.e., where the beam wavelength residesall  the dispersive region in which the wavelength of the beam
important in determining the behavior of the pulse on thatresides determines the propagation characteristic of that
beam even in the presence of a copropagating pulse onglse. In contrast with the bright soliton case, a dark soliton
different wavelength beam. The copropagating shepherdossesses a nontrivial phase profile which is a function of
pulse, through the cross-phase modulation effect due to thi@me, resulting in a rapid dip in the intensity of a broad pulse
Kerr index nonlinearity, provides an additional phase retar{see Figs. BA) and §D)].
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An investigation was also carried out for the interaction of V. CONCLUSION

pulses on more t_han two beams. As many as ten simulta— A way to compress bright or dark pulse is found. The
neously propagating pulses on ten separate beams, with ORgnlinear cross-phase modulatié6PM) effect is used to
carrying the shepherd pulse, were used. It was found that g:complish this on two or more copropagating pulses on two
single large amplitude shepherd pulse could similarly anchy more wavelength division multiplexéVDM) beams in a
simultaneously affect the other nine small amplitude pulsessingle-mode fiber. Numerical simulation shows that the ef-
The evolution of each of the small amplitude pulses defectiveness of compression is similar to that displayed by a
pended mainly on the interaction of that pulse with the largesingle higher-order soliton pulse propagating in a single
amplitude shepherd pulse according to the manner discussé@am. That this CPM effect can be used to compress pulses
above for the two beam interaction case. Through CPM, cowhose amplitudes are much less than urttye traditional
propagating pulses on separate beams appear to share gwiton number for a single bearas long as a copropagating
nonlinear effect induced on any one of the pulses on separafilse on a WDM beam undergoes compression, should be
beams. noted.
This investigation shows that for a wavelength division
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different pulses. Furthermore, since the longer wavelengtsion Laboratory, California Institute of Technology, and was
pulses are compressed at rate different from the shortesponsored by the Ballistic Missile Defense Organization, Of-
wavelength pulses, one may conceivably give all pulses théce of Innovative Science and Technology through an agree-
same time width, which may make detection and discriminament with the National Aeronautics and Space Administra-
tion easier to accomplish. tion.

[1] E. P. Ippen, inLaser Applications to Optics and Spectroscopy [9] Optical Solitons—Theory and Experimgatiited by J. R. Tay-
edited by S. F. Jacobs, M. Sargent I, J. F. Scott, and M. O. lor, Cambridge Studies in Modern Optics Vol. {@ambridge
Scally (Addison-Wesley, Reading, MA 1975Vol. 2, Chap. 6. University Press, Cambridge, 1992

[2] A. Hasegawa and F. D. Tappert, Appl. Phys. L&B, 142 [10] R. A. Fisher, P. L. Kelley, and T. K. Gustafson, Appl. Phys.
(1973; L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Lett. 14, 140(1969.

Rev. Lett.45, 1095(1980. [11] H. Nakatsuka, D. Grischkowsky, and A. C. Balant, Phys. Rev.
[3] L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tom- Lett. 47, 910 (198); R. L. Fork, C. H. Brito Cruz, P. C.
linson, Opt. Lett.8, 289(1983. Becker, and C. V. Shank, Opt. Left2, 483(1987.
[4] R. H. Stolen and E. P. Ippen, Appl. Phys. L&, 276(1973; [12] W. J. Tomlinson, R. H. Stolen, and C. V. Shank, J. Opt. Soc.
V. A. Vysloukh and V. N. Serkin, Pisma Zh. Eksp. Teor. Fiz. Am. B 1, 139(1984; W. J. Tomlinson and W. H. Knoxbid.
38, 170(1983 [JETP Lett.38, 199(1983]; E. M. Dianov, A. 4, 1404(1987).

Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov, M. F. [13] D. Mestdagh, Appl. Opt26, 5234(1987.
Stel'makh, and A. A. Fomichevbid. 41, 294(1989 [ibid. 41, [14] G. P. Agrawal, Phys. Rev. Lets9, 880 (1987.

294 (1985)]. [15] C. Yeh, W. P. Brown, and R. Szejn, Appl. Ofi8, 489(1979.
[5] E. P. Ippen and R. H. Stolen, Appl. Phys. Létt, 539(1972); [16] C. Yeh, J. E. Pearson, and W. P. Brown, Appl. 8, 2913
N. A. Olsson and J. P. van der Zidbid. 48, 1329(1986. (1976.
[6] R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, Appl. Phys. [17] Single-Mode DispersigrReport No. MM26, Opto-Electronics
Lett. 24, 308(1974). Group, Corning Inc., Corning, NY, 1996; L. G. Cohen, W. L.
[7] C. Yeh and L. Bergman, J. Appl. Phy80, 3175(1996. Mammel, and S. J. Jang, Electron. Lét8 1023(1982; B. J.
[8] G. P. Agrawal Nonlinear Fiber Optic§Academic, New York, Ainslie and C. R. Day, J. Lightwave TechndlT-4, 967

1989. (1986.



