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Multiple scattering of classical waves in systems with liquidlike correlations:
Analytical and numerical results for isotropic scatterers

C. J. Waldeti
Faculty of Mathematical Studies, University of Southampton, Southampton SO17 1BJ, United Kingdom
(Received 2 September 1997

By exploiting the analogy between multiple-scattering theory and the Ornstein-Zernike equation of liquid-
state theory an analytical solution to the effective medium approximation is obtained in the case of isotropic
scatterers, using a simple model pair-correlation funcgi¢iR). Results are presented for model scatterers the
diameterd of which may be changed without simultaneously altering the scattering strength. Specifigally,
selected to produce a scattering efficiency close to that observed for a Mie scatterer, and the effect of increasing
the packing fraction, considered. Numerical results are then presented for more realistic forg{®pfand
possible extensions to the effective medium approximation which incorporate recurrent scattering processes
discussed[S1063-651X98)07002-G

PACS numbes): 42.25.Bs, 78.20.Ci, 61.26p

[. INTRODUCTION studied by van der Marlet al. [11] it is difficult to disen-
tangle the effects of correlations from those of dependent

The study of waves in random media has attracted muckcattering.
attention recently, stimulated in part by the prospects of Of course, if the scatterers are sufficiently strong, one
achieving a classical analog of Anderson localizafiba3]. may approach a localization threshold at a volume fraction
The search for this effect is of particular interest due to thefor which correlations can be safely neglected. Analysis in
absence of competing mechanisms of the kind found in itshis regime has been very successfully achieved using a point
electronic counterpaft,5]. scatterer model by van Tiggelen and co-workgd2-14.

In selecting candidate systems, one is led, on the basis dthey point out that an argument of the loffe-Regel type is
the independent scatterer approximafi6h to consider scat- better phrased in terms of=pgls, where py/k=ng the
terers at or near resonance. At a frequencthe most nate  effective refractive index of the scatterer-filled medium.
loffe-Regel criterion 7] klg=<1, with k= w/cy, ¢y being the  Their findings suggest that the effects of dependent scatter-
phase velocity in the host medium ahg-(pos) ~! the scat-  ing are always sufficient to maintaipabove the localization
tering mean free path, then predicts localization for suffi-threshold. In fact, by consideriny,, they show that this
ciently high number densities. In principle, of course|s  threshold is more accurately located at y.=0.972, at
contains no information about localization, and more rigor-least for isotropioand uncorrelatedscatterers.
ous criteria arise from an examination lgf, the transport However, since resonant dielectric scatterers typically ex-
mean free path8]. hibit scattering efficiencieQ.=o/7a? of between 5 and

Even if we content ourselves with a calculationlgfor 10, it is of interest to consider the effect of introducing po-
the extinction mean free path, to which it is equivalent in  sitional correlations into this model. To this end, we imagine
the absence of absorption, there are two problems with theach model scatterer to be embedded within a physically
above independent-scattering argument. The first concernspenetrablébut optically iner sphere. A similar approach
the fact that a resonant scatterer exhibits a scattering crosms been adopted by van Tiggelen and Lagerfdi#. Their
sectiono ¢ substantially larger than its geometrical cross secanalysis is exact to second order gn and is capable of
tion 7ra. Therefore dependent-scattering correctifisbe-  yielding both scattering and transport properties. However,
come necessary, since tbetical volumes of the scatterers they are restricted to modest packing fractionsIn this
begin to overlap at rather modest number densities. The sepaper we employ a different approach, which, while not ex-
ond difficulty is that ag is increased it becomes important act to any given order ip, does allow us to study the be-
to account for correlations in the positions of the scatterershavior at larges.

In the weak scattering regime this latter effect is relatively  Our calculations focus on the determination|gfrather
easy to incorporate. For example, Saulré¢ial. [10] have  thanl,, the latter being considerably more difficult to obtain
considered correlation corrections to independent scatteringhen correlations are present. Hence, we may obtain a loffe-
for a suspension of latex spheres in water, and obtained god®egel numbery, but have less confidence in locating a lo-
agreement with experiment for both the extinctidg) (and  calization threshold. Nevertheless, the results are instructive,
transport () mean free paths. On the other hand, for strongas they suggest regimes worthy of further investigation.
scatterers such as the titanium dioxide (J)iQlispersions The starting point for any such calculation is the

(ensemble-averagecamplitude Green function. To deter-
mine this exactly requires specification of all the correlation
*Present address: Department of Mathematics, University of Esfunctions that are necessary to fully characterize the random
sex, Wivenhoe Park, Colchester CO4 3SQ, U.K. medium. In practice only the pair-correlation functig(R)
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[16] is available, and one has to resort to approximate theoscattererx, incorporating all intermediaténultiple) scatter-
ries, such as the well-known quasicrystalli@CA) [17]and  ing. It may be expanded as a series in single-scatt€rer
effective medium[EMA) [18] approximations. matricest,,=t(R,),

A previous papef19] (hereinafter referred to ag ton-
cerned the formal manipulation of the multiple-scattering ~. ~ . = ~ 2~ Q2 A2 A=
theory for scalar waves iﬁ a discrete random rﬂedium exhigb Tﬂ_t Oapt (1= 505“ G°t5+ E LaGol,Gol gt - -
iting liquidlike correlations. It was demonstrated that a one- yﬂ?
to-one correspondence exists between that formalism and the (4)
Ornstein-Zernike(OZ) equation of liquid-state theory16]. Following | we write
This leads to a natural distinction betweemlieect [ C(R)]

and atotal [H(R)] propagator, the former being identified 7(R-R’)=pt™(R)S(R—R’)
with what is sometimes termed the medium propaggi6t.
A number of existing theories may then be viewed as closure +pt™R)H(R-R)pt™(R"), (5

approximations to this integral equation.
The results presented in this paper were derived using thighere the total propagator

formalism. Section Il provides a brief review of the key for-

mulas, restricting attention to isotropic scatterers. Section Il H(R—R’")= C(R-R’)

concerns the so-called hole-correctidfC) approximation,

for which the pair-correlation function is modeled by a step +J’ C(R-R")pt™(R")H(R"—R')dR".

function. In this case we may determine the direct propagator

for the EMA in closed form. We employ a method based on (6)

the factorization scheme of Baxtg20] to determineC(R)

self-consistently. For hard-sphere packing fractions1/8 ~ HereC(R—R’) is the direct(or medium propagator, and in

the HC model does not correspond to any physically attaindiagrammatic terms corresponds to a sum of strongly irre-

able arrangement of scatterers. In this regime we require ducible graphs. Formal manipulation of the multiple-

better description of the correlation structure. In Sec. IV wescattering series yields an equation for the renormalized

present results obtained using a more realig(iR). Finally, single-scattereT matrix t(™(R) of the form

in Sec. V we discuss the limitations of the present approach

and suggest extensions which incorporate repeated scatterlngm

processes omitted in this treatment. (R)

= 1+E<m)(R)f H(R—R")pt™(R")GydR’ [t(R).
7

For calculational purposes one generally expands &auha-
trix in a set of partial waves with an origin at the center of
We now provide a brief outline of the OZ formalism pre- the scatterer. In the case of isotropic scatterers this series is

Il. MULTIPLE-SCATTERING THEORY
FOR ISOTROPIC SCATTERERS

sented in . truncated at thé=0 or s-wave term. Taken together with a
It is convenient to introduce the medium path operator ofcondition that the scatterers should not overlap, this allows
Roth[18], us to write Egs(6) and(7) as

- = (m) R’ ' ’

tM=| 1+ 47pt(m?2 f R?H(R")GR")dR'|t, (9)

in terms of which thgensemble-averaggtbtal T matrix of
the system is

with
?E(T):f 7(R—R')dRdR’. 2
GAR)=— (k*=k+i0). (10)

This is related to the average amplitude Green func@on

and self-energy, (in operator forr via Heret=tq(k,k) andt™M=t{"(k,k) are thes-waveT matri-

ces(now simply complex numbersvaluated on shell. No-

N tice that isotropy of the averaged system allows us to replace

of thg vector arguments of thewave propagatorsi, C, and

ASA_TA-Ll_$7-1 G"” by their moduli.

Go2G=[Go 2], © Up to this point our analysis has been exact, apart from
the assumption of isotropic scatterers. Howev@¢(R) in-

Gy being the host Green function. Dependence of all thesgolves an infinite series of terms, which it is not generally

quantities on the host wave numbeis implicit. The scat-  possible to resum. In the customary spirit of many-body

tering path operatof,; acts on the wave incident at scat- theory one may hope to identify, on the strength of physical

terer3 (located aiR5) and provides the wave scattered from arguments, or otherwise, certain infinite subclasses of terms

I

G))
G))
O)

G=(G)
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G
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which may be resummed. The remaining terms are then dis- G(p,k)=Gp,k)

carded in the hope that they do not represent a significant

contribution. +GO(p,k)[pt™ + p*t™2H(p,k)1G%(p,k),
Among the class of theories which may be derived in this (15)

way, the effective medium approximation is one of the most

successful. In resummed form it may be summarized via thevhich, on substitution of Eq(13) yields

closure relation

1
C(R)=g(R)GY(R)+h(R)[H(R)—C(R)] (EMA), Cpk)= "5~ , (16)
1) k*2=p?=5(pk)
with the self-energy given by

whereg(R) [=h(R)+1] is the pair-correlation function.

Notice that in the limit of point scatterers, for which Agpt™
h(R)—0 for all R, C(R) reduces to the bare propagator E(P,k):T-
G°(R). This is a reasonable assumption, provided that the 1=pt™Co(p.k)
scatterers are sufficiently weak that their optical volumes dqn eneral G(p.k) will have an infinite set of pole
not overlap in this limit. Where this is not the case, one h'gh defi 5} I G funci T POIEP,
needs to incorporate terms which describe the renormalizay "¢ d€tine the real-space Loreen function via
tion of C(R) via repeated scattering between pairs of scat- elPnR
terers. Such terms are included in the treatment of van G(R):E A,——, (18
Tiggelenet al. [8,12,14, which, however, expressly omits n R
correlations. It is possible to graft pairwise correlations onto . ) . _
such a theory15], and thereby study effects which accom- each coefficientA, belng determined by the residue of
pany the onset of short-range order. However, such an af#(P.K) at pn. The dominant poley, which governs the
proach is not readily disposed towards studying the behavic@Symptotic form ofG(R), has the smallest imaginary part.
at large packing fractions. In particular, one expects signifif-0r smallp we see from Eqs16) and(17) that it lies close
cant contributions from recurrent scattering paths which inf0 k.
volve more than two correlated scatterers. These are incor- 1he coherent wave number may also be deduced from the
porated quite naturally in the EMA, which employs the SPectral function
Kirkwood decomposition16] for higher order correlation
functions. S(p,k) - _ EImG(p,k), (19)

Our principal task in this paper is to determine the wave ™
number for the ensemble-averaged coherentwave. This
is found by examining the long-distance behavior of the totalWhich exhibits a peak on the repl axis atp=Re(po) of
Green function, or equivalently from the dominant pole ofhalf-width (at half height Ap=Im(po)=1/(2ls).

the plane-wave matrix elemer®(p,k)=(p|G(k)|p). In

fact, the singularities o66(p,k) coincide with those of . ANALYTICAL RESULTS
FOR THE HOLE-CORRECTION APPROXIMATION

17

_Am (= G To incorporate a description of correlation effects, van
H(p,k)=?fo RH(R;k)sinpR dR (12 Tiggelen and Lagendij15] made use of a simple step-
function or hole-correction model, in which particles are ex-

(the dependence danow being made explidit This may be cluded from a spherical region of radius[21] around a
seen in the following way. Since the asymptotic form of given particle. Beyond this distance the distribution of other

C(R) coincides with that of5°(R), it is instructive to sepa- Particles is assumed uniform. -
rate outCo(R)=C(R)—G°(R). Taking the Fourier trans- Adopting this model, we now demonstrate the possibility

f f Eq.(8) [with Co(p.K dG(p k) defined b I- of_an analytical solution _to the r_nu_ItipIe—scattering EMA.
Oogr)r/nV\c/Jith I?l((p)k[)v]wit no(\)/\(/rl)‘oll)o\?vr; that(p ) defined by ana Winn and Logan22] obtained a similar result for a tight-

binding model, from which the present solution may be re-
covered by analytic continuation.
(k*2=p?)Co(p,k) +4m We first note that Eq(8) for the total Green function
(k*2—p?)[1—pt™Cy(p,k)]—4mpt™’ H(R) has the same form as the OZ equation of a simple
(13 one-component fluid. The only difference is that the number
density is now multiplied by the complex quantity™,
where we used the result which is determined self-consistently via H§).
Now, in the case of the EMA, we may further exploit the
liquid-state analogy if we adopt the simple step-function or
(14) HC form

H(p.k)=

GO(p,k)=

k+2_ p2 :
0 for R<d

9(R)= 1 for R>d,

Now from Egs.(2), (3), and(5) we have 20
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for the pair-correlation function. Equatidfl) then becomes %
RC(R)= —Q’(R)+27Tpt<m)f Q(R'-R)Q'(R")dR,
R

H(R)=0 for R<d, (2139 (289
C(R)=G%R) for R>d. (21b RH(R)= —Q'(R)
This bears a close resemblance to the mean-spherical ap- o
proximation(MSA) of liquid-state theon| 16], for which +2mpt™ fo Q(R")(R-R)H(|R-R'))dR’,
h(R)=0 for R<d, (229 (28b
c(R)=—B#(R) for R>d, (22b) the primes onQ denoting derivatives. Solution of these is

achieved by exploiting the closure relati@l). After some
with #(R) the particle-particle pair potential. Here straightforward but rather lengthy manipulation we arrive at
B=(kgT) "1, T being the temperature arig; Boltzmann’s - ~ k'R
constant. In the present conteg#(R) is clearly replaced by 20+(1-20)e
expk *R)/R, which corresponds to a hard-sphere fluid with a RCy(R)=1 +25%(cosktR—1) for R<d (29
(complex Yukawa potential. Since the Yukawa problem has
been solved elsewhef&3], one may hope that a solution to 0 for R>d,
the present problem may be inferred by analytic continua- - . o
tion. This may be confirmed via a more rigorous derivationwhereo is related to the renormalizedl matrix via
using the Wiener-Hopf methofR0]. We give here a brief

resumeof the necessary arguments. tM=t[1-2ikot]*, (30
From Eq.(13) we may write(with k dependence under-
stood a-(13 w y write(wi P . and may be shown to satisfy
L pt™H(p)=[AR)] 3 (k?—z)a[ZEZ(cosk*d—l)—25(e‘k+d—l)+eik+d]2
where _ L
—o(1-0)[2ic—(kt)"1]=0. (3D

A(p)=1-pt™ (24 Clearly we must choose which of the possible solutions of

Eq. (31) is appropriate. Foiy=0 there are three finite solu-

Since we are dealing with a disordered system, we expect tHPnS, Of which onlyo=0 and 1 yield finitet™. Of these,
coherent wave amplitude to decay with distance. HenceQnly o=0 reproduces the correct single-scattering limit,
RH(R)—0 asR—, and the left hand side of Eq23) is  t™=t, and gives a positive spectral function. Fpr-0 we
finite. This implies tha#A(p) is free from zeros on the repl ~ select the solution which develops continuously from this.

axis. The Wiener-Hopf argument usually proceeds by show- The point-scatterer model studied by van Tiggelen and
ing thatA(p) can be factored as co-workers[8,12—14 may be described by the basevave

T matrix

4
CO(p)+W2——;)2 :

A(p)=Q(pP)Q(—p). (29 1

t:m.

In the present case this relies on the fact thathas a van- (32)

ishingly small (positive imaginary part, which shifts the
poles of A(p) off the realp axis. We may then show that It follows that the scattering efficiency is
1-Q(p) is Fourier transformable, allowing us to define

Q(R) via B 16
QS_(kd)Z[AZJr 1]’ 33

1 (=
27tMQ(R =—f e PRI1- dp. 26
mtQR) 27 ) o [1=Q(p)]dp (26) there being a resonance At=0, with A>0 (<0) corre-

sponding to frequencies belofabove this.

It also follows that Clearly we may adjust the resonant valueQxfto some-
thing appropriate for describing a dielectric scatterer by vary-
0 for R<O, ing kd. To begin with, let us consider the resonant case
R)= Lo+ 2 = = i i ~
Q(R) Qu(R)+DeX'®  for R>0, (270 A=0, and takekd=1.5, which givesQ~7.1.

van Tiggeleret al.[8,12,14 introduced the dimensionless

where Qqy(R) vanishes forR>d, and D is determined by parameter

demanding continuity oQ(R) at R=d. 4
The original problem may now be reexpressed in terms of = xmp (34)
two one-dimensional integral equations, 3
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n
- FIG. 3. Dependence of the effective scattering efﬁcie@@(}on
scatterer packing fractiom in the hole-correction EMA. The re-
sults are normalized to the single-scatterer efficieQgy
= vided for comparison are the analogous quantities in the
. ! . ! . theory of van Tiggeleret al. In plotting these we have con-
0 1 2 3 verted their values of disorder parametgiinto equivalent

Pk packing fractions, having selectédl=1.5.

The results serve to emphasize the significant role which
may be played by positional correlations. One obvious con-
sequence is the appearance of a maximum in the EMA re-
sults for y~ 1. The existence of this is well established both
[here we use the tilde to distinguish this from the packingtheoretically and experimentally, and we shall not dwell on it
fraction », to which it is related viay=247/(kd)3]. They h_ere. We merely_note that an accurate prediction of its mag-

) ' . , nitude and location demands that simultaneous account be
consideredy in the range 0-2, which for the above choice of yayen of both short-range positional order and dependent
kd corresponds to packing fractions up to 0.34. With the HCg o ttering effects. Approaches based on either of these alone
model we are restricted tg<1/8, beyond which the step ¢4 1o capture the essential interplay.
function g(R) is no longer physically attainable for spheres  the feature on which we focus attention is the upward
pf uniform size. Larger packing fractions will be investigated . ,ryature ofy~! at small 5. For independent scatterers, we
in Sec. IV. _ would expect a linear increase with The observed behav-

_ Figure 1 shows the spectral function at a number of packj, corresponds to an enhancement of the effective scattering
Ing frgctlons.. We see a pronounced broadening of the_ Spe‘f::'fficiency,Qgﬁ, over that for independent scatterers, as may
tral width which appears to be largest arounet0.07. This o so0n"from Fig. 3. This differs from the established folk-

is reflected in the behavior of the coherent wave nuner lore which argues that dependent scattering red@ﬁ&be—

which satisfies low the single-scatterer value. The effect appears to be a

direct consequence of the development of positional correla-

tions in the system, and it is natural to ask whether one might

. _ be able to tailor this short-range order in such a way as to

Figure 2 showser=Re(po)/k andy 1EZIm(pO)IR_e(pO), reach a localization threshold. '?'his falls in line with theyview

the latter being directly related to the spectral width. Pro-[24] that one of the most promising scenarios for localization
is where both Mie and Bragg-liké.e., structurglresonances

FIG. 1. Spectral function within the HC approximation for
kd=1.5 andA =0. The key indicates the value of packing fraction

7.

(k*2—p3)[1— pt™Cy(po,k)]—4mpt™=0. (35

08— 6 play a role.
We have observed similar behavior in other multiple-
061 114 scattering calculations, involving more realistic scatterer
- ! 7. . models[25]. Behavior of this kind was also observed some
e 04r < time ago in experimental work on the transmission of light
I {12 through TiO,-based pigment dispersioh26], though at the
0.2r e time its origin was not adequately explained.
e To gain a better understanding of the role of correlations
0.000 0025 0 05 00'75 0'1 o 1215.0 we need an improved theory fg(R) that is applicable at
' ' T ' ' larger packing fractions. One such theory is the Percus-

Yevick (PY) hard-sphere approximation to which we now

FIG. 2. Effective refractive index (dotted ling and inverse  tyrn
“loffe-Regel” number y~* (solid line) found by solving Eq(35)
for kd=1.5 andA =0 in the HC approximation. The renormalized
T matrixt(™ is given by Eq(30), with o chosen as the solution of
Eq. (31) which develops continuously from=0 (with increasing
packing fractionz). The chained and dashed lines are the same To study the effects of a more realisg¢R) it is tempting
quantities derived from the results of van Tiggekral. to contemplate using the asymptotic series

IV. INCORPORATING MORE REALISTIC
CORRELATION FUNCTIONS
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* eianR 1.2 N ;,-.\'\" rrr 1]
g(R)=1+ > an g (36) “ n=0.07 .
=t 0.8} -
truncated at some finite, and substituting this in Eq11) to L ]
yield an approximate closure relation. Unfortunately the ad- 041 ‘ 7
ditional factor of R~ that this introduces gives rise to a 4 ]
branch cut inQ(p), which precludes use of the Baxter 0.0 T ]
method. Smit{27] arrived at a similar conclusion in study- r ]
ing the OZ equation for a fluid with a general short-ranged B
pair potential. 0 1 Fid 3 4
However, it is possible to make use of the Baxter method
in an approximate numerical scheme. Since the correlation
function h(R) becomes negligibly small wheR exceeds
some valueR,, we may, to a good approximation, set N
h(R)=0 for R>R,. From the EMA closure relatiofl.1) we 0.8 - n=0.3 p
now have L ]
041 XA .
H(R)=0 for R<d, (379 N ]
0.0 ¢ A
Co(R)=0 for R>Ry, (37b I ]
-0.4 v ]
g(R)Cy(R)=h(R)H(R) for d<R<R,. (370 T AP B B
0 1 2 3 4
Q(R) may still be written in the forng27), but nowQg(R) is Rd

nonzero in the interval ((Ry) andD is found by requiring
continuity atR,. It is no longer possible to find a solution in
closed form forCy(R). Instead we may employ

RCy(R)=—Qq(R)

FIG. 4. EMA results for the reafsolid lineg and imaginary
(dashed linesparts ofR Cy(R) evaluated usingd=1.5,A=0, and
PY correlation functions. Fop=0.07 the chained and dotted lines
show the corresponding quantities obtained using a HC approxima-

tion.
Rp—R
+ ZWPt(m)f Qo(R"+R)Q(R")dR’, To this end let us consider a system of hard spheres with
0 attractive pair potentials of the Yukawa form,
(38)
0 for R<d
which may be derived from Eq283. This, together with
Eq. (28b) is solved numerically, by making use of E@7). #(R)= — ¢ exp(— «R) for R>d (39
For a given packing fraction the PY(R) may be determined 0 R ’
from the hard-sphere OZ equation using an algorithm due to
Goodwinet al. [28]. whereR is the distance between the particle centers. One

An attractive feature of this method is that it provides anmay think of this as a simple model potential for a monodis-
immediate impressiofin real spacgof the effects of short- perse colloid. The value of may be adjusted to mimic the
range orde(SRO. For example, Fig. 4 shows the form of typical range of attractive pair potentials generated by adding
RCy(R) obtained in this way for two different packing frac- nonadsorbing polymer to the dispersid@8]. Such a model
tions. For»=0.07 the graph shows a direct comparison ofhas received some attention recently, due to its novel phase
the results corresponding to PY and HC approximations folbehavior{30].

g(R). Clearly, in the former case, the presence of SRO be- For the present purposes this model is convenient, as we
yond R=d causes a renormalization of the medium propa-may employ the analytic expression for the OZ direct corre-
gator. The effect is particularly noticeable at larggmwhere

the presence of “shells” of nearest and next-nearest neigh- W7 20
boring spheres causes oscillationsdg(R). 0.8 | ] ‘8
As we can see from Fig. 5, the net effect of these struc- el - 1
tural correlations is an enhancement of . Particularly 0.6 116
noteworthy is the extent to which the peak neex 0.07 has Tt 1 :’u:a
narrowed and increased in height. It is apparent that the de- 04r 114
tails of the SRO have a marked influence on the scattering I / ]
mean free path. Given the difficulties involved in establish- 02 i i | 12
ing the correct regime for classical wave localization, any 0.0 Ll ! 1.0
modeling exercise ought sensibly to take account of such 0.0 0.1 n 0z 0.3

details. In fact, examining the form of the R){R) leads one
to question whether further enhancement of the SRO might FIG. 5. y! (solid line) andng (dashed ling calculated in the
provide an even greater increaseyin?. EMA usingkd=1.5,A=0, and PY correlation functions.
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3 [~ T 2.0 L L L L

2f 1.5 F .

T ¥ ]

°> [ - -

,L 1.0 f e .

o L 05F .

0 1 2 3 4 R ]

R4 oLt

FIG. 6. Pair-correlation functiong(R) at a packing fraction - -1 0 1 2
7=0.07. The solid line is the MSA result for Yukawa hard spheres A

[od/(kgT)=1.5, kd=3.9], and the dashed line the PY hard-
sphere result.

judging by the results in Fig. 7. This graph provides an in-
dication that a subtle interplay between scatterer-scatterer 0.5
correlations and multiple scattering may enable a loffe-Regel

lation function, which exists in the mean-spherical approxi- C | I I ]
mation [23]. Making the choice ¢yd/(kgT)=1.5 and 2.0 ¢ kd=15
xd=3.9 gives riséfor »=0.07) to the pair-correlation func- . ]
tion shown in Fig. 6. The numerical values were found using 1.5 F .
an extension of the Goodwiet al. algorithm[31]. - ]

Our expectations regarding™ ! appear to be borne out, 1.0 - E

C 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1
criterion to be satisfied. Whether this coincides with the on- 0.0
set of localization, however, is a matter for further investiga- -2 -1 Z 1 2
tion.

It is worth remembering also, that our calculations have
so far been restricted td =0, corresponding to the bare
single-scatterer resonance. The effective scattering efficiency 20 71— 1

2“, on the other hand, generally exhibits a resonance which

is shifted(in frequency from the bare resonance. Consider 1.5 kd = 2.884
Fig. 8, for example, which shO\/\@g’ff as a function ofA for
a fixed “overlap parameter’s=0.5. The nature of our cho- 1.0F ] e

sen model enables us to examine the effects of increasing the

SRO by makingd larger, without the added complication of
simultaneously changing the strength of the scatterers. The 0.5
pronounced asymmetry of the lower two graphs, which cor-

respond to packing fractions of 0.07 and 0.3, respectively, ootH——rt v
shows how the development of positional correlations among 2 -1 0 1

the scatterers can influence their collective behavior. In all A

cases the maximum @™ occurs for a negative value df,

i.e., at a frequency above the bare resonance. Hence, as hasFIG. 8. EMA results(solid lineg for the effective scattering
been remarked elsewhe®4], in searching for localization it efficiency Q" as a function ofA for 7=0.5 and PY correlations.
may be profitable to look at frequencies close to but notrhe dashed line for thied= 1.0 case derives from the work of van

L LILILI LI LB LN L LI L
div o be v s by v a bygay

N

exactly at a single-scatterer resonance. Tiggelen and Lagendijk15], while the dotted lines represent the
scattering efficiencyQ of the bare single scatterer. In each graph
1.2 : : 20 the vertical scale is such th@,=1.0 on resonance.

ror [ 178 We must remember, however, that within the EMA renor-
08 e 1.6 malization of the direct propagator is reliant on the presence
.06 i ] 1_4:% of correlations. While this meqhgnism may be the dominant
ol ‘/ 1,2 one at high packing frac_tlons, it is not clear at what value qf

’ ; : n other processes begin to play a role. In particular, this
0.2 11.0 suggests that we exercise caution when interpreting the EMA

Py A I P predictions forkd= 1.0, since they correspond to a packing

0.0 0.1 02 0.3 fraction »=0.021.

K Before concluding this section, we note that a number of

FIG. 7. As Fig. 5 but using MSA Yukawa hard sphegéR) other (Fourier space schemes exist for solving the EMA
[pod/(kgT)=1.5, kd=3.9]. [32—34. The results reported here have been cross-checked
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using an adaptation of the method of &aed et al. [34] in a multiple-scattering language it may be summarized by
which includes a prescription for avoiding possible problemsthe closure relation,

with nearly singular integrals. Following other reported ex- 0

perience in solving the EMA33] Broyden’s quasi-Newton H(R)= 9(R)G(R) +g(R)[H(R)—C(R)]. (40)
algorithm[35] was employed to assist with convergence. 1—tM2GOYR) '

V. CONCLUSIONS Thg first term on the right hand side de.scribles recurrent scat-
tering between pairs of scatterers. While this differs in form
The influence of SRO on a system of resonant isotropidrom the theory of van Tiggelen and Lagend[k5], it is

scatterers has been investigated within the EMA. Specifiimportant to realize that, within thexactOZ formalism, this
cally, by exploiting the OZ analogy, we have shown that anis the simplest theory to incorporate recurrent scattering and
analytic expression for the coherent wave dispersion relatio®RO on an equal footing.
(35) may be found in the case of correlations modeled by a As may be seen from E¢8), H(R) — C(R) depends ex-
HC g(R). The derivation of this proceeds along the samePlicitly on p, so that the recurrent scattering term represents
lines as the study of a tight-binding model of a disorderedh® dominant contribution at low density. We are currently

conductor by Winn and Logaf22]. The extension of this investigating the effects of such a term. However, in contrast

approach to provide numerical results for more realisticw'th electronic systems, where a metal-insulator transition

forms ofg(R) has been explored and shown to be Straight_obtains whemp—0, we do not expect this limit to be impor-

forward. tant for classical wave localization due to the absence of

The results suggest a sensitive dependence of the effecti\Pé)und “atomic” states. In the electronic angqage, a local-
scattering cross section on the details of the SRO. In thes'éed state must be formed by the constructive interference of
calculations we have deliberately considered osiwave Scaitering states. In fact, as Jof#¥] has pointed out, we
scatterers, in order to make contact with the work of vanmust con3|de.r frequencies which, by af?a'ogy with the Sghro
Tiggelen and Lagendij{15]. Clearly, recurrent scattering dinger equation, correspond to energies above the highest

terms of the kind they incorporate are not included in thepotential barrier. It !s likely that we will need to turm the
EMA, and, in keeping with the comments of the precedingpresence of correlations to our advantage by carefully tailor-
' ! ing the size and interactions between the scatterers.

section, it is natural to ask whether these might overshadow!
the effects of SRO. As Winn and L.og@Z] have empha- ACKNOWLEDGMENTS

sized in connection with the metal-insulator transition, such
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