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Bifurcation to multisoliton complexes in the ac-driven, damped nonlinear Schro¨dinger equation

I. V. Barashenkov,* Yu. S. Smirnov,† and N. V. Alexeeva‡

Department of Applied Mathematics, University of Cape Town, Private Bag Rondebosch 7700, South Africa
~Received 22 May 1997!

We study bifurcations of localized stationary solutions of the externally driven, damped nonlinear Schro¨-
dinger equationiC t1Cxx12uCu2C52 igC2heiVt in the region of largeg (g.1/2). For each pair ofh and
g, there are two coexisting solitonsC1 andC2 . As the driver’s strengthh increases for the fixedg, theC1

soliton merges with the flat background while theC2 forms a stationary collective state with two ‘‘C pluses’’:
C2→C (121) . We obtain other stationary solutions and identify them as multisoliton complexes
C (11) ,C (22) ,C (21) ,C (222) ,C (212) , etc. @S1063-651X~98!06002-4#

PACS number~s!: 03.40.Kf, 05.45.1b, 75.30.Ds
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I. INTRODUCTION

A. Motivation and outline

The present work deals with stationary localized solutio
of the ac-driven, damped nonlinear Schro¨dinger~NLS! equa-
tion:

iC t1Cxx12uCu2C52 igC2heiVt. ~1!

Originally proposed as an amplitude equation for sm
amplitude breathers in charge-density-wave materials in
presence of an applied ac field@1#, this equation reappeare
later in a variety of contexts. Among these are breather
long Josephson junctions@2# and in easy-axis ferromagne
in a rotating magnetic field@3#, as well as solitons in the
rf-driven plasma@4,5#. More recently, Eq.~1! was used to
describe temporal and spatial soliton propagation in a sin
mode fiber ring cavity in the presence of an input forci
beam@6#.

It was suggested by a simple two-particle variational
gument that solitons of Eq.~1! may bind together to form
bound states@7,8#. Independently, a similar prediction wa
made on the basis of the adiabatic equations of the inve
scattering-based perturbation theory@9#. Subsequently,
bound solitons were observed in direct numerical simulati
of the full time-dependent NLS equation~1! @9,8#. However,
although providing important insight when it is applicab
the perturbation theory cannot be used beyond smallh and
g. The applicability of the collective coordinate approach
the soliton dynamics is not unquestionable either. One o
drawbacks is that it can only be utilized for widely separa
solitons; the other one is that it completely disregards ra
tion. ~Skipping ahead a bit, it is fitting to note that results
the present work are not always in agreement with the
lective coordinate predictions.! Furthermore, the variationa
approximation can be expected to be close to the actua
lution only in the sense of the space-time average. In part
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lar, one would not be able to use the variational method
draw a definite conclusion on the existence ofstationary
bound states. What the two-particle approximation wo
present as a time-independent bound state could in fact
respond to an oscillating association of two solitons with
infinite or finite lifetime.

The aim of the present work is to establish the existe
of bound states without resorting to any kind of perturbat
or variational arguments.~Consequently, we are not assum
ing the smallness ofh andg.! We concentrate onstationary
bound states; we expect that these will serve as a backb
for future analysis of oscillating and/or finite-lifetime solito
associations. Since forgÞ0 the system~1! is not conserva-
tive, it is not obvious how one could define the binding e
ergy in this case. For this reason we avoid using the te
‘‘bound state’’ in what follows and refer to these objects
‘‘collective states,’’ ‘‘multisoliton complexes,’’ or simply
‘‘multisoliton solutions.’’ By doing so we are also sugges
ing that the multisoliton complexes are not necessa
stable, a property that would be imperative for bound sta
In addition to two-soliton complexes, we consider thre
soliton collective states that appear to be equally fundam
tal from the bifurcation viewpoint. In what follows we stud
a variety of soliton associations:C2 with C2 ~we denote
this complexC (22)); C1 with C1 ~to be denotedC (11));
C (21) , C (121) , C (222) , C (212) , C (111) , etc.

This paper has grown out of our attempts to tie up seve
loose ends left in our previous publication@10#. Those open
problems concerned the domain of existence of theC2 soli-
ton for largeg (g.1/2). Consequently, in the present wo
we concentrate on the case ofstronglydamped equations. In
turn, our present findings indicate that the bifurcation d
gram forsmall g can prove to be more complicated than
was originally thought in Ref.@10#. We are planning to re-
turn to the case of the weak damping in the future.

The paper is organized as follows. The next two subs
tions contain some technical preliminaries: In Sec. I B
give explicit formulas for the background flat-locked sol
tion and in Sec. I C introduce the bifurcation measure t
will be used throughout the paper. Section II is devoted
the bifurcation of theC2 soliton in the case of the stron
damping (g.1/2), the problem carried over from the prev
ous paper@10#. We report a phenomenon not observed
g,1/2: Instead of approaching an algebraic soliton as in

,
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57 2351BIFURCATION TO MULTISOLITON COMPLEXES IN . . .
case of the weak damping, theC2 turns into a new branch
of three-soliton solutions. This branch appears to be
unique; a host of other localized solutions is presented
Sec. IV. These results are preceded~Sec. III! by the descrip-
tion of a variational formalism~a generalization of the on
employed in@7,8#!, which we then use to identify differen
localized solutions as two- and three-soliton complex
~Thus the variational formalism plays only an auxiliary ro
in this work.! Our key result is the bifurcation diagram~Fig.
5! illustrating links and relationships between all solito
complexes obtained so far. Finally, in Sec. V several c
cluding remarks are made.

B. Flat background

As in @10# we fix, without loss of generality,V51 and
perform the transformationC(x,t)5eitc(x,t), reducing Eq.
~1! to an autonomous equation

ic t1cxx2c12ucu2c52 igc2h. ~2!

The advantage is that we will be able to deal with tim
independent solutions instead of periodic ones. The tim
independent solutions of Eq.~2! satisfy

cxx2c12ucu2c52 igc2h; ~3!

this is the equation that we are going to study in this pap
We first recall briefly some facts about theflat-locked ~or
continuous-wave! solutions to Eq.~1!, i.e.,x-independent so-
lutions of Eq.~3!. It is convenient to decomposec0 as c0

5Ar0exp(iu); then

tanu5
g

122r0
, 0<u<p,

andr0 is a root of the cubic equation

4r0
324r0

21~11g2!r02h250. ~4!

Approximate@5,11# and numerical@12# solutions of Eq.
~4! are available for smallh andg. The analysis for genera
h and g is presented in our previous publication@10#. Al-
though we did not write out explicit formulas for the root
we identified regions of characteristic behavior of the ro
on the (h,g) plane and gave analytic expressions for bou
aries between these regions. In fact, explicit roots can
easily found; we list them here and will utilize them in su
sequent calculations.

An explicit formula for the roots is written in terms o
coefficients of the associated incomplete cubic equation

y31Py1Q50,

wherey5r021/3 and the coefficients are given by

P5
1

4S g22
1

3D
and

Q5
1

12S g21
1

9
23h2D .
ot
in

s.

-

-
e-

r.

s
-
e

The number of real~positive! roots varies withh andg. Two
characteristic regions ofg can be identified as follows.

First, when g<1/A3, the coefficientP is negative and
Eq. ~4! may have one or three real positive roots, depend
on howh compares withh1 andh2 , where

h65h6~g!5H 1

3S g21
1

9D6
1

3
A1

3S 1

3
2g2D 3J 1/2

. ~5!

If h is greater thanh1 or smaller thanh2 , the discriminant
of Eq. ~4!,

D52108H S P

3 D 3

1S Q

2 D 2J , ~6!

is negative and the equation has only one real root

r05
1

3
22S 2

P

3 D 1/2 1

sin~2a!
,

where

tana5S tan
b

2 D 1/3 S uau<
p

4 D
and

sinb5
2

QS 2
P

3 D 3/2 S ubu<
p

2 D .

Here positive values ofQ, a, and b correspond toh,h2

and

r0,
1

3
2

1

3
A123g2.

NegativeQ, a, andb pertain toh.h1 and

r0.
1

3
1

1

3
A123g2.

If g<1/A3 andh falls betweenh2 andh1 , the discrimi-
nant ~6! is positive and there are three positive roo
0,r0

(1),r0
(2),r0

(3) :

r0
~ j !5

1

3
22S 2

P

3 D 1/2

cosFa3 1~21! j
p

3 G , j 51,2

r0
~3!5

1

3
12S 2

P

3 D 1/2

cos S a

3 D ,

where

cosa52
Q/2

~2P/3!3/2
~0<a<p!.

It is not difficult to find the ranges of the above roots:
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1

3
2

1

3
A123g2<r0

~1!<r2~g!,

r2~g!<r0
~2!<r1~g!,

r1~g!<r0
~3!<

1

3
1

1

3
A123g2,

where

r6~g!5
1

3
6

1

6
A123g2. ~7!

In the secondregion defined byg>1/A3, the coefficient
P is positive, discriminant negative, and we only have o
real ~positive! root

r05
1

3
22S P

3 D 1/2

cot~2a!,

where

tana5S tan
b

2 D 1/3 S uau<
p

4 D
and

tanb5
2

QS P

3 D 3/2 S ubu<
p

2 D .

This completes the description of the flat solutions of Eq.~3!.

C. Bifurcation measure

In order to describe transformations and bifurcations
solutions to Eq.~3! quantitatively, we need a real-value
functional that would represent solutions as points inR1. In
our previous publication@10# we used the valueuc(0)u2 as a
bifurcation measure. The disadvantage of this measure is
it is very sensitive to numerically induced shifts of the so
tion as a whole:c(x)→c(x2x0). Also, it completely disre-
gards the variation of the soliton’s shape away from the po
x50, while it is precisely the soliton’s ‘‘wings’’ that chang
most significantly as new solitons attach to the multisolit
state. For these and some other reasons that will bec
clear below, we find it useful to replace the single-point m
sure by an integral characteristic of solutions.

Using Eq.~2!, it is straightforward to verify that

dE

dt
12gE52gE H ucu42

h

2
~c1 c̄ !

2uc0u41
h

2
~c01 c̄0!J dx, ~8!

where

E5E $ucxu21ucu22ucu42h~c1 c̄ !2uc0u21uc0u4

1h~c01 c̄0!%dx. ~9!
e

f

at
-

t

e
-

Wheng50, the quantityE is conserved and represents t
energy of the system. In this case the energy is a natural
physically meaningful choice for the bifurcation measu
We have found it useful to retainE @Eq. ~9!# as a bifurcation
measure even in the casegÞ0, when it is not conserved
Although the meaning of this quantity is not so obvious f
nonsmallg, we will still be referring toE as energy. As
opposed touc(0)u2, the measureE is additive: When new
solitons attach to the collective state, the energy of the co
plex will increase by the amount close to the energy of n
constituents.

When c is a time-independent solution, we havedE/dt
50 and Eq.~8! gives a useful representation for the ener
of static solutions

E5E H ucu42
h

2
~c1 c̄ !2uc0u41

h

2
~c01 c̄0!J dx.

~10!

This formula is particularly efficient in numerical calcula
tions as it does not involve derivatives ofc.

II. BIFURCATION OF THE c2 SOLITON

We start with returning to a question that remained un
swered in our previous publication@10#. There, we attempted
to find, numerically, the upper boundary of the domain
existence of thec1 andc2 solitons.

A. Types of asymptotic decay

In order to find the upper boundary, it is useful to consid
first the asymptotic regionuxu→`. The solitons decay to the
valuec0 exponentially:

c6~x!2c0;e~2p1 ik !uxu as uxu→`,

wherep,k.0 and the complex exponentk52p1 ik satis-
fies

~k2!1,25124uc0u26A4uc0u42g2. ~11!

Both (k2)1 and (k2)2 are negative for certainuc0u2 and
hence there can be no solitons with these asymptotic val
In the regiong.1/A3 this happens foruc0u2.g/2; in the
region 1/2,g,1/A3 both k2 are negative forg/2,uc0u2
,r2 and for uc0u2.r1 ; finally, in the regiong,1/2 this
situation takes place foruc0u2.r1 . @Herer2 andr1 are as
in Eq. ~7!.# Next, whenuc0u2 lies betweenr2 andr1 , one
root (k2)1 is positive and the other one (k2)2 negative.
There can, in principle, exist solutions with such asympto
values. However, none were found@10#. Furthermore, flat
solutions withr2,uc0u2,r1 are unstable@10# and hence
these solitons would be of little interest even if they existe

There are two ranges ofuc0u2 where solitons were found
The first one isuc0u2,g/2 ~for all g). Here both (k2)1,2 are
complex yielding nonzerop andk. The solitons undergo an
oscillatory decay to the flat background, with the decay r

p5H 124uc0
2u

2
1

A~124uc0u2!21g224uc0u4

2 J 1/2

~12!
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and the wave number of undulations

k5
Ag224uc0u4

2p
. ~13!

For g,1/2 there is also another rangeg/2,uc0u2,r2 .
Here both k2 are positive and solitons approach the
asymptotic values monotonically (k50), with the decay ex-
ponent

p5$124uc0u22A4uc0u42g2%1/2. ~14!

The inequalityuc0u2,g/2 can be rewritten ash,h* (g),
where

h* ~g![~g32g21g/2!1/2, ~15!

and now we can summarize our conclusions in terms oh
andg: For smallg, g,1/2, thec1 andc2 solitons can only
exist for h,h1 . They exhibit two types of asymptotic de
cay: monotonic forh* ,h,h1 and oscillatory forh,h* .
The corresponding decay rates are given by Eqs.~14! and
~12!, respectively. On the contrary, in the regiong.1/2 the
decay is always oscillatory. Here there can be no locali
solutions above the valueh5h* . For h,h* , the decay ex-
ponent is given by Eq.~12! and the wave number of th
asymptotic undulations by Eq.~13!.

B. Weak damping „g<1/2…

Now we are prepared to discuss soliton transformation
the vicinity of the upper boundary of their domain of exi
tence. Assumeg is smaller than 1/2 and fixed. Ash in-
creases to the valueh1 , whereh1(g) is given by Eq.~5!,
the decay exponentp @Eq. ~14!# goes to zero. The fate of th
two solitonsc1 andc2 turns out to be different.

The amplitude of thec1 soliton was observed to decrea
while its characteristic width was increasing and eventua
the c1 was seen to merge with the flat solution:c1(x)
→c0 ash↑h1 . This numerical observation is in agreeme
with the asymptotic series representation of the solitonc1

@13#. On the contrary, the solitonc2 retained a finite ampli-
tude and remained well localized in this limit~though the
decay exponentp did tend to zero!. We were able to obtain
this solution in a very near vicinity of the pointh1 . @More
precisely, we succeeded in finding thec2 with the
asymptotic valueuc0u2 deviating not more than by 1023

from the curver2(g). In terms ofh, this means that the
upper boundary is given byh1(g) to within the accuracy of
order 1026.# This implies that ash→h1 , the solitonc2

tends to a localized solution decaying as a negative powe
x. ~There is a very subtle question of whether thec2 exists
arbitrarily close toh1 , i.e., whether this algebraic soliton
actually reached. We return to this issue in Sec. V.! The
soliton transformation can be conveniently characterized
the variation of the energy withh; this is shown in Fig. 1.

C. Strong damping „g>1/2…

The situation in the regiong>1/2 turned out to be more
complicated. In this region the decay rate is given by E
~12!; as we mentioned in Sec. II A, it goes to zero ash
d

in

y

t

of

y

.

→h* and uc0u2→g/2. Similarly to the caseg,1/2, thec1

soliton was observed to merge with the flat solution here;
Fig. 1. ~We were able to find thec1 arbitrarily close to the
value h5h* .) It was natural to expect that thec2 soliton
would also behave as in theg,1/2 case. As we have alread
mentioned, in the regiong,1/2 we succeeded in finding th
c2 soliton with the asymptotic valueuc0u2 deviating from
r2(g) not more than by 1023. On the contrary, wheng
.1/2, the upper boundary of its domain of existence w
found to deviate quite substantially from the curveuc0u2

5g/2. The question of what causes this deviation and w
finally happens to thec2 soliton ash increases was left ope
in Ref. @10#.

In order to clarify the situation, we have designed a six
order accurate numerical algorithm based on the continu
analog of Newton’s method and performed a detailed st
of the neighborhood of the pointh5h* . ~For references and
a brief review of the method, see@10#.! Results of this study
are presented in Figs. 2 and 3. This more accurate ana
has revealed that the reason why we were not able to
proach the pointh5h* close enough in Ref.@10# was the
existence of a new turning point. At this point thec2 branch
turns into a new branch of localized solutions; see Fig.
Solutions of this branch are nonlinear superpositions of th
solitons: thec2 soliton in the middle and twoc1 solitons at
its sides.

A more extensive search has led to a larger variety
multisoliton complexes. The corresponding energies are p
ted in the bifurcation diagram~Fig. 5, Sec. IV!. Before pro-
ceeding to the description of the diagram, we first need

FIG. 1. Typical bifurcation diagram of the one-soliton solutio
~In this pictureg50.52.! At the point h5h* 50.360 843~where
uc0u25g/250.26) the solitonc1 detaches from the flat solution
~whose energy is zero.! The point hthr50.331 806 5 is a turning
point; at this point thec1 soliton transforms into thec2 solution.
The c2 soliton ceases to exist forh.0.360 792 1 or, equivalently
for uc0u2.0.254 416 8. It remained unclear in Ref.@10# what hap-
pens to thec2 branch beyond that point. The diagram for the ca
g,1/2 would look qualitatively similar; the only difference woul
be that in the latter case, the domains of existence ofc1 and c2

coincide.
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introduce a simple variational formalism which will allow u
to identify its various branches.

III. COLLECTIVE COORDINATE DESCRIPTION

As we have already mentioned in the Introduction, o
could not rely on the variational~or collective-coordinate!
approach to demonstrate the existence of stationary m
soliton solutions. However, the variational descripti
proves to be quite useful in thea posteriori identification of
the numerically obtained soliton complexes.

It is convenient to consider three-soliton configuratio
first; the two-soliton state will be obtainable as a simple p
ticular case. We set up a trial function in the form of a line
combination

c1c2c3~x;z![c11c21c322c0 , ~16!

where

c15c1~x1z!, c25c2~x!, c35c3~x2z!

are three different or identical solitons sitting at the poi
x52z,0, and1z, respectively. Herez is a positive value
that is allowed to depend on time:z5z(t). We have to use a
bit awkward notationc1c2c3 in order to distinguish thelin-
ear combinationof three solitons from thegenuine three-
soliton solution; our notation for the latter would bec (123) .

The damped driven NLS equation~1! follows from the
stationary action principledS50, where

S5E e2gtL@c,c̄ #dt ~17!

and the LagrangianL5T2E comprises the kinetic

T5
i

2E2`

`

~c tc̄2 c̄ tc!dx ~18!

and ‘‘potential’’ term

FIG. 2. Bifurcation to a three-soliton complex forg50.52. The
lower branch here is the extreme right part of thec2 branch from
Fig. 1. The solution corresponding to the upper curve is plotted
Figs. 3~c! and 3~d!.
e

ti-

s
-
r

s

E5E
2`

`

$ucxu21ucu22ucu42h~c1 c̄ !2uc0u21uc0u4

1h~c01 c̄0!%dx. ~19!

Substituting the ansatz~16! into Eqs.~18! and ~19!, we ob-
tain for the kinetic term

T5T111T331T131T121T23, ~20!

where

T115
i

2
żE H dc1

dx
~ c̄12 c̄0!2c.c.J dx, ~21!

T3352
i

2
żE H dc3

dx
~ c̄32 c̄0!2c.c.J dx, ~22!

T135
i

2
żE H S dc1

dx
c̄31c1

dc̄3

dx
D 2c.c.J dx

5
i

2
ż~c1c̄32c3c̄1!u2`

1` , ~23!

and

T121T235
ż

2

ds

dz
,

with

s~z!5 i E $~ c̄22 c̄0!~c11c3!2c.c.%dx. ~24!

In the above formulas,c15c1(x1z), c25c2(x), and
c35c3(x2z). The termsT11 andT33 vanish becausec1(x)
andc3(x) are even functions andT1350 becausec1 andc3
approach the same valuec0 at plus and minus infinity.

We now have

L5
ż

2

ds

dz
2E~z!,

whereE5E@c1c2c3(x;z)# is the functional~19! evaluated
at the linear combination~16!. Varying the action~17! yields

d

dz
~E1gs![

dUeff

dz
50. ~25!

Equation~25! is of the form of a constraint; it describe
only stationary solutions. We could have easily made it d
namical just by adding one more time-dependent varia
~the canonically conjugate momentum!, but since we are
only interested in stationary configurations, Eq.~25! is quite
sufficient for our purposes.

In the three-soliton case, we confine ourselves tosymmet-
ric configurations and assume thatc1(x)5c3(x). In this
case the ansatz~16! describes two identical solitonsc1
~which can be either twoc1’s or two c2’s! placed at the
distance 2z from one another and an additional solitonc2
sitting symmetrically in between. The intermediate solit

n
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FIG. 3. Localized solutions corresponding to three branches of the bifurcation diagram in Figs. 1 and 2. Shown are the~a! real and~b!
imaginary parts ofc1 ~solid line! andc2 ~dashed line!; these two solutions correspond to the lowest and middle branches, respective~c!
and ~d! New branches into which thec2 solution turns at the pointh50.360 792 1. A comparison of~a! to ~c! and ~b! to ~d! reveals that
the last solution is a combination of onec2 and twoc1 solitons.~Below we call this complexc (121)

2 .! In these pictures,g50.52 and
h50.35.
to

le

em
e

y
tion

s

tes
ton
e
its
can be of the same variety as the two side ones~like in
c (111)) or of a different kind~e.g., c (121)). Notice that
the function

c11c35c1~x1z!1c1~x2z!

is even and so the termT121T23 does not necessarily have
be equal to zero.

The two-soliton case arises if we eliminate the midd
soliton by settingc2(x)[c0; then the quantitys vanishes.
In this case we do not need to assume thatc1(x)5c3(x); c1
and c3 can stand for any combination ofc1 and c2 soli-
tons. The Euler-Lagrange equation~25! reduces simply to

dE

dz
50. ~26!

This is almost the same variational principle as the one
ployed in @7,8#. The only difference is that we are using th
total energy~19!, while the authors of@7,8# utilized only the
interaction term* ucu4dx.
-

For smallh and g the solitons can be approximated b
explicit formulas. In this case, assuming a wide separa
between the two solitons, the integral~19! can be evaluated
analytically @7,8# and Eq. ~26! has a sequence of root
~‘‘two-soliton orbits’’! zn :

2zn5
p

2k
~2n21!, n51,2,3, . . . , ~27!

wherek is the soliton’s asymptotic wave number

c~x!2c0;e~2p1 ik !uxu as uxu→`.

Expression~27! applies uniformly to all three two-soliton
linear combinations (c1c1 , c2c2 , andc2c1). Although
Eq. ~27! was derived for smallh and g only, the general
argument behind this result is more general. It simply sta
that when two solitons are widely separated, the first soli
is only affected by thetail of the second one, and since th
tails have undulations, the potential of interaction exhib
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alternating minima and maxima@7,8#. Consequently, one ca
expect Eq.~27! with k defined by Eqs.~12! and ~13! to be
applicable in a somewhat wider domain than just for ve
small h andg.

IV. MULTISOLITON BIFURCATION DIAGRAM

Using the numerically precomputed solitonsc2 andc1 ,
we have evaluated the effective potential of interactionUeff
5E1gs for all three two-soliton and all four symmetri
three-soliton combinations. The potential is shown, as
function of the intersoliton separationz, in Fig. 4. This par-
ticular figure corresponds to thec2c2 linear combination;
for all other two- and three-soliton combinations the pote
tial looks qualitatively similar. The potential of the soliton
soliton interaction is attractive at short distances and t
intervals of attraction and repulsion alternate. As in the p
ceding section, the consecutive points of extrema are den
by zn : z1 is a maximum,z2 minimum, and so on. A reser
vation that we have to make here is that it is only for su
ciently large intersoliton separations that the energyUeff of
the above linear combinations yields the true potential of
soliton-soliton interaction.

The positions of the first three extrema obtained in t
way are given in Tables I and II~second column!. In the first

FIG. 4. Energy of the two-soliton linear combinationc2c2

5c2(x1z)1c2(x2z)2c0 as a function of the intersoliton sepa
ration 2z. The energies of the other two-soliton linear combinatio
c1c1 andc2c1 as well as of four symmetric three-soliton supe
positions (c1c1c1 ,c2c2c2 ,c1c2c1 , and c2c1c2) look
qualitatively similar.
y
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column of this table we give the genuine values of the int
soliton separation, i.e., the separations exhibited by the
merical solutions of Eq.~3!. ~Notice that in the two-soliton
case, the separation distance between the solitons is 2z not
z.! Finally, the third column contains the separation distan
as obtained by the approximate formula~27!.

A. Two-soliton complexes

Numerically, we were able to findfive different two-
soliton complexes: four symmetric and one asymmetric. T
corresponding energies are shown in Fig. 5. It is conven
to start with two distinct two-c1 soliton solutions that detach
from the flat solution ath5h* . For the driver’s strengthh
50.35 ~which will be used as a reference value througho
the paper!, the corresponding separations are 2z1'7.60 and
2z3'28.00. By comparing to the predictions of the vari
tional analysis~which gives 2z157.95, 2z2518.20, and
2z3528.45; see Table I! one of these solutions can be ide
tified with the first orbit~we denote itc (11)

1 ) and the other
with the third, to be denotedc (11)

3 ~hence the notationz1

andz3). Surprisingly, we were not able to find numerical
the two-c2 soliton complex with the solitons sitting at th
secondorbit z2.

Both numerically found two-c1 soliton solutions are
shown in Fig. 6. In order to rule out any doubts abo
whether thec (11)

1 solution is really an association of tw
‘‘ c pluses,’’ we have also drawn, on the same set of ax
the linear combinationc1(x1z)1c1(x2z)2c0. Here we
have takenz5z1, wherez1 is equal to thenumerically ob-
servedvalue of the separation~and not to the maximum o
the corresponding two-soliton interaction potential!. We do
not plot the above linear combination forz5z3 as it would
be indistinguishable from the actualc (11)

3 .
As the driving strengthh is decreased down tohthr

50.331 806 5~which coincides with the threshold value fo
the one-soliton solution!, the c (11)

3 complex turns into the
solution that can be interpreted asc (22)

3 . For our reference
value of h, h50.35, the intersoliton separation of this ne
complex is 2z3'26.20, while the variational method give
2z3525.60.

The threshold driving strength~i.e., the lower boundary of
the domain of existence! for the lowest orbitc (11)

1 lies sig-
nificantly higher thanhthr . We denote ith(22)

1 . Numerically,
h(22)

1 50.336 837. Similarly to the third orbit, the solutio
c (11)

1 transforms into its ‘‘sister’’ complexc (22)
1 . For h

s

es
econd
of the

e

01
01
TABLE I. The intersoliton separations for the two-soliton collective states. In each of the three casz1,
z2, andz3, the first column is the separation distance for the numerically obtained solution and the s
column is its variational approximation. For comparison we also produce the corresponding prediction
perturbative formula~27! with k given by Eq.~13!. In this tableh50.35. All calculations were done on th
interval @2100,100# using a sixth-order iterative algorithm with the step sizeDx50.025 and residual value
d;1028. The exception is marked by an asterisk, where the residual wasd50.531026.

2z1 2z1 2z2 2z2 2z3 2z3

numerical variational p/2k numerical variational 3p/2k numerical variational 5p/2k

c (11) 7.60 7.95 5.120 18.20 15.361 28.00 28.45 25.6
c (22) 5.60 4.85 5.120 15.35 15.361 26.20 25.60 25.6
c (21) 7.90 5.120 17.20 15.361 28.075* 27.45 25.601
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FIG. 5. Bifurcation diagram featuring single-soliton, two-soliton, and symmetric three-soliton solutions. Notice that the branchc (21)
3 ,

departing from the triple turning point as a solid line, becomes dashed as it continues to the right. This is meant to indicate that w
allow for a larger residual of the numerical scheme as we advanced in the direction of largerh. We were unable to compute the solution
the dashed part of the curve with the residuald smaller than;1026–1025. The branchc (121)

2 ~solid curve into which the branchc2 turns
near the valueh5h* ) terminates ath'0.3465; we were unable to advance it further to the left. This solid curve partially conceals the b
c (121)

3 ~second dashed curve from the bottom!. The latter starts at about the same point as the curvec (121)
2 but extends all way to the

quartic turning point where it turns into thec (212)
3 . For thoseh where the complexc (121)

2 exists, the energies of the two orbitsc (121)
2

andc (121)
3 are graphically indistinguishable.
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50.35, the variationally predicted and numerically observ
separations for this solution are, respectively, 2z154.85 and
2z1'5.60.

Both ‘‘double-c2’’ complexes are shown in Fig. 7. In th
same picture we have also plotted the linear combina
c2c2 — for exactly the same value of the separation as t
of the numerically obtainedc (22)

1 solution.
Finally, we have obtained theasymmetrictwo-soliton so-

lution c (21)
3 . This complex ‘‘lives’’ at the third orbit and

detaches from its sister solutions,c (11)
3 andc (22)

3 at their
merging pointh5hthr50.331 806 5. At the reference poin
h50.35, the complexc (21)

3 has the orbital distance 2z3

'28.075, whereas the potential of interaction of thec1 and
c2 solitons has its third maximum at 2z3527.45. The solu-
tion in question looks simply like a pair of well-separat
solitonsc2 andc1 ; we are omitting the picture here.

We should mention a computational problem encounte
in obtaining this asymmetric solution. For smallh close to
d

n
t

d

the turning point we were able to compute it with the n
merical residuald;1028. However, as we advanced in th
direction of greaterh, the convergence of our numerical a
gorithm deteriorated and we had to allow for a larger
sidual. In particular, the portion of the asymmetric bran
plotted by the dashed line in Fig. 5 was computed with
residuald;1026–1025. The separation value 2z3528.075
in Table I was obtained with the residuald50.531026. We
also have to admit here that we were not able to find
asymmetric solution living on the first~or second! orbit.

B. Three-soliton complexes

We now proceed to three-soliton associations. Two d
tinct ‘‘three-c1’’ solutions detach from the flat backgroun
at the pointh5h* ~see Fig. 5!. One of these corresponds t
the first orbitc (111)

1 and we will discuss it together with
other first-orbit complexes later in this subsection. The s
ond solution @Figs. 8~a! and 8~b!# has the separationz
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'28.0 and, comparing it to the third extremum ofUeff

~which lies atz3528.425), we can identify this solution wit
the third orbitc (111)

3 .
As h is decreased fromh5h* to the threshold value

hthr50.331 806 5, the third orbit goes over to thec (222)
3

solution @the uppermost curve in the bifurcation diagra
~Fig. 5!#. At h50.35 the separation distance between
central and the side solitons in this complex isz3'26.175,
which is in a reasonable agreement with the third extrem

FIG. 6. The twoc (11) solutions: the first orbitc (11)
1 ~solid

line! and the third orbitc (11)
3 ~long-dashed line!. For comparison,

we also show the linear superpositionc1c1 for the value of the
separation corresponding toc (11)

1 ~short-dashed line!.
e

m

of Ueff : z3525.575. This solution is presented in Figs. 8~c!
and 8~d!.

We do not plot the linear-superposition approximation
this complex since, due to a very small overlap betwe
constituent solitons, it is indistinguishable from the actu
numerical solution. The same applies to all other third-or
complexes.

At the turning poinththr50.331 806 5 two more three
soliton branches are tangent to thec (222)

3 -c (111)
3 curve.

One of these is thec (121)
3 complex, which hasz'25.05.

FIG. 7. The twoc (22) complexes: the first orbitc (22)
1 ~solid

line! and the third orbitc (22)
3 ~long-dashed line!. The linear super-

position c2c2 with the same value of the separation as that
c (22)

1 is also shown for comparison~short-dashed line!.
01
01

601
01
TABLE II. Same as Table I, but for the three-soliton collective states.

z1 z1 z2 z2 z3 z3

numerical variational p/2k numerical variational 3p/2k numerical variational 5p/2k

c (111) 7.45 7.925 5.120 18.175 15.361 28.00 28.425 25.6
c (222) 5.95 4.70 5.120 15.325 15.361 26.175 25.575 25.6
c (121) 5.02 6.925 5.120 14.80 17.275 15.361 25.05 27.50 25.
c (212) 8.80 7.15 5.120 17.275 15.361 28.75 27.50 25.6
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FIG. 8. ~a! and~b! c (111)
3 ~solid line! andc (121)

3 ~dashed curve! and~c! and~d! c (212)
3 ~solid line! andc (222)

3 ~dashed line!. Note
that here the solid and short-dashed lines are both used for two pairs of the actual numerical solutions~and not solutions and thei
linear-superposition approximations as in other figures!. Also note the change of the horizontal scale.
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The fact that this solution can be identified with the comp
c (121)

3 follows from the comparison with the variation
estimate, which givesz3527.50 for the corresponding linea
combination, and from the graphical comparison of the t
configurations@Figs. 8~a! and 8~b!#.

We already encountered a collective state of onec2 and
two c1’s in Sec. II; see Figs. 3~c! and 3~d!. However, soli-
tons constituting that complex had the separation distanz
'14.80, which is close to thesecondextremum of the cor-
responding interaction potential,z2517.275. Consequently
the multisoliton solution discussed in Sec. II should be id
tified with thec (121)

2 complex~i.e., the second orbit!.
For thoseh where the second orbit was found, its ener

was practically equal to the energy of the corresponding t
orbit c (121)

3 and so the two curves merge into one in Fig.
~This is a simple consequence of the fact that the ‘‘bind
energy’’ of solitons at the second and third orbits is ex
nentially small due to the very weak overlap and the ene
of each complex is not very different from the sum of en
gies of its constituents.! However, the two orbits differ in
their respective domains of existence: We were unable
continue the branchc (121)

2 to the left of the valueh
x
l

o

e

n-

y
ird
5.
g

o-
gy
r-

to

'0.3465, whereas the complexc (121)
3 exists all the way

down to the turning poinththr50.331 806 5~see Fig. 5!.
At the turning poinththr , thec (121)

3 solution transforms
into the c (212)

3 complex. The latter collective state hasz3
'28.75, with the variational estimate givingz3527.50. The
corresponding profiles are plotted in Figs. 8~c! and 8~d!.

All four three-solitonc3 complexes have first-orbit coun
terparts. We start with thec (222)

1 branch @Figs. 9~a! and
9~b!#, which is the second branch from the top in Fig. 5. T
numerically observed multisoliton complex has the inters
ton separationz1'5.95, while the variational estimate isz1
54.70. At the pointh(222)

1 50.339 644 it turns into th
c (212)

1 solution, plotted in Figs. 9~c! and 9~d!. In this com-
plex, the neighbor solitons sit at the distancez1'8.80 from
one another, while the variational estimate isz157.15.

We have already mentioned thec (111)
1 branch that de

taches from the flat solution@Figs. 9~a! and 9~b!#. The reason
why this solution can be identified with thec (111)

1 orbit is
that it hasz'7.45, whereas the first maximum of the pote
tial Ueff is at z57.925. At the pointhice50.341 612 it turns
into another three-soliton first-orbit complex, which deser
a special comment.



ion

2360 57I. V. BARASHENKOV, YU. S. SMIRNOV, AND N. V. ALEXEEVA
FIG. 9. ~a! and ~b! c (111)
1 and c (222)

1 complexes~both plotted by solid lines!. Short-dashed lines depict their linear-superposit
approximationsc1c1c1 and c2c2c2 obtained for the same values of the separation.~c! and ~d! c (212)

1 complex~solid line! and its
approximation byc2c1c2 ~dashed line!.
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The solution in question has a shape similar to an ic
cream cone~Fig. 10!. It is not quite obvious whether this
solution should be identified with thec (121)

1 , c (222)
1 , or

some other complex. In an attempt to make an identificati
we compare the numerically found ‘‘ice-cream cone’’ wit
the linear combinationsc1c2c1 @Figs. 10~a! and 10~b!#
and c2c2c2 @Figs. 10~c! and 10~d!#. Graphically, the
c1c2c1 seems to provide a better approximation. How
ever, the comparison of energies indicates that the ice-cre
cone containstwo c2 constituents. Namely, for largeh,
where the energy of thec2 soliton is roughly equal to 2
units and energy ofc1 is close to zero, the energy of th
ice-cream complex is roughly equal to 4.~For comparison,
the energies ofc (222)

1 andc (222)
3 are roughly equal to 6;

those of c (212)
3 , c (212)

1 , c (22)
3 , and c (22)

1 are in the
vicinity of 4 units; and the energies ofc (21)

3 , c (121)
2 , and

c (121)
3 are near 2.! Thus the question of the composition o

the ice-cream complex remains open for the time being.

V. CONCLUDING REMARKS

A striking feature of the bifurcation diagram~Fig. 5! is
almost a total absence of second-orbit complexes predic
-

n,

-
am

ed

by the variational approach. For example, the potentia
interaction of two c2 solitons has two maxima, at 2z1
54.85 and 2z3525.60, respectively, and a minimum in b
tween, at 2z2515.35~see Table I!. However, despite all ou
attempts, we did not succeed in obtaining the complexc (22)

2

by means of our Newtonian iterative algorithm. A simil
situation occurred for most of the second-orbit complex
the only exception was thec (121)

2 solution.
A natural question is therefore whether these second

bits are really suppressed by some exclusion principle or
is simply a consequence of a deficiency of our numer
scheme. In order to check on this, we have carried out di
numerical simulations of the full time-dependent NLS eq
tion ~2! with the initial condition in the form of the linea
combination of two precomputedc2 solitons at the distance
2z from each other:

c~x,0!5c2~x1z!1c2~x2z!2c0 . ~28!

We used a modified split-step pseudospectral metho~a
generalization of the one described in@14#! with 256 Fourier
modes on the interval225<x<25, with the time incremen
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FIG. 10. ‘‘Ice-cream cone’’ complex as compared with the~a! and ~b! c1c2c1 and ~c! and ~d! c2c2c2 linear combinations.
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Dt50.01. As it was already mentioned, forh50.35 the sec-
ond extremum of theUeff is at z257.7. Consequently, we
have performed two simulations, in the first one settingz
54 in the initial condition~28! and in the second one choo
ing z510. The resulting evolutions are shown in Fig. 11.
both cases solitons moved towards the equilibrium sep
tion z258.060.1 ~which is slightly greater than the analyt
cally predicted value 7.7!. Since the interaction decays exp
nentially with distance, the initial separationz54 gives rise
to a much faster evolution than the one resulting fromz
510. In order to eliminate any possible discretization
fects, we have repeated the simulations with 512 modes~and
the temporal incrementDt50.0025) and then with 1024
modes~and Dt57.531024), on the same spatial interva
The results have not been affected, with a more accu
equilibrium soliton separation beingz258.0160.025.

Thus we conclude that thec (22)
2 complex does exist for

h50.35. ~It is appropriate to mention here that the secon
orbit two-soliton state had also been observed for stron
dampings,g50.6; see@8#.! We still need to understand
however, what prevents us from finding this and oth
second-orbit complexes within thestationaryNLS equation
~3!.
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The bifurcation diagram~Fig. 5! is incomplete without
understanding of how all multisoliton branches are co
nected. We have demonstrated numerically that thec2 so-
lution continues as thec (121)

2 complex. It is natural to ex-
pect more mergers between various pairs~or groups! of
branches in a neighborhood of the pointh5h* . We specu-
late that the process of proliferation of soliton complex
always occurs via the ‘‘addition’’ of low-energy, smal
amplitudec1 solitons in the vicinity of the point wherec1

merges with the background. Details of this mechanism
well as the structure of the bifurcation diagram in the neig
borhood ofh5h* are still to be clarified.

Next, when compiling the existence chart for the a
driven damped NLS solitons, we have identified two char
teristic ranges ofg values:g,1/2 andg.1/2 @10#. In the
case ofg.1/2 ~which the present paper is devoted to!, soli-
tons have oscillatory tails in their entire domain of existen
This gives rise to an oscillatory potential of interactio
whose extrema correspond to stationary collective state
solitons. The fact that the potentialUeff is oscillatory inan
arbitrarily small neighborhoodof the point h5h* ~where
thec1 soliton merges with the flat solution! is crucial for the
mechanism of the formation of solitonic complexes. It allow
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FIG. 11. Evolution of a pair of thec2 solitons for the initial separation half distances~a! z54 and~b! z510. Plotted is the imaginary
part of c; the actualx interval @225,25# has been cut down to@215,15# for graphical clarity.
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thec1 solitons to attach to the collective state in the narr
region of h values where their amplitudes and energies
small.

On the other hand, in the caseg,1/2 neitherc1 nor c2

solitons have oscillatory tails in the vicinity of the merg
point, yet multisoliton complexes were observed in compu
simulations forg,1/2 @9#. It would therefore be interesting
to find out what is the mechanism of their proliferation
that case. A related open question is on the fate of thec2

soliton ash approachesh1 , the value for which the soliton’s
decay exponent vanishes. One possibility could be that
c2 soliton turns into a multisoliton branch at someh,h1

~similarly to what we observe in the caseg.1/2); however,
this scenario seems to contradict the fact the potentialUeff is
nonoscillatory in the vicinity ofh5h1 . Alternatively, the
e

r

e

c2 soliton could exist all way up to the pointh5h1 , where
its type of decay would change to power law.~That is, the
c2 would approach and finally reach thealgebraicsoliton.!
Although it is precisely this second scenario that seems to
supported by the numerical evidence@10#, it does not pro-
vide any clue on how the multisoliton branch can connec
the rest of the diagram.

Another open question is the multisoliton states’ stabil
and lifetime. The variational two-particle approximatio
yields a sequence of equilibrium soliton separations, the
one corresponding to a maximum in their interaction pot
tial Ueff , the second to a minimum, and so on. Consequen
one could expect that the second orbit will be stable and
first and third orbits unstable~cf. @15#!. However, direct nu-
merical simulations do not always support this intuitive



th

is

ef
a-
x-
v

t
th
m
ar

e
n
t
t

m
n

pr

f
n
ll
,

m
rb
a

tiv

is

e
,
ent

es

t

e-
the

pa-
ex-

that
se

tes.
tric
he
r-

s-
-
is
na,

to
re-
D of
T,
a-

he

57 2363BIFURCATION TO MULTISOLITON COMPLEXES IN . . .
appealing idea. A suitable counterexample comes from
work of Wabnitz @9#, who examined the case ofg50.360
and h50.234. In this case the soliton’s asymptotic value
uc0u250.061, the asymptotic wave numberk50.190, and
the perturbative results~27! for the first two extrema ofUeff
~the maximum and minimum, respectively! are 2z158.26
and 2z2524.78. On the other hand, the simulations of R
@9# revealed astablestationary soliton doublet with the sep
ration distance 2z'8. Contrary to what one could have e
pected from the fact that this bound state is stable, it ob
ously corresponds to themaximum of the interaction
potential ~i.e., it should be identified with thec (22)

1 com-
plex!.

The fact that some of the multisoliton states may prove
be unstable does not mean they would play no role in
soliton dynamics. Numerical simulations indicate that so
temporally periodicsolitons have a spatial structure simil
to the first-orbit two- and three-soliton complexes@16,17#
and so the soliton collective states may happen to provid
better starting point for the perturbative or variational co
struction of time-dependent solutions. Another reason
keep an eye on the unstable states comes from the fact
they will be visited bychaotic attractors. Multihump struc-
tures were indeed observed in simulations of chaotic regi
in the damped driven sine-Gordon and NLS equatio
@11,16,17#.

It is interesting to compare the soliton separations as
dicted by the perturbative formula~27! with positions of the
extrema of the potentialUeff obtained by the calculation o
the energy of two- and three-soliton linear combinations a
with the actual separations of solitons in the numerica
found multisoliton complexes~that is, to compare the third
second, and first columns in Tables I and II!. As it could
have been expected, the percentage error in the approxi
results decreases as one proceeds from lower to higher o
and the linear combination approximation becomes more
equate.

There is very good agreement between the perturba
values~27! and positions of extrema ofUeff for complexes
made up ofc2 solitons only (c (22) and c (222)). The
agreement is worse for complexes involving solitonsc1 .
For example, the perturbative value for the third orbit
tt
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5p/2k525.601, while the full variational results for th
c (222)

3 , c (121)
3 , andc (111)

3 complexes are 25.575, 27.50
and 28.425, respectively. The deterioration of the agreem
for complexes involvingc1 is due to a weaker localization
of the c1 solitons in the neighborhood of the pointh
5h* .

Finally, we need to mention that for the collective stat
of the c2 solitons living in the first orbits (c (22)

1 and
c (222)

1 ), the perturbative formula~27! gives a somewha
more accurate result than the full variational approach.~See
Tables I and II.! The nature of this phenomenon has r
mained unclear. One possible explanation could be that
relation~27! between the asymptotic wave number and se
ration distance is deeper than the explicit perturbative
pression for the soliton that was used in its derivation.

We mentioned several other computational problems
we faced and that are still awaiting their resolution. The
include the continuation of the asymmetricc (21)

3 solution in
the direction of higherh and the continuation of thec (121)

2

branch towards smallerh.
With a single exception of thec (21)

3 complex, we did not
discuss asymmetric two and three-soliton collective sta
We expect asymmetric branches to detach from symme
complexes at all five turning points. For example, t
c (211)

3 andc (221)
3 solutions should emerge from the qua

tic turning point, wherec (111)
3 , c (121)

3 , c (212)
3 , and

c (222)
3 branches converge.
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