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Bifurcation to multisoliton complexes in the ac-driven, damped nonlinear Schrdinger equation
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We study bifurcations of localized stationary solutions of the externally driven, damped nonlinear Schro
dinger equation¥ ,+ W+ 2| ¥|?¥ = —i y¥ — he'™ in the region of largey (y>1/2). For each pair df and
v, there are two coexisting soliton, andW _ . As the driver’s strength increases for the fixegl, the ¥
soliton merges with the flat background while the forms a stationary collective state with twoV pluses”:
Y_—¥._,. We obtain other stationary solutions and identify them as multisoliton complexes
Yin, Y)Y, Y-, ¥_,, etc.[S1063-651X98)06002-4

PACS numbd(s): 03.40.Kf, 05.45+b, 75.30.Ds

I. INTRODUCTION lar, one would not be able to use the variational method to
draw a definite conclusion on the existence stdtionary
bound states. What the two-particle approximation would
The present work deals with stationary localized solutiongyresent as a time-independent bound state could in fact cor-
of the ac-driven, damped nonlinear Satlirger(NLS) equa-  respond to an oscillating association of two solitons with an
tion: infinite or finite lifetime.
. . i The aim of the present work is to establish the existence
W+ W 2| W[PW = — iy —hel, (1) of bound states Wifhout resorting to any kind of perturbative
or variational argumentgConsequently, we are not assum-
Originally proposed as an amplitude equation for small-ing the smallness df andy.) We concentrate ostationary
amplitude breathers in charge-density-wave materials in theound states; we expect that these will serve as a backbone
presence of an applied ac fidltl], this equation reappeared for future analysis of oscillating and/or finite-lifetime soliton
later in a variety of contexts. Among these are breathers imssociations. Since foy# 0 the systen(l) is not conserva-
long Josephson junctiorfg] and in easy-axis ferromagnets tive, it is not obvious how one could define the binding en-
in a rotating magnetic field3], as well as solitons in the ergy in this case. For this reason we avoid using the term
rf-driven plasma/4,5]. More recently, Eq(1) was used to “bound state” in what follows and refer to these objects as
describe temporal and spatial soliton propagation in a single“collective states,” “multisoliton complexes,” or simply
mode fiber ring cavity in the presence of an input forcing“multisoliton solutions.” By doing so we are also suggest-
beam[6]. ing that the multisoliton complexes are not necessarily
It was suggested by a simple two-particle variational ar-stable, a property that would be imperative for bound states.
gument that solitons of Eq1) may bind together to form In addition to two-soliton complexes, we consider three-
bound state$7,8]. Independently, a similar prediction was soliton collective states that appear to be equally fundamen-
made on the basis of the adiabatic equations of the inverséal from the bifurcation viewpoint. In what follows we study
scattering-based perturbation theof]. Subsequently, a variety of soliton association® _ with ¥ _ (we denote
bound solitons were observed in direct numerical simulationghis complex¥ __y); ¥, with ¥, (to be denotedV . .,);
of the full time-dependent NLS equatiéh) [9,8]. However, W _ .y, W, .y, ¥ _y, T, y, ¥,y etc
although providing important insight when it is applicable, This paper has grown out of our attempts to tie up several
the perturbation theory cannot be used beyond smahd loose ends left in our previous publicatifb0]. Those open
v. The applicability of the collective coordinate approach toproblems concerned the domain of existence offhesoli-
the soliton dynamics is not unquestionable either. One of itson for largey (y>1/2). Consequently, in the present work
drawbacks is that it can only be utilized for widely separatedve concentrate on the casestfonglydamped equations. In
solitons; the other one is that it completely disregards radiaturn, our present findings indicate that the bifurcation dia-
tion. (Skipping ahead a bit, it is fitting to note that results of gram forsmall y can prove to be more complicated than it
the present work are not always in agreement with the colwas originally thought in Refl10]. We are planning to re-
lective coordinate predictionsFurthermore, the variational turn to the case of the weak damping in the future.
approximation can be expected to be close to the actual so- The paper is organized as follows. The next two subsec-
lution only in the sense of the space-time average. In particuions contain some technical preliminaries: In Sec. | B we
give explicit formulas for the background flat-locked solu-
tion and in Sec. | C introduce the bifurcation measure that

A. Motivation and outline
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case of the weak damping, the_ turns into a new branch The number of redlpositive roots varies witth andy. Two
of three-soliton solutions. This branch appears to be notharacteristic regions of can be identified as follows.

unique; a host of other localized solutions is presented in First, when y<1/y/3, the coefficientP is negative and
Sec. IV. These results are preced&ec. ) by the descrip-  Eq. (4) may have one or three real positive roots, depending

3
+

tion of a variational formalisn{a generalization of the one on howh compares witth, andh_, where
employed in[7,8]), which we then use to identify different
localized solutions as two- and three-soliton complexes. 1\ 1 1/1 3) 12
(Thus the variational formalism plays only an auxiliary role ho=h.(y)= §( Yo+ 313 §(§— 72) . (5
in this work) Our key result is the bifurcation diagrahig.
5) illustrating links and relationships between all soliton ; L
complexes obtained so far. Finally, in Sec. V several conlf s greater thai.. or smaller tharh, the discriminant
! of Eq. (4),
cluding remarks are made.
P\® [Q)\?
B. Flat background D=-10 3 IRE (6)

As in [10] we fix, without loss of generality{)=1 and
perform the transformatiof (x,t) =€"¢(x,t), reducing Eq. s negative and the equation has only one real root
(1) to an autonomous equation

ot o U+ 2] pf2g=—iyp—h 2 LY L
t XX Y . p0—§_2 - g) W,
The advantage is that we will be able to deal with time-
independent solutions instead of periodic ones. The timewhere
independent solutions of E) satisfy
B\ 3 -
Yo Y 2| 2= —iyy—h; 3 tane= | tan; (|a|<z)

this is the equation that we are going to study in this paper.

We first recall briefly some facts about thkat-locked(or ~ and

continuous-wavkesolutions to Eq(1), i.e.,x-independent so- a2

lutions of Eq.(3). It is convenient to decomposg, as ¥ sing= E( _ E) (|I3|$Z)_
= Jpoexp(6); then Ql 3 2

Here positive values o, «, and 8 correspond tch<h_

tand=

O<6<m,

1-2pg’ and
and pg is a root of the cubic equation 1 1
Po a po<5—zVI-37.
4p3—4p5+(1+¥?) po—h?=0. 4

Approximate[5,11] and numerica[12] solutions of Eq. NegativeQ, «, and§ pertain toh>h. and

(4) are available for smalh andy. The analysis for general

h and vy is p.resented.in our pre\_/i(_)us publicatiph0]. Al- p0>3+ 1\/1_7372

though we did not write out explicit formulas for the roots, 3 3

we identified regions of characteristic behavior of the roots

on the f, y) plane and gave analytic expressions for bound- If y<1/y/3 andh falls betweerh_ andh, , the discrimi-
aries between these regions. In fact, explicit roots can beant (6) is positive and there are three positive roots
easily found; we list them here and will utilize them in sub- 0< p{H< p@< p{3:

sequent calculations.

An explicit formula for the roots is written in terms of 1 p\Y2 4 T '
coefficients of the associated incomplete cubic equation p8)=§—2( - g) co{§+(— 1)! g}, =12
3 -
y*+Py+Q=0, N b 12 N
wherey=p,— 1/3 and the coefficients are given by po =312~ §) COS(§>
pP= 2.1 where
4 3
and cos;zz—Q—/z (0<a<m).
(—PI3)*2
1 1
Q=— ¥*+<—3h?|. . - , _
12 9 It is not difficult to find the ranges of the above roots:
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1 1 5 When y=0, the quantitye i.s conserved and represents the
3 3V1737y"<po =p-(7), energy of the system. In this case the energy is a natural and
physically meaningful choice for the bifurcation measure.
We have found it useful to retai [Eq. (9)] as a bifurcation
measure even in the caser0, when it is not conserved.
Although the meaning of this quantity is not so obvious for

p-(M=pP<p.(v),

p+(y)<pg3><1+ 1 1-3472 nonsmall y, we will still be referring toE as energy. As
3 3 opposed td#(0)|2, the measuré is additive: When new
solitons attach to the collective state, the energy of the com-
where plex will increase by the amount close to the energy of new
1 1 constituents.
pi(y)= §i6 1-392. 7) When ¢ is a time-independent solution, we hagt&/dt

=0 and Eq.(8) gives a useful representation for the energy

. i . of static solutions
In the secondregion defined byy=1/\/3, the coefficient

P is positive, discriminant negative, and we only have one h o h o
real (positive) root E=f [|¢|4— 5(1/14r ) — | ol + E(l//o+ o) ( dX.

P\ 12 (10

Poz__2<_> cot(2a), : _ . o :
3 3 This formula is particularly efficient in numerical calcula-
tions as it does not involve derivatives ¢f

where

13 T Il. BIFURCATION OF THE _ SOLITON

tane=| tan- (|a|<—) , . . .
2 4 We start with returning to a question that remained unan-

swered in our previous publicati¢t0]. There, we attempted
and to find, numerically, the upper boundary of the domain of
existence of the), andy_ solitons.

2(P\3? m
tans= 6<§> |B|=< E)' .
A. Types of asymptotic decay
This completes the description of the flat solutions of @ In order to find the upper boundary, it is useful to consider
first the asymptotic regiofx| —=. The solitons decay to the
C. Bifurcation measure value ¢y, exponentially:
In order to describe transformations and bifurcations of e (X)— ho~el TPFX - ag x| oo,

solutions to Eq.(3) quantitatively, we need a real-valued

functional that would represent solutions as point&inin  wherep,k>0 and the complex exponert= —p-+ik satis-
our previous publicatiofil0] we used the valupy(0)|> as a fies

bifurcation measure. The disadvantage of this measure is that

it is very sensitive to numerically induced shifts of the solu- (k2) 1= 1— 4| |2+ 4| o] *— 2. (11)
tion as a wholey(x) — (x—Xg). Also, it completely disre-

gards the variation of the soliton’s shape away from the poinBoth (x2); and (x?), are negative for certaihyo|? and
x=0, while it is precisely the soliton’s “wings” that change hence there can be no solitons with these asymptotic values.
most significantly as new solitons attach to the multisoliton|n the regiony> 1/{/3 this happens fowo|2> yI2; in the
state. For these and some other reasons that will becomggion 1/2<y<1/\/3 both «2 are negative fory/2<| |2
clear below, we find it useful to replace the single-point mea-< ;,_ and for | y|2>p. ; finally, in the regiony<1/2 this

sure by an integral characteristic of solutions. situation takes place fduyo|>>p. . [Herep_ andp, are as
dE h root (x?), is positive and the other onexf), negative.
_+27E:27J ||¢|4_ _(¢+% There can, in principle, exist solutions with such asymptotic
dt 2 values. However, none were foudO]. Furthermore, flat

solutions withp_<|o|?<p. are unstabld10] and hence
dx, (8)  these solitons would be of little interest even if they existed.
There are two ranges d#,|? where solitons were found.
The first one i yo|?< y/2 (for all ). Here both (<2)1,2 are
complex yielding nonzerg andk. The solitons undergo an
oscillatory decay to the flat background, with the decay rate

L —
— |4l +§(lﬂo+¢o)

where

£~ [ {12+ 1012101+ Dol + ol

B B et L B e L L G L2
+h( o+ o)} dx. ©) P 2 2

(12
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and the wave number of undulations 2.50 E
ke VY= 4 go|* 13
- 2p : (13 2.00

For y<1/2 there is also another rangg2<|yo|?°<p_.

Here both «? are positive and solitons approach their 1.50
asymptotic values monotonicallk€ 0), with the decay ex-

ponent

1.00
p={1—4|o|*— V4 o|*— y*}*2 (14
The inequality] /0| >< y/2 can be rewritten as<h, (), 0.50
where
h h
he ()=(¥3— ¥+ y2)*?, (15) 000 1A
0.33 0.34 0.35 3

and now we can summarize our conclusions in termé of h

andvy: For smally, y<1/2, the, and_ solitons can only
exist forh<<h, . They exhibit two types of asymptotic de-

cay: monotonic _forh*<h<h+ and osc!llatory forh<h, . |45|2=y/2=0.26) the solitony, detaches from the flat solution
The corresponding decay rates are given by Efi8l and  ynose energy is zemoThe pointhy,=0.331806 5 is a turning
(12), respectively. On the contrary, in the regign-1/2 the  aint- at this point they, soliton transforms into the_ solution.
decay is always oscillatory. Here there can be no localizegne 4 soliton ceases to exist for>0.360 792 1 or, equivalently,
solutions above the value=h, . Forh<h, , the decay ex- for |y,|2>0.254 416 8. It remained unclear in RE0] what hap-
ponent is given by Eq(12) and the wave number of the pens to they_ branch beyond that point. The diagram for the case

FIG. 1. Typical bifurcation diagram of the one-soliton solution.
(In this picture y=0.52) At the pointh=h, =0.360 843(where

asymptotic undulations by E@13). y<1/2 would look qualitatively similar; the only difference would
be that in the latter case, the domains of existence ofand ¢ _
B. Weak damping (y<1/2) coincide.

Now we are prepared to discuss soliton transformations in
the vicinity of the upper boundary of their domain of exis-
tence. Assumey is smaller than 1/2 and fixed. A in-
creases to the value, , whereh, () is given by Eq.(5),
the decay exponemt [Eq. (14)] goes to zero. The fate of the
two solitonsy, and ¢ _ turns out to be different.

The amplitude of the), soliton was observed to decrease

—h, and|yg|2— y/2. Similarly to the casey<1/2, they.,
soliton was observed to merge with the flat solution here; see
Fig. 1. (We were able to find the . arbitrarily close to the
valueh=h, .) It was natural to expect that thg_ soliton
would also behave as in the<1/2 case. As we have already

while its characteristic width was increasing and eventuallyentioned, in the regioy<1/2 we Succegded in finding the
the s, was seen to merge with the flat solutiog (X) _ soliton with the asymptotic valupyy|“ deviating from
— g ashTh, . This numerical observation is in agreementp—(y) not more than by 10°. On the contrary, whery

with the asymptotic series representation of the solitan >1/2, the upper bom_mdary of its_ domain of existence:2 was
[13]. On the contrary, the solitogr_ retained a finite ampli- found to deviate quite substantially from the curg|

tude and remained well localized in this limhough the - vI2. The question of what causes this deviation and what

decay exponerp did tend to zern We were able to obtain finally happens to thé_ soliton ash increases was left open

this solution in a very near vicinity of the poifit, . [More in Ref. [10]. . o . .
precisely, we succ>e/eded in fizding th% mm\;vitg the In order to clarify the situation, we have designed a sixth-
asymptot,ic valuel |2 deviating not more {han by 16 order accurate numerical algorithm based on the continuous

from the curvep (7). In terms ofh, this means that the analog of Newton’s method and performed a detailed study

A s of the neighborhood of the poiht=h, . (For references and
gfdp:rr ?g%r}dirhyislsi%l;ﬁgsutyﬁ ;ty;;)_v)vghm EEE 2%?;&;23 of a brief review of the method, s¢&0].) Results of this study
: +, _

tends to a localized solution decaying as a negative power cﬁre presented in Figs. 2 and 3. This more accurate analysis

x. (There is a very subtle question of whether the exists "> [2vealed Ina the reason why we were ot able 1o ap-
arbitrarily close toh, , i.e., whether this algebraic soliton is proach the poinh=h, close enough In RELLV] was the

actually reached. We return to this issue in Sed. The existence of a new turning point. At this point tike branch

soliton transformation can be conveniently characterized b rrst_mto ? t?]gwbbranrc]h of IOC?“Zed solut|ons_;t.see F]‘I%h 8.
the variation of the energy with; this is shown in Fig. 1. olutions ot this branch are nonjinear SUuperpositions of three

solitons: theys_ soliton in the middle and twe, solitons at
its sides.
A more extensive search has led to a larger variety of
The situation in the regiory=1/2 turned out to be more multisoliton complexes. The corresponding energies are plot-
complicated. In this region the decay rate is given by Eqted in the bifurcation diagrartFig. 5, Sec. 1. Before pro-
(12); as we mentioned in Sec. Il A, it goes to zero las ceeding to the description of the diagram, we first need to

C. Strong damping (y=1/2)
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e~ [ {0l =10l 5 ol +
E +h( o+ o) tdx.
260 ] h( 4o+ o) }dx (19
3 Substituting the ansat6) into Egs.(18) and(19), we ob-
E tain for the kinetic term
2.40 e
E ; T= T11+ T33+ T13+ T12+ T23, (20)
220 3 where
E i (dyy — —
200 E T11:§ z W(lﬂl_ o) —c.c.pdx, (21)
1.802 — —rl [ dyg — —
0.3579 ) " ) - Ta3=— 52 W( Y3— o) —cC.C.pdX, (22
FIG. 2. Bifurcation to a three-soliton complex fer=0.52. The i diy— d@
lower branch here is the extreme right part of ihe branch from T13:§ Zf dx 3t djla —c.c.[dx
Fig. 1. The solution corresponding to the upper curve is plotted in
Figs. 3c) and 3d). i _ — e
:Ez(‘ﬂl‘/fs_%dfl) Zes (23
introduce a simple variational formalism which will allow us
to identify its various branches. and
lll. COLLECTIVE COORDINATE DESCRIPTION z do

. . . T12+T23:§d—:
As we have already mentioned in the Introduction, one z

could not rely on the variationdlor collective-coordinate .
approach to demonstrate the existence of stationary mult?’-‘”th
soliton solutions. However, the variational description
proves to be quite useful in treeposterioriidentification of o(z)=i J’ {(a— tho) (b1 + h3) —c.CldX. (24)
the numerically obtained soliton complexes.

It is convenient to consider three-soliton configurations

) - . i . = + =
first; the two-soliton state will be obtainable as a simple par- I_n the above formulasyy =i (x+2) 2 Y2(x), and
. . o . 3= 3(X—12). The termsT 4, and T3 vanish because; (x)
ticular case. We set up a trial function in the form of a linear . >

and ¢3(x) are even functions anf; ;=0 because/;, andy;

combination approach the same valug at plus and minus infinity.
P1hoa(X;2)=thy+ b+ h3—24hy, (16) We now have
where L zdo c
=54, E@.

=1(X+2),  Po=1(X), P3=i3(X—2)

are three different or identical solitons sitting at the pointsWhereE:E['ﬂl‘ﬂ?"./@(x.;z)] is the functional(.19) evalyated
x=—27,0, and +z, respectively. Here is a positive value at the linear combinatiofil6). Varying the actior(17) yields
that is allowed to depend on time=z(t). We have to use a d
bit awkwa_rd n_otationplz,bzl/fg i_n order to distingui_sh thén- d_(E+ yo)=
ear combinationof three solitons from the@enuine three- z
soliton solution our notation for the latter would b ;3.
The damped driven NLS equatidd) follows from the
stationary action principléS=0, where

dUeff
iz =0. (25

Equation(25) is of the form of a constraint; it describes
only stationary solutions. We could have easily made it dy-
namical just by adding one more time-dependent variable

. (the canonically conjugate momentynbut since we are
S=j e L[, ]dt (17)  only interested in stationary configurations, E2p) is quite
sufficient for our purposes.
and the Lagrangiah =T —E comprises the kinetic In the three-soliton case, we confine ourselvesytmmet-

ric configurations and assume thed(X) = 3(x). In this
case the ansatzl6) describes two identical solitong
(which can be either twa/,’s or two _’s) placed at the
distance 2 from one another and an additional solitgn
and “potential” term sitting symmetrically in between. The intermediate soliton

i [ _
TZE 700('/&'/1_ ) dx (18
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FIG. 3. Localized solutions corresponding to three branches of the bifurcation diagram in Figs. 1 and 2. Showfaaredhand(b)
imaginary parts off, (solid line) and¢_ (dashed ling these two solutions correspond to the lowest and middle branches, respectively.
and(d) New branches into which the¢_ solution turns at the poirti=0.360 792 1. A comparison @#) to (c) and (b) to (d) reveals that
the last solution is a combination of oge. and two ¢, solitons.(Below we call this complexp(ﬂ,ﬂ .) In these picturesy=0.52 and
h=0.35.

can be of the same variety as the two side ofig® in For smallh and y the solitons can be approximated by
W+ ++y) or of a different kind(e.g., ¢, — 1)). Notice that  explicit formulas. In this case, assuming a wide separation
the function between the two solitons, the integfal) can be evaluated
analytically [7,8] and Eg. (26) has a sequence of roots
1+ 3= (X +2) + Py (X—2) (“two-soliton orbits”) z,:

is even and so the teriy,+ T,3 does not necessarily have to -

be equal to zero. 22n=—k(2n—1), n=123..., (27)
The two-soliton case arises if we eliminate the middle 2

soliton by settingy,(X)= iq; then the quantityr vanishes. ) . )

In this case we do not need to assume thak) = ¢5(X); ¥, wherek is the soliton’s asymptotic wave number

and 3 can stand for any combination @f, and _ soli-

tons. The Euler-Lagrange equati®b) reduces simply to Y(x)— ro~el PN as x| e,
dE Expression(27) applies uniformly to all three two-soliton
FER (26)  linear combinations ., ¢, , __ , andy_i,). Although

Eq. (27) was derived for smalh and y only, the general
This is almost the same variational principle as the one emargument behind this result is more general. It simply states
ployed in[7,8]. The only difference is that we are using the that when two solitons are widely separated, the first soliton
total energy(19), while the authors of7,8] utilized only the is only affected by theail of the second one, and since the
interaction termf | |*dx. tails have undulations, the potential of interaction exhibits
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0.6x10°
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FIG. 4. Energy of the two-soliton linear combinatiaf. ¢ _
=y_(Xx+2)+¢_(x—2)— ¢y as a function of the intersoliton sepa- tional analysis(which gives 2,=7.95, 2,=18.20, and

ration 2z. The energies of the other two-soliton linear combinations
Yo, andy_ o, as well as of four symmetric three-soliton super-

positions @, p-b_tp_ iy, and y_y, ) look

qualitatively similar.
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column of this table we give the genuine values of the inter-
soliton separation, i.e., the separations exhibited by the nu-
merical solutions of Eq(3). (Notice that in the two-soliton
case, the separation distance between the solitong P

z.) Finally, the third column contains the separation distances
as obtained by the approximate formugy).

A. Two-soliton complexes

Numerically, we were able to findive different two-
soliton complexes: four symmetric and one asymmetric. The
corresponding energies are shown in Fig. 5. It is convenient
to start with two distinct twag, soliton solutions that detach
from the flat solution ah=h, . For the driver’s strength
=0.35 (which will be used as a reference value throughout
the paper, the corresponding separations am27.60 and
275~28.00. By comparing to the predictions of the varia-

2z;=28.45; see Table) lone of these solutions can be iden-
tified with the first orbit(we denote it¢(1++)) and the other
with the third, to be denoted//(3++) (hence the notatiom;
and z3). Surprisingly, we were not able to find numerically

alternating minima and maxinja,8]. Consequently, one can the two+/_ soliton complex with the solitons sitting at the
expect Eq.(27) with k defined by Egs(12) and (13) to be
applicable in a somewhat wider domain than just for very Both numerically found twaf. soliton solutions are

smallh and .

IV. MULTISOLITON BIFURCATION DIAGRAM

Using the numerically precomputed solito#is and ¢/, ,
we have evaluated the effective potential of interactihg

=E+ yo for all three two-soliton and all four symmetric

secondorbit z,.

shown in Fig. 6. In order to rule out any doubts about
whether thez,b(l+ +) solution is really an association of two

“ i pluses,” we have also drawn, on the same set of axes,
the linear combination), (x+2z) + ¢, (X—2) — ¢y. Here we
have takerz=z,, wherez, is equal to thenumerically ob-
servedvalue of the separatiofend not to the maximum of
the corresponding two-soliton interaction potentidVe do

three-soliton combinations. The potential is shown, as ot plot the above linear combination far=z; as it would

function of the intersoliton separatian in Fig. 4. This par-
ticular figure corresponds to thé ¢ _ linear combination;

be indistinguishable from the actuaf++).
As the driving strengthh is decreased down tdy,,

for all other two- and three-soliton combinations the poten-_ 331 ggg 5(which coincides with the threshold value for

tial looks qualitatively similar. The potential of the soliton-
soliton interaction is attractive at short distances and then
intervals of attraction and repulsion alternate. As in the pre
ceding section, the consecutive points of extrema are denoté
by z,: z; is a maximum,zz, minimum, and so on. A reser-

vation that we have to make here is that it is only for suffi-

ciently large intersoliton separations that the enddgy of

the above linear combinations yields the true potential of th

soliton-soliton interaction.

the one-soliton solution the z/1(3++) complex turns into the
solution that can be interpreted a%,,). For our reference
@Iue ofh, h=0.35, the intersoliton separation of this new

complex is Z3~26.20, while the variational method gives
2z3=25.60.
The threshold driving strengilie., the lower boundary of

dhe domain of existengdor the lowest orbitzp(ﬂﬂ lies sig-

nificantly higher tharh,,. We denote ih(l_ —y- Numerically,

The positions of the first three extrema obtained in thishl__)=0-336 837. Similarly to the third orbit, the solution
way are given in Tables | and (second column In the first

¥+ +) transforms into its “sister” complex,//(l__). For h

TABLE I. The intersoliton separations for the two-soliton collective states. In each of the threezgases
Z,, andzs, the first column is the separation distance for the numerically obtained solution and the second
column is its variational approximation. For comparison we also produce the corresponding prediction of the
perturbative formuld27) with k given by Eq.(13). In this tableh=0.35. All calculations were done on the
interval[ —100,10Q using a sixth-order iterative algorithm with the step slze=0.025 and residual value
5~10"8. The exception is marked by an asterisk, where the residualdwas5x 10 °.

2z, 2z, 2z, 2z, 225 22,
numerical variational 7/2k | numerical variational @/2k | numerical variational &/2k
7 7.60 7.95 5.12¢ 18.20 15.361 28.00 28.45 25.601
/7 5.60 4.85 5.12¢ 15.35 15.361 26.20 25.60 25.601
7 7.90 5.120 17.20 15.36[l 28.075 27.45 25.601
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FIG. 5. Bifurcation diagram featuring single-soliton, two-soliton, and symmetric three-soliton solutions. Notice that thet/l'\?r_anch
departing from the triple turning point as a solid line, becomes dashed as it continues to the right. This is meant to indicate that we had to
allow for a larger residual of the numerical scheme as we advanced in the direction ofHakyerwere unable to compute the solution at
the dashed part of the curve with the residaamaller than~10°-10"5. The branchp(ﬂ,ﬂ (solid curve into which the branchi_ turns
near the valub=h, ) terminates ah~0.3465; we were unable to advance it further to the left. This solid curve partially conceals the branch
l!f(3+_+) (second dashed curve from the botjorfihe latter starts at about the same point as the cwrfyeﬂ but extends all way to the
quartic turning point where it turns into th§_+_) . For thoseh where the complexb(2+_+) exists, the energies of the two orbi}é+_+)
and ¢, _,, are graphically indistinguishable.

=0.35, the variationally predicted and numerically observedhe turning point we were able to compute it with the nu-
separations for this solution are, respectively; 24.85 and  merical residuald~ 10 8. However, as we advanced in the
22,~5.60. direction of greateh, the convergence of our numerical al-

Both “double-/_" complexes are shown in Fig. 7. In the gorithm deteriorated and we had to allow for a larger re-
same picture we have also plotted the linear combinatiogidual. In particular, the portion of the asymmetric branch

_y_ — for exactly the same value of the separation as thaplotted by the dashed line in Fig. 5 was computed with the
of the numerically obtainedf(l__) solution. residual 5~10°—10"°. The separation valuezg=28.075

. X X ) 5
Finally, we have obtained th@symmetridwo-soliton so- N Table | was obtained with the residug=0.5x10"". We
lution ¢f’_+). This complex “lives” at the third orbit and also have to admit here that we were not able to find the

detaches from its sister solution,sf++) and (//?__) at their asymmetric solution living on the firgor second orbit.
merging pointh=h,,=0.331 806 5. At the reference point
h=0.35, the complex¢(3,+) has the orbital distancezg
~28.075, whereas the potential of interaction of #he and We now proceed to three-soliton associations. Two dis-
_ solitons has its third maximum aizg=27.45. The solu- tinct “three-ys, " solutions detach from the flat background
tion in question looks simply like a pair of well-separated at the pointh=h, (see Fig. $. One of these corresponds to
solitonsy_ and ¢, ; we are omitting the picture here. the first orbit zp(ﬂH) and we will discuss it together with

We should mention a computational problem encounteredther first-orbit complexes later in this subsection. The sec-
in obtaining this asymmetric solution. For sméliclose to ond solution[Figs. §a) and 8b)] has the separatioz

B. Three-soliton complexes
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line) and the third orbm// ) (long-dashed line For comparison,
we also show the I|near superposmem ¢, for the value of the
separation corresponding t&fH) (short-dashed line

~28.0 and, comparing it to the third extremum bf

(which lies atzz=
the third orb|t¢ (++4)

As h is decreased fronh=h,

28.425), we can identify this solution with

to the threshold value

he="0.331 806 5, the third orbit goes over to thg
solution [the uppermost curve in the bifurcation diagram complexes.

(Fig. 5)]. At h=0.35 the separation distance between the At the turning pointhy,=0.331 806 5 tWO more three-
central and the side solitons in this complexzis=26.175,
which is in a reasonable agreement with the third extremun®©ne of these is the’/(+ +) complex, which has~25.05.
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FIG. 7. The twoy__y complexes: the first orblﬂx(__) (solid
line) and the third Orbl'ﬁ// __ (Iong -dashed ling The linear super-
position _ ¢ _ with the same value of the separation as that of
«p(l,,) is also shown for comparisaishort-dashed line

of Uy z3=25.575. This solution is presented in Fig$c)8
and 8d).

We do not plot the linear-superposition approximation to
this complex since, due to a very small overlap between
constituent solitons, it is indistinguishable from the actual
numerical solution. The same applies to all other third-orbit

soliton branches are tangent to tb«é - z,/1(+++) curve.

TABLE Il. Same as Table I, but for the three-soliton collective states.

7 7 Z Z Z3 Z3
numerical variational 7/2k | numerical variational @/2k | numerical variational &/2k
Bir++) 7.45 7.925 5.12( 18.175 15.3¢1 28.00 28.425 25.601
/7S 5.95 4.70 5.12( 15.325 15.361 26.175 25,575 25.601
/7S 5.02 6.925 5.12( 14.80 17.275 15.361 25.05 27.50 25.601
/- 8.80 7.15 5.12( 17.275 15.361 28.75 27.50 25.601
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that here the solid and short-dashed lines are both used for two pairs of the actual numerical s@uatonst solutions and their
linear-superposition approximations as in other figur&fso note the change of the horizontal scale.

The fact that this solution can be identified with the complex~0.3465, whereas the complepf _ 4 exists all the way
¢(+ +) follows from the comparison with the variational down to the turning poinb,=0. 331 806 5(see Fig. %.

estimate, which gives;=27.50 for the corresponding linear At the turnlng pointhy,, the l//(+ +) solution transforms
combination, and from the graphical comparison of the twainto the z,/; +—y complex. The latter collective state has

configurationg Figs. 8a) and 8b)]. ~28.75, W|th the variational estimate givirg=27.50. The
We already encountered a collective state of gneand  corresponding profiles are plotted in Figgc)8and &d).
two ¢, ’s in Sec. Il; see Figs. (@) and 3d). However, soli- All four three-solitony® complexes have first-orbit coun-

tons constituting that complex had the separation distance terparts. We start with th@’/ (———) branch[Figs. 9a) and
~14.80, which is close to theecondextremum of the cor- 9(b)], which is the second branch from the top in Fig. 5. The
responding interaction potentiad,=17.275. Consequently, numerically observed multisoliton complex has the intersoli-
the multisoliton solutlon discussed in Sec. Il should be identon separatiorz;~5.95, while the variational estimate g
tified with the ¢, _,, complex(i.e., the second orbit =4.70. At the pointh;___,=0.339 644 it turns into the
For thoseh where the second orbit was found, its energylﬁ( +-y solution, pIotted in FlgS @) and 4d). In this com-
was pract|cally equal to the energy of the corresponding thirghlex, the neighbor solitons sit at the distarme=8.80 from
orbit ¢ _+) and so the two curves merge into one in Fig. 5.0ne another, while the variational estimatezjs=7.15.
(This is a simple consequence of the fact that the “binding We have already mentioned thﬁﬁﬂ branch that de-
energy” of solitons at the second and third orbits is expo-taches from the flat solutidirigs. 9a) and 9b)]. The reason
nentially small due to the very weak overlap and the energyhy this solution can be identified with th,ez-(1+Jr+ orbit is
of each complex is not very different from the sum of ener-that it hasz~7.45, whereas the first maximum of the poten-
gies of its constituents.However, the two orbits differ in tial U4 is atz=7.925. At the poinh,,.=0.341 612 it turns
their respective domains of existence: We were unable tinto another three-soliton first-orbit complex, which deserves
continue the brancth +) to the left of the valueh  a special comment.
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FIG. 9. (a) and (b) 4/1(+++ and l//(___) complexes(both plotted by solid lings Short-dashed lines depict their linear-superposition

approximationsy, ¢, ¢, and ___ obtained for the same values of the separatiohand (d) 1,//( +—y complex(solid ling) and its
approximation byys_ ¢, s (dashed ling

The solution in question has a shape similar to an iceby the variational approach. For example, the potential of
cream congFig. 10. It is not quite obwous Whether this interaction of two _ solitons has two maxima, atz2
solution should be identified with th$ e :,b (-——y» or  =4.85 and 2;=25.60, respectively, and a minimum in be-
some other complex. In an attempt to make an identificationtween, at 2,=15.35(see Table). However, despite all our
we compare the numerically found “ice-cream cone” with attempts, we did not succeed in obtaining the comméx
the linear combinations, ¢s_¢. [Figs. 1Ga) and 1@b)]  py means of our Newtonian iterative algorithm. A similar
and ¢4 [Figs. 1Qc) and 1Qd)]. Graphically, the sjtyation occurred for most of the second-orbit complexes;
Y+, seems to provide a better approximation. How-y, only exception was th$(2+_+) solution.
ever, the comparison of energies indicates that the ice-cream A natural question is therefore whether these second or-

cone containgwo ¢ _ constituents. Namely, for largh, bi I db lUSi inciol thi
where the energy of thg_ soliton is roughly equal to 2 . Its are really suppressed by some exclusion principle or this
units and energy off, is close to zero, the energy of the is simply a consequence of a .def|C|ency of our numer_|cal
ice-cream complex is roughly equal to @or comparison, schem_e. In prder to check on th|s., we have carried out direct
the energ|es ofy* and 2 are roughly equal o 6: numerical simulations of the full time-dependent NLS equa-
-1 (3-7) tion (2) with the initial condition in the form of the linear

thoset Of;{(‘r + t) lﬁ( d+th)’ lﬂ(__), a;g (//(__) are in thg combination of two precomputegl_ solitons at the distance
vicinity of 4 units; and the energies @f_ ., zp(+ 4y, an 57 from each other:

1,// +_+) are near 3.Thus the question of the composition of
the ice-cream complex remains open for the time being. W0 = (X+2)+ b (X—2)— thg. (28)

V. CONCLUDING REMARKS We used a modified split-step pseudospectral metlaod

A striking feature of the bifurcation diagraiffFig. 5) is  generalization of the one described i]) with 256 Fourier
almost a total absence of second-orbit complexes predictetiodes on the intervat 25<x=25, with the time increment



57 BIFURCATION TO MULTISOLITON COMPLEXES IN ... 2361

0.40 - 0.40 1Rey
0.20 0.20 £ numerical Yice
-0.00 ] ~0.00 .
:'/superposition VWY }-superposition Yy
-0.20 -0.20
E :“: E i b
] X ] ' X
—-0.40 LJLILINL 2L LS N N St 2 St A O BN N B 2 N N NS N B B B B S R S | =0. D JUULIELNE LI At N B S S B S N N B B R N S I AR A AN A B B R
(a) ~30.00 -10.00 10.00 30.00 (c) —30.00 -10.00 10.00 30.00
1.00 4 1.00 -
i 3 .\ -00 7
] 'm“ﬁ i— superposition Y, 9¥, : Imw
. ] s 4
] | . H n i— superposition Y_y_y_
0.80 numerical Y. 0.80 : th
0.60 —: 0.60 -
0.40 0.40 3 P
3 ¥ ¥ i\ numerical Y
] X N } X
0.20 ryrrrrry T T T TTTT T T T T T 1 0.20 TTIlITllII-!lIllllll-llllllIIII|
(b) -30.00 —10.00 10.00 30.00 (d) =30.00 -10.00 10.00 30.00

FIG. 10. “Ice-cream cone” complex as compared with tagand(b) ¢, &_ ¢, and(c) and(d) &___ linear combinations.

At=0.01. As it was already mentioned, fo=0.35 the sec- The bifurcation diagran{Fig. 5 is incomplete without
ond extremum of thdJ is at z,=7.7. Consequently, we understanding of how all multisoliton branches are con-
have performed two simulations, in the first one setting nected. We have demonstrated numerically thatgheso-
=4 in the initial condition(28) and in the second one choos- lution continues as th¢(2+,+) complex. It is natural to ex-
ing z=10. The resulting evolutions are shown in Fig. 11. Inpect more mergers between various paios group$ of
both cases solitons moved towards the equilibrium separasranches in a neighborhood of the pointh, . We specu-
tion z,=8.0+0.1 (which is slightly greater than the analyti- |ate that the process of proliferation of soliton complexes
cally predicted value 7)7 Since the interaction decays expo- always occurs via the “addition” of low-energy, small-
nentially with distance, the initial separatias-4 gives rise  amplitudey ., solitons in the vicinity of the point wherg
to a much faster evolution than the one resulting fram merges with the background. Details of this mechanism as
=10. In order to eliminate any possible discretization ef-well as the structure of the bifurcation diagram in the neigh-
fects, we have repeated the simulations with 512 méaed  borhood ofh=h, are still to be clarified.
the temporal incremeniAt=0.0025) and then with 1024 Next, when compiling the existence chart for the ac-
modes(and At=7.5x10"%), on the same spatial interval. driven damped NLS solitons, we have identified two charac-
The results have not been affected, with a more accurateristic ranges ofy values: y<1/2 andy>1/2[10]. In the
equilibrium soliton separation beirg=38.01+0.025. case ofy>1/2 (which the present paper is devoted, tsoli-
Thus we conclude that thg&(z,,) complex does exist for tons have oscillatory tails in their entire domain of existence.
h=0.35. (It is appropriate to mention here that the second-This gives rise to an oscillatory potential of interaction,
orbit two-soliton state had also been observed for strongewhose extrema correspond to stationary collective states of
dampings,y=0.6; see[8].) We still need to understand, solitons. The fact that the potentibl is oscillatory inan
however, what prevents us from finding this and otherarbitrarily small neighborhoodof the pointh=h, (where
second-orbit complexes within theationaryNLS equation  the . soliton merges with the flat solutipis crucial for the
(3. mechanism of the formation of solitonic complexes. It allows
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the ¢, solitons to attach to the collective state in the narrowy_ soliton could exist all way up to the poiht=h_ , where

region ofh values where their amplitudes and energies arats type of decay would change to power lag¥hat is, the
small.

¢_ would approach and finally reach théebraicsoliton)
On the other hand, in the case<1/2 neithery, nor ¢ _

Although it is precisely this second scenario that seems to be
solitons have oscillatory tails in the vicinity of the merger supported by the numerical evidengd], it does not pro-

point, yet multisoliton complexes were observed in computeride any clue on how the multisoliton branch can connect to
simulations fory<<1/2 [9]. It would therefore be interesting the rest of the diagram.

to find out what is the mechanism of their proliferation in  Another open question is the multisoliton states’ stability
that case. A related open question is on the fate ofghe and lifetime. The variational two-particle approximation
soliton ash approaches , , the value for which the soliton’s  yields a sequence of equilibrium soliton separations, the first

decay exponent vanishes. One possibility could be that thene corresponding to a maximum in their interaction poten-
¢_ soliton turns into a multisoliton branch at sorhech

tial U, the second to a minimum, and so on. Consequently,
(similarly to what we observe in the case-1/2); however, one could expect that the second orbit will be stable and the
this scenario seems to contradict the fact the potebtjalis  first and third orbits unstableef. [15]). However, direct nu-
nonoscillatory in the vicinity oth=h_, . Alternatively, the merical simulations do not always support this intuitively
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appealing idea. A suitable counterexample comes from th&7/2k=25.601, while the full variational results for the
work of Wabnitz[9], who examined the case of=0.360 z,/;?,,,), z/;(3+,+) , andz//3+++) complexes are 25.575, 27.50,
andh=0.234. In this case the soliton’s asymptotic value isand 28.425, respectiveﬁy. The deterioration of the agreement
|45|2=0.061, the asymptotic wave numbke=0.190, and for complexes involvingy, is due to a weaker localization
the perturbative result@7?) for the first two extrema obly  Of the . solitons in the neighborhood of the poiit
(the maximum and minimum, respectivelgre 2,=8.26  =h, .
and 2,=24.78. On the other hand, the simulations of Ref. Finally, we need to mention that for the collective states
[9] revealed astablestationary soliton doublet with the sepa- of the ¢_ solitons living in the first orbits z(y(l,,) and
ration distance 2~8. Contrary to what one could have ex- z/;(l,,,)), the perturbative formuld27) gives a somewhat
pected from the fact that this bound state is stable, it obvimore accurate result than the full variational approdSiee
ously corresponds to themaximum of the interaction Tables | and Il The nature of this phenomenon has re-
potential (i.e., it should be identified with thaf(l,,) com-  mained unclear. One possible explanation could be that the
plex). relation(27) between the asymptotic wave number and sepa-
The fact that some of the multisoliton states may prove taation distance is deeper than the explicit perturbative ex-
be unstable does not mean they would play no role in theression for the soliton that was used in its derivation.
soliton dynamics. Numerical simulations indicate that some We mentioned several other computational problems that
temporally periodicsolitons have a spatial structure similar we faced and that are still awaiting their resolution. These
to the first-orbit two- and three-soliton complexgks,17] include the continuation of the asymmet¢§_+) solution in
and so the soliton collective states may happen to provide ghe direction of higheh and the continuation of th$(2+_+)
better starting point for the perturbative or variational con-pranch towards smalld.
struction of time-dependent solutions. Another reason to yith a single exception of th¢r(3_+ complex, we did not

keep an eye on the unstable states comes from the fact thglscuss asymmetric two and three-soliton collective states.

they will be visited bychaotic attractors. Multihump struc-  \ye expect asymmetric branches to detach from symmetric
tures were indeed observed in simulations of chaotic regimesomplexes at all five turning points. For example, the

i[qltgg ldzamped driven sine-Gordon and NLS equation _..,andy? ., solutions should emerge from the quar-

; ; ; 3 3 3
It is interesting to compare the soliton separations as pret-lc turning point, Wherey, . .y, ¥, —+), ¥{(-+-), and

dicted by the perturbative formul@7) with positions of the Y{- - -, branches converge.
extrema of the potentidl . obtained by the calculation of
the energy of two- and three-soliton linear combinations and
with the actual separations of solitons in the numerically At various stages of this work we benefited from discus-
found multisoliton complexeghat is, to compare the third, sions with M. M. Bogdan, D. E. Pelinovski, and E. V. Zem-
second, and first columns in Tables | angl i\s it could lyanaya. I.B. and N.A. thank Professor I. V. Puzynin for his
have been expected, the percentage error in the approximatespitality at the Joint Institute for Nuclear Research, Dubna,
results decreases as one proceeds from lower to higher orbitghere this work was completed. Special thanks are due to
and the linear combination approximation becomes more adProfessor C. Brink for his support and assistance with re-
equate. search resources. This research was supported by the FRD of
There is very good agreement between the perturbativBouth Africa, the University Research Council of the UCT,
values(27) and positions of extrema df .4 for complexes and the Laboratory for Computing Techniques and Automa-
made up ofy_ solitons only ¢y and . __). The tion of the JINR. The work of Yu.S. was supported by the
agreement is worse for complexes involving solitofs . Russian Foundation for Fundamental Resedf@hant No.
For example, the perturbative value for the third orbit is97-01-01040.
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