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Strongly localized modes in discrete systems with quadratic nonlinearity
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We report the existence of bright and dark families of strongly localized modes in discrete systems with a
guadratic nonlinearity. It is shown analytically and confirmed numerically that the second-harmonic field may
form stable bound states with fundamental fields of different topologies. Furthermore, we found different types
of solutions having analogs neither in other discrete models nor in continuum models and studied the back-
ground stability of dark mode$S1063-651X%98)03902-9

PACS numbes): 42.65.Tg, 03.40.Kf, 46.168-z, 63.20.Pw

Since the original investigatioid —6] a considerable and ity and thus represent promising laboratories for future gen-
steadily growing amount of interest has been centered on theration of optoelectronic devic¢$8,20,21].

study of intrinsic strongly localized moddSLMs) in non- Another prominent example of discrete systems repre-
linear discrete systems because of their relevance in varioents arrays of coupled optical waveguides. Applications of
fields, e.g., solid-state physics, optics, and biol¢gy-13.  localized modes in such systems for all-optical information

The dynamics of many systems is described by the discretarocessing were discussed[t2,13. We mention that only
nonlinear Schidinger equatiofDNLSE) or by its modifica- cubic (or x®) nonlinearity of waveguides has been consid-
tions. Prominent examples are lattices with different nonlin-eréd, although quadratically nonlinear media provide a much
ear potentials as well as arrays of linearly coupled opticafréater variety of effect$22] that, more importantly, are
waveguides with a cubic nonlinearity. Bright and dark SLMs©btainable for lower power compared to th€” scenario.
may exist in this environmeri#—9,12,13 where bright ones A relevant question not addressed until now is how dis-
are formed due to modulational instabilitiédl) of station- ~ C'€teness affects the nonlinear dynamics in systems with

ary nonlinear solutions. Dark SLMs, on the contrary, need 6guadratlc nonlinearity far beyond the continuum limit. Thus

modulationally stable background. The experimental demont—he aim of this paper is to demonstrate the existence of fami-

stration of these phenomena was reportefili 15, lies of bright and dark highly localized two-field states and to

- . study their fundamental properties.
Within .the past several years a renewed interest has The evolution of the two-component field in a discrete

. ) il i Wﬁuadratic medium may be described by nonlinearly coupled
fields can be described by two ScHioger equations ifterence-differential equations as
coupled by a quadratic nonlinearity. With respect to the con-

tinuous case, representative examples are the envelope evo-

. n
lution of an optical field in bulk media or in film waveguides o7 TCa(AnratAn-n)+ 2yALB,=0,
with a quadratic nonlinearity16,17] as well as the dynamics 1)
of long-wavelength excitations at the interface between two . dB, )
organic crystal§18,19. The particular form of nonlinearity |7 T Co(Bnr1FBo-1)+ BByt yA=0.

leads to energy exchange between the two field components
and additionally brings another crucial parameter, the phasé an array of optical waveguides is concernag and B,
mismatch, into play. Although these systems are not interepresent the fundamental frequen@F) and the second-
grable, stable mutually locked solitary waves may exist inharmonic (SH) amplitudes in thenth waveguide, respec-
continuous media, which was experimentally confirmed intively. Similarly, they designate the respective vibration am-
optics[17]. plitudes of thenth molecule at a molecular interface. The
At the present time, quickly developing technologies suchevolution variablez denotes either the propagation distance
as epitaxial growth, ion exchange in solids, and electricablong the waveguides or the time in the vibration process,
poling allow for fabrication of different kinds of thin films, c,, andy are the linear and nonlinear coupling coefficients,
multilayer structures, and arrays of optical waveguides forespectively, ang is either the wave-vector mismatch or the
advanced photonics applications. The discrete nature of suatetuning from the Fermi resonance. Equati¢hswere con-
structures is responsible for qualitatively different types ofveniently normalized by using both a characteristic length
excitations and effects connected with them. In particular(or time) and amplitude.
the so-called Fermi-resonance interface modes were shown It is evident that in the long-wavelength castow varia-
to appear owing to the Fermi resonance between excitatiortton with n) the dynamic equationgl) transform into the
of molecules situated at the interface between two organicontinuum limit. Several types of localized solutions to this
molecular crystals. Moreover, the above-mentioned excitasystem, viz., bright, darkso-called twin-holg and semidark
tions may form bound states of different symmetries andsolitary waves have been discussed in optics and solid-state
demonstrate interesting nonlinear properties such as bistabiphysics[16—19,23. This gives some evidence that similar
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localized solutions may exist in the discrete case as welltend to vanish The method used permits the calculation of
However, until now it had not been clear which shape theSLM amplitudes with any prescribed accuracy. Here, in fo-
continuum solitary-wave solutions were going to attain forcusing on the physical aspects of these phenomena we re-
asymptotically diminishing width, i.e., for strongly localized strict ourselves to the first-order approximation.

modes. Accordingly, an even bright SLM looks like.,~0,
Prior to the study of SLMs, it was useful to look for the u.,~0 for n=3 and|p.,/<p_1=1, |pu-o|<p+1=1, p1
stationary plane-wave solutions to E¢$). Inserting the an- =s, wheres=1 and—1 correspond to the symmetric and

satzA,(t)=a exdi(gn—k2], B,(t)=b exdg2i(gn—k2] into  the antisymmetric modes, respectively. The amplitudes are
Egs.(1), we get a relation between the FF and SH amplitudegjiven by
a andb as

aZ~4b2+by(2sc,—Co—B)/y>0, p_r~e,,

b
2=4pb%+ — — —-B)>0.
ac=4b 5 (4c, cosq—2c, cos [—B)>0 (2 P2=Sp 2, fag~de. ©6)
As a matter of fact, a certain SH amplitudeapplies to a FF  For obvious symmetry reasons the subsanist0 was aban-
amplitudea of either sign. This behavior will be encountered doned for even modes. In looking at EqS) and (6) it is
for SLMs too. The dispersion law, which relates the waveevident that the ratig/yb>0 has an upper bound for SLMs
vector in propagation directiork] with the transverse wave to exist.

vector (@) and SH amplitude, Thus odd symmetric and even symmetric as well as anti-
symmetric SLMs can be identified from Eqg)—(6). Note
k=—2(yb+c, cosq), ) that for even solutions four different types of the FF field

correspond to one SH pattern.

shows that the nonlinear shift 2yb determines the wave A characteristic feature of nonlinear discrete systems con-
vector of the nonlinear mode provided the nonlinear cousSists in that the excitation induces an effective periodic po-
pling exceeds the linear ongyb|>c,). As it will be shown  tential similar to the Peierls-Nabarr@N) potential (see,
below, this very condition is a prerequisite to the formation€-9.,[2,8,9 and references therginwhich breaks the trans-
of SLMs. lational invariance and may thus prevent the dislocation of

To identify SLMs we extend an approach used by PageSLMs. Moreover, the PN potential was frequently used to
[6] for one-component vibrations in nonlinear lattices towardpredict the stability behavior of a particular SLM]. Thus
the two-field case. Because we are concerned On|y with resthe identification of the PN barrier between two different
ing solutions, i.e.q=0,7, we may writeA,=a,exp(—ikz), SLMs is a relevant subject to be addressed here.
B,=b,exp(-2ik7), wherea, b, can attain either sign. As Equations(1) exhibit two integrals of motion that repre-
usuaL we may C|assify SLMs as Symmetric or antisymmetricsent the total intensity and the Hamiltonian and can be writ-
bright or dark states localized mainly at a singbeld mode ~ t€n as
or two (even modgsites.

To obtain the amplitudes at these sites and for the nearest 1= (|AL2+2|B,/?), )
neighbors we impose the respective symmetry on the ansatz. n
To this end we introduce amplitudes and w,, normalized
by the maximum valuea,,b,, that is, a,=app,, b,
=byu,, and indicate odd and even modes by 0,e, re-
spectively. As mentioned previously, strong nonlinear cou-
pling is assumed, which allows the introduction of small pa- +c.c). (8)
rameters such as

H= —; (CaAnAL, 1+ CBB. 1+ YAZB: + 3 B|B,?

Even and odd SLMs of equivalent topology may be consid-
ered as realizations of a common mode centered either at or
in between the arraglattice) elementg8]. Thus we have to
require the same intensity) for both SLMs, which results
Op=—Cp/(2k+ B)=Cp/(4yby—B). (4) in a relation betweerb, and b,. Using this relation, the
difference between the Hamiltonians of the odit}) and the
Seeking an odd symmetric bright SLM as a solution with thegyen Ho) SLM can be calculated. This difference is like-
vanishing value ofp.,,u., for n=2 andp_1=p1, [p1l  wise the PN barrier that separates both realizations from each
<po=1, p_1=p1, and|us|<po=1, we insert the ansatz other. As a matter of fact if the PN barrier is nonzero and the
for A, andB,, into Egs.(1) and solve the resulting system of {ransverse wave vectay is less than a certain critical value
algebraic equations. Neglecting second-order terms in thghe SLM is at rest. For cubic nonlinearities it has been shown

£p=—Calk~c,/2yb,,

small parameters, we get that stability requires a minimum for in-phase modes or a
maximum of the PN potential for out-of-phase, or staggered,
a§%4b§—,8b0/y> 0, p1~eq, M1~0,, (5) modes[9]. This change of the stability criterion reflects the

symmetry properties of the relevant dynamic equation and
where the SH amplitudb, is a free parameter. Note that an the Hamiltonian. If a pure on-site cubic nonlinearity is con-
extremely high localizatiofat only one sitgof the FF or SH  cerned, in-phase SLMs may only exist if the nonlinearity is
field may occur if the linear coupling is very smédl, orc,  positive where a negative nonlinearity supports out-of-phase
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particular, unlike the “traditional” even unstaggered and
staggered modes they are stable, but only above some critical
localization degre€[24], which explains the absence of
AR twisted solitonlike solutions in the continuum limit. It is
Y "“‘”W’/"J\‘\ y worth realizing that for large mismatch Ed4) transform to
the DNLSE and therefore twisted SLMs could also be
counted among the solutions of Eq$). However, the two-
field modes in discrete media with quadratic nonlinearity
represent a pair divistedFF andunstaggeredH fields. As
can be inferred from Fig. (t), such a topology drastically
influences stability properties of the SLM. The twisted fun-
damental field tends to stabilize the whole mode, which, be-
ing much more strongerly perturbed compared than the un-
staggered SLMJ[Fig. 1(b)], demonstrates rather stable
behavior.

Now a remark is in order. Because we have considered
the case of small coupling constants, it is worth mentioning
two additional approaches applied to study dynamics of lo-
calized solutions in other discrete and continuous systems.
These are(i) the so-called semiclassical or dispersionless
limit of partial differential equation§ 25] contains a number
of papers on this subjecand(ii) the “anticontinuous” limit,
which corresponds to asymptotically vanishing coupling in
discrete systemésee, e.g.[26] and references therginThe
first method is exclusively applicable to continuous systems
and thus not so relevant to tls¢rongly localizedmodes we
deal with. We only note that localized modes initially excited
in the continuous system with the infinitesimally small dis-
persion would spread, demonstrating rather complicating dy-
namics[25]. As far as the second approach is concerned, the
concept of an anticontinuous limit has been used to prove the
existence of SLMs for one-field time-reversible or Hamil-

FIG. 1. Evolution of the normalized intensity of bright SLMs. tonian discrete systep{%]. . .
The FF component is shown and the SH field has a similar féam. Now we proceed in looking for dark SLMs. To this end
A stable odd SLM(b) a slightly antisymmetrically perturbed even W€ SubstituteA,=aep,exp(-ikz) and B,=bynexp(-2ikz)
SLM consisting of both unstaggered FF and SH components, antM0 Egs.(1), wherea andb are taken from the stationary
(0) a strongly (symmetrically and antisymmetricallyperturbed ~ Plane-wave solutiori2) and use the same small parameters
even SLM consisting of twisted FF and unstaggered SH compot4) but drop the subscrigh. The odd symmetric dark mode
nents. The parameters arg=c,=0.15,8=0, y=1, andb=1. can be written ag..,= ¥.,=1 forn=2 and

it
““”:‘J“/““r““ﬂw‘w/

il I i

I
!

| }‘f“w i

SLMs. Because the sign qf the PN bgrrier also changes, Odd%%zg, @ur~1+(e+ )12, Pp~28, Phoi~1+s.
SLMs are stable for any sign of nonlinearf{i]. (9)
For quadratic nonlinearities dynamics Ed$) lack the

above symmetry and a stable solution requires a minimum ofye note that the shape of the SH part of this dark solution

the PN potential. In turn, it can be shown thé<H. holds  joes not change for the antisymmetric or kinklike mode for
always regardless of the sign of the nonlinearityb. the FF wavd ¢o=0, ¢_,=— ., wheree, , is given by
Hence odd solutions are expected to be stable, unlike unstag-q_ 9] Leon "’ "

gered and staggered even modes, which are unstable. This 1o
was indeed confirmed by direct numerical calculations prezpnq
sented in Figs. () and Xb) (for convenience excitations are
enumerated by positive numbgr#\ stable propagation of

the perturbed odd SLM as well as a decay of the even mode¢-1~¢, @s,~1+(e+8)/2, Y+1~8, Pi~1l+e.

(both FF and SH fields are unstaggereshich immediately (10
transforms to an oscillatory state, can be clearly seen.

We mention that foryb>0 even antisymmetric and for The corresponding kinklike mode for the FF field is also
vb<0 even symmetric SLMs are neither unstaggered nodescribed by Eq(10), whereo_,=—¢.,,. Note that the
staggered solutions and can be obtained from those bgmplitudes of dark out-of-phase€ ) SLMs are likewise
changing the phase of excitations on sites1 by 7. Hence  given by Eqs(9) and(10) provided one changes the sign of
we called these modeawisted (unstaggered and staggered c, together with the transformaticay,— (—1)"a,, . It turned
Such SLMs in the systems described by the DNLSE haveut that SLM shapes obtained by direct numerical calcula-
been shown to exhibit quite interesting properti@d]. In tions are in good agreement with E@4)—(6), (9), and(10).

even dark mode looks like.,=¢.,=1 for n=3
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|

normalized length, z

FIG. 3. Stable propagation of an antidark Sl{Me normalized
SH intensity is shown The corresponding FF field has the same
shape. The parameters arg=c,=0.1, B=-1.8, b=-0.7, and
g=.

Thus it is in order to check the dark SLMs derived above
against Ml.

To do this the stationary plane-wave solutjesee Eqs(2)
and (3)] is slightly modulated:a—a+ &,(t) and b—b
+Z,(1), where n=U.exp([Qn—Kz])+uexp(=i[Qn
—K*z]) and {,=v.exp{[Qn—Kz])+v.exp(-i[Qn—K*Z]).
By inserting this into Eqs(1) and performing a linear stabil-
ity analysis, we end up with a characteristic equationifor
For the situation we are concerned with hege=Q,7) this
equation reduces t*+ a,K?+ ay=0, with

FIG. 2. Evolution of the normalized intensity of out-of-phase
odd dark SLMs:(a) a SLM where a single-site localized FF is
locked to a double-hump SH component ail a double-hump =4 2(b2—2a2)—f2— 2
dark SLM where excitation is spread over five siléise corre- 27 g (11
sponding FF field has the same shafée parameters a®,=cy,
=0.1,8=-2, andb=—1. ao=(fg)?>—(2ybg)?—8(ya)?fg+(2ya)?,

We mention that a few SLMs derived have their respecwhere f=2yb+2c,(1-cosQ), g=4yb+4c,—2c,c0sQ
tive counterparts in continuum media, whereas most of them- g, and the uppeflower) sign applies taj=0 (7). The MI
are unique for discrete systems. For example, the extremelyain G=|Im K| is then given as
localized dark mode, where the FF amplitude differs only at
a single sitg§odd mode or at two sitegeven modgfrom the
uniform background, may form provided= Bc,[2y(2c, 1 ) Ui/
+c¢,)] % see Eqgs(4), (9), and(10). Such an odd mode is G= v [Im[ — ap* (a5 —4ag) ).
plotted in Fig. Za). Note the peculiar shape of the SH field 2
when the amplitude).., exceeds the background amplitude
¥+n, N=2. This corresponds to the formation of the double-In the long-wavelength limit(small Q) the MI gain ap-
hump dark solutions, which may also exist for both the FFproaches that of the continuum mod&l7]. The maximum
and the SH fields and for the localization at more than thredl gain is plotted in Fig. 4 as a function of the stationary SH
sites. Propagation of such a mode where five channels agmplitudeb and the mismatclg for in-phase ¢=0) and
involved is shown in Fig. @) for the SH field. As can be out-of-phase =) solutions. With regard to the dispersion
seen, numerical calculations demonstrate an appreciable reglation(3), these two cases correspond to opposite signs of
bustness of these modes upon propagation. dispersion of the linear waves. Evidently, the change of the
Apart from SLMs discussed above, we have also ob<haracter of dispersion critically affects the stability behav-
served gray, antidarkor bright on a nonzero background ior. Although the stability ranges considerably differ for the
modes both for the SH and FF waves as well as some exotlgvo regimes, a common stable region with<0 and8<0)
ones, e.g., a symbiotic pair of a gray FF wave and a doublesan be identified. The consequences of the background sta-
hump antidark SH wave. As an example, stable propagatiohility properties for the dynamics of dark SLMs can be seen
of the antidark SLM is presented in Fig. 3. in Fig. 5. The propagation of two dark kinklike SLMs that
The stability of dark SLMs is essentially determined by are in close proximity in thé-B plane is displayed. The
the stability of the background against spatial modulationsobviously stable SLM corresponds to the domain wh@re
So it has been shown that in the continuum case the dark 0 holds[Fig. 5@)]. A slight change of the SH amplitude
solitary wave is unstable due to Ml of the backgroy@8].  causes the solution to move to the unstable region. As a
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FIG. 5. Propagation of a dark, kinklike in-phase Sli¥e nor-
malized FF intensity is shownThe parameters are,=c,=0.1,
B=—-2, and (@) b=-0.76—G,,,=0 and (b) b=—0.72-G .«

FIG. 4. Maximum MI gain of the background as a function of =0.24.
the normalized SH amplitude and the wave-vector mismatch. No
plane-wave solution exists in the shaded region. Bright regions co

I . . .
respond to stable solutionsE0). The parameters are, = c, tions of different topologies form bound states with the same

=0.1 and(a) q=0 and(b) q=.

second-harmonic SLM. As far as bright SLMs are con-
cerned, it has been shown that odd solutions are stable. This
numerical finding agrees with the fact that the Peierls-

result, the dark SLM becomes unstable and decays aftq{aharro potential for this kind of solution attains a mini-

some distancgFig. 5b)] as do all SLMs that were termed
“exotic” above.
In conclusion, families of bright as well as dark strongly

mum. The stability of dark SLMs critically depends on the
dispersion behavior of linear waves and the mismatch.

localized modes in discrete quadratic media have been The authors acknowledge grants from the Deutsche For-
shown to exist. Among them are solutions that have no counschungsgemeinschaft, Bonn, the Volkswagen-Stiftung, Han-
terparts in discrete systems studied previously. A particulanover, and partial support from INTAS Grant No. 96-0339.
feature of SLMs in quadratic media consists in that FF soluWe also thank E. Schmidt for invaluable help with numerics.
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